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Abstract— This paper addresses the problem of tracking an
actively evading target by employing a team of coordinating
unmanned aerial vehicles while also learning the level of intelli-
gence for appropriate countermeasures. Initially, under infinite
cognitive resources, we formulate a game between the evader
and the pursuing team, with an evader being the maximizing
player and the pursuing team being the minimizing one. We
derive optimal pursuing and evading policies while taking into
account the physical constraints imposed by Dubins vehicles.
Subsequently, we relax the infinite rationality assumption,
via the use of level-k thinking. Such rationality policies are
computed by using a reinforcement learning-based architecture
and are proven to converge to the Nash policies as the thinking
levels increase. Finally, simulation results verify the efficacy of
the approach.

I. INTRODUCTION

Due to the increasing availability of unmanned aerial
vehicles (UAVs) in the market, the need to safeguard the
public against accidents and malicious individuals is bound
to be more pressing than ever. There have been numerous
instances of airspace violations by UAVs, unintentional as
well as intentional, with the purpose of engaging in illegal
activities. To enforce “geofencing” protocols, i.e., solutions
that establish prohibited regions to UAVs, one needs to
develop methods that enable the autonomous pursuit of the
encroaching vehicles.

To capture the potentially adversarial nature of the evading
vehicle, one can formulate the target tracking problem as a
non-cooperative game [1] that requires solving a Hamilton-
Jacobi-Isaacs (HJI) equation. To solve the “curse of dimen-
sionality” that renders the solution to the HIJI intractable,
optimization-based control [2], and adaptive control [3] can
be brought together with ideas from reinforcement learning
[4] to derive computationally efficient game strategies.

The assumption of perfect rationality that permeates the
Nash equilibrium solution concept has been shown to fail
in explaining experimental data from a plethora of studies
[5]. Consequently, several structural non-equilibrium models,
such as quantal responses [6], level-k thinking, and cogni-
tive hierarchy models [7], systematically outperform Nash
models in their predictive abilities. Therefore, to successfully
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track an adversarial target, we need to take several behavioral
prediction models into account.

Related work

The work of [8]-[10] has developed a standoff target
tracking framework, where the UAVs are loitering around the
target with the desired phase separation. Optimal strategies
have been developed in [11]-[13] where fixed-wing UAVs
are equipped with cameras and they collaborate to attain
a multitude of goals; namely to reduce the geolocation
error and to track an unpredictable moving ground vehicle.
Nevertheless, despite the rich bibliography in multi-agent
pursuit-evasion games, to the best of our knowledge, work
on agents with bounded or unbounded rationality has not
been performed.

One of the first works on non-equilibrium game-theoretic
behavior in static environments has been reported in [14].
The work of [15], [16] develops a low-rationality game-
theoretic framework, namely behavioral game theory. Quan-
tal response models [6] take into account stochastic mistakes
perturbing the optimal policies. Structural non-equilibrium
models were considered in [7], and applied for system secu-
rity in [17] and for autonomous vehicle behavioral training in
[18]. Finally, the authors in [19] introduced non-equilibrium
concepts for differential games.

Contributions: The contribution of this paper is three-
fold. First, we formulate the problem of target tracking
using cooperative UAVs as a pursuit-evasion game, where
the pursuers are able to learn the “intelligence” of the evader.
In particular, under the assumption of perfect rationality, we
obtain the saddle point policies. Then, we propose a method
that guarantees that the game policies are both feasible and
realizable, namely they ensure asymptotic stability and are
within the symmetric enforced input constraints. Finally,
by relaxing the infinite rationality assumption of Nash we
develop a cognitive hierarchy framework considering that the
UAVs and the target have different levels of intelligence, i.e.,
by introducing a level-% thinking.

Notation: The notation used here is standard. |||,
denotes the Euclidean norm of a vector. The superscript * is
used to denote the optimal trajectories of a variable. V and
% are used interchangeably and denote the partial derivative
with respect to a vector .

II. PROBLEM FORMULATION

Consider NV camera-equipped UAVs tasked with estimat-
ing the state of a target vehicle moving evasively in the
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ground plane. The UAVs fly at a fixed airspeed and constant
altitude and are subject to a minimum heading rate. The
target vehicle moves in the ground plane and is subject to a
maximum turning rate and maximum speed that is less than
the UAVs’ ground speed, which is the same as its airspeed
in the ideal case of no wind. Each UAV takes measurements
of the target’s position using a gimbaled video camera, and
we assume that the target can be detected at all times and
kept in the center of the camera’s field of view by onboard
software. We shall first discuss the dynamical models for
each of the two types (N UAVs and 1 target) of vehicles
and then proceed to derive the relative kinematics of each
UAV with respect to the ground moving target.

A. Vehicle Dynamics

In our approach, we adopt the Dubins formulation for all
the vehicles, i.e., we consider planar models with fixed speed
and bounded turning rate.

Consider that each UAV ¢ € N := {1,2,..., N} flies at
a constant speed s;, at a fixed altitude, and has a bounded
turning rate u; € U in the sense that U := {u; € R : |u;| <
ﬂz} with u; € R*.

Denote the state of each vehicle by &' := [} &} gg]T €
R3, i € NV, which comprises the planar position of each UAV
in p; := [& fé]T and its heading 1; := £} all of which are
measured in a local East-North-Up coordinate frame. Hence
the kinematics of each UAV are given Vi € N by,

€ = FUE uy) = [sicos&l s;siné&l ui]T, t=0.

On the basis of the above, the target is also modeled as
a Dubins vehicle with a bounded turning rate d, in the
sense that D := {d € R : |d| < d}, where d is the
maximum turning rate. Denote the state of the target by
n = [771 N ’173]T e R3, where pr := [171 ’172]T is the
planar position of the target in the same local East-North-Up
coordinate frame as the UAVs and 73 is its heading.

To proceed we shall make the following assumption.

Assumption 1. The following are needed for feasibility.

o At t = 0, the tracking vehicle is observing the target
and is not dealing with the problem of initially locating
the target.

o Since the UAVs fly at a constant altitude, there is
no need to consider the 3-D distance, but only the
projection of each UAV’s position on the flat-Earth
plane where the target is moving.

o The airspeed and the heading rate of the tar-
get satisfy, s; < min{sy,s9,---,sn}, and d <

min{al,a2,~-- ,ﬂN}. O

B. Relative Kinematics

In a target tracking problem it is necessary to determine
the relative motion of the target with respect to the UAV.
Thus, we will work in the polar coordinates, i.e., (7;,0;),
where r; is the relative distance of each UAV to the target
ri = [pi = prly = /(& —m)? + (& —12)? and 6; the

azimuth angle defined as, 0; = arctané%:—;’f Vi € N.
1

Also, we define the “relative heading” angle [8], as ¢; =

arctan 7% and by taking ¢; = v; — 6, into account, we can

'

derive the tracking dynamics for each UAV as follows,
i = 808 ¢y — 1) cosO; — 14 sin;, Vie N,
fg = Uy, Vi e N7
ns=d, t=0.

We can now write the augmented state r =

[ & ry &Y 173]T e R2N+1 o vyield the
following dynamics,
2R 0 .- oo oo 0] — -
0 1 0 - .- 0
To 0 oo ..
0
r=| . [+ b fut|i]d
0 0 .0 1 1
| 0 | 0 0] L
= F(r) + Gu+ Kd, r(0) =19, t >0, (1)
where, u := [ul Us uN]T is the vector of the

turning rates of the UAVs.

C. Performance Criterion

The target tracking problem can be regarded as a two-
player zero-sum game in which the team of UAVs tries to
minimize the distance from the target r; and the target tries to
maximize it. Note that the UAVs coordinate their movements
in order to ensure that at least one UAV is close to the
target. Additionally, the UAVs should keep their individual
distances to the target sufficiently small to maintain the
adequate resolution of the target in the camera’s image plane
for effective visual detection. The above motivates us to
choose the following cost functional,

J = JOC (Ru(u) — Ra(d) + R, (r))dt,
0

where R, (r) := 6121\,% + s Zf\ilrf, with 81,32 € RT
172

weighting constants. Specifically, the term being weighted by
(1 enforces distance coordination so that one UAV is always
close to the target to improve measurement quality and the
term being weighted by [ penalizes the individual UAV
distances to the target to ensure that the size of the target
in each UAV’s image plane is sufficiently large for reliable
detection by image processing software.

To enforce bounded UAV inputs and bounded target input
we shall use a non-quadratic penalty function of the form,

Ry (u) = 2Ju (Gfl(u))TRdv, Yu, ()
0
and,

d
Ri(d) =2 | 67" (0)rav, v 3
0
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where R > 0, v € R, and 0;(-),% € {1,2} are continuous,
one-to-one real-analytic integrable functions of class C*,
@ = 1, used to map R onto the intervals [—a, @] and
[—d, d], respectively, satisfying 6;(0) = 0, i € {1,2}. Also
note that R, (u) and R4(d) are positive definite because
0;'(-), i e {1,2} are monotonic odd.

First, by assuming infinite rationality (the players in the
game are familiar with the decision-making mechanism) we
are interested in finding the following optimal value function,
Vr, t =0,

V) = mipma [ (o) = Ra(d) + R ()

subject to (1).
III. ZERO-SUM GAME

We are interested in finding a saddle point solution u* and
d* for the game, in the sense that,

J(u*,d) < JJ(ur,dY) < J(Gu,dY), Yu,do (4)
A. Existence of a Saddle-Point
The saddle-point conditions given in (4) are expressed as,
J*(ur,dY) =mdaxJ(';u*,d) :rrbinJ(';u,d*), %)
subject to (1). The left-hand side of the two optimizations in
(5) can be viewed as a (common) value function,
V*(x(t)) = mdaXJ(-;u*,d) =rrLinJ(-;u,d*). (6)
The Hamiltonian is,
ov
ot

A N T
Hr, d) == Ry(u) — Ra(d) + Ro(x) + <0V> ;.

or
(7
The optimal cost (6) satisfies the following HJI equation,
ov*
H(r,—,u",d")=0 8
(r7 ar 7“ ) ) ) ( )

with a boundary condition V*(0) =
policies are given Vr by,

0 and saddle-point

*

u*(r) = argmin H (r, o d)
u r
_ 1 1 10V*
=—0 <2R G — >, 9
for the UAV, and,
d*(r) = argmax H (r a u*, d)
- g d ’ ar ’ ’
1 4, p0V*
=0y (KT 1
02 <27 ar ) ; (10)

for the target.
The closed-loop dynamics can be found by substituting
(9) and (10) into (1), to write,
I=F(r)+Gu + Kd*, r(0) =19, t=0. (11)

Now, we are able to characterize the stability of the equilib-
rium point of the closed-loop system.

Theorem 1. Consider the closed-loop system given by (11).
Assume that the equilibrium point is v = 0. Then, s; =

St, Vie N.

Proof. Tt has been omitted due to space limitations and will
be presented in the journal version of this work. [

The next theorem provides a sufficient condition for the
existence of a saddle-point based on the HJI equation (8).

Theorem 2. Suppose that, there exists a continuously differ-
entiable radially unbounded positive definite function V* €
C" such that, for the optimal policies given by (9) and (10),
the following is satisfied,

R, (u*(r)) — Ra(d*(r)) + R.(r) = 0, Vr,

with V*(0) = 0. Then, the closed-loop system given by
(11), has a globally asymptotically stable equilibrium point.
Moreover the policies (9)-(10) form a saddle point and the
value of the game is, J*(-;u*,d*) = V*(r(0)).

Proof. Tt has been omitted due to space limitations and will
be presented in the journal version of this work. [

IV. COGNITIVE HIERARCHY

In this section, we construct a framework in which the
agents have bounded rationality. In order to do that, we will
introduce a level-k thinking model that assumes that each
player operates under the belief that all of her opponents
perform (k — 1) levels of strategic thinking.

A. Levels of Rationality

We will now present an iterative method to derive the poli-
cies of the players performing k steps of strategic thinking.

Level-0 (Anchor) Policy: We need to introduce an anchor
policy for the level-0 player. We will define the level-0 UAV
strategy as the policy relied on the assumption that the target
is not maneuvering and moves in a horizontal line which
arises by solving an optimal control problem described by,

VO(ry) = min JOO (Ru(u) + Ry (r))dr. (12)

uelU Jo

The optimal control input for the optimization prob-
lem (12) given (1) with d = 0 is, u°@r) =
—6, %R‘lGTaaLr’? , Vr, where the value function V,2(-)
satisfies the I—gamilton—Jacobi—Bellman (HJB) equation,
namely H (r, a(;/;u ,ul) = 0.

Subsequently, the intuitive response of a level-1 adversary
target is an optimal policy under the belief that the UAV
assumes that the target is not able to perform evasive
maneuvers. Thus, we define the optimization problem from
the point of view of the target for the anchor input v = u°(r),

Vi(ro) =

4 (ro) r;leagL

subject to, T = F(r) + Gu® + Kd, r(0) =g, t = 0.
The level-1 target’s input is computed as, d'(r) =

0 (%7*1[( T%), where the value function V} (-) satisfies

the HJI equation, i.e., H(r Vi 40, dh) =0.

7(71"

0

(Ru(u®) — Rq(d) + R, (r))dr, Vr,
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Level-k Policies: To derive the policies for the agents of
higher levels of rationality, we will follow an iterative pro-
cedure, wherein the UAV and the adversary-target optimize
their respective strategies under the belief that their opponent
is using a lower level of thinking. The UAV performing an
arbitrary number of k strategic thinking interactions solves
the following minimization problem,

0
VF(ro) = milrjlf (Ru(u) — Rg(d* ") + R,.(x))dr,
ue 0
subject to the constraint, i = F(r) + Gu + Kd*~!, r(0) =
To, t 2 0
The corresponding Hamiltonian is,

HE (e, Y, db1) = Ry (u) — Ra(d*1) + Ry (r)

T
+ (a;/r‘f> (F(r) + Gu + Kd*~1), vr, u.

Substituting the target’s input with the policy of the

k—1

previous level dF—1 = 6, (%vflKTW#), yields,

1 k
uf(r) = -6, (R_lGTaV“) , Vr, (13)

2 or

where the level-k UAV value function V*(-) satisfies the
HIJB equation, namely,

ovk
or

Similarly, the target of an arbitrary k + 1 level of thinking,
maximizes her response to the input of a UAV of level-k,

HE(x, Juf dPh =0, v (14)

de+1 (TO) _ %le%;(

subject to, T = F(r) + Gu* + Kd, r(0) =10, t > 0.
The corresponding Hamiltonian is,
anlH—l

or

f: (Ru(uF) — Ra(d) + R,(x))dr,

HE ,uf d) = Ry (u*) — Ry(d) + R.(r)

akarl T
+ d (F(r) + Gu* + Kd), Vr,d. (15)

or

Substituting (13) in (15) yields the following response,

1 0 k+1
R+l _ 1 1 rdVy
41 (x) 92<27 KT ) v, (16)

where the level-k + 1 target value function V' **(-) satisfies
the HIB equation, namely,

ankJrl
or
With this iterative procedure, the UAV computes the

strategies of the target with finite cognitive abilities, for a
given number of levels.

HY L (r, Jub dhy =0, vr. (17)

Theorem 3. Consider the pairs of strategies at a specific
cognitive level-k, given by (13) and (14) for the UAV, and
(16) and (17) for the level-k + 1 adversarial target. The

policies converge to a Nash equilibrium for higher levels if
the following conditions hold as the levels increase,

Ru(uk_l) — R, (u**1) >0,
Rg(d**?) — Ry(d™) > 0.

(18)
19)

Proof. It has been omitted due to space limitations and will
be presented in the journal version of this work. [

Remark 1. It is worth noting that the inequalities (18), (19)
have a meaningful interpretation. The input penalties (2), (3)
are strictly increasing and decreasing functions, respectively,
and as the level-k of rationality tends to infinity the players
follow a policy such that the corresponding penalty functions
become sufficiently small and large, respectively. O

Now, the following theorem provides a sufficient condition
that establishes the global asymptotic stability of the equi-
librium point r, = 0 of the closed-loop system at each level
of rationality k.

Theorem 4. Consider the system (1) under the effect of
agents with bounded rationality whose policies are defined
by (13) for the UAV and (16) for the adversarial target.
Assuming that the pursuer and evader have the same speed,
the game can be terminated at any cognitive level-k as long
as the following relationship hold:

R, (u) — R4(d) + R-(r) = 0, VYr,u,d.

Proof. 1t has been omitted due to space limitations and will
be presented in the journal version of this work. [ |

V. COORDINATION WITH NON-EQUILIBRIUM
GAME-THEORETIC LEARNING

Due to the inherent difficulties of solving the HJI equation
(8), we will employ an actor/critic structure. Towards this
end, we initially construct a critic approximator to learn the
optimal value function that solves (8). Specifically, let 2 =
R2N+1 be a simply connected set, such that 0 € £2. We can
rewrite the optimal value function Vr as, V*(r) = WT¢(r) +
€c(r) where ¢ = [ ¢o ... ¢p]T : RZVFL  RM are
activation functions, W € R” are unknown ideal weights,
and €. : R?2V*1 — R is the approximation error. Specific
choices of activation functions can guarantee that [e.(r)| <
€., Vr € Q, with €. € RT being a positive constant [20].

Since the ideal weights W are unknown, we define an

approximation of the value function as,
V(r) = Wle(r), vr, (20)

where W, € R" are the estimated weights. We rewrite (7)
utilizing (20) as,

Y
Hfr, Wgoa—f,md) = R, (u) — Rq(d) + R,.(r)
+WT6—¢(F(r) + Gu + Kd)7 Vr, u, d.

¢ or
The approximate Bellman error due to the bounded approx-

imation error and the use of estimated weights is defined
as, e, = H(r,W! 9 u,d). An update law for W, must

c or?
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be designed, such that the estimated values of the weights
converge to the ideal ones. To this end, we define the squared
residual error K. = %eg, which we want to minimize. Tuning
the critic weights according to a modified gradient descent
algorithm, yields,
W - —a w(t)ec(t) -
(w(t)Tw(t) + 1)

where oo € R™ is a constant gain that determines the speed
of convergence and w = Vo (F(r(t)) + Gu(t) + Kd(t)).

We use similar ideas to learn the best response policy. For
compactness, we denote a;(r), j € {u,d}, that will allows
us to develop a common framework for the pursuers and the
evaders. Similar to the value function, the feedback policy
a;(r) can be rewritten as,

aj(v) = W ¢, (x) + €a;, V1, j € {u,d},

where W7 € R"5*Ne; s an ideal weight matrix with
Ny, := N and N, := 1, ¢q, (1) are the activation functions
defined similar to the critic approximator, and ¢,; is the
actor approximation error. Similar assumptions with the critic
approximator are needed to guarantee boundedness of the
approximation error €, .

Since the ideal weighs W7 are not known, we introduce
Waj € R *Naj o approximate the optimal control in (9),
and (10) as,

;(x) = Wo, ba, (r), ¥r, j € {u,d}. @1
Our goal is then to tune Waj such that the following
error is minimized, K,, = %e;e%, j € {u,d}, where
the reinforcement signal for the actor network is, e,; =
WaquSaj —aY, j € {u,d}, where @} is a version of the
optimal policy in which V* is approximated by the critic’s

estimate (20),

-0, (JRIGTVONW.), = u,

92(%7—1KTV¢TWC), j=d.

We note that the error considered is the difference between
the estimate (21) and versions of (9) and (10). The tuning
for the UAV actor approximator is obtained by a modified
gradient descent rule,

Waj = _aajd)ajeaj» JE {u,d},

where ay; € R* is a constant gain that determines the
speed of convergence. The issue of guaranteeing convergence
of the learning algorithms on nonlinear systems has been
investigated in the literature. For the proposed approach,
rigorous proofs and sufficient conditions of convergence have
been presented in [20].

We will now propose an algorithmic framework that allows
the UAV to estimate the thinking level of an evader that
changes her behavior unpredictably by sequentially interact-
ing over time windows of length T}, € R*. In essence, we

will allow for arbitrary evading policies to be mapped to the
level-k policy database.

Let S := {1,3,5,--- ,K} be the index set including the
computed estimated adversarial levels of rationality and
is the largest number of the set. Assuming that the UAV is
able to directly measure the target’s heading rate, we define
the error between the actual measured turning rate, denoted
as d(t) and the estimated one of a level-k adversarial target,

t+Tine
k() ::J (d—ag)*dr, V6> 0, keS.
¢

However, the i¢th sample shows the estimated target level of
intelligence and the sampling period is Ti,. The i-th sample
is classified according to the minimum distance, namely,

T = argmkinrk, VkeS, Vie{l,...,L},

where L is the total number of samples. Note that, the notions
of “thinking steps” and “rationality levels” do not coincide
as in [7]. Let k; = ””TH be the random variable counting
the target thinking steps per game that follows the Poisson
distribution [7] with probability mass function, p(k;; \) =
)‘k;_e; A, where \ € Rt is both the mean and variance.

Our goal is to estimate the parameter A from the observed
data by using the sample mean of the observations which
forms an unbiased maximum likelihood estimator,

. ns k;
Alns) = 2?751’, Vns € {1,...,L}.

However, in order to ensure the validity of our estimation
we need to make the following assumption.

Assumption 2. The target is at most at the Cth level of
thinking and does not change policy over the time interval
((ifl)Tim,z'Tim),Vie {1,...,L}. O

VI. SIMULATION

Consider a team of two cooperative UAVs with the same
capabilities, namely the constant airspeed is s; = 20 m/s,
where ¢ € N := {1,2} and the maximum turning rate is
% = 0.5 rad/s. The speed of the target is s; = 10 m/s and
the maximum turning rate is d = 0.2 rad/s.

First, we examine the case of infinite rationality and from
Figure 1, one can see that the UAVs are engaging the target.
The relative distance trajectories of each UAV with respect
to the target are shown in Figure 2. Note that each UAV can
attain a minimum relative distance of 1.5 m.

We will now examine the case where the UAVs and the
target have bounded cognitive abilities. We consider the
scenario where one UAV is assigned to pursue a target
operating in a level of thinking included in the set I :=
{1, 3,5, 7}, i.e., performing at most 4 thinking steps. Figure 3
shows the UAV’s beliefs over the levels of intelligence of
the target. From the latter we can observe that the pursuer
believes that the target has a probabilistic belief state of: 8%
of being level 1, 15% of being level 3, 20% of being level
5 and 18% of being level 7. From Figure 4 we observe the
evolution of Poisson parameter A in terms of the number of
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Fig. 2. Relative distance of each
pursuer with respect to the evader.
We can see that the distances re-
main bounded as learning takes

Fig. 1. Trajectories of the pursuing
(red and green) and evading (blue)
vehicles on the 2D plane. The co-
ordination taking place between the

[1]
[2]
[3]
[4]
[5]

UAVs can be seen. place.
1. Botats ver targttovels ot tignce . t Pissonparameter 7]
i 18
. L [9]
Cognitve fovel o o T
Fig. 3.. Distribu.tiop of the beliefs Fig. 4. Evolution of the Poisson [10]
over different thinking levels after parameter A. As the UAV observes
convergence of the estimation algo- the target’s behavior, the distribu-
rithm. tion converges to the actual one. [11]
samples. It is evident that it converges as long as enough
data have been gathered by observing the motion of the  [12]
target. Moreover, note that since it is a piece-wise smooth
function, a spike appears when the target performs one
thinking step and moves up to a higher level of intelligence.  [13]
The latter observations let us build a profile of “intelligence”
for the target and follow appropriate countermeasures. The |14
visualization of the target engagement game was conducted
via the “flightpath3d” MATLAB package [21]. (151
VII. CONCLUSION AND FUTURE WORK
This paper developed a coordinated target tracking frame-  [©]
work through a non-equilibrium game-theoretic approach.
We introduced a cognitive hierarchy formulation where  [17]
agents both with bounded and unbounded rationality are con-
sidered, with the capabilities of learning intentions of evading
UAVs. In the case of infinite rationality, we derived the saddle  [18]
point policies of the agents, bounded within the enforced
input limits and with guaranteed global asymptotic stabil-
ity of the equilibrium point. We then considered bounded
rationality and we showed the conditions for convergence (19]
to the Nash equilibrium as the levels of thinking increase.
Moreover, we formulated a framework which enables the  [20]
UAVs to estimate the level of intelligence of the target pro-
vided that enough information has been collected regarding
its cognitive abilities. Finally, we showed the efficacy of the
proposed approach with a simulation example. (1]
Future work will extend the framework to probabilistic
game protocols for the coordinated team of UAVs to explic-
itly adapt to a boundedly rational evader.
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