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Hamiltonian-Driven Hybrid Adaptive
Dynamic Programming
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Abstract—This article presents a model-based hybrid
adaptive dynamic programming (ADP) framework consisting of
continuous feedback-based policy evaluation and policy improve-
ment steps as well as an intermittent policy implementation
procedure. This results in an intermittent ADP with a quantifiable
performance and guaranteed closed-loop stability of the equilib-
rium point. To investigate the effect of aperiodic sampling on
the communication bandwidth and the control performance of
the intermittent ADP algorithms, we use a Hamiltonian-driven
unified framework. With such a framework, it is shown that there
is a tradeoff between the communication burden and the control
performance. We finally show that the developed policies exhibit
Zeno-free behaviors. Simulation examples show the efficiency of
the proposed framework along with quantifiable comparisons of
the policies with different intermittent information.

Index Terms—Adaptive dynamic programming (ADP),
communication bandwidth, control performance,
Hamiltonian-driven framework, intermittent control, tradeoff.

I. INTRODUCTION

N THE context of cyber-physical systems (CPS) and the
Internet of Things (IoT), where the resources, namely,
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the actuators, sensors, and controllers are remotely located
and communicate through a shared medium or cloud, it is
critical for such resources to be used efficiently and effec-
tively to assure stability and optimality. Recently, emerg-
ing control scheduling strategies, including event-triggered
control [1], [2] and self-triggered control [3], [4], have
been used to reduce the communication burden. This is
achieved mostly by operating the system in an open-loop
manner, and closing the loop only when a predetermined
condition that guarantees stability and/or performance is
violated.

The threshold in the event-triggering condition should be
properly designed to avoid the Zeno-behavior. An expo-
nentially decaying threshold is used for consensus control
of multiagent systems in [5]. However, the exponentially
decaying threshold may lead to infinitely fast sampling [6].
Liu and Jiang [6] introduced an additional dynamical system
to overcome the limitation of the exponentially decreas-
ing threshold signal. Girard extended the event-triggered
control [1] with a dynamic mechanism that may reduce
even further the communication and computation burden [7].
Yang et al. [8] employed the dynamic triggering mech-
anism for the containment control problem of multiagent
systems. However, due to the dependency of the performance
on the update of the control input, reducing the com-
munication load may have an impact on the efficiency.
In this article, we quantify the tradeoff between the band-
width and the performance of the intermittent adaptive
dynamic programming (ADP) within a Hamiltonian-driven
framework.

Reinforcement learning (RL) and/or ADP, which evolves
from off-line iteration [9]-[12] to online learning [13], [14],
have been successfully developed to provide an efficient
way to obtain optimal controllers in an adaptive manner
online [15], [16]. Extensions of ADP algorithms have been
made for continuous-time [17] and discrete-time systems [18],
single-agent [19] and multiagent systems [20]-[22]. Recently,
intermittent ADP has been developed to reduce the commu-
nication load and the computation burden [23]-[27]. Existing
intermittent ADP methods aim to design an event-triggering
condition to guarantee the closed-loop stability of the equilib-
rium point during the learning phase. However, there are no
results to quantify the performance. In order to investigate the
effect of aperiodic state sampling on the learning phase of the
ADP, this article extends the Hamiltonian-driven continuous
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ADP [28] to the intermittent case with stability, bandwidth,
and performance analysis.

This article presents a more comprehensive framework,
referred to as Hamiltonian-driven hybrid ADP. First, the
Hamiltonian-driven continuous ADP [28] is used for the learn-
ing phase, including policy evaluation and policy improvement
steps. Then, Hamiltonian-driven intermittent ADPs, including
both static and dynamic intermittent ADPs, are developed for
the policy implementation such that the control is updated in
an intermittent fashion. The bandwidth and performance anal-
ysis of the continuous and intermittent ADPs are performed
using the Hamiltonian-driven framework.

Contributions: The contributions of this article are twofold.
We provide the theoretical analysis to compare the commu-
nication bandwidth for the static and dynamic intermittent
feedback in terms of the interevent interval and its lower
bound. Moreover, compared to existing event-triggered control
design, the control performance improvement for the intermit-
tent feedback is considered in this article. A unified framework
for the Hamiltonian-driven ADP is presented, which con-
sists of a learning phase using continuous feedback and an
implementation phase using intermittent feedback.

Structure: The remainder of this article is structured as fol-
lows. Section II briefly summarizes preliminary results on
optimal control problem and the Hamiltonian-driven contin-
uous ADP. Hamiltonian-driven intermittent ADP, including
the static and dynamic intermittent cases, are developed in
Section III. In Section IV, we provide comparisons in terms of
the communication bandwidth, and the performance between
the static, and the dynamic intermittent ADP. A simulation
example is conducted in Section V to demonstrate the results.
Finally, Section VI concludes and talks about future work.

II. PRELIMINARIES AND PROBLEM FORMULATION
A. Optimal Control Problem

Consider the input-affine nonlinear dynamical system

x(0) = f(x) + g@u(®), x(10) = xo, 1=0 1

where x € R” is the state, u € R™ is the control input, and
() :R" — R" and g(-) : R" — R™™ are nonlinear functions.

Assumption 1: It is assumed that f(0) = 0 and g(0) = 0
and that the dynamics f(x) and g(x) are locally Lipschitz con-
tinuous on a compact set £ C R” containing the origin, and
the system (1) is stabilizable and zero-state observable on €.

It is desired to minimize the following infinite horizon cost

functional:
o0

J(u(-): xo) =/ Ux(1), u(n)dt 2)

fo
where U(x, u) = |xllg + llullzg with |lxllo = x"Qx, [lulz =
u'Ru, Q > 0, and R > 0. To begin with, the following defini-
tion of Hamiltonian is needed, which will play a critical role
in our Hamiltonian-driven ADP framework.

Definition 1 [29]: A policy u is defined to be admissible
with respect to (2) on €2, denoted by u € WV (), if:

1) u is continuous on £2;

2) u(0) =0;
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3) u stabilizes (1) on ;
4) for Vxg € Q2 V(xp) is finite.

Definition 2: For a given admissible policy u, the
Hamiltonian functional of is defined as
Hu; x(1), V(x(2); u))
aV(x(t) .
=UumJo+<—%§2wm> )

where (-, -) denotes the inner product between two vectors of
appropriate dimensions, x(f) is the continuously differentiable
solution to the system (1) with initial state xo, and V(-) is a
continuously differentiable positive definite function.

Note that (3) is slightly different from the Hamiltonian
found in [30]-[33]. In our case, x will stand for an arbitrary
state of the state space rather than the solution of (1). Both x
and V(x) will be viewed as parameters in this article.

Definition 3: Let x € R" be an arbitrary state of the state
space and u be an admissible control input. A continuous dif-
ferentiable and positive definite function V(x) is called a value
function if it satisfies, for Vx

H(u; x, Vx;u)) =0 “4)

with the boundary condition V(0; u) = 0.

The functional J(-) in (2) is termed as the cost evaluation of
the given policy u(-). On the other side, the value function V(-)
is termed as the cost evaluation of an arbitrary state in the state
space. Under some certain conditions, that will be described
later, the value function is equivalent to the cost functional
when a given admissible policy u is applied to system (1)
from a predetermined state x. The value function (4) is also
referred to, as the generalized HIB (GHJB) equation [34].

The cost functional J(-) in (2) depends on the orbital trajec-
tory of the system (1). In contrast, the value function V(-) is
independent of the system trajectory because it is derived by
solving the nonlinear Lyapunov equation (4) for Vx. By fol-
lowing [28], the value function V(-), obtained by solving (4),
is equivalent to the cost functional J(-) for a given admissible
policy u.

Based on (3), for the optimal policy u*, the necessary and
sufficient condition for optimality can be written as [28], [35]

0 = H(u*(1); x(1), V*(x(1)))
= m(it? H(u(@®); x(t), V*(x(1))) Vx 5)

where V* is the optimal value function satisfying H(u*; x,
V*(x)) = 0. Assuming that the minimum on the right-hand
side exists and is unique, then, one has
*
W) = —R g 0
2 X
The HIB equation (5) can be interpreted within the framework
of Hamiltonian-driven ADP by following [28]. Given that the
Hamiltonian functional is parametrized by the optimal value
function V*(-), then the control policy that attains the mini-
mum of the Hamiltonian is termed as the optimal control u*(-)
and is unique. This is illustrated in Fig. 1.
The existence and uniqueness of the optimal value function
are guaranteed in [36] under stabilizability and observability

Vx. (6)
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H(u(~);V*(-),x)

O:H(u*(-);V*(-),x)

= min H(u () (),

=
—

A 4
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Fig. 1. Hamiltonian-based interpretation of the HIB equation (5). The solid
curve represents the Hamiltonian functional parameterized by the optimal
value function V*(-). Once can observe that: 1) the minimum of the
Hamiltonian functional is 0 and 2) the control policy which attains the mini-
mum of the Hamiltonian is «*(-), which is the solution to the HIB equation (5)
and solves the continuous-time optimal control problem.

assumptions and the quadratic form of the performance (2).
However, solving the HJB equation (5) is a challenging
problem since it is a nonlinear partial differential equation and
does not have an analytical solution. In the following, we shall
use a Hamiltonian-driven ADP framework to approximate such
a solution.

B. Hamiltonian-Driven Continuous ADP

In [28], Hamiltonian-driven ADP framework, which
contains three fundamental steps for solving the optimal con-
trol problem with respect to the performance (2) given the
system (1), is presented as follows.

1) Policy Evaluation: To build a criterion that evaluates
an arbitrary admissible control u(-), i.e., calculate the
corresponding cost J(u(-)).

2) Policy Comparison: To establish a rule that compares
two different admissible policies u(-) and v(-).

3) Policy Improvement: Based on the current admissible
control ux(-), k € Z, design a successive control uy1(-)
with an improved cost J(uz41(-)).!

In this article, the Hamiltonian-driven ADP framework using
continuous-time feedback is named as the Hamiltonian-driven
continuous ADP.

In the Hamiltonian H(u; x, V), the argument is the pol-
icy u and the value function V is the parameter. To investigate
the property of the Hamiltonian H(u; x, V) parameterized by
a fixed value function V, by completing the squares, the
minimum of the Hamiltonian functional can be expressed as

h(V) = mMinH(u;x, V)
Tavin 1" 1Tav]" AV
—[ ax :|f(x)—z|:ai| gWR g (x)a

+ xTQx (7N

ISince we are considering a minimization problem, “improved” is achieved
given that the cost is monotonically decreasing, i.e., J(ug41(-)) < J(ug()).

with

1 av
u(x; V) = argmin H(u; x, V) = —_R—lgTﬁ_
u 2 ax

®)
Note that u(-) is different from wu*(-), since it is not
parametrized by the optimal value function V*(x). The dis-
tance between u(-), and u(-) is expressed as

d(u, u) = [lu(x; V) —u@)|lg  Vx. ©))

The Hamiltonian-driven ADP framework is shown in Fig. 2.
The policy evaluation step of the Hamiltonian-driven frame-
work is shown in Fig. 2(a), where the solid and dashed lines
correspond to the Hamiltonian parameterized by the value
functions V(-) and V’(-), respectively. Based on the GHJB
equation (4), the value function V(-) is the one makes the
Hamiltonian H(-; V, x) to be zero given the admissible u(-).

The policy comparison step is illustrated in Fig. 2(b). In
Fig. 2(b), the Hamiltonian functionals parameterized by the
value function Vi(-) and V>(-) correspond to the dashed and
solid line, respectively. The distance between the prescribed
control policy, u;(-), and the policy that attains the minimum
of the corresponding Hamiltonian, u#;(-) = arg min, H (u; x, V;),
is denoted as d;, for i = 1, 2. The minimum of the Hamiltonian
functional parameterized by the value function V;(-) is denoted
as h;, for i = 1, 2. In [28], it is shown that 4; and d; indicate
the comparison between V;: 1) d» < dj = V2(x) < Vi(x) and
2) hy > h = V(x) < Vi(x), for Vx.

The successive process of policy improvement in the
Hamiltonian-driven framework is shown in Fig. 2(c), which
can be viewed as a special case of policy comparison. In
Fig. 2(c), V;(-) is the value function corresponding to u;,
ie., H(u;x,Vi()) = 0. w4 is obtained by minimiz-
ing H(u;; x, Vi(+)), i.e., uit1 = argmin, H(u; x, V;(-)). This
iterative process is guaranteed to yield a policy sequence
{ui} |, which would approach to the optimal policy u* =
arg min,, H(u; x, V*(-)) [28].

Remark 1: Compared to the policy comparison step, the
policy improvement step provides an explicit method to obtain
the policy u;41(-) with an improved performance compared to
the u;(-). Then, the policy iteration algorithm can be formu-
lated as a successive minimization of the iterative Hamiltonian
H(ui(-); Vi(+), x) [28].

Corollary 1: Suppose that the sequence of control policies
{u;(-)}2, and the value functions {V;(-)}7°, are generated by
the Hamiltonian-driven continuous ADP. Then, for i € ZT

h(Vi) + d(u;, uiy1) = 0. (10)
Proof: First, based on (8) and [28, Th. 1], one has
uir1(x) = u(x; Vy). (11)

From (7) and (9), we can write

Vi7" W1
BOVD) + Ay i) = [ aff)] f@) + [%} g ()

+xTOox+ uiT(x)Ru,-(x) =0.

This completes the proof. |
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Fig. 2. Hamiltonian-driven ADP framework. (a) Policy evaluation step. (b) Policy comparison step. (c) Policy improvement step (successive minimization

of Hamiltonian).

III. HAMILTONIAN-DRIVEN INTERMITTENT ADP

In the Hamiltonian-driven continuous ADP, the iterative pol-
icy has to be calculated continuously for implementation since
the continuously varying signal x(¢) is fed into the policy u;(-).
In this section, we develop an intermittent ADP design to
reduce the computation burden of the policy update.

Consider the aperiodic state sampling, implemented through
a data-sampled component, as follows:

X(t) = x(t) V1t € [t tet1) (12)
with the gap between x and X denoted as
e(t) = x(t) — x(r) Vt € [t, trt1)- (13)

Given the sequence of the iterative policy {u;(-)}{2, and its cor-
responding value function sequence {V;(-)}7,, obtained by the
Hamiltonian-driven continuous ADP, the iterative intermittent

ADP policy sequence {uf(-)}7°, can be determined as

ug(x) = uo (56)

14
(0 = i (3) 4

—IR1gT () M) ¢ 7+,
Assumption 2: There exists L € RT such that
| uf (@) — wie@)) || < Llle@ | Vi € Z*.

Assumption 2 is common in  event-triggered
control, [1], [2], [7], which can be satisfied when the
controller is affine with respect to the sampling error.
Moreover, it is sufficient to the existence of a solution and
is required for the triggering condition design and stability
discussion [1]. As shown in this article, the Lipschitz constant
of the control mapping affects the event-sampling frequency
through the threshold design.

Corollary 2 [1]: Suppose that Assumptions 1 and 2 holds.
Then, applying the intermittent control (14) to the system (1)
yields the Lipschitz continuity of f(x) 4+ g(x)uf(x) on 2, i.e.,
there exists a positive constant A, such that

If ) + g@uf )| < Acllxll + Acllell.

The following lemma provides a Hamiltonian-based rela-
tionship between u;(x) and u;(X).

Lemma 1: Suppose that Assumption 2 holds. Assume that
the policy sequence {u;(-)}:°, and the value function sequence
{Vi()}2, are generated by the Hamiltonian-driven continuous
ADP. Then, the iterative intermittent feedback policy satisfies

H(uf, Vi x) — H(ui, Vi, x) < duigr, ) + LAR) |e]l.

Proof: Considering the Hamiltonian of the iterative contin-
uous feedback u;(-), and using lemma [28, Lemma 2], one can
obtain

0 ="H(u;, Vi, x)
_ [V
N dx
From (7), and [28, Th. 1], one has

h(Vi) = min H(u; Vi, x) = H(uiy1, Vi, x)
u
aVi(x)

&

The Hamiltonian of the intermittent policy u{(-) can be
parametrized by V;(-) to write

T
] [f ) + g@ui] +x" Ox +ul Ru;.  (15)

T
} f() = ul, | Ruip1 +x"Qx < 0. (16)

H(uf(): ViC) x) = [a‘;"ix)]Tﬂx)
+ [a‘;’f‘) ]Tg(fc)a,- + 37 Qx + i Riy.
a7
Based on (16), one has
H (@, Vi x) = h(Vi) + (uigr — ) R(uigr — its)

< Juis1 @) — wix) + uix) — wi(%) ||

< luip1 () — wi@) g + |Juie) — ui (%) |

= d(uit1, u;) + AM(R)L]le]|. (18)
This completes the proof. |

In the Hamiltonian-driven intermittent ADP design, the
sampled state x(z) is plugged into the iterative policy u;(-),
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obtained by the Hamiltonian-driven continuous ADP. We will
now present two different types of intermittent ADP designs.

A. Static Intermittent ADP

The following theorem provides the static intermittent ADP
design.

Theorem 1: Suppose that the policy and value function
sequences {u;(-)}7°, and {V;(-)}7°, are generated by the
Hamiltonian-driven continuous ADP. Suppose also that the
static iterative intermittent ADP policy u{(-) is determined as
in (14) with the triggering instant determined by the condition

(1 = o2 + AR () |
A(R)L?

where o € (max{0, 1 — ([X(R)Lz]/[&(Q)])}, 1). Then:
1) the origin of the closed-loop system is asymptotically
stable;
2) the static intermittent ADP is Zeno-free in the sense that
the interevent interval vy = ming(f41 — ;) determined
by (19) is lower-bounded by

2
l[ell” <

19)

L, 1
Ls = DY)
/(‘) A, +2A,5 + Aps?

with Ly = \/(b/a), a = AgL*, b = Ly(1 — o).

Proof:

1) We shall start by using the iterative value function V;(-) as
a Lyapunov candidate. Applying now the intermittent control
to (1) yields

ds (20)

. Vi 1" .
Vi= [%] () + gui(R)]- @D
Based on (16), the following holds:
a0 1" DR (3
[ a)ﬂ f@) =h(V) = Q) — uf (DRui(3).  (22)

Inserting now (22) into (21), yields
Vi =h(Vi) = Q@) — ui(®) | + d (w41 (0. i 3)).
Based on (18), the following holds:
d(ui(R). w41 () < d@i), uig1 () + LAR) lel.
Then, Vi satisfies
Vi < h(Vi) + d(uj, uit1)
— 0() — u; (3)Ru; (%) + LAR)|lell
= — () — u (})Ru; (%) + LAR) el

where the equality results from Corollary 1. By adding and
subtracting o2A(Q)||x]|* to (23), one obtains

(23)

. - = N
Vi = ARl = 20)(1 = o) Ixl2 = AR |ui(®)|
— a2 1(Q)Ix. (24)
Therefore, V; < —A(Q)o2||x||> < 0 can be guaranteed by the

triggering con(;ition (19).
2) At the triggering instant f, one has
Y A\ (12

bllxl* + AR [|ui(%)

a

b|lx||?
. [lx]]

llel> > = LZ||lx]|*. (25)

Therefore, in an interval between two consecutive triggering
instants, y := (|le]|/||lx]|) evolves from O to L,. According to [1]
and Corollary 2, one has

¥ < A+ 24y + Ay, ¥(to) = Yo. (26)

Denote ¢ (t, ¢9) as the solution of the differential equation

¢ =Ac+ 24,0 +Acd*,  P(to) = yo. (27)

Then, we can conclude that y(f) < ¢(t, ¢o) by using the

comparison principle [37]. Therefore, the interevent interval

is lower bounded. This completes the proof. |

Note that the triggering condition (19) is equivalent to p > 0

with

= N

p = blixl> = allell® + 2R || ui(3) . (28)

The sequence of the triggering instants that is determined by
the condition (19) can be rewritten as

to=0
ti41 = inf {t > Ap < 0}. 29)
teR+

That is, the inequality p > 0 has to be satisfied V.

B. Dynamic Intermittent ADP

In order to further reduce the communication load, the
requirement that p > 0 has to be satisfied V7 is relaxed. We
will now introduce a dynamic intermittent ADP. To begin with,
an internal dynamical system is required

n=—un+p, n(te) =no (30)

where p is given by (28) and 5o, u € R™T.

We are now ready to present the dynamic intermittent ADP,
i.e., an event is triggered when the following condition is
satisfied:

n(® +06p) <0 €)))

where 6 € RT is a parameter to be designed later.
The triggering instants sequence can be determined
by (31) as

1o =20

k1 = inf {(z > 1) A (n(2) + Op(r) < 0)}. (32)
teR+

Then, p > 0 in static intermittent ADP to is relaxed as n(¢) +
Op(t) > 0 in dynamic intermittent ADP. Consequently, the
dynamic intermittent policy takes the form of (14) with the
triggering instants determined by (32).?

Lemma 2 [7]: Let u, no, 0 € ]R(J)r, and p defined as in (28).
Then the following conditions hold:

1) n() +6p@) >0VteRT;

2) n>0VteR",

2Note that the dynamic intermittent policy and the static intermittent policy
share the same form, but they are different because of the event-triggering
conditions (28) and (31), respectively.
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The following theorem guarantees the stability of the equi-
librium point of the closed-loop system with a dynamic
intermittent mechanism given by (30) and (31).

Theorem 2: Suppose that the sequence of continuous feed-
back policies {u;(-)}7°, and value functions {V;(-)}2, are
generated by Hamiltonian-driven continuous ADP. Let o be
selected as in Theorem 1 and u,n9,® € RT. The iterative
intermittent feedback policy sequence {uj(-)}7°, is determined
as in (14) with the triggering instant determined by (32). Then:

1) the origin of the closed-loop system is asymptotically
stable;

2) the dynamic intermittent ADP is Zeno-free. Moreover,
let g = 24, — pu, n € (0,24,), 0 € ((1/29), (1/9)],
the interevent interval T, = ming(fxy1 — ) deter-
mined implicitly by (32) is lower-bounded by a positive
constant T4, which is given by

I 1
O A/ + A+ )5+ A,

Proof:

1) For the augmented system of (16) and (30), consider the
candidate Lyapunov function W; : R" x RS’ — Ra’ defined as
Wi(x, n) = Vi(x) + n, which is a positive definite and radially
unbounded scalar-valued function. Based on Theorem 1, for
vVt e R(‘)" , the orbital derivative of W;(x, n) yields

c

ds. (33)
l_7s2 + %S?’

Wi(x’ 77)

Vi) + 1 = (=202 = p) + (—pn +p)
(34)

—hoo lIx[1> = .

According to Lemma 2 and Theorem 1, one can conclude that
W,-(x, n) < 0. Therefore, W;(x, n) decreases, and both x(¢) and
n(t) converge to the origin asymptotically.

2) From Theorem 1, (Jle||/|lx|]) evolves from O to L,
during the interval [#,t;+1). Equivalently, the term
[(\/5||e||)/(\/5||x||)] evolves from O to 1. For the dynamic
intermittent mechanism, at the triggering instant, according
to (31), one has

1@ +6[bIxO1? + xllua @I — alle®?] <0 35)
which can further yield

ablle®|1> = () + bO||x(1)||* + Oigllua ()|
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Therefore, when 6 > 0, in the interval of [fx, fx+1), £(t) =

[(Wab e )/ G/ n@) + bO|x(1)|*)], evolves from O to 1. The

interevent interval is investigated, by examining the dynamics
of £(¢) for t € [tx, ty+1)

. Vab|le| . T.
§ o [79||x||2)% (1 + 2b0x" %)
n Jadele
Vb0 - el - llxl
with &(#;) = 0. Considering Corollary 2 and the facts
e = —X
it = —pn + bl + Aeu(R) | — allel®
= —pn + bllx|)* — alle|)? (37)

then & satisfies (38), as shown at the bottom of this page.
From 6 € ((1/2q), (1/9)] and ¢ = 2A, — u, one obtains 6 €
(0, [1/(2A, — )]]. Assume that v (¢, ¥) is the solution of the
following differential equation:

. b 1
¥ =Ae\/§+ (ac+5)v +Ae\/;w2 + 557 Y0 = k0.

Using the comparison principle [37] and (38), then &(¢) sat-
isfies £(¢) < ¥ (¢, Y¥o). Moreover, the time needed by £(¢) to
evolve from 0 to 1 is lower bounded by the positive constant
14 in Theorem 2. Therefore, the intermittent condition (31) is
Zeno-free. |

IV. HAMILTONIAN-DRIVEN UNIFIED FRAMEWORK
FOR HYBRID ADP

As mentioned in the introduction, there is a tradeoff between
the bandwidth and the performance for the intermittent feed-
back designs. In this section, we quantify this tradeoff to
show that the static intermittent ADP has better performance,
whereas the dynamic intermittent ADP has a more efficient
bandwidth.

A. Bandwidth Discussion

In this section, the static and dynamic intermittent ADP with
respect to the bandwidth size is compared. In the following,
let {t]‘?}j?’i] and {tf Jo2, be the triggering instants determined by

> n(t) + bo ||x(t)||2. (36) Theorems 1 and 2, respectively. Denote the system trajectories
. JabA vabd|el
§ = =l + llel) + —é(un — blxl + allell® + 2b0Ac xIP + 2604l el

1+ box])? 2(n + bGIIXI|2)2
vabd el
\/7+Ae§ A fs ygy YA ( 1un — bl +2b9Ae||x||2)
( + bO||x]|?)?
<

a " beay 1
<anfir (v e eanfZe e g

a b 1 m bo x| 1
Ae./—+A +A\/j2+—3+— +———-u—=+2A
e\/; eé;_ e ag 295 2;5_ 2(77 —I—b9||x||2) 2 9 e )&

(38)

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 01,2020 at 16:08:31 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: HAMILTONIAN-DRIVEN HYBRID ADP

as xs(f) and x4(f), respectively. Then, the sampled states using
the static and dynamic triggering condition can be expressed
as X,() = x()) for 1 € [}, 1)) and %q(1) = x(t) for t €
[t,”(’, tZ T ), respectively.

From Theorems 1 and 2, the local stability can be guaran-
teed by the static and dynamic triggering condition. Therefore,
xs(f) and x4(f) are remain bounded on compact sets. Also,
there exists Lipschitz constant such that

leall> = llea + A — Aoll* < p1llA — Aol

lxg — AN = llxall* < p2llAll. (39)

In addition, the control input is also bounded for both
static and dynamic intermittent feedback, i.e., ||u;(Xs)| <u,
llui(x5)|| < i for u > 0. Then, one has

Jui G = i Ga)| = @) | = aui(a) ]

= JuilEs) —wi(a) | = L] — 2l (40)

Theorem 3: Let the lower bound of the interevent interval
for static and dynamic intermittent ADP be z, and 1,
respectively. Suppose that tjs = tz and write the next trig-
gering instants using the static and the dynamic intermittent
mechanisms as t; ', and tZ 1> respectively. Then:

Dz, <2y

2) if x,(t) = xa(t), then, 1 | > R

3) there exists § > O such that if ||xs(t;) —xd(tf)H < 4,

then #{,, > 1, .

Proof:

1) Based on Theorem 1, by letting s := (\/E||e||/\/5||x||),
s evolves from 0 to 1 between two successive events for the
static intermittent ADP. Then, t in (20) can be equivalently
expressed as

(41)

1 1
/ ds.
0 Ae\/g 24,5 + Ae\/%ﬂ

It remains now to compare the denominators of z and z; for
s € (0,1). From Theorems 1 and 2, the denominators of 7
and 7, can be written as

1 a a,
D, = Ao [ — +2Acs +Ap, | =57 |ds
0 b b
! a 1% /b I ;5
Dd = /(‘) |:Ae E + (Ae + E)S —|—Ae ;S + %S dS.

Note that we have o € (max{0,1—[(ArL*)/(A)]}. D).
From (42), after subtracting Dy from D,, one has

o= (51 |
1 /1
=@<5‘9‘I)~

Consider the parameters design in Theorems 1 and 2 that sat-
isfy 11 € (0,24,).60 € ((1/29), (1/q)],q = 2A, — 1. Then,
Dy < Dy. Therefore, T, — 1, = [(Dg — Dy)/(DsDy)], where
both Dy and Dy are positive. One finally obtains 7, < 7.

2) This will be shown by contradiction. Assume that

t,‘fﬂ <tj*f+1. Then, based on (29), one has that p(t,‘fﬂ) > 0.

1 1 1
d —
ss+29 A

s°ds

(42)

Based on (32) and Lemma 2, one has U(ff+1) —i—@p(tZH) <0,
ie.,

0= ’T(tgﬂ) + QP(IZH) z 6)P(tltciﬂ)-
Note that 6 € ((1/2q), (1/g)] is a positive constant, therefore,
the above equation yields p(t,‘f +1) < 0, which contradicts the
fact that p(t,‘f +1) > 0. Therefore, tjf 4 < t7 -

3) First, the static and dynamic triggering condi-
tion yields the sampling error e(f) =x;(¢) —xs(t]‘?) and
eq(t) = x4(1) —xd(tf). Define A(f) = x4(t) — x5(t) and Ag =
xd(t‘ki) — xs(tjf). Then, the dynamics of A(z) is

A = [fGa) + gGaui(3a)] (43)
— [fGa — A) + gxa — Mui(xg + eq — Ap)]. (44)

From Corollary 2, one has ||A|| < A:All + AcllAoll-
Therefore, using the comparison lemma yields

NG ||Ao||[2e"g<”f') - 1}. (45)
The static triggering condition guarantees
b 1 N2
leol? + 1 = =l + 5 [ui(k) %1€ [f8,) - @6)

for some ¢; > 0. Using the definitions of A(¢) and Ag, (46)
can be rewritten as

lea + Ao — AlI* + &1 < and — AP+ %Hui(fcs) I @
Considering the facts in (39), one has
leall* = p1llA — Aqll < llea + A — Agll?
Ixa — AlI* < p2llAll + [lxall.
Then, (47) yields

b 1y, .
leal? +e1 < = (P2 Al + xall?) + 75 (i) |
+ p1llA = Aol
b 1 R
< Cil Aol + = lxall® + 7 i(5) > @8)

where C; = ((b/a)p> + ,01)(2eAe(t_'}?) — 1) + p1. From (40),
one has

= 2Ll Aol < fui®) |* = [uiia) | (49)

Therefore, for ||Agll < [(e1)/(2Lu+ C1)] := §, there exists
g =¢1 — QLu~+ Cy1)||Agll > O such that

b 1 N2
leall> 4+ &2 < ;nxdnz + ﬁnu,-(xd) [

()

G
Therefore, tj‘? o t; < t,‘f = t,‘f. This completes the proof. W

Remark 2: By proposition 3) of Theorem 3, it is shown
that the state trajectories generated by the static and dynamic
intermittent feedback approach a small neighborhood of each
other in finite time and stay close to each other from then
on. In this scenario, the interevent interval of the dynamic
intermittent feedback is no smaller than the static case. This
fact also contributes to the control performance discussions in
the next section.

b 1 .
< —lxall + 75 (k) I?+ (50)
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Fig. 3. Policy comparison of u;“l(~) and u (-) within the Hamiltonian-driven
framework in terms of performance. Closer distance between the static inter-
mittent policy « (-) and the time-triggered policy u*(-) corresponds to higher
control input update frequency and superior performance, whereas further
distance between the static intermittent policy uj(-) and the time-triggered
policy u*(-) corresponds to lower control input update frequency and inferior
performance.

B. Performance Quantification

The following result discusses the performance of the inter-
mittent ADP compared to the continuous ADP in terms of cost
defined in (2).

Theorem 4: Denote uj’-"(-) with j = s, d as the optimal pol-
icy u*(-) with the static and dynamic triggering conditions
in Theorems 1 and 2, respectively. Then, the cost of the
intermittent feedback policy is

J(u]’?‘; xo> = J(u*; xo)

o
[
0]

Proof: The proof follows from [23]. |

The aforementioned result holds for both the static and
dynamic intermittent ADP. Note that the performance of the
intermittent ADP policy is closely related to the distance
between the optimal policy u*(-) and the intermittent policy
uj‘(-) defined as

D(ur (). () = /

0

? (x) — u*(x)HRdr, forj=s,d. (51)

o]

W (x(1)) — u* (x(0)) HRdt. (52)

From Theorem 3, the interevent interval of the static inter-
mittent ADP is larger than the dynamic case. Then, it can be
inferred that

D(u5 (), () < D(uz(), u*(-)). (53)
In addition, from Theorem 4, one can obtain
J(u;‘; xo) < J(u;‘}; xo). (54)

Similar to the policy comparison in the Hamiltonian-driven
continuous ADP, comparison between static and dynamic
intermittent ADP in terms of the performance can be made
accordingly, as shown in Fig. 3. From Section II-B, the policy
evaluation step in the Hamiltonian-driven ADP framework can
be used to compare u; and u}; in terms of performance.

Remark 3: For the static (or dynamic) triggering condi-
tion in Theorem 1 (or Theorem 2), when the parameter o
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A: Continuous Feedback
B: Static Intermittent Feedback n(t) +6p(t) <0
C: Dynamic Intermittent Feedback \ /
@: Continuous ADP Learning N e e e e e e o2 -
(2): Intermittent ADP Implementation

Fig. 4. Hamiltonian-driven unified framework for hybrid ADP, with Xj,
Xg denoting the state sampling using triggering conditions of the static and
dynamic intermittent ADP, respectively, and u;(-) denoting the iterative policy
obtained by Hamiltonian-driven continuous ADP.

approaches 1, which implies that the event is triggered more
often and uj — u* (or u} — u*), the term D(uj(-), u*(-))
or D(uj(-), u*(-)) approaches zero. On the other hand, select-
ing o close to O increases the interevent interval, t,i - t,i
(or tf 1 tg), and the performance difference between u}
(or u}y) and u*. This means that the intermittent feedback will
be far from the continuous feedback.

C. Hamiltonian-Driven Hybrid ADP

Fig. 4 shows the Hamiltonian-driven unified framework
consists of continuous learning and intermittent implementa-
tion. The policy learning phase employs the continuous ADP,
which consists of policy evaluation and policy improvement.
The policy implementation is based on the intermittent ADP,
including static and dynamic intermittent ADP as designed by
Theorems 1 and 2. When Option A is activated, continuous
ADP learning is used to evaluate and improve the iterative
policy u;(-). When Option B or C is activated, intermittent
ADP is selected to implement the iterative policy u;. The
continuous ADP learning guarantees the convergence of the
iterative policy u;(-) to the optimal policy u*(-) [28]. Also,
Theorems 1 and 2 show that the iterative policy obtained
by continuous ADP guarantees the closed-loop stability and
Zeno-free property.

Remark 4: The Hamiltonian-driven hybrid ADP framework
can be related to existing ADP variants as follows.

1) Compared to [28], two types of intermittent feedback
are presented to guarantee the closed-loop stability and
avoid the Zeno-phenomenon. In addition, the communi-
cation bandwidth and control performance comparison
between the continuous and intermittent feedback poli-
cies are discussed in Theorems 3 and 4, respectively. It
is shown that there is a tradeoff between the bandwidth
and performance.

2) In the continuous learning phase of the Hamiltonian-
driven hybrid ADP, model-based ADP methods [9]-[12]
can be wused for policy evaluation and policy
improvement.

3) The learning process can be offline implemented with
iteratively updated in the subset of the state space
asynchronously, as shown in [12].
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4) When the system dynamics f(x) and g(x) are
unknown, neural network-based  approximation
method can be employed to compensate the system
uncertainty [38], [39].

5) To obviate the requirement of model knowledge, action-
dependent value function approximation can be used,
such as Q-learning-based ADP methods [24], [40].

6) Off-policy RL, another type of model-free RL variant,
can be employed to merge the policy evaluation and pol-
icy improvement in the continuous learning phase [21].
This will be discussed in detail in the next section.

D. Model-Free Extension

As mentioned in Section IV-C, the learning phase in hybrid
ADP is based on system dynamics f(-) and g(-). This section
briefly gives the model-free extension of the learning phase
using off-policy RL approaches [13], [41], [42].

Assume that the continuous feedback w(x(7)), called behav-
ior policy, is applied to the system (1), then, the dynamics of
the system can be written as

X = f(x) + g@ui(x) + g0 [(x) — ui(x)].

Denote the value function corresponding to the iterative policy
u;(x) as Vi(x), then

aV;
Ixllg + lCollg + <%,f(x) 4 g(X)M(X)>
1/aVi)\ T 4
- —5( i )g<x>R Rl () — (0] = 0.
X

Note that for an strictly increasing sequence of instants {#};°

1+ .
/l | <8Vl(x>,55>df = Vilx(tr41)) — Vilx(®)).
" 0x

Integrating the above equation on [#, #;41] yields

41

Vitx(ti11)) = Vi(x(1) —l—/ (Ixllg + lluix)lIg)dz

1

I T
-2 / [uir1(0] Rlui(0) = u(@)ldr = 0 (55)
i

where u;;1(x) = —(1/2) R g(x)T[(8V;(x))/(dx)]. Therefore,
the model-free learning begins from the initial admissible pol-
icy mapping #;(-) and tries find &4 (x) and Vi(x) to minimize
the norm of Bellman residual, which is defined as

41

e = ViCa(t41)) — ViCae(n)) + f (g + [0 o)

1

I
-2 f [it1 ()] R[#x) — ()] (56)
4]

where #;(-) and V;(-) are the approximated policy and
value function using function approximators such as neu-
ral networks. Then, actor-critic off-policy RL approach
can be used to evaluate and improve the iterative
policy u;(-) [13], [41]-[43].

-4 -6
0 10 20 30 0 10 20 30
Time/sec Time/sec
Fig. 5. Evolution of the continuous-triggered control policy u*(x) with the

method in [44].

x5(t) /&2 (t)

x1(t)/21(t)

0 10 20 30 0 10 20 30

Time/sec Time/sec
Fig. 6. Evolution x(#) for static intermittent feedback (29).
4 T
3 —_—u(t) | |
= 27 ]
Ea 1
ok
1 I I I I L I
0 5 10 15 20 25 30 35
Time/sec
Fig. 7. Evolution of us(#) for static intermittent feedback (29).

V. SIMULATION

In order to validate the effectiveness of the presented
Hamiltonian intermittent control policies the example adopted
from [44] will be used.

Consider the controlled Van der Pol oscillator

= |:—x1 + o.;czl —x%)xz:| + [(1)}“

with user-defined matrices Q = I and R = 1. The optimal
value function for this system is V*(x) = x% + x% and the
optimal controller is u*(x) = —x,. Fig. 5 shows the evolution
of the optimal continuous-triggered control policy u*(x) with
the method in [44].

Select now o = 0.8 of Theorem 1. The evolution of the
states and the control signal are shown in Figs. 6 and 7. Select
the parameters of Theorem 2, as u = 0.8, 6 = 0.3. The evo-
lution of the states and the control signal are shown in Figs. 8
and 9. In order to compare the communication burden of the
three Hamiltonian driven ADP techniques, we show the total
number of sampling updates in Fig. 10. The triggering instants
for both static and dynamic intermittent mechanisms are given
in Fig. 11. From Fig. 10, one can observe that the static inter-
mittent mechanism uses 50 samples of the state as opposed
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Time/sec Time/sec
Fig. 8. Evolution of the state for dynamic intermittent feedback (32).

4 T T T T

uq(t)

A 1 I I 1 I I 1 I

0 5 10 15 20 25 30 35 40 45
Time/sec
Fig. 9. Evolution of the uy(f) for dynamic intermittent feedback (32).

300

200

100

0
Time-triggered control Static Intermittent ADP Dynamic Intermittent ADP

Fig. 10.  Number of state samples used in continuous-triggered policy
from [44], static (29) and dynamic (32) intermittent control.
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Dynamic ETM [~ OO0 0000000000000 0000O0O0
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Fig. 11. Triggering instants for static (29) and dynamic (32) intermittent
feedback mechanisms.
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\ ML

wa(t) /(1)

= = time-triggered ADP
=== Static intermittent ADP
Dynamic intermittent ADP

0 v, R A
\ v
- -4
0 10 20 30 40 50 0 10 20 30 40 50
Time/sec Time/sec
Fig. 12. Comparison of state evolution for continuous-triggered [44],

static (29) and dynamic (32) intermittent cases.

to 285 of the continuous-triggered controller. The dynamic
intermittent mechanism uses 22 only samples of the state.
Fig. 11 also support this point. Figs. 12 and 13 illustrate the
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Fig. 13. Comparison of control input evolution for continuous-triggered [44],
static (29) and dynamic (32) intermittent cases.

performance, where the state trajectories and control input sig-
nals of three mechanisms are given. One can observe that as
expected, the static intermittent mechanism outperforms the
dynamic one in terms of communication bandwidth.

VI. CONCLUSION

This article presented a Hamiltonian-driven unified
framework for hybrid ADP, which consists of continuous
feedback ADP learning phase and intermittent feedback
implementation phase. Both the closed-loop stability and
Zeno-free property are guaranteed for the intermittent
ADP implementation phase. Moreover, the quantifiable
tradeoff between the communication cost and the control
performance for static and dynamic intermittent control
policies is discussed. A simulation example is conducted
to verify the efficacy of the presented Hamiltonian-driven
unified framework. Future work is to integrate model-free
RL-based algorithms with the developed hybrid framework
to approximate optimal policy without the requirement of
complete knowledge of system dynamics.
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