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On-Off Adversarially Robust Q-Learning

Prachi Pratyusha Sahoo

and Kyriakos G. Vamvoudakis

Abstract—This letter, presents an “on-off” learning-
based scheme to expand the attacker’s surface, namely a
moving target defense (MTD) framework, while optimally
stabilizing an unknown system. We leverage Q-learning to
learn optimal strategies with “on-off” actuation to promote
unpredictability of the learned behavior against physically
plausible attacks. We provide rigorous, theoretical guaran-
tees on the stability of the equilibrium point even when
switching. Finally, we develop two adversarial threat mod-
els to evaluate the learning agent’s ability to generate
robust policies based on a distance to uncontrollability.

Index Terms—Adversarial
systems.

Q-learning, cyber-physical

. INTRODUCTION

NTERCONNECTED computational subsystems that con-

trol physical devices interacting with the operating envi-
ronment compose a class of platforms called Cyber-Physical
Systems (CPS) [1]. Decision making mechanisms, designed
to incorporate agility with the help of artificial intelligence
(AI) allow self-adaptation, self-healing, and self-optimization
of CPS, including military and civilian applications, such
as brain-machine interfaces, therapeutic and entertainment
robotics, exoskeletons, and prosthetics, power-grids and smart-
grids, and self-driving cars [2]-[4]. Decision making mecha-
nisms for CPS perform well for smaller-scale, well-modelled
systems. However, in an adversarial environment, and with
unknown physical models, these algorithms have robustness,
scalability, and optimality problems [5], [6].

Reinforcement learning (RL) schemes generate optimal
policies in response to reward signals [7] received from sen-
sors in real-time. Development of data-driven methods allows
for on-line approximations, and deployment of optimal deci-
sions that do not have closed-form solutions [8]—-[11]. But
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when learning takes place in an adversarial environment, rein-
forcement signals may become corrupted and entertain the
possibility that the learning agent will eventually learn the
wrong policy. The authors of [12] create adversarial examples
to modify a deep RL algorithm to lure the learning agent to dif-
ferent equilibrium points. Effectiveness of adversarial attacks
on RL are typically measured using the reduction in reward
collection [12]. Towards this direction, this letter will propose
an alternative measure to track the effectiveness of the attack;
the distance of the learning agent’s perturbed dynamics from
the nearest uncontrollable pair.

Related Work: While severe attacks can disrupt the function-
ality of the system and cause failure, subtle changes made by
an adversary may remain unnoticed if the learning algorithm
is not built with adversarial considerations. Many learning
tasks, such as intrusion detection, and spam classification [13]
become impractical when attackers are stealthy [14]. Another
mode of stealthy attacks occur in object recognition tasks in
computer vision; the fast gradient value method, described
in [15] and [16], generates physically plausible adversarial
attacks that destabilize the recognition task by using the gra-
dient of the loss function. In such a case, developing optimal,
or sub-optimal, control schemes that can stabilize the system
in the presence of adversarial noise [17] is necessary. This let-
ter, incorporates an adversarial noise vector, constructed using
the learning agent’s utility function, into the system’s learning
scheme to bolster stability in the face of attacks. Typically,
CPS maintain a stationary framework, including: features,
network topologies, and communication networks. Such static
frameworks provide an attacker with the time to learn and
deploy a low cost, destabilizing attack policy. To counter this
threat, moving target defense (MTD), a proactive policy, aims
to dynamically change the attack surface of CPS, introducing
unpredictability [18], [19]. The authors in [20] define key con-
cepts to describe MTD systems and their problems pertaining
to selection, adaptation, and timing, to conclude that security
increases with higher entropy [21], [22]. We leverage MTD
to induce “on-off” actuation and change the attack surface of
the CPS.

Contributions: The contribution of this letter is fourfold.
First, we develop a data-driven method to create an “on-off”
sequence of actuation for the learning system by means of
a multi-step intelligent strategy, deployed in a plug-n-play
manner. We then leverage the redundancy of the system to
induce this “on-off” actuation for ensured security under phys-
ically plausible attacks, and provide asymptotic stability and
convergence guarantees. We develop two adversarial threat
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models that will help us produce robust, optimal, and resilient
learning schemes. Finally, we characterize the distance to
uncontrollability in a model-free manner as a way to assess
robustness under physically plausible attacks.

Il. PROBLEM FORMULATION

Consider the continuous-time linear time-invariant system,
x(1) = Ax(1) + Bu(®), x(0) =x0, 1 =0 (D

where x(f) € R”" is the state that is available for feedback,
u(t) € R™ is the control input, A € R™", B € R are the
plant and the input matrices respectively. We want to find a
policy u, that minimizes a user-defined energy cost functional,
given by

J(x(0): u) = % /O Oo(xTMx—i—uTRu)dt, Vx(0), )

where M > 0, and R > 0 are user-defined matrices that
penalize the energy of the states and the control inputs during
transient behavior. The optimal policy u* is the global mini-
mizer, given by the minimization problem min,, J(x(0); u) with
respect to the dynamical system given in equation (1), such
that J(x(0); u*) < J(x(0); u), Yu, x(0).

Employing the stationarity condition yields the optimal
policy,

u*(x) = —R~'BTPx, Vx, (3)

where P = PT > 0 is the solution to the Riccati 0 =
PA+ATP — PBR™'BTP + M. It is evident that computing the
policy (3), requires complete knowledge of the system (1).
By augmenting the state vector, x, with the control vector,
u, ie, U = [x¥ uT]T, an action dependent utility function
can be derived and learned in a model-free manner, using an
actor/critic network to yield the optimal policy (see [23] for
details). The general framework is summarized in Algorithm 1,
with a Q-function compactly written Vx, u as,

— 1 T Qxx qu — 1 T A _ wT
- [qu QUJU = JUTOU= WU U). @
while the approximators and the estimation errors of the sig-
nals will be denoted by (T) and (T) respectively and ® denotes
the Kronecker product.

Theorem 1: Consider the system dynamics given by (1),
assume that (A, B) is controllable, (A, m) is detectable, and
the learning scheme defined in Algorithm 1. Then the equi-
librium point (i.e., the origin) of the closed-loop system for
all initial conditions is asymptotically stable given that the
tuning gain for the critic «. is sufficiently larger than the
tuning gain for the actor o, and the following inequality
holds, 1 < aq < 5= CAM + 0x Q5! O5) — MO 0R)),
where A(-) and A(-) denote the minimum and the maximum
eigenvalue respectively. Furthermore, the policy # given by

1 T[P-i—M-{—PA +ATP PB]U

a(x) =W, x converges asymptotically to the optimal u* given
by u*(x) = arg min, Q(x, u) = —Q,! Quxx, Vx.
Proof: The proof follows from [23]. [ |

Algorithm 1 Q-Learning

1: Given xp, We(0), W4(0).
2: Compute and decompose (by using the half-vectorization opera-
tor vech(-))

vech(Qxx) = Wc[l:@]
vech(Qxu) = W[(TH) 4 12D +nm]

VECh(Quu) = Wc[w + nm + ltw].

(98]

: Compute u(t) = W;Fx(t).

S if 1 < Texp

5: Add probing noise u(f) < u(t) + upg(?). Texp is the window
of time during which high frequency disturbance [23] is added
to the control input to employ state space exploration.

6: end if

7. Compute e., where T is a small window of time to evaluate the

error in critic weights, as

~

ec =WIUNO®U®W) - WU -T) @U@t -T))
t
+0.5 / I Mx + uTRuwydz, T > 0. )
t—T

8: Compute ¢4, as
eq = W;rx + Q;ul Quxx, Vx. 6)
9: Propagate We using

[ T 7
“UroTar e "

where o = U() QU - Ut -T)@ Ut —T).
10: Propagate W, using

W= —

Wa = —agrel. ®)

11: if 4 # 0 and e # 0
12: Go to step 3.

13: end if >eq~0and e ~0

Problem 1: Note that the Q-learning described in
Algorithm 1 eventually learns the optimal strategies,
but it assumes a form of model-based controllability, of some
potentially physically manipulated model and learning mech-
anism. To robustify the learning algorithm in the presence of
physically plausible adversarial attacks and systematic shifts
in the environment that cause performance degradation we
need to dynamically diversify the attacking surface by using
a proper switching actuation.

[1l. MTD WITH ON-OFF POLICIES

Selection of an actuator subset that allows our model-free
system to be controllable dictates the use of a data-driven and
model-free mechanism. Since the controllability Grammian
has a data-based nature in the discrete domain we shall find
Ag = e By = A"1(A, — I,)B, where Ar > 0 and I, is an
identity matrix of order n.

A. Data-Driven Controllability

Without any knowledge of the model, namely the poten-
tially manipulated matrices A and B, setting the policy input,
u, Vi € {1,2,...,m} as unity and propagating the states
. . . . il
in a discrete manner for K time steps we obtain x;° =
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(). xliGy L Xl K)Y with xll(1) = 0. Upon similar
disturbance episodic data collection for all the actuators acti-
vated one at a time, restructuring the states corresponding
to the jth step yields X(j) = [x1G) 21G) ... .x™ @), ],
j=12,...

Defining now W, as a measure of a disturbance induced in
the state measurements with a different actuator triggering, as
W; = X(j) —X(j—1), we can write the K-step data-driven con-
trollability Grammian as Wy, = Z]K: 1 WjoT, which enables
us to approximate the discrete-time model-based controlla-
bility Grammian Wy, = anozo AZ’BngAE’" in a model-free
manner.

Theorem 2: The system given by (1) is controllable in
K > 0 steps if and only if, A(Wyc) > 0.

Proof: 1t follows the proof [24, Th. 1]. [ |

B. Switching Architecture
Consider the allowable actuator sets of the system in (1), as,

Ka = {ui € n: 2(Wqe) > 0}, €))

wherein n stands for the power set of all the actuators. The
actuator sets in Ky, with a cardinality p, maintain controllabil-
ity of each switching mode. A mode is a categorical dynamic
behaviour of the system that changes based on the gain matrix.

Lemma 1: Assume that each of the sets contained in /Cy,
denoted by S; Vi € 1,2,...p activates one actuating mode
from the allowable set. Let k;, Vi € 1,2,...p be the number
of the actuators in mode i. Then, the maximum allowable actu-
ation links, elements of the gain matrix K that connect gains
with actuators, that can be removed for mode i, while main-
taining controllability properties intact, are s := nm — nk;. The
matrix K is the feedback gain matrix such that u = Kx.

Proof: The proof is a direct consequence of the dimensions
of the quantities, the actuator redundancy, and is omitted due
to space limitations. |

The nullification of the rows (termed here as “on-off™ strate-
gies) in the policy gain matrix that corresponds to a different
policy without destabilizing the system, extends the attacker’s
surface with MTD as,

Wi, i1, Vie S,

0, otherwise, (10)

Kl[i,:] = {
wherein K[i, :] stands for the ith row of the gain matrix.

The following definition is now needed.

Definition 1 [25]: The steepest descent directions
maximize the decrease of the linear approximation of a
function.

To minimize the actuator-related cost, we shall use a tun-
ing law that updates along the steepest gradients of half the
squared-norm error with respect to the action approximator
weights, given by g = xeg. Thus, one can sort the results to
obtain the steepest directions of descent and upon combination
(with the support of the gain matrix K) write,

1, if g; is one of the 2s steepest gradients,
or Kjj #0,
0, otherwise

T,'j =

wherein s is defined in Lemma 1.

Remark 1: Appropriate sorting algorithms with average
behaviour may be used to identify largest 2s elements in
g depending on the dimensionality. Note that the gradient
descent along the steepest directions maximizes the actuator-
related cost reduction.

In other words, the selector matrix 7 picks the steepest
descent directions by following,

A

Wa = —aglxel © T, (11)

wherein © stands for the Hadamard product. The algorithm
shall trigger at most 3s actor weight tuning laws.

Note that, arbitrarily switching between these modes using
different sets of actuators introduces stability concerns for
the learning agent, owing to the hybrid nature of the system
dynamics. A dwell time approach will ensure the asymptotic
stability of the equilibrium point of the closed-loop learning
agent dynamics.

The work of [23] has shown that the value function of the
learning agent has the same value with the Q-function, i.e.,

V*(x) = Q" (x, u*), Vx. (12)

Hence, the model-free formulation of the continuous-time,
algebraic Ricatti equation at steady-state is,

Pata = Qxx - quQu_ul qu-

Definition 2 [26]: A switching signal has an average dwell
time tgwen if over any time interval [t, tf], ty > t, the number
of switches S(#, ) is bounded above by,

fr—t
Tdwell

13)

,t>0

S(ty. 1) < So+ (14)
where Sg serves as the arbitrary chatter bound and tgye is the
dwell time.

Theorem 3: Consider the system described by (1). The
switched system dictated by the switching signal o () =i, i €
{1, p}, t > 0, with an active set of actuators §;, an
actor update law given by (11), and a critic update law given
by (7), has an asymptotically stable equilibrium point for every
arbitrary switching signal o (f) given that the average dwell
time is given by,

X(prxfépxuégulu@pux)

A(qux - quu Q(Iulu Qqux)
A(Mi‘i’Qiqu;liQiux)

’’’’ Pl A(Qixx_éixuéi:,lll@iux)

log(max, gei1,...p)

Tdwell = U + , (15)

where v € RT is a constant of order 1.

Proof: Let Ks; be the “on-off” policy gain matrix corre-
sponding to the S; set of actuators in the controllability set
Kq. The following simplification, eliminates the columns of
B based on the rows of K that are nullified by the selection
procedure, i.e.,

u; = —Kg,x, Vx,
_[BLd, Vies;
Bi = {O, otherwise. (16)

Between two switches, the system triggers different actuator
modes to become active. Thus,

X=Ax+Bju;, ViesS;, t>0, (17)
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with u; = —R;lBiTPix and an associated Lyapunov equation
V; = x'P;x, P; > 0 bounded as,

APYIIXI3 < Vi) < (PDIIxl3, Vx, i€ S (18)
Taking the time derivative of V;, along the trajectories of
the system yields V; = iPx + XTPx = xT(ATP,- —
2P;B;R;' BT P; + P;A)x. The Ricatti equation for the ith mode

gives —M — P;B;R; ' BT P; = ATP;+P;,A—2P;B,R; ' BT P;. The
derivative of the value function now becomes V; = —xT_(M +
PBR'BIP)x = —xT(M + 00! Qu)x = —xTHx is

bounded as A(H)||x|| < X'Hx < A(H)||x||2, assuming
we are operating in steady state conditions wherein, our
actors and critics have converged. The bounds on the deriva-
tive of the value function along the trajectories, given by

Vi < —AH)xIB < —A—(Qixx_gfu")%gmx) Vi(x) can be found
from (18) as,

Vi(x)
. < |Ixl3 <

— Oixu Q;i Oiux) B

Vi(x)
— Oixu Q;i Oiux) 7
(19)
Considering arbitrary modes, the inequality (19) captures the

minimum of all combinations of the smallest eigenvalues of
the matrices P; and H;. This can be shown by,

- A(H))
Vi(x) < — min —
€{1.2,..p} A(Qixx — QiquiuuQiux)
From (18), the equations for the modes p and g can be found
such that (19) holds for each of the modes, i € {p, ¢}
)

Combining and rearranging, yields = A <
& ging. ¥y 2(Qqxx—QqxuQqua Qqux)

}_\ (Qixx A( Qixx

Vix).  (20)

|lx ||2 < Vp () which, can be reduced to V,(x) <
1(Qpxx—OpxuCpu Opux)
;g"; Vp(x), Vx. Then, the following inequality holds,
2 (Qpxx — QpxuQpuuPpux)
V,(x) <  max P V(). VA, p, g
p.qell,...p} &(qux - ququuquux)
2D
Setting now v = min;e(1,..p) WH’)Q_]Q) and p =
)h xx — EpxuLpuu Lpux N
max, ge(l,. (Cpor = s Qpu Opur) Let T(tr, 0) be the number

&L P) 5 (Qgon—Ogu Qo Q) .
of switches that take place for ¢+ € (0,#) and at specific

instances of time #;, i € [0, T'(tr, 0)] with ¢; < #;11. Leto (?) =i
be a piece-wise constant function that activates different modes
of actuation in (17). Thus, between any two triggering events,
ie., t € [t, tiy1] the value of o (f) remains constant. Define a
function W(f) = e’ Vo (x(?)), t > 0 and evaluate its deriva-
tives along the trajectories of x = (A — By () Q;(lt)uuQU(,)ux)x(t)
which is the hybrid system. Between two consecutive switches
the derivative of W(r) may be taken as follows W ()

ve Vo s (x(1)) + e”’Va(t) (x(1)). Using (20) we obtain W(r) <
VeV Vo (x(1)) —ve” Vo (x(2)) < 0 which implies that W (z) is
a non-increasing function of time over intervals ¢ € [#;, ti11).
At switching instances, t = t;11, the inequality W(r)

" Vo (1) (i 1)) < eV Vo (x(tiv1)) = uW( ) <
uW(t;) utilizes the relationship shown in (21) to connect
Vo (i) ®(tiy1)) with Vi (x(ti1)) and the non-increasing
property of W(#) between two switch instances. Using this
relationship and backward stepping from the final switch time
IT(t;,0) < Ity tO the initial time 7o for T(z, 0) — 1 jumps, we

have W(t;) < Wtrg.0) = n'OWO), Vo () <

o
wTa O)e—”’OV( - (x(19)). Using the inequality in (14) we
tflog(p.) vig
have V o) yx(7r)) = e Tawen y(x(10)). To ensure that
trlog(p)—vip
Tdwell

0’(1‘
)(x(tf)) — 0 as ty — 0, the quantity must be

log(n)
-

cr(z
negative to produce tgwel >

This dwell time expression, involving x and v which depend
on the Q-matrices of every mode can be rewritten using Q;-
matrices in steady state after convergence; which is a model-
free version that can be verified during the learning procedure.
An approximate model-free dwell time converges to the ideal
dwell time in (15) asymptotically, as
)\(prx pruQ uquux)
log(max L

B <1230 } G~ Oy Dih o)

Tdwell > , Vi.
. AMi+0ia O
mlnie{lyz,m’p} A(M; leuQmume)

A(Qixx*@ixuéi;,iéiux)

Since the above formulation guarantees convergence of the
switched system, and Tgwell, in infinite time, we will use a
modified version. Let v € R be a small enough parameter
such that selecting Tqwel as

(22)

2 (Dpxx—Dpxu Ot Opux)
2Qq0x—CouQauQaur) ",
?»(M,+lequuume) ’

P} 3 @i~ Oixu Qi Oin)
makes the equilibrium point of the the switched system
asymptotically stable under arbitrary switching between the
active actuators. Finally, the addition of v ensures finite-time
convergence of the model-free dwell time. |
Remark 2: Theorem 3’s proof meets all conditions
[26, Th. 3.2], which establishes an average dwell time to
guarantee stability under arbitrary switching.

log(maxp gei1,...p)

Tdwell = U + (23)

minie{l

IV. A PHYSICALLY PLAUSIBLE ADVERSARIAL
THREAT MODEL

The switching architecture introduced in the learning
scheme as described in the previous section, extends the attack
surface of the learning agent. However, in the event that
the attacker has an information advantage about the physics
of the system, one needs to construct bounds within which
the proposed framework can still produce policies resilient
to such attacks. We shall show that adversarial noise during
Q-learning, if within prescribed bounds, allows the learning
agent to still produce policy gains that maintain controllability
despite these attacks. The gradient of a cumulative state-
dependant reward function, defined as n(x) with respect to
the system’s states yields a physically plausible noise vector.
Reward functions, such as n(x), are dual in nature to value
functions; they track cumulative rewards collected between
two points in a trajectory while value functions yield the
cost-to-go between these points. Comparing 7(x) and V(x)
shall ensure that their gradients are equivalent, and hence
by using (12) we can conclude that, V() = V,V*(x) =
V,O0*(x, u) with V() = %. The adversarial noise has the
following structure,

Xnoise = € VxQ(x, 1)
= €x(Px + 2PAx + Mx) + €¢,(PBu), 24)

where €, €, € RT.
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(a) Evolution of the switching signal o(t)
for unpredictability.

Fig. 1.

Lemma 2: Assume that the physically plausible adversarial
threat model is given by (24). Then the dynamics, given in (1)
become,

i =[A+ € Oxx + [B+ €,Qxlu, 1> 0. (25)

Proof: Writing the system dynamics with the added
noise (24) yields,

;C = X+ Xnoise
F=[A+e&(P+ATP+ PA+ M)lx+ B+ €,(PB)u
=[A+8Alx+[B+8Blu, t > 0. (26)

In the model-free formulation, by using P +ATP+PA+M =
Oxx and PB = Qx, one gets the required result. [ |

Remark 3: Note that, in an adversarial environment wherein
the malicious agent has access to the physics of the learning
agent’s dynamics, we need to estimate, in a model-free man-
ner, the worst-case disturbance that the learning agent’s A and
B matrices can tolerate.

We shall use two models of physically plausible adversar-
ial perturbation. Those are described as: a random adversarial
threat model, and a specific adversarial threat model. The ran-
dom adversarial threat model is generated by selecting A
in (26) such that X xno“e = erxx wherein €, € (—¢,, €;), and
8B in (26) such that x xnome = éuéxu wherein €, € (—e¢,, €,).
Here, the adversarial noise is less predictable, but does not
introduce worst-case multipliers, |€,| and |€,|, into the dynam-
ics of the system as process noise. Specific adversarial threat
model introduces these worst-case multipliers at all times in
the evolution of the system dynamics, which may enable
the malicious agent to keep the learning agent uncontrol-
lable at all times by selecting |e,| and |€,| appropriately.
The distance to uncontrollability is a measure of how close
a pair (A, B) is to the nearest uncontrollable pair. According
to [27], the distance to the nearest uncontrollable pair is
given by dyc = {inf(|3A[Z + [I6BI|I3)/%:84 € R™ §B ¢
R™™ such that (A + §A, B + §B) is uncontrollable}, where
|I.|lr denotes the Frobenius norm of a matrix.

Lemma 3: The distance to uncontrollability dj,c is bounded

below as, A(M;) < diye, V
IO 1 Qi i Do) 1+ /142053y = 71

Proof: By following [28], one gets
I1Pill.

A(M)
duc (14 14+555)
Using (13) and the triangle inequality, we have
< diyc, Vi. |

(||Q1xx||+ququmume\|><1+\/ 1+5%5)

93 2 &3 o 0 5 10 15 20 2 3
Time

(b) Evolution of the states x(t).

Time

(c) Evolution of the control signal, u(t).

Evolution of the switching signal, the states of the system, and the policies.

Algorithm 2 Adversarial Q-Learning

1: Give xg, WC(O), W, (0), and the set KCg.
2: procedure
3: Compute physically plausible process noise using (25).

4 Propagate ¢, x() usmg (26).

5: Compute u(t) = —Kx(t) where K = —WT

6: Select a random set of actuators from ICa

7 Prune K and activate according to (10).

8: if 1< Texp

9: Add probing noise u(t) < u(t) + upg(¢)

10: end if

11: Switch active actuators every Tqwel according to (23).

12: Propagate Wc and Wa according to (7) and (11) respectively.
13: Estimate e, and e,.

14: if e, #0 and e # 0

15: Go to step 8.

16: end if >eq~0and e, ~ 0

17: end procedure

Remark 4: This lemma provides a lower bound on dj,¢, Vi,
estimating how large of a disturbance each mode of the system
can tolerate.

Our proposed framework is described in Algorithm 2.

V. SIMULATION RESULTS

Consider the model of the F-16 fighter jet [7] given by,
—1.0189 —0.9051 —0.0022 0 1 1
x = 0.8223 —1.0774 —0.1756 |x+ |0 1 0 |u, (27)
0 0 —1.0000 1 1 1
and M = 203, R = 0.313, a. = 80, ay = 20, Texp =
20s, = 0.01s The data driven n-step controllability test

for this system with n = 50 steps, given that all actuators
remain activated, suggests that the system is controllable, i.e.,
A(Wqe) = 0.001 > 0. The set of allowable modes considered
here is K, = {{1}, {2}, {3}}. A uniform distribution governs the
switching with dwell time Zqwel 1s to comply with (22).
Figure la shows the evolution of the switching signal. The
convergence of the states under MTD, wherein the switches
occur between actuator sets via the “on-off” policy gain matri-
ces is shown in Figure 1b, where one can see that the system
remains stable. The policies, capturing the switching behavior
are shown in Figure lc. Given physically plausible adversar-
ial manipulation we want to evaluate the cost degradation.
The highest average cost for the specific adversarial noise
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Fig. 2. Evolution of the average integral cost of the associated optimal control problem.

shown in Figure 2a, when compared to the random noise in
Figure 2b, arises from using €, = 0.01 and ¢, = 0.05, instead
of €, € (—0.01,0.01) and ¢, € (—0.05, 0.05). The average
cost attained while using MTD without any adversarial noise
in Figure 2c is the lowest.

VI. CONCLUSION AND FUTURE WORK

This letter devises a framework to diversify the attack sur-
face of Q-learning by exploiting the actuator redundancies of
the system while reducing the communication costs by gener-
ating “on-off” policy gain matrices that are optimal in nature.
Finally, adversarial threat models are devised to “robustify” the
learning agent against physically plausible adversarial attacks.
Future research efforts will focus on the development of inter-
mittent learning strategies that will further reduce the cost of
the communication and actuator resources using operant con-
ditioning reinforcement schedules. Compressed sensing algo-
rithms will be explored to realize these intermittent triggering
strategies.
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