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Abstract16

Let f be a drawing in the Euclidean plane of a graph G, which is understood to be a 1-dimensional17

simplicial complex. We assume that every edge of G is drawn by f as a curve of constant algebraic18

complexity, and the ratio of the length of the longest simple path to the the length of the shortest19

edge is poly(n). In the drawing f , a path P of G, or its image in the drawing π = f(P ), is β-stretch20

if π is a simple (non-self-intersecting) curve, and for every pair of distinct points p ∈ P and q ∈ P ,21

the length of the sub-curve of π connecting f(p) with f(q) is at most β∥f(p) − f(q)∥, where ∥.∥22

denotes the Euclidean distance. We introduce and study the β-stretch Path Problem (βSP for short),23

in which we are given a pair of vertices s and t of G, and we are to decide whether in the given24

drawing of G there exists a β-stretch path P connecting s and t. We also output P if it exists.25

The βSP quantifies a notion of “near straightness” for paths in a graph G, motivated by gerry-26

mandering regions in a map, where edges of G represent natural geographical/political boundaries27

that may be chosen to bound election districts. The notion of a β-stretch path naturally extends to28

cycles, and the extension gives a measure of how gerrymandered a district is. Furthermore, we show29

that the extension is closely related to several studied measures of local fatness of geometric shapes.30

We prove that βSP is strongly NP-complete. We complement this result by giving a quasi-31

polynomial time algorithm, that for a given ε > 0, β ∈ O(poly(log |V (G)|)), and s, t ∈ V (G), outputs32

a β-stretch path between s and t, if a (1 − ε)β-stretch path between s and t exists in the drawing.33
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1 Introduction40

We study an optimal path problem in planar drawings of graphs, in which we represent edges41

as curves of constant algebraic complexity. We seek a path in a graph G from a given vertex42

s to another given vertex t that is, in a precise sense, as close as possible to the straight-line43

segment from s to t. We formalize this notion by saying that an s− t path is a β-stretch44
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6:2 Computing β-Stretch Paths in Drawings of Graphs

path if the distance between any two points along the path (not only the endpoints) is at45

most β times the Euclidean distance between them.46

The notion of “β-stretch” in this definition is similar to the notion of stretch in a47

multiplicative β graph spanner [17], where we want to remove edges from the graph while48

ensuring that the shortest path distance in the spanner is at most β times the length of49

a shortest path in the original graph. Thorough reviews of existing results for geometric50

spanners are available in [4, 9, 16]. In our problem we are not sparsifying the graph; instead,51

we try to find the most “natural” path connecting two given vertices s and t in a given52

embedded graph. If we interpret the embedded graph as the road network of a country,53

such paths can be used as an initial step to partition the country into regions with natural54

shapes. One of our motivations, in fact, is the problem of computing natural regions that, in55

a precise sense, avoid gerrymandering. A few definitions have been proposed in the literature56

to characterize what a “natural” path could entail. For example, a path in a drawing of57

a graph is defined to be self-approaching [1, 12] if for any two points p and q on the path,58

when moving from p to q along the path, the Euclidean distance to q is decreasing. Icking et59

al. [12] proved that a self-approaching path is 5.3332-stretch.60

The problem of computing β-stretch paths bears similarities to the graph dilation problem,61

where for every pair of vertices s and t in a geometric graph, we compare the shortest-path62

distance between s and t to their actual Euclidean distance in the plane, and return the63

largest ratio of these two values over all pairs (s, t). In the special case of cycles this problem64

is known as computing the maximum detour of a polygonal chain [8]. Klein and Kutz show65

that computing a minimum-dilation graph that connects a given n-point set in the plane with66

at most m edges is NP-hard [14]. In one direction, if we are given an embedded geometric67

graph with a dilation ratio that is at most as large as our target stretch factor, a weaker68

variant of a β-stretch path exists between every pair of vertices s− t, in which we consider69

only pairs of vertices along the path rather than points. However, since the dilation is a70

global property an s− t path that is β-stretch in the given graph might still exist even if the71

dilation is more than β. We elaborate on other connections to our problem in Section 1.3.72

We naturally extend the notion of β-stretch paths to β-stretch cycles. Interestingly, we73

show that a β-stretch cycle bounds a locally “fat” shape in the sense as defined by De Berg [7],74

with the parameter of fatness depending on β. The converse is easily seen not to be true.75

Our notion of β-stretch cycles may have applications to computing geographic partitions76

into regions whose shapes are well shaped in a sense that cannot be captured with fatness77

criteria.78

The rest of the paper is organized as the following. We formally define the β-stretch path79

problem is Section 1.1, followed by key main results and an overview of related results in80

the literature in Section 1.2 and 1.3, respectively. In Section 2, we prove a relation between81

β-stretch cycles and locally γ-fat shapes. Section 3 proves that β-stretch path problem82

is strongly NP-complete. Section 4 develops a quasi-polynomial approximation scheme83

algorithms for β-stretch path problem and its extension to computing β-stretch cycles. We84

conclude with open problems and future directions in Section 5. Omitted proofs are in the85

Appendix (Section 6).86

1.1 Problem Statement87

Let G = (V, E) be a finite simple graph, with vertex set V and edge set E ⊆
(

V
2
)
. A drawing88

of a graph is a representation of G in the Euclidean plane R2, in which vertices are distinct89

points and edges are Jordan arcs represented as curves of constant algebraic complexity, i.e.,90

described by a constant number of polynomial equations (inequalities), whose maximum91
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degree is bounded by a fixed constant.92

Formally, a drawing of a graph is a continuous map f : G→ R2, where we treat G as a93

1-dimensional simplicial complex. The representation of a vertex v ∈ V , an edge e ∈ E, and94

a path P ⊆ G in the drawing f is f(v), f(e), and f(P ), respectively. Here, we consider a95

generalized path that can end in a midpoint of an edge.96

We will distinguish paths in a graph from paths in a drawing of a graph. The reason is97

that we will consider “paths” in a drawing that end in relative interiors of edges. Treating98

G as a 1-dimensional simplicial complex, a path in a drawing f of G is f(P ), where P is a99

generalized path in G. We will be denoting paths in a drawing by lower case Greek letters.100

Let ∥.∥ be the Euclidean norm. Let P ⊆ G denote a path between p and q ∈ G. If both101

p and q are vertices of G then P corresponds to a usual path in G. Let f be a drawing of102

G. Then π = f(P ) is the path between p and q in f . Let π(p′, q′) denote the sub-path of π103

between p′, q′ ∈ G, that is, π(p′, q′) = f(P (p′, q′)), where P (p′, q′) ⊆ P is the path between104

p′ and q′. If we want to specify a path π together with its endpoints s and t we denote it by105

π(s, t) = π. The path π passes through all of the vertices and edges of G intersecting P . The106

length of the path π, denoted by ∥π∥, is the usual Euclidean length, which can be computed107

as
∫

P
∥f ′(x)∥dx. The distance between s ∈ P and t ∈ P along π, denoted by dπ(s, t), is the108

length of the sub-curve of π between f(s) and f(t).109

β-stretch path. Let π be a path in f free of self-intersections. For β ≥ 1, path π is a110

β-stretch path if for every p, q ∈ P we have111

dπ(p, q)
∥f(p)− f(q)∥ ≤ β. (1)112

β-stretch cycle. Let C be a simple cycle in G so that γ = f(C) is free of self-intersections.113

The cycle γ in f is a β-stretch cycle if for every pair of points p and q on C we have114

dγ(p, q)
∥f(p)− f(q)∥ = min{dπ(p, q), dπ′(p, q)}

∥f(p)− f(q)∥ ≤ β, (2)115

where π = π(p, q) and π′ = π′(p, q) are the two paths between q and p whose union is γ.116

The left hand side of (1) and (2) is the stretch factor of p and q along π and γ, respectively.117

The maximum of the stretch factor of p and q over distinct p, q ∈ P and p, q ∈ C is the118

stretch factor of π and γ, respectively. Note that a β-stretch path (cycle) is a β′-stretch path119

(cycle), for every β′ ≥ β. If a path π or a cycle γ is self-intersecting, its stretch factor is120

undefined.121

▷ Problem 1. β-stretch Path Problem (βSP). We are given a drawing f of a graph G,122

β ≥ 1, s ∈ V (G) and t ∈ V (G). Decide whether there exists a β-stretch path in f between s123

and t. The instance of the problem is denoted by (G, f, β, s, t).124

A self-intersection-free cycle γ in a drawing f of G separates s ∈ G \ C from t ∈ G \ C if125

f(s) and f(t) are contained in different connected components of the complement of γ in R2.126

▷ Problem 2. β-stretch Cycle Problem (βCP). We are given a drawing f of a graph G,127

β ≥ 1, s ∈ V (G) and t ∈ V (G). Decide whether there exists a β-stretch cycle in f separating128

s from t. The instance of the problem is denoted by (G, f, β, s, t).129

1.2 Main Results130

Our main results proved in Sections 3, 4.2 and 4.3, respectively, are the following.131

▶ Theorem 1. βSP is strongly NP-complete.132
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6:4 Computing β-Stretch Paths in Drawings of Graphs

s133

▶ Theorem 2. Let (G, f, β, s, t) be an instance for βSP with poly(log n) ≥ β ≥ 1. Suppose134

that the shortest edge length in f is 1, and that there exists c > 0 such that the longest135

simple path in f has length at most nc. Under the above assumptions there exists a QPTAS136

for βSP. In other words, there exists a quasi-polynomial-time algorithm that for a fixed137

poly(log n) ≥ β ≥ 1 and ε > 0 returns a β-stretch path between s and t if a β(1− ε)-stretch138

path between s and t exists in f .139

▶ Theorem 3. Let (G, f, β, s, t) be an instance for βSC with poly(log n) ≥ β ≥ 1. Suppose140

that the shortest edge length in f is 1, and that there exists c > 0 such that the longest path in141

f has the length at most nc. Under the above assumptions there exists a QPTAS for βSC. In142

other words, there exists a quasi-polynomial-time algorithm that for a fixed poly(log n) ≥ β ≥ 1143

and ε > 0 returns a β-stretch cycle separating s from t if a β(1− ε)-stretch cycle separating144

s from t exists in f .145

1.3 Related Work146

Dilation or stretch factor [16] is perhaps the most common measure for the quality of a147

geometric graph. There is a subtle difference between the stretch factor of a path versus the148

stretch factor of a graph. For a path, the stretch factor only pertains to its endpoints, while149

for a graph the stretch factor pertains to every pair of the graph vertices. Our definition of150

β-stretch path falls in the middle as it pertains to all pairs of points belonging to the path.151

It is worth mentioning that a line of existing results in the literature is not about designing152

a geometric graph with desired stretch factor, but about the fast computation of the stretch153

factor, given the graph. Narasimhan and Smid [15] considered the problem of computing the154

stretch factor of a Euclidean graph, defined as the the Euclidean distance between any two155

vertices of the graph. Using Callahan and Kosaraju’s well-separated pair decomposition, they156

showed that there exists a EPTAS for computing the stretch factor running in O(|V |3/2) time,157

which is much faster than computing all-pairs-shortest-path distances. For general weighted158

graphs, Cohen proposed fast algorithms to compute paths with a desired stretch factor [6].159

The stretch factor, in this case, is the ratio of the path length to the graph distance. Farshi160

et al. studied the problem of adding an edge to a Euclidean graph that lowers its stretch161

factor as much as possible [11].162

Chen et al. [5] recently proposed a new straightness measure for a path. A polygonal163

chain (p1, p2, . . . , pn) is a c-chain if for all 1 ≤ i < j < k ≤ n, we have ∥pi−pj∥+∥pj−pk∥ ≤164

c∥pi − pk∥. There is a connection between the notion of c-chain and our proposed notion of165

β-stretch paths. On the one hand, if a chain is β-stretch, it is trivial to show that it is also a166

β-chain according to the definition in [5]. On the other hand, a c-chain bounds the possible167

stretch of the chain according to [5, Theorem 1–3]. Even though the analysis is only for the168

endpoints of the path, the results readily follow for any pair of points on the chain. Hence, it169

indeed implies the chain has β-stretch (with the difference of only checking pairs of vertices,170

not the points on the connecting segments).171

A closely related notion to our β-stretch path is the notion of quasiconvexity as defined by172

Azzam and Schul [3]. A connected subset Γ of the Euclidean space is said to be quasiconvex173

if any two points x and y in Γ can be connected via a path in Γ whose length is bounded by174

a constant times the Euclidean distance between x and y [3]. According to this definition, a175

β-stretch path is quasiconvex with constant β. The problem studied by Azzam and Schul is176

in some sense opposite to ours. Given a connected set Γ and a target set of points K, they177

compute a superset Γ̃ ⊃ Γ that connects the K points, has Hausdorff length comparable178
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to that of Γ, and is quasiconvex. We, instead, look for a path that is a subset of the given179

connected set (graph) and that is quasiconvex with a constant stretch factor β. While a180

short quasiconvex set always exists [3, Theorem 1], we show that determining whether a181

β-path exists is strongly NP-complete.182

One measure of “compactness” designed to quantify gerrymandering in political districting183

is the Polsby-Popper score, based on the ratio of the area of a district to the square of the184

district’s perimeter [18]. See [19] for a discussion of shape measures used in the study of185

gerrymandering.186

2 β-Stretch Curves and Locally γ-Fat Shapes187

In order to model inputs that represent realistic objects, computational geometers introduced188

the notion of fat shapes. The aim of this section is to argue that our notion of β-stretch189

cycles captures a local variant of fatness.190

Roughly speaking, a planar shape, understood as a closed topological disk T , is locally191

γ-fat if every disk that is centered in T and is not containing the whole T has at least a192

γ-fraction of its area in T . Let D ⊂ R2 denote a disk. Let D ⊓ S, for S ⊆ R2, denote the193

path connected component of D ∩ S containing the center of D.194

Locally γ-fat shape [2, 7]. For 0 ≤ γ ≤ 1
2 , a closed topological disk T ⊆ R2 is locally195

γ-fat if for every disk D centered in T that does not contain D in its interior, we have196

area(T ⊓D) ≥ γ · area(D).197

We remark that there exists a variant of local γ-fatness that considers area(T ∩D) rather198

than area(T ⊓D) [20, 21]. The following applies also to this weaker notion of local γ-fatness.199

The notion of β-stretch cycles extends to any measurable Jordan curve, in particular,200

boundaries of “nice” topological disks. In the following theorem, we show that by controlling201

the stretch factor of the boundary of a topological disk, we also control its local fatness. In202

particular, lowering the stretch factor increases the fatness. The corresponding lower bound203

on the local fatness is the inverse of a linear function of the stretch factor with the leading204

constant factor 2π. We also show that the stretch factor of the boundary cannot be bounded205

by a function of its local fatness.206

▶ Theorem 4. Every closed topological disk T ⊂ R2, whose boundary ∂T is measurable and207

β-stretch, is locally 1
2πβ -fat. For every β > 1, there exists a locally 1

32π -fat topological disk208

whose boundary is not a β-stretch cycle.209

Proof. Let D denote a disk, centered at a point p ∈ T , that does not contain T in its interior.210

We need to show that 1
2πβ area(D) ≤ area(T ⊓D).211

Let D(r) and C(r), for r ≥ 0, denote the disk and circle, respectively, with radius r212

centered at p. By rescaling, we assume that D = D(1) is a unit disk. Let re = min{r| r ≥213

0, (C(r) ∩ ∂T ) ̸= ∅}. Hence, re is the radius of the largest disk D(re), whose interior does214

not intersect ∂T . Since D does not contain T in its interior, we have re ≤ 1.215

We will presently show that
(

r2
e + (1−re)2

2πβ

)
area(D) =

(
r2

e + (1−re)2

2πβ

)
π ≤ area(T ⊓D).216

Then optimizing over the value of re, such that 0 ≤ re ≤ 1, in the previous two inequalities217

gives the desired lower bound 1
2β area(D) on area(T ⊓D). The lower bound is minimized for218

re = 0. It remains to show that
(

r2
e + (1−re)2

2πβ

)
π ≤ area(T ⊓D). The first term is due to219

the fact that D(re) ⊆ T since p ∈ T .220

To get the second term we consider slices S(r) = T ∩ C(r), for re ≤ r ≤ 1. First, we221

treat r ∈ [re, 1+re

2 ]. We claim that S
( 1+re

2 − t
)
, for 0 ≤ t ≤ 1−re

2 , contains a circular arc of222

SWAT 2020



6:6 Computing β-Stretch Paths in Drawings of Graphs

angular length greater than or equal to 1
β · 2

1−re−2t
1+re−2t . The claim is proved with the help of223

the following lemma; see Figure 1 for an illustration.224

p

p1

p2

C( 1+re
2 − t)

C(1)

αt

C(1)

A(x)

∂T

p1

p2
C(x)

p

τ1

τ2

C(re)

Figure 1 An illustration of Lemma 5 (left) and inequality (3) (right).

▶ Lemma 5. The slice S(x), re < x ≤ 1, contains a circular arc A(x), whose relative interior225

is contained in the interior of T ⊓D, and whose endpoints p1 ∈ ∂T and p2 ∈ ∂T split ∂T226

into two parts τ1 and τ2 sharing p1 and p2, such that τ2 ∩ C(re) ̸= ∅ and τ1 ∩ C(1) ̸= ∅.227

Proof. Refer to Figure 1 (left). First, we perturb ∂T a little bit to eliminate touchings228

between C(x) and ∂T without increasing the total length of C(x) contained in the interior229

of T . Let p′
1 and p′

2 denote a point in ∂T ∩C(re) and ∂T ∩C(1), respectively. Let τ ′
1 and τ ′

2230

denote the two parts of ∂T connecting p′
1 and p′

2. We assume that τ ′
2 is shortest possible. In231

particular, τ ′
2 is contained in ∂(T ⊓D). Note that both τ ′

1 and τ ′
2 intersect C(x) in an odd232

number of path connected components.233

Let A1, . . . , Ak denote the path connected components of T ∩ C(x). Note that none of234

Ai’s is a point since we eliminated touchings between ∂T and C(x). It must be that there235

exists Aj , 1 ≤ j ≤ k, such that one endpoint of Aj belongs to τ ′
1 and the other to τ ′

2. Indeed,236

otherwise the number of path connected components in τ ′
1 ∩ C(x) and τ ′

2 ∩ C(x) would be237

even.238

By the choice of τ ′
2, putting A(x) = Aj concludes the proof. ◀239

We show that A
( 1+re

2 − t
)

from Lemma 5 is an arc of the desired angular length, which240

is at least 1
β ·2

1−re−2t
1+re−2t . Let τ1 and τ2, and p1 and p2 be as in Lemma 5 for x = 1+re

2 − t. Note241

that due to the choice of t and the fact that C(re)∩τ2 ≠ ∅, we have dτ2(p1, p2) ≥ 2
( 1−re

2 − t
)
.242

The same inequality holds for dτ1(p1, p2), since τ1 ∩ C(1) ̸= ∅. Let αt denote the smaller243

angle defined by the rays emanating from p through p1 and p2. Since ∂T is β-stretch, we244

have, see Figure 1 (right),245

β ≥
2
( 1−re

2 − t
)

∥p1 − p2∥
=

2
( 1−re

2 − t
)

2 sin αt

2
( 1+re

2 − t
) . (3)246

The desired lower bound 1
2β ·

1−re−2t
1+re−2t on the angular length of A

( 1+re

2 − t
)

follows since this247

is lower bounded by 2 sin αt

2 .248

Similarly we prove that S
( 1+re

2 + t
)
, for 0 ≤ t ≤ 1−re

2 , contains a circular arc of angular249

length at least 1
β · 2

1−re−2t
1+re+2t .250
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Finally, by summing up infinitesimal thickenings of the slices of width dt we get251

area(D ⊓ T ) ≥ 1
2β

∫ 1−re
2

0
21− re − 2t

1 + re − 2t

((
1 + re

2 − t

)2
−
(

1 + re

2 − t− dt

)2
)

+252

253

+ 1
2β

∫ 1−re
2

0
21− re − 2t

1 + re + 2t

((
1 + re

2 + t

)2
−
(

1 + re

2 + t− dt

)2
)

,254

which simplifies to255

area(D ⊓ T ) ≥ 2
β

∫ 1−re
2

0
(1− re − 2t)dt.256

It follows that (1−re)2

2β ≤ area(T ⊓D), concluding the proof of the first part of the theorem.257

ε p

D
(√

2
4 − ε

2

)

Figure 2 A family of topological disks T witnessing that a locally 1
32π

-fat shape can have boundary
with an arbitrarily large stretch factor, which is achieved by choosing ϵ arbitrarily small.

Refer to Figure 2. For the second part of the theorem, consider a topological disk T , that258

is a unit square with an ϵ > 0 wide slit from the middle of an edge to the center as in Figure 2.259

Clearly, if we choose ϵ < 1
β then ∂T is not a β-stretch cycle. However, T stays locally 1

32π -fat260

for any ϵ > 0. Indeed, it is not hard to see that for r <
√

2
4 −

ϵ
2 , a disk D(r) centered at a261

point p in T of radius r has area(T ⊓D(r)) ≥
(

r√
2

)2
> r2

32 = area(D(r))
32π . For r ≥

√
2

4 −
ϵ
2 , we262

have area(T ⊓D(r)) ≥ 1
16 , but it is enough to consider r ≤

√
2, since otherwise the whole T263

is contained in D(r). Hence, area(T ⊓D(r)) ≥ 1
16 = 2π

32π ≥
area(D(r))

32π . ◀264

3 NP-completeness of βSP265

The aim of this section is to prove Theorem 1. Let G, f, s and t be as in the statement of266

the problem βSP. First, we show that we can certify that a given path π in f is a β-stretch267

path in polynomial time, which follows by the next lemma.268

▶ Lemma 6. Let π be a non-self-intersecting path in f between s and t. There exists a269

quadratic time algorithm to check if π is a β-stretch path.270

Proof. Note that it is enough to compute the maximum of271

max
s∈e,t∈f

dπ(s, t)
∥f(s)− f(t)∥ , (4)272
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6:8 Computing β-Stretch Paths in Drawings of Graphs

over pairs of edges e and f on the path P in G such that π = f(P ). Due to a constant273

algebraic complexity of edges in f , (4) can be seen as a rational function of two variables whose274

maximum can be computed in constant time by the standard calculus and approximated275

by solving a system of polynomial equations, and therefore the quadratic time complexity276

follows. ◀277

Thus, the problem is in NP, and it remains to argue the NP-hardness. We proceed by a278

reduction from the graph vertex cover problem, which is one of the first known NP-complete279

problems from Karp’s seminal paper [13], and which we state next. A vertex cover in a280

graph G = (V, E) is a subset V ′ of its vertex set V such that every edge in E has at least281

one vertex in V ′.282

▷ Problem 3. Vertex cover. We are given a graph G, and a positive integer k. Decide283

whether there exists a vertex cover in G of size at most k. The instance of the problem is284

denoted by (G, k).285

For any instance (G, k) of vertex cover we construct an instance (H, f, β, s, t) of βSP286

that is positive if and only if (G, k) is positive. It will follow from the reduction that βSP is287

strongly NP-complete, since all of the numerical values in the constructed instance of βSP288

are bounded by a polynomial in the size of G. The construction follows.289

Note that the problem βSP in trees is solvable in quadratic time, by Lemma 6, since in a290

tree there exists exactly one path between every pair of vertices. Our reduction shows that291

βSP becomes NP-hard even for graphs whose maximal 2-connected components are cycles.292

We put β = n5, where n is the number of vertices in G. Let m be the number of edges in293

G. We identify V (G) with [n] = {0, . . . , n− 1} and label the edges e0, . . . , em−1. The graph294

H = (V (H), E(H)) is constructed as follows; see Figure 3 for an illustration. Roughly, H is295

composed of chains of 4-cycles arranged in a serial fashion between the distinguished vertices296

s and t, and drawn as diamonds. Each 4-cycle in a chain (except the two rightmost chains)297

corresponds to an edge-vertex pair in G, and each pair of consecutive chains except the last298

one corresponds to an edge of G. Two consecutive chains are joined by an edge or a subdivided299

edge. The abstract graph H depends only on the number of vertices and edges in G, that is,300

n and m, and the structure of G is encoded in the drawing of H. Every vertex of H is either301

a triplet or a 4-tuple: the first element corresponds to an index of an edge of G or is equal to302

m, the second element corresponds to a vertex of G or is equal to −1 or n, the third element303

is “L” (for left) or “R” (right), and the fourth element is “E” (for east), “S” (for south) or “W”304

(for west). Formally, the vertex set is V (H) = {s = (0,−1, L), t} ∪ {(v, e, α, β)| v ∈ [n], e ∈305

[m + 1], α ∈ {L, R}, β ∈ {E, S, W}} ∪ {(e, n, α, S), (−1, e, α)| e ∈ [m + 1], α ∈ {L, R}},306

and the edge set E(H) = {(e, v, α, W )(e, v, α, S), (e, v, α, S)(e, v, α, E), (e, v, α, E)(e, v +307

1, α, S), (e, v + 1, α, S)(e, v, α, W )| v ∈ [n], α ∈ {L, R}, e ∈ [m + 1]} ∪ {(e,−1, R)(e +308

1,−1, L), (e, n, L)(e, n, R)| e ∈ [m]} ∪ {(e,−1, α)(e, 0, α, S)| e ∈ [m + 1], α ∈ {L, R}} ∪309

{(m,−1, R)t}.310

The drawing f represents H in a zig-zag fashion, and has a grid-like structure reminiscent311

of the edge-vertex incidence matrix of G with rows corresponding to the vertices and columns312

corresponding to the edges of G. Thus, every chain of 4-cycles of H occupies its own column,313

and 4-cycles corresponding to the same vertex of G occupy their own row. First, we define314

f(v) for each v ∈ V (H). Let ε = β−1 = n−5. Let h > 0 and h′ > 0 be sufficiently small315

constants that we specify later. We put f(t) =
(
2m + 1

2 + h′, n− 1
2
)
. We put f((e,−1, L)) =316

(2e − h,−1) and f((e,−1, R)) = (2e + h,−1). We put f((m,−1, L)) = (2m,−1) and317

f((m,−1, R)) = (2m + 1,−1). We put f((e, v, L, E)) = (2e− ϵ, v), f((e, v, R, E)) = (2e + 1−318
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s

t

0 1 2 3 4

vertex 0

vertex 1

vertex 2

-1

-1

(0,-1,R) (1,-1,L) (1,-1,R) (2,-1,L) (2,-1,R)

(0,3,L,S) (0,3,R,S) (1,3,L,S) (1,3,R,S) (2,3,L,S) (2,3,R,S)

(0,0,L,E)

(0,0,L,S)

(0,0,L,W)

(2,2,R,E)

(2,1,R,E)

(2,0,R,E)

e0 e1

h′

hh

Figure 3 The drawing f of H in the NP-hardness reduction if G is a path on three vertices 0, 1
and 2, with edges e0 = 02 and e1 = 21. Letters in the 3rd and 4th component of a vector representing
a vertex stand for Left,Right and East,South,West, respectively. A β-stretch path π between s and
t is depicted bold, and corresponds to the minimum vertex cover VC(π) of G consisting of the single
vertex 2. (A vertex v is contained in VC(π) if and only if π passes through (2, v, R, E).)

ϵ, v), f((e, v, L, W )) = (2e−1+ϵ, v), and f((e, v, R, W )) = (2e+ϵ, v). We put f((e, v, L, S)) =319 (
2e− 1

2 , v − 1
2
)

and f((e, v, R, S)) =
(
2e + 1

2 , v − 1
2
)
, for v ∈ [n] and e ∈ [m + 1].320

In f , all of the edges are drawn as straight-line segments except in the following cases.321

For every v ∈ V and ei such that v ∈ ei, we draw the edge (i, v, R, W )(i, v + 1, R, S)322

in a close neighborhood of the straight-line segments connecting their end vertices as an323

xy-monotone curve (that is, a curve that intersects every vertical and horizontal line in324

at most 1 point) that is longer by more than 20n−4 in comparison with the straight-line325

segment (i, v, R, W )(i, v + 1, R, S). We do not care about the shape of the curve and326

we can think of it as a slightly perturbed line segment. Note that the length of the327

curve is at most
√

2∥f((i, v, R, W )) − f((i, v + 1, R, S))∥. In the same way, we also draw328

all of the edges (m, v, R, E)(m, v + 1, R, S), for all v ∈ [n]. Finally, we draw the edge329

(m,−1, R)t as a concatenation of the horizontal line segment between f(t) and the point330

p = f((m, n, R, S))− (20n−4, 0) ∈ R2 and a y-monotone curve (that is, every horizontal line331

intersects the curve at most once) of length 10n between f(m,−1, R) and p such that its332

relative interior does not pass very close to the rest of the drawing.333

To finish the drawing f = f(h, h′) it remains to choose the values of h and h′. We denote334

faux = f(0, 0) an auxiliary drawing of H with h = h′ = 0. Let πe = faux(Pe) be the 2nd335

shortest path in faux between the vertex (e,−1, L) and (e,−1, R), which is independent of the336

choice of e ∈ [m]. Note that πe is a path all of whose edges but 1 are drawn as line segments,337

and its first and last vertex coincide in the drawing. We put h = ∥πe∥
2β ≤

20n
2n5 = 10n−4. Let338

π′ = faux(P ′) be the (k + 1)-st shortest path in faux between (m, n, R, S) and t. We put339

h′ = ∥π′∥
β ≤ 20n

n5 = 20n−4. Note that π′ is a path with all but k + 1 of its edges drawn as340

line segments, and its first and last vertex t coincide in the drawing.341

▷ Observation 7. The path f(Pe), for e ∈ [m], and f(P ′) is shorter than πe and π′,342

respectively, and longer than ∥πe∥ − 20n−4 and ∥π′∥ − 20n−4.343
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For every v ∈ [n], e ∈ [m + 1] and α ∈ {L, R}, every path in G between s and t must344

pass either through (e, v, α, W ) or (e, v, α, E). Furthermore, due to the very short distances345

between blue vertices in the figure we have the following.346

▶ Lemma 8. Let π be a β-stretch path in f between s and t. If π passes through (e, v, L, E)347

then π passes through (e, v, R, E) and (e′, v, α, E), for all e′ > e and α ∈ {L, R}. If π passes348

through (e, v, R, E) then π passes through (e′, v, α, E), for all e′ > e and α ∈ {L, R}.349

Proof. Suppose that π passes through (e, v, L, E), and, for the sake of contradiction, let e′ ≥ e350

denote the smallest value such that π passes through (e, v, α, E) ̸= (e, v, L, E) for some α ∈351

{L, R}. Suppose that e = e′. The other case is treated analogously. By the construction of the352

drawing f , ∥f((e, v, L, E))−f((e, v, R, W ))∥ = 2ϵ = 2
β , and dπ((e, v, L, E), (e, v, R, W ))) > 2.353

Hence, the stretch factor of π is strictly more than β (contradiction). ◀354

Proof of Theorem 1. It is easy to verify that the construction of (H, f, β, s, t) can be carried355

out in polynomial time, and all of the numerical values appearing in the construction of356

f can be bounded from above by a polynomial function of n, the number of vertices in G.357

Thus, the strong NP-completeness of βSP follows once we show that (G, k) is a positive358

instance if and only if (H, f, β, s, t) is a positive instance.359

First, if (G, k) is a positive instance, there exists a vertex cover V ′ ⊆ V of G of size at360

most k. Let πmax denote the longest path of H in f . Let π be the path in f between s361

and t passing through (e, v, α, w) if and only if v ∈ V ′, for all e ∈ [m + 1] and α ∈ {L, R}.362

We need to show that π is a β-stretch path. Note that π is uniquely determined, and363

that by the choice of β, the only possible pairs of points that could violate the property364

of π being a β-stretch path are (e,−1, L) and (e,−1, R), for some e ∈ [m], and (m, n, R, S)365

and t. Indeed, it is easy to check that the union of two edges sharing a vertex is always366

a β-stretch path in f , which follows from the fact that an xy-monotone curve is at most367 √
2-stretch. Hence, in order to violate that π is a β-stretch path, we need to find a pair of368

points p ∈ ei ∈ E(H) and q ∈ ei′ ∈ E(H), ei ∩ ej = ∅, such that f(p) ∈ π, f(q) ∈ π, and369

∥f(p) − f(q)∥ < ∥πmax∥
β < 20n3

n5 = 20n−2. We can assume that n is sufficiently large such370

that the pre-image in f of a disk neighborhood of f(p) ∈ R2, p ∈ H, with radius 20n−2 is a371

single component of H, that does not intersect a pair of edges not sharing a vertex, except372

when p is very close to (e,−1, α), for some e ∈ [m + 1], α ∈ {L, R}, (m, n, R, S) or t, which373

are colored red in the figure.374

Since V ′ is a vertex cover, we have dπ((i,−1, L), (i,−1, R)) ≤ ∥πi∥, for all i ∈ [m].375

Indeed, for each i ∈ [m], the path π misses two non-linear edges incident to (i, v, R, 0)376

for v ∈ ei such that v ∈ V ′. Then by Observation 7, dπ((i,−1,L),(i,−1,R))
∥f(i,−1,L)−f(i,−1,R)∥ ≤

∥πi∥
2h = β.377

Furthermore, since |V ′| ≤ k, we have dπ((m, n, S, R), t) ≤ ∥π′∥. Then by Observation 7,378

dπ((m,n,S,R),(t))
∥f(m,n,S,R)−f(t)∥ ≤

∥π′∥
h = β.379

Second, if π is a β-stretch path between s and t, let VC(π) ⊆ V be defined as follows. A380

vertex v is contained in VC(π) if and only if π passes through (m, v, R, E). Since π is β-stretch,381

we have dπ((m, n, R, S), t) ≤ h′β = ∥π′∥
β β = ∥π′∥. If |VC(π)| > k then by Observation 7 and382

the length of non-geodesic edges dπ((m, n, R, S), t) > ∥π′∥ − 20n−4 + 20n−4 = ∥π′∥, which383

is in contradiction with the previous claim. Hence, |VC(π)| ≤ k. It remains to show that384

VC(π) is a vertex cover of G.385

For the sake of contradiction, suppose that there exists an uncovered edge, that is, an386

edge uv = ei ∈ E such that ei∩VC(π) = ∅. On the one hand, by Lemma 8 and the definition387

of VC(π), π passes through (i, u, R, W ) and (i, v, R, W ). Hence, by Observation 7 and the388

length of non-geodesic edges, dπ((e,−1, L), (e,−1, R)) > ∥πe∥ − 20n−4 + 20n−4 = ∥πe∥.389
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On the other hand, since π is β-stretch, dπ((e,−1, L), (e,−1, R)) ≤ 2hβ = 2∥πe∥
2β β = ∥πe∥390

(contradiction). ◀391

Note that our NP-hardness proof involves large stretch values (here, β = n5). It would392

be interesting to show NP-hardness for small stretch values.393

4 Approximation Algorithms394

In Section 3, we proved that βSP is strongly NP-complete, which rules out that there exists395

a FPTAS [22, Section 8] for it, unless P=NP; see [22, Corollary 8.6]1. Let (G, f, β, s, t) be396

an instance of βSP, and let β∗ = argminβ((G, f, β, s, t) is positive), which is well defined397

by compactness. In other words, it is highly unlikely that we can approximate β∗ within a398

factor of (1 + ε), for any ε > 0, in time that is polynomial in both |V (G)| and 1
ε .399

To complement our hardness result, we show that there exists an algorithm with a quasi-400

polynomial, that is O(npoly(log n)), running time that for a given ε > 0 and β, 1 ≤ β ≤ logc n,401

for some fixed c ≥ 1, returns a β-stretch path between s and t if a β(1 − ε)-stretch path402

between s and t exists thereby proving Theorem 2. We assume that ε, c and β satisfy the403

above properties in the rest of the section. Unless specified otherwise, the base of log is 2.404

4.1 A Path Filtering Scheme405

We give a path filtering scheme that we use in Section 4.2 to prove Theorem 2. The main406

idea behind our algorithm is the following. Since we are aiming only at ε > 0 approximation,407

we do not need to take into account all of the possible paths between s and t. From a set408

of paths that are very “similar“ to each other, in the sense that we specify later, we only409

keep one candidate and delete the rest. Our algorithm proceeds in ⌈log n⌉ rounds; in the410

i-th round we compute a set of at most quasi-polynomially many (in terms of n, ε and β)411

paths of G with at most 2i edges that are (1− εi)β-stretch in f , for some small εi’s, such412

that ε0 = ε, εi > εi+1, and ε⌈log n⌉ = 0. In the following, we rigorously define what we mean413

by “similar”, and how we cluster similar paths. In particular, we cluster paths connecting414

the same pair of verices u and v according to their behaviour with respect to stretched radial415

grids centered at their end vertex u or v; see Figure 4 for an illustration.416

Radial grid. Let ε > 0, ε′ = ε/β, ri = (1 + ε′)i and ∆ = ε′

1+ε′ . The radial grid Fu(ε, β)417

centered at a point (vertex) u ∈ V (G) consists of
⌈

β
ε′

⌉
circles centered at f(u) of radius i ε′

β ,418

for i ∈
[⌈

β
ε′

⌉]
, and circles of radius ri, for i ∈ [⌈c log1+ε′ n⌉+ 1], and D =

⌈ 2π
∆
⌉

equiangular419

spaced rays emanating from f(u). (Recall that we assumed that the shortest edge has length420

1 and the largest simple path length is nc for some constant c > 0.) The complement of the421

radial grid Fu(ε, β) in R2 consists of at most N = D · (
⌈ 1

ε′

⌉
+ log1+ε′ nc) = O(poly(log n))422

two-dimensional open path connected components, whose closures are cells of Fu(ε, β). Note423

that, ε is treated as a constant and β = O(poly(log n)) by the hypothesis of Theorem 2.424

In the following, we disregard unbounded cells since they do not intersect f(G). Without425

loss of generality, we assume that Fu(ε, β) is sufficiently generic with respect to f , that is,426

Fu(ε, β)∩f(G) consists of a finite set of points. To this end we might need to slightly perturb427

the value of ε.428

1 Indeed, we can place the vertices in the construction of the reduction on a grid of polynomial size in
n = |V (G)| with the unit corresponding to n1/10.
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u

π2π1

(1 + ε′)2

ε′

β

1

2π(1 + ε′)
⌈
2π
∆

⌉−1

u

π2π1

v v

Figure 4 A pair of paths π1 and π2 that are not equivalent (on the left) and that are equivalent
(on the right) w.r.t. a radial grid centered at u .

Let π = π(u, v) be a path in f . Let Σu
π denote the subset of cells of Fu(ε, β) that π429

intersects. We group paths π = π(u, v) between u and v according to Σu
π and approximate430

distances between u and cells σ in Σu
π, which we define next. Let dπ(σ, u) be the minimum431

length of the sub-path of π between the point p on π such that f(p) ∈ σ and u. Let rσ432

denote the Euclidean distance from u to a furthest point in σ from u. Let Ξu
π = Ξu

π(ε, β) =433 {(
σ,
⌊
log1+ε′

dπ(σ,u)
rσ

⌋)
| σ ∈ Σu

π

}
. If π is a β-stretch path, then dπ(σ,u)

rσ
≤ β. Therefore the434

second component of each pair in Ξu
π is a natural number not bigger than

⌊
log1+ε′ β

⌋
.435

Path equivalence. Two paths π = π(u, v) and π′ = π′(u, v) are equivalent with respect to436

the radial grid Fu(ε, β) if the first and last edge of π and π′ are identical, Ξu
π(ε, β) = Ξu

π′(ε, β),437

and the length of π differs from the length of π′ by a multiplicative factor of at most (1 + ε).438

Intuitively, equivalent paths pass through the same cells with almost similar distances from439

u to each intersected cell. Let N be as above, the number of the cells, and k =
⌊
log1+ε′ β

⌋
+440

1. The crucial aspect of the grid Fu(ε, β) is that there are at most kN pairwise non-441

equivalent paths. We have kN = (log1+ε′ β)cD(⌈ 1
ε′ ⌉+log1+ε′ n) = O(poly(log n)poly(log n)) =442

O(npoly(log log n)), which is quasi-polynomial in n.443

The following lemma (proved in Section 6.1) quantifies the approximation guarantee of444

our filtering scheme.445

▶ Lemma 9. Let j ∈ N such that j ≥ 2. Let π1 = π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj =446

π2(vj−1, w = vj), and π′
1 = π′

1(u = v0, v1), π′
2 = π′

2(v1, v2), . . . , π′
j = π′

j(vj−1, w = vj) be447

β-stretch paths such that πi and π′
i, for every 1 ≤ i < j, are equivalent with respect to448

Fvi(ε, β0) and Fvi−1(ε, β0), for some β0 ≥ β. Then the following holds.449

If π = π⌢
1 π⌢

2 . . .⌢ πj is not a β-stretch path, then π′ = π′⌢
1 π′⌢

2 . . .⌢ π′
j is not a (1−31ε)β-450

stretch path.451

4.2 Approximation algorithm for paths452

We give an algorithm proving Theorem 2. Refer to the pseudo-code of Algorithm 1. We453

initialize Ψ0 := E(G) and ε′ := ln (1−ε)−1

32⌈log n⌉ . The algorithm proceeds in ⌈log n⌉ many steps, and454

in the i-th step it computes a set of 1−ε
(1−31ε′)i β-stretch paths Ψi in G such that every path in455

Ψi has at most 2i edges. The set Ψi+1 is computed from Ψ≤i =
⋃

j≤i Ψj as follows. We pick456

every pair of distinct paths π1(u, v) ∈ Ψ≤i and π2(v, w) ∈ Ψ≤i such that the concatenation457

π = π(u, w) = π1(u, v)⌢π2(v, w) is a self-intersection free path with at least 2i + 1 edges.458

We put π into Ψi+1 if π is a 1−ε
(1−31ε′)i+1 β-stretch path. At the end of the (i + 1)-st step,459
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we recursively delete for every pair of vertices u and v of G in Ψi+1 a path π′(u, v) if an460

equivalent path π′(u, v) with respect to Fu(ε′, β) and Fv(ε′, β) still exists in Ψi+1.461

The algorithm outputs a β-stretch path between s and t if Ψ≤⌈log n⌉ contains such a path.462

Correctness. Suppose that there exists a (1 − ε)β-stretch path π0 in f connecting s463

and t with ℓ edges. We show that the algorithm outputs a β-stretch path connecting s and464

t. We show by induction on i that after the i-th step of the algorithm, in Ψ≤i there exists465

a sequence Si of
⌈

ℓ
2i

⌉
paths, whose concatenation is a β 1−ε

(1−31ε′)i -stretch path πi between s466

and t. If the claim holds, we are done, since, for a sufficiently large n, we have467

(1−31ε′)−⌈log n⌉(1−ε)β =
(

1− 31 ln (1− ε)−1

32 ⌈log n⌉

)−⌈log n⌉

(1−ε)β < eln(1−ε)−1
(1−ε)β = β.468

In the base case the claim holds by the existence of π0. By the induction hypothesis, we469

suppose that the claim holds after the i-th round. We apply Lemma 9 with β0 := β, ε := ε′,470

and β := β 1−ε
(1−31ε′)i to the paths in Si, whose concatenation πi in the given order plays471

the role of π′, and to the equivalent representatives of consecutive pairs of paths in Si that472

were not deleted from Ψ≤i+1, whose concatenation plays the role of π. It follows that π is473

β 1−ε
(1−31ε′)i+1 -stretch yielding Si+1. Putting πi+1 = π concludes the proof of the correctness474

of the algorithm.475

Running time. The bottleneck of the algorithm is clearly the path filtering scheme that476

filters all but quasi-polynomially many paths, and therefore the claimed running time follows477

by the fact that the algorithm ends in ⌈log n⌉ steps and Lemma 6.478

Algorithm 1: Approximation algorithm
Data: An instance of βSP (G, f, β, s, t) and ε > 0.
Result: A β-stretch path between s and t in f if a (β(1− ε))-stretch path between s

and t exists. (The algorithm can possibly output a β-stretch path even if no
(β(1− ε))-stretch path exists.)

ε′ := ln (1−ε)−1

32⌈log n⌉ ;
Ψ0 := E(G), i := 0; (Ψi : the set of candidate β-stretch paths with at most 2i edges.)
while Ψi ̸= ∅ do

Ψi+1 := ∅;
for π1(u, v), π2(v, w) ∈

⋃
j≤i Ψj do

if π = π(u, w) = π1(u, v)⌢π2(v, w) has at least 2i + 1 edges, and is a
β 1−ε

(1−31ε′)i+1 -stretch path. then
add π to Ψi+1

while there exists two equivalent paths π(u, v) and π′(u, v) with respect to Fu(ε′, β)
and Fv(ε′, β) in Ψi+1. do

remove π from Ψi+1
i← i + 1;

return A β-stretch path between s and t if
⋃

i Ψi contains such path.

4.3 Approximation Algorithm for Cycles479

We discuss an extension of the algorithm from Section 4.2 from paths to cycles thereby480

establishing Theorem 3. Let (G, f, β, s, t) be the input instance for βCP. Let G0 = G \ {s, t}.481

We subdivide the edges of G0 such that every edge has the length at least 1 and at most 2482

in f . Let f0 denote the drawing of G0 inherited from f . The graph G0 has polynomially483
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many vertices in terms of the number of vertices of G. We will work with the input instance484

(G0, f0, β, s0, t0) of βSP, where s0, t0 ∈ V (G0) and ε0 = 1 −
√

1− ε. The reason for the485

choice of smaller ε0 is that we will need to work with ε0 such that (1 − ε0)2 = (1 − ε).486

Intuitively, we try to combine all pairs of paths joining the same pair of vertices in Ψ≤⌈log n⌉487

constructed by the algorithm from Section 4.2.488

A self-intersection free cycle in f0 separates f0(s) from f0(t) if and only if it crosses the489

line segment between f0(s) and f0(t) an odd number of times. In order to keep track of490

the parity of crossings of paths with the line segment between s and t, we extend the path491

filtering scheme from Section 4.1 as follows.492

Path equivalence. Two paths π = π(u, v) and π = π′(u, v) are equivalent with respect493

to the radial grid Fu(ε, β) in f0 if the first and last edge of π and π′ are identical, Ξu
π(ε, β) =494

Ξu
π′(ε, β), the length of π differs from the length of π′ by a multiplicative factor of at most495

(1 + ε), and additionally the parities of the number of crossings of π′ and π with the line496

segment connecting f0(s) and f0(t) are the same.497

Algorithm. First, we run a brute-force algorithm to find a β-stretch separating cycle C498

such that the length of γ = f(C) is at least 4
ε0

+ 2. If we fail to find a β-stretch cycle C,499

we run the algorithm from Section 4.2 with the input instance (G0, f0, β, s0, t0), for ε0 > 0,500

using the previously modified notion of path equivalence with radial grids parametrized by501

ε′(ε0) = ln (1−ε0)−1

3200⌈log n⌉ and β, that is, Fu(ε′/100, β) rather than Fu(ε′, β) in comparison with502

the original algorithm. The algorithm returns Ψ≤⌈log n⌉. We check if there exists a pair of503

paths in Ψ≤⌈log n⌉, whose concatenation is a β-stretch cycle C separating s from t. If this is504

the case we output C.505

Correctness. Suppose that there exists a (1−ε)β-stretch cycle γ = f(C) in G0 separating506

s from t. Let P1 and P2 denote a pair of paths in G between u ∈ V (G0) and v ∈ V (G0),507

whose union is C. We choose P1 and P2 so that the difference of the length of π1 = f(P1)508

and π2 = f(P2) is minimized. Note that this difference is at most 2. Suppose that π1 is509

not shorter than π2. We claim that π1 and π2 are 1−ε
1−ε0

β-stretch paths. Indeed, for any510

p1, p2 ∈ P1 dγ(p1, p2) ≥ dπ1(p1, p2)− 2 ≥ (1− ε0)dπ1(p1, p2). The first inequality is by the511

choice of P1 and P2, and the second one by the fact that the length of π1 is at least 2
ε0

, since512

the length of γ is at least 4
ε 0 + 2.513

Note that 1−ε
1−ε0

β = (1− ε0)β. Mimicking the proof of the correctness of the algorithm514

from Section 4.2, we derive that Ψ≤⌈log n⌉ contains a pair of (1− ε0)β-stretch paths P ′
1 and515

P ′
2 joining the same pair of vertices at P1 and P2 such that the concatenation of π′

1 = f0(P ′
1)516

and π′
2 = f0(P ′

2) is a β-stretch cycle γ′. To this end we need to adapt Lemma 9 to the case517

when u = w.518

▶ Lemma 10. Let ε > 0 be sufficiently small. Let j ∈ N such that j ≥ 2. Let π1 =519

π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj = π2(vj−1, u = vj), and π′
1 = π′

1(u = v0, v1), π′
2 =520

π′
2(v1, v2), . . . , π′

j = π′
j(vj−1, u = vj) be β-stretch paths such that πi and π′

i, for every521

0 ≤ i ≤ j, are equivalent with respect to Fvi(ε/100, β0) and Fvi−1(ε/100, β0), for some522

β0 ≥ β. Then the following holds. If γ = π⌢
1 π⌢

2 . . .⌢ πj has length at least 20, and is not a523

β-stretch cycle, then γ′ = π′⌢
1 π′⌢

2 . . .⌢ π′
j is not a (1− 31ε)β-stretch cycle. Furthermore, γ524

separates s from t if and only if γ′ separates s from t.525

5 Conclusion and Future Work526

We proved that βSP is strongly NP-complete, but our reduction seems to work only with large527

β that is polynomial in the number of vertices n of the input graph. A natural open problem528

is to determine the complexity of βSP for β constant or logarithmic in n. We proposed a529
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quasi-polynomial algorithm for βSP that works only for β that is at most logarithmic in n,530

and that has a quasi-polynomial running already for constant values of β. Therefore we find531

the problem of devising a PTAS for βSP interesting even when β is a fixed constant.532

This leads us to suspect that devising an approximation algorithm for βSP becomes533

easier if we restrict ourselves to drawings of graphs in which the vertex set is supported by534

an integer grid of a polynomial size and edges are straight-line segments.535

In the future, we intend to extend our work in the following direction, motivated by the536

computation of districts that avoid gerrymandering. We mark some vertices in a plane graph537

as “important” and we wish to cut the graph into regions, whose boundaries are β-stretch538

cycles, such that each region contains exactly one important vertex. A related work by539

Eppstein et al. [10] describes a method for defining geographic districts in road networks540

using stable matching. However, their resulting regions might even be disconnected. As541

we discussed in Section 2, the β-stretch condition is more constraining than local fatness;542

a locally fat region, whose boundary has a large stretch factor, might look like the shape543

in Figure 2, which is indicative of a gerrymandered district, with a selective slit removed.544

We propose that partitioning of geographic regions using β-stretch paths/cycles can lead to545

districting solutions that may better avoid gerrymandering. We leave this work for future546

study.547
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6 Appendix599

6.1 Proof of Lemma 9600

p p′

q

p′′

q′′

q′

u

v

w
π2 π′2

σp

σq

π′1

π1

Figure 5 An illustration of Lemma 9 when j = 2. A radial grid centered at v1, and a pair of
paths π = π⌢

1 π2 and π′ = π′⌢
1 π′

2 that are equivalent with respect to the radial grid centered at v1.

Lemma 9. Let j ∈ N such that j ≥ 2. Let π1 = π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj =601

π2(vj−1, w = vj), and π′
1 = π′

1(u = v0, v1), π′
2 = π′

2(v1, v2), . . . , π′
j = π′

j(vj−1, w = vj) be602

β-stretch paths such that πi and π′
i, for every 1 ≤ i < j, are equivalent with respect to603

Fvi
(ε, β0) and Fvi−1(ε, β0), for some β0 ≥ β. Then the following holds. If π = π⌢

1 π⌢
2 . . .⌢ πj604

is not a β-stretch path, then π′ = π′⌢
1 π′⌢

2 . . .⌢ π′
j is not a (1− 31ε)β-stretch path.605

Proof. Refer to Figure 5. Assume that π is not a β-stretch path. It follows that either π606

contains a self-intersection, or there exists two points q and p on π, whose stretch factor is607
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bigger than β. Formally, in either case, there exists a pair of points p an q in G such that608

dπ(p, q)
∥f(p)− f(q)∥ > β. (5)609

It is enough to consider the case, in which p is on π1 and q is on πj , and p and q are not610

contained in the union of 2 consecutive edges of π. Indeed, these 2 consecutive edges would611

be also both on π′ by the definition of the equivalent paths.612

We show that π′ is not a β(1−31ϵ)-stretch path. Consider the cell σq and σp in the radial613

grid Fv1(ε, β0) and Fvj−1(ε, β0), respectively, that contains p and q. Let q′ ∈ G and q′′ ∈ G,614

and p′ ∈ G and p′′ ∈ G, respectively, be the points such that f(q′) ∈ σq and f(q′′) ∈ σq, and615

f(p′) ∈ σp and f(p′′) ∈ σp, respectively, minimizing dπ′(q′, v) and dπ(q′′, v), and dπ′(p′, v)616

and dπ(p′′, v). We show that the stretch factor of p′ and q′ along π′ is bigger than β(1− 16ε),617

which will conclude the proof. To this end we first derive several simple inequalities.618

Since π1 and π′
1, and πj and π′

j are equivalent with respect to Fv1(ε, β0) and Fvj−1(ε, β0),619

respectively, the values of dπ′(q′, v1) and dπ(q′′, v1), and dπ′(p′, vj−1) and dπ(p′′, vj−1) are620

within the factor of (1 + ε′) of each other, where ε′ = ε/β0. Since π1 is a β-stretch paths,621

dπ(q, q′′) ≤ βLσq
, where Lσq

is the diameter of σq. Therefore622

dπ(q, v1) = dπ(q, q′′) + dπ(q′′, v1) ≤ βLσq
+ (1 + ε′)dπ′(q′, v1). (6)623

The same holds for p, p′ and p′′. By the construction of Fv1(ε, β) and Fvj−1(ε, β), the diameter624

of σ ∈ {σp, σq} such that rσ = (1 + ε′)i+1 can be bounded from the above as follows625

Lσ < (1 + ε′)i+1 − (1 + ε′)i + 2πε′

1 + ε′ (1 + ε′)i ≤ (1 + 2π) ε′

1 + ε′ rσ. (7)626

The upper bound on the diameter of all of the other cells σ contained in the unit disk627

centered at v1 and vj−1, respectively, follows if p and q is contained in the annulus between628

the unit circle and the circle of radius 1
β0

centered at v1 and vj−1.629

Lσ <
ε′

β0
+

2πε′
(

rσ − ε′

β0

)
ε′ + 1 < ε′

(
rσ −

ε′

β0

)
+2π

(
rσ −

ε′

β0

)
ε′ = (1+2π)ε′

(
rσ −

ε′

β0

)
(8)630

By the triangle inequality, ∥f(q)−f(p)∥ ≥ ∥f(q′)−f(p′)∥−∥f(q)−f(q′)∥−∥f(p)−f(p′)∥ ≥631

∥f(p′)− f(q′)∥ − Lσq
− Lσp

. Therefore632

β
(5)
<

dπ(q, v1) + dπ(v1, v2) + . . . + dπ(vj−1, p)
∥f(q)− f(p)∥633

634

(6)
≤

(1 + ε′)(dπ′(q′, v1) + . . . + dπ′(vj−1, p′)) + β(Lσq
+ Lσp

)
∥f(q′)− f(p′)∥ − Lσq − Lσp

635

636

≤ dπ′(q′, v1) + . . . + dπ(vj−1, p′)
∥f(q′)− f(p′)∥

1 + ε′

1− Lσq +Lσp

∥f(q′)−f(p′)∥

+ β

Lσq +Lσp

∥f(q′)−f(p′)∥

1− Lσq +Lσp

∥f(q′)−f(p′)∥

. (9)637

We consider two cases depending on whether π′ is a β-stretch path. If π′ is not a β-stretch638

path, then it is also not a β(1− 16ε′)-stretch path and we are done. If π′ is a β-stretch path639
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and both σq and σp are not contained in the unit disk centered at v1 and vj−1, respectively,640

then we must have641

∥f(p′)− f(q′)∥ ≥ dπ′(p′, q′)
β

>
∥f(q′)− f(v1)∥+ ∥f(vj−1)− f(p′)∥

β
≥

rσq + rσp

(1 + ε′)β . (10)642

Combining (10) with the upper bound (7) on Lσ from the above yields643

Lσq
+ Lσp

∥f(q′)− f(p′)∥ <
(1 + 2π)ε′(rσq

+ rσp
)

(rσq + rσp)/β
= (1 + 2π)ε β

β0
≤ (1 + 2π)ε. (11)644

If σq and σp is contained in the annulus between the unit circle and the circle of radius 1
β0

645

centered at v1 and vj−1, respectively, then (10) becomes646

∥f(p′)− f(q′)∥ >
∥f(q′)− f(v1)∥+ ∥f(vj−1)− f(p′)∥

β
≥

rσq − ε′/β0 + rσp − ε′/β0

β
. (12)647

Then using (8) and (12), we recover the upper bound from (11).648

Lσq
+ Lσp

∥f(q′)− f(p′)∥ <
(1 + 2π)(rσq

− ε′/β0 + rσp
− ε′/β0)ε′

rσq −ε′/β0+rσp −ε′/β0
β

= (1 + 2π)ε β

β0
≤ (1 + 2π)ε (13)649

If σq is contained in the annulus between the unit circle and the circle of radius 1
β0

650

centered at v1, and σp is not contained in the unit disk centered at vj−1 then (10) becomes.651

∥f(p′)− f(q′)∥ >
∥f(q′)− f(v1)∥+ ∥f(vj−1)− f(p′)∥

β
≥

rσp

(1+ε′) + (rσq
− ε′

β0
)

β
. (14)652

Then using (7),(8) and (10), we again recover the upper bound from (11).653

Lσq
+ Lσp

∥f(q′)− f(p′)∥ <
(1 + 2π)

(
rσq
− ε′/β0 + rσp

(1+ε′)

)
ε′

rσp

(1+ε′) +(rσq −ε′/β0)
β

= (1 + 2π)ε β

β0
≤ (1 + 2π)ε (15)654

Finally, if σq is contained in the disk of radius 1
β0

centered at v1 we distinguish two cases655

depending on whether σp is contained in the unit disk centered at vj−1. If this is the case, q656

is contained on an edge of π1 incident to vj , since π1 is a β-stretch path, and β0 ≥ β. Hence,657

as every edge has length at least 1 in f , we have that σp is not contained in the unit disk658

centered at vj−1 with diameter 1
β0

. Indeed, q and p are not contained in two consecutive659

edges of π and therefore they are at distance more than 1 along π, and thus, σp is not in660

the disk of radius 1
β , but β0 ≥ β. Depending on whether σp is contained in the unit disk661

centered at vj−1, we obtain one of the following bounds.662

∥f(p′)− f(q′)∥ ≥ dπ′(p′, q′)
β

>
∥f(vj−1)− f(p′)∥

β
≥

rσp

(1+ε′)

β
(16)663

∥f(p′)− f(q′)∥ ≥ dπ′(p′, q′)
β

>
∥f(vj−1)− f(p′)∥

β
≥

rσp
− ε′/β0

β
(17)664
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Then using (7),(8) and (16) and (17), we again recover an upper bound analogous to (11),665

but worse by a multiplicative factor of 2.666

Lσq
+ Lσp

∥f(q′)− f(p′)∥ ≤
2Lσp

∥f(q′)− f(p′)∥ ≤ 2(1 + 2π)ε (18)667

Using (11), (13), (15), and (18), (9) can be in every possible case rewritten as follows,668

which concludes the proof.669

dπ′(q′, p′)
∥f(q′)− f(p′)∥ = dπ′(q′, v1) + . . . + dπ(vj−1, p′)

∥f(q′)− f(p′)∥ > β
1− 4(1 + 2π)ε

1 + ε/β
670

671

> β
1− 4(1 + 2π)ε

1 + ε
>

1− 31ε

1 + ε
β > (1− 31ε)β672

◀673

6.2 Proof of Lemma 10674

Lemma 10. Let ε > 0 be sufficiently small. Let j ∈ N such that j ≥ 2. Let π1 =675

π1(u = v0, v1), π2 = π2(v1, v2) . . . , πj = π2(vj−1, u = vj), and π′
1 = π′

1(u = v0, v1), π′
2 =676

π′
2(v1, v2), . . . , π′

j = π′
j(vj−1, u = vj) be β-stretch paths such that πi and π′

i, for every677

0 ≤ i ≤ j, are equivalent with respect to Fvi
(ε/100, β0) and Fvi−1(ε/100, β0), for some678

β0 ≥ β. Then the following holds. If γ = π⌢
1 π⌢

2 . . .⌢ πj has length at least 20, and is not a679

β-stretch cycle, then γ′ = π′⌢
1 π′⌢

2 . . .⌢ π′
j is not a (1− 31ε)β-stretch cycle. Furthermore, γ680

separates s from t if and only if γ′ separates s from t.681

Proof. The proof is analogous to the proof of Lemma 9 except that we consider distances682

along γ and γ′, which are cycles rather than paths. Due to this reason we slightly weaken683

some inequalities. The second claim of the lemma is immediate from the definition of the684

path equivalence. In the following we derive the first claim.685

Assume that γ is not a β-stretch cycle. It follows that either γ contains a self-intersection,686

or there exists two points q and p on π, whose stretch factor is bigger than β. Formally, in687

either case, there exists a pair of points p an q in G0 such that688

dγ(p, q)
∥f0(p)− f0(q)∥ > β. (19)689

It is enough to consider the case, in which p is on πi′ and q is on πj′ , and p and q are not690

contained in the union of 2 consecutive edges of γ. Indeed, these 2 consecutive edges would691

be also both on γ′ by the definition of the equivalent paths, and the edges have length at692

most 2. Therefore the minimum length curve between p and q in γ is contained in these 2693

consecutive edges.694

We show that π′ is not a β(1 − 31ϵ)-stretch path. Consider the cell σq and σp in the695

radial grid Fv1(ε/100, β0) and Fvj−1(ε/100, β0), respectively, that contains p and q. We696

have ε′ = ε
100β0

. The rest of the proof differs from the proof of Lemma 9 in the following697

weaker consequence of a variant of (6), and other inequalities with dπ′(q′, p′) that needs to698

be replaced with dγ′(q′, p′).699

dγ(q, p) = β(Lσq
+ Lσp

) + (1 + 100ε′)dγ′(q′, p′), (20)700
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where f0(q′) ∈ πi′ ∩ σq and f0(p′) ∈ π′
j′ ∩ σp.701

In the following we derive (20). Let π = π(q, p) ⊂ γ such that dπ(q, p) = dγ(q, p). Let702

π′ = π′(q′, p′) ⊂ γ such that π′ ∩ π′
i ̸= ∅ if and only if π ∩ πi ̸= ∅. Thus, π′ is equivalent to π.703

Let ℓ(γ) and ℓ(γ′) denote the length of γ and γ′, respectively. If dπ′(q′, p′) = dγ′(q′, p′)704

then (20) holds by the same argument as in the proof of Lemma 9.705

Otherwise, dγ′(q′, p′) = ℓ(γ′) − dπ′(q′, p′). Furthermore, dπ′(q′, p′) = β(Lσq + Lσp) +706

(1 + ε′)dγ(q, p) ≤ β(Lσq
+ Lσp

) + 1
2 ℓ(γ) ≤ β(Lσq

+ Lσp
) + 1

2 ℓ(γ′)(1 + ε′). Combining the707

previous two (in)equalities we get that dγ′(q′, p′) ≥ ℓ(γ′)− β(Lσq + Lσp)− 1
2 ℓ(γ′)(1 + ε′) =708

1
2 ℓ(γ′)(1− ε′)− β(Lσq

+ Lσp
).709

By the previous paragraph, and (7) and (8),710

dπ′(q′, p′)
dγ′(q′, p′) ≤

1
2 ℓ(γ′)(1 + ε′) + β(Lσq + Lσp)
1
2 ℓ(γ′)(1− ε′)− β(Lσq

+ Lσp
)
≤

1
2 ℓ(γ′)(1 + ε′) + 16ε′ℓ(γ′)
1
2 ℓ(γ′)(1− ε′)− 16ε′ℓ(γ′)

≤ 1 + 33ε′

1− 33ε′ (21)711

Now, (20) follows from (6) using (21) for sufficiently small ε′. ◀712
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