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Safe Intermittent Reinforcement Learning With
Static and Dynamic Event Generators
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Abstract—1In this article, we present an intermittent frame-
work for safe reinforcement learning (RL) algorithms. First,
we develop a barrier function-based system transformation to
impose state constraints while converting the original problem
to an unconstrained optimization problem. Second, based on
optimal derived policies, two types of intermittent feedback
RL algorithms are presented, namely, a static and a dynamic
one. We finally leverage an actor/critic structure to solve the
problem online while guaranteeing optimality, stability, and
safety. Simulation results show the efficacy of the proposed
approach.

Index Terms— Actor/critic structures, asymptotic stability,
barrier functions, reinforcement learning (RL), safety-critical
systems.

I. INTRODUCTION

ONSTRAINTS are inevitability present in engineering
systems as demonstrated in variety of engineering appli-
cations, including flexible joint robots [1] and flight con-
trol [2]. Such constraints can be categorized as input based
[31, [4], output based [5], and state based [6].
Conventional Lyapunov analysis guarantees closed-loop sta-
bility of the equilibrium point, but without any conclusions
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about the transient behavior of the input and output signals.
To impose constraints on the behavior of the system, non-
quadratic Lyapunov functions, referred to as barrier Lyapunov
functions [7], [8], have been used in time-delay systems [9]
and in uncertain systems with unknown control directions [10].
In order to satisfy a user-defined transient performance, a pre-
scribed performance adaptive control method is proposed
in [11].

A. Related Work

Coping with input constraints is a challenging task [12],
especially in optimization-based approaches, such as [13], for
which the solution requires the solution of Hamilton—Jacobi—
Bellman (HJB) equations [14], [15]. Due to the “curse of
dimensionality,” a closed-form solution to the HIB equation is
difficult to obtain even for systems with simple dynamics and
without any constraints.

Reinforcement learning (RL) [16]-[19] is a machine learn-
ing method that provides an efficient way to solve the HIB
equation online in real time [20]. Variants of RL have been
applied widely in control, including regulation [21]-[23],
cooperative control [24], [25], robust control [26], [27], dif-
ferential games [28]-[30], and constrainted control [31]-[33].
However, guaranteeing that the state and input constraints
are not violated, as in model predictive control [34]-[36],
is challenging especially for mechanisms with intermittent
feedback. The aforementioned results may lead to unnecessary
communication and computation loads due to continuous feed-
back. To address this concern, several works with intermittent
feedback have been used [37]-[44].

There are primarily two types of approaches to safe RL.
Such techniques include modification of the optimization
criterion with a safety component, such as barrier func-
tions, by transforming the operational constraints into soft
constraints; and modifying the exploration process through
the incorporation of external system knowledge or historical
data. This article is toward the latter direction and combines
advantages from both approaches.

B. Contributions

The contributions of this article are threefold. First, full-state
and input constraints are considered simultaneously for design-
ing safe policies, with the use of barrier Lyapunov functions
and proper performance design. Second, two types of intermit-
tent policies are presented to reduce the communication bur-
den, namely, static and dynamic. Finally, a safe RL algorithm
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is developed to learn the solution to the constrained problem
by using the past and current data concurrently.

C. Structure

The remainder of this article is structured as follows.
Section I formulates the problem. A novel barrier function
is developed to deal with the constraints on the state and the
inputs in Section II. Section III develops the basis for the
intermittent design with static and dynamic triggers. An actor-
critic-barrier structure is introduced in Section IV. Section V
shows the efficacy with simulations, and finally, Section VI
concludes and talks about future work.

II. PROBLEM FORMULATION

Consider the continuous-time nonlinear dynamical system

x-i:xiJrl, izl,...,n—l
b = f(2) + gl@)u, £>0 ()
where © = [z1 ... 7, |T € R™ with z; € R is the system

state, v € R is the control input, f : R — R,and g : R* — R
are Lipschitz continuous functions.

The constrained control problem of system (1) with full
state constraints can be formulated as follows.

Problem 1 (Safety Control Problem With Full-State Con-
straints and Input Saturation): Consider the system (1), find
a policy u(-) : R™ — R such that the following performance
is minimized for every xg and ¢y > 0:

V()= /t Oor(:c,u)dt 2)

given the equality constraints (1). Note that the state

x =[x ... 2, T and the control input u satisfy the following
constraints:
l[ull <~ ©)
JijE(aj,Aj) Vi=1,...,n 4)

where v > 0, a; < 0, A; > 0, and r(x,u) := H(x) + O(u)
with H(z) and O(u) positive definite functions. O

A. Barrier Function Design for Full-State Constraints

In this section, a barrier function-based system transforma-
tion is designed to deal with asymmetric full-state constraints.

Definition 1 (Barrier Function): The function b(-):R — R
defined on (a, A) is referred to as a barrier function if

Aa—z

aA—z

b(z;a,A) =log < > Vz € (a, A) (5)

where a and A are two constants satisfying a < A. Moreover,
the barrier function is invertible on the interval (a, A), that is,

1 e% — e_%
b” (y;0,A) = aA— - WeR
ae? — Ae™ 2
with a derivative given as
db! (y;a,A) Aa? — aA? O
dy " a2e¥ —2aA+ A%e—Y’
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Based on Definition 1, we consider the Dbarrier
function-based state transformation as follows:
i := b(xi;aq, Ay)
1 .
@ i=b" (siya4,4;), i=1,...,n. 6)

The dynamics are given by

dvy _ dwidsi
dt ds; dt
and after using Definition 1 we get
Sit1 _ Sit1

—e ) AZe% —2a,;A; + ate

2 2
Aiai — aiAi

aip1Aipr(e2

2
Sit1 ~ Sitd
ajp1€72 — Ajpre” 2

= Fi(si, si4+1),

i =

t=1,....,n—1
2 —8, 2 ,5n
Ae 2an, A, +ae

b = (@) + gl
= Fn(8) + gn(s)u
where
AQ —sn _ 9a. A 2 Sn
Fo(s) = n? A zan nA_Z =
nQy — Qp A
x f([b7 " (s1) byt (sn)])
ey A+ e

Ana2 —an A2
Xg([bfl(sl) b;l(sn)]).

The dynamics of the system with the augmented state s :=

[$1...8,]T can be expressed in a compact form as
$=F(s)+ G(s)u, t>0. @)
with
F(s) = [Fi(s1,2) .. Fu(s)]"
G(s):==[0 ... 0 gn(s)]".

Assumption 1: The dynamics given by (7) satisfy the fol-
lowing.

1) F(s) is Lipschitz with F'(0) = 0, and there exists a
constant by such that for s € Q, ||F(s)|| < by||s||, where
Q C R™ is a compact set containing the origin.

2) G(s) is bounded on €, i.e., there exists a constant by
such that |G(s)|| < by.

3) The system stabilizable for every s € . O

Property 1: A barrier function has the following properties.

1) Given that the state s of the system (7) is bounded, then
the constraints (4) on the state x of system is satisfied,
that is,

|b(z;a, A)| < +o0 Vz € (a, A).

2) If the state = of the system (1) approaches the boundary
of the safe region (a;, A;), the state s will approach
infinity, that is,

lim b(z;a,A) = —o0;
z—at

lim b(z;a,A) = +o0.
z— A~

3) The state s of the system (7) is regulated, i.e., s = 0
if and only if the state = of the system (1) is regulated,
that is,

b(0;a,A) =0 VYa < A.
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4) The barrier function is a monotonic mapping, and hence,
the inverse exists. U

Remark 1: The barrier function-based system transforma-
tion guarantees the following.

1) The stabilization of s is equivalent to the stabilization

of x.
2) The boundedness of s is equivalent to the satisfaction
of a proper condition on z. (]

B. Penalty Function Design for Input Saturation

In this section, in order to deal with input saturations,
Problem 1 is converted to an unconstrained optimization
problem with a nonquadratic control input penalty function.

Problem 2 (Optimal Control Problem With Input Satura-
tion): Find a policy u(-):R™ — R™ such that the performance

(o)

V() :/ U(s,u)dt VYsg, to >0 (8)
to

is minimized given the equality constraints (7), and U (s, u) :=

Q(s) + O(u), with Q(s) := sTQs, Q = 0, and the penalty

function on the control in out is selected as [3], [31]

O(u) := 2/0u r6~1 (v) dv 9)

where r € RT. O

Definition 2 (Zero-State Observability [13]): A nonlinear
system & = f(x,t) with a measured output y = h(z) is
zero-state observable if y(¢) = 0 V¢ > 0 implies that () =0

vt > 0. O
Assumption 2: The performance function defined by (8)
satisfies the zero-state observability property. t

Definition 3 (Admissible Policy [3]): A control policy p(s)
is said to be admissible with respect to (8) on {2 C R™, denoted
by p(s) € m(Q), if the following is satisfied.

1) u(s) is continuous on €.

2) p(0) = 0.
3) u(s) := w(s) stabilizes (7) on €.
4) V(s) is finite Vs € Q. d

The penalty function 6;(-) on the control input is selected

f(v) =  tanh <%> .

We can now rewrite ©(u) in (9) as [3], [31]

O(u) = 27’/ 5y [tanh_1 <g>}dv
0 v
2
= 2ryutanh ™! (E) +rv%log <1 — (B) ) . (1D
Y v

The penalty function design given by (10) and (11) has the
following properties.

Property 2: To deal with input saturation (3), the function
0;(-) satisfies [3] the following.

1) It is a one-to-one real-analytic integrable function of

class Lo () and CP with p > 1.
2) It maps R onto the interval (—-,~).
3) 6;(0) =0.

as

(10)

4) Tt is a monotonic odd function with a first derivative

bounded by a constant M. 0
Remark 2: According to Property 2, we have the following.
1) ©(u) =0 if and only if u = 0.

2) O(u) is a positive definite function of its argument.
3) O(u) is bounded if and only if the condition is satisfied.
4) O(u) approaches to infinity as ||u;| — . O

C. Equivalence Between Problems 1 and 2

Given the barrier function-based system transformation, one
can convert the Problem 1 with full-state constraints and
input saturation to Problem 2, which is an unconstrained
optimization problem.

In this section, we provide a formal results of equivalence.

Lemma 1: Suppose that Assumptions 1 and 2 hold and
that u*(-) solves Problem 2 for (7) with (3) and (4). Then,
the following holds.

1) The closed-loop system satisfies (4) provided that the
initial state zy of the system (1) is within the region
described by the constants a;, A;, and Vi.

2) The performance described by (8) is equivalent to that
of (2) given that the penalty functions on x and s are
the same.

Proof: From (8), one can obtain that V* (t) <0, that is,
V*(s(t)) < V*(s(0)),

Then, V*(s(t)) remains bounded given that V*(s(0)) is
bounded, which is guaranteed by the condition that the initial
condition z(0) of the system (1) satisfies (4). Finally, one can
infer that

xg(t) S (ag, Ag),

Therefore, given u*, the constraints of Problem 1 are satisfied.

Now consider the barrier-function-based state transforma-
tion described by (6). Each element of the state s =
[b1(x1) ... bp(xn) ]T is finite given that x satisfies the con-
straints given in (4).

Next, comparing the two performance functions (2) and (8)
provides an equivalent results given that the penalty functions
of x and s are the same. This completes the proof. [ ]

t > 0.

(=1,2,....n, t > 0.

III. INTERMITTENT FEEDBACK DESIGN

Two types of suboptimal intermittent feedback designs with
static and dynamic triggering conditions that guarantee the
input saturation and full-state constraints are now developed.

A. Continuous Feedback
Define the Hamiltonian as

(s ) - (%—Z)Tms) T glshul + Uls,u). (12)

Then, by differentiating (8) along the system trajectories yields
the Bellman equation as

0=H <su %) _ (%-Z)T [F(s) + G(s)u] + U(s, u).
(13)
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Define the optimal value function as

(o)
| 1QGstr) + eur)ar

t
The necessary condition for optimality is
ov*

u, —— | .
K Y 88
The optimal control v* can be found by applying the stationary
condition to the Hamiltonian

u*(s) = argmin H <s,u, 88L> = —vytanh(D*(s))
s

min

Vi(s(t) =  min

0= min H<s

uem()

uem(Q)
D*(s) = 5G9 2, (1)
Inserting the optimal control policy (14) into (9) yields
O(u*) =~ [8?5(8)} " G(s) tanh (D" (5)
+~2rIn[1 — tanh?(D*(s))]  (15)

and then, finally, one has the HIB as [13], [31]

=i+ [0

T
} F(s) +~v%rIn[l — tanh?(D*)).
(16)

B. Intermittent Feedback

In order to reduce the computation and communication
burden, an intermittent feedback is developed by introducing
an aperiodic sampling mechanism, that is,

S(tk), Vit € [tk;thrl)

50 = {s(t),

where {t;}72, is a sequence of event instants.
The gap is denoted as

e (t) :=§(t) — s(t).

In the sequel, an intermittent control law with aperiodic
sampling is introduced as'
oV*(s)
. 18
s sé) ( )

ue(t) = u*(8)
1
= _ h{—G7T(s
~ tan (Q’W’G (8)
Given u,. from (18), the closed-loop dynamics of (7) can be
written as
$(t) = F(s(t)) + G(s(t))u"(s(t) + e(t)),

The following assumptions are adopted from [37] and [38].
Assumption 3: The function D*(s) defined in (14) is Lip-
schitz continuous on 2 satisfying

|D*(a) — D*(b)|| < Lplla—b|| Va,be Q. O

t =1kt

A7)

t>0. (19)

'In the intermittent feedback design, the event-triggered control consists
of the feedback control mapping and the event triggering condition. Here,
the notation u. denotes the event-triggered control design with the optimal
policy u*(-). Combined with different event-triggering conditions, one can
obtain different intermittent feedback designs. This will be illustrated later as
ug and ug.
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Assumption 4: At the intermittent instant, ¢, Vk € Z7T,
finite-time stabilization is not achieved, i.e., s(tx) # 0. O

For the intermittent feedback control policy (18), the fol-
lowing lemma holds.

Theorem 1 (Static Intermittent Feedback Design): Suppose
that Assumptions 1-4 hold. Consider the constrained-input
nonlinear system given by (7), and let V*(s) be the optimal
solution to the HIB equation (16). Then, the following holds.

1) The closed-loop system has an asymptotically stable

equilibrium point with
1 L OV*(s
us(t) : = —ytanh (WGT(S) (5) Sé) (20)

s

and an intermittent condition

(1 = %) Amin(Q)

1
2 < 2 _ *x(a 21
lefl” < I s+ -0 () @D
where L. := 7?L%r, and 8 € (0,1) is a design
parameter.

2) The interevent time defined by ), := tey1 — te VE €
77 is strictly positive and has a lower bound. That is,
the Zeno behavior is excluded.

Proof: See the Appendix. [ ]

Remark 3: As a result of Theorem 1, the sampling instants

determined by (21) can be expressed as

to =10

the1 = inf {t > tx Ap <0} (22)
teERT

where
pi= (1= Auin(Q)llslI> + O (3)) — Lelle]®.  (23)

Note that the parameters of the intermittent condition (21) are
time invariant, and p > 0 has to be always satisfied. Moreover,
the intermittent feedback u4(t) depends on the solution of the
HIB equation (16), which is a nonlinear partial differential
and extremely difficult to be solved analytically. 0

To formulate the dynamic triggering condition, we shall
introduce the following internal dynamics

n=—un+p Yn(to) =m0, >0 (24)

where p is defined in (23) and 1 € R* is a parameter to be
designed later.
Consider the dynamic triggering condition given by

n(t) +Ip(t) <0

where ¥ € RT is a parameter to be designed later. The
intermittent instants are then determined as

to =0
= mf {{t > ) A (n(t) + 9p(t) < O)}-

(25)

trt1 (26)

The properties of the dynamic intermittent condition (25)
are presented in the following lemma.
Lemma 2: Let p be a positive constant, 7y, € Rf{ ,and p
is defined as in (23). Then, the following holds.
1) n(t)+9p(t) >0 Vt>0.
2y >0 Vt>0.
Proof: Using (26), the following condition holds:

n(t) +Ip(t) > 0.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 01,2020 at 16:11:32 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: SAFE INTERMITTENT RL WITH STATIC AND DYNAMIC EVENT GENERATORS 5

If ¢ = 0, then the first proposition n(t) 4+ Jp(t) > 0 implies
that 7 > 0 Vt > 0. Now, if ¢ # 0, it follows from the first
proposition that p(t) > —(1/¢)n(t). Considering (24), one
can obtain 7(t) > —(u + (1/9))n(t) for Vno and ¢ > 0. Let
y(no,t) be the solution of the differential equation

0= (3 ) w0, 90 =, 20

Then, from the comparison principle [45], we have that 7(t) >
y(t) > 0. This completes the proof. |

The closed-loop stability of the equilibrium point is pro-
vided in the next theorem.

Theorem 2 (Dynamic Intermittent Feedback Design):
Suppose that Assumptions 1-3 hold. Consider the intermittent
feedback control given by?

) (27)

with the intermittent instants defined in (26). Then, the fol-
lowing holds.

aV*(s)
Js

— Lo
ug(t) == —ytanh (Q’VTG (8)

1) The closed-loop system of (19) has an asymptotically
stable equilibrium point.

2) Let {t;}2, and {td}2°, be the triggering time
sequences determined by the static and the dynamic
intermittent feedback laws, respectively. Assume also
that ¢ = ¢4 and 2(t{) = (t7). Then, by denoting the
next triggering instants by the static and the dynamic
intermittent feedback laws as 7, ; and t? |1, respectively,

one has tg 112 i 41 That is, Zeno behavior is excluded.

Proof: Consider a Lyapunov candidate as W = V* 4 for
the augmented system of (24) and the system (19) with (27).
Then, according to Theorem 1, W satisfies W = V*(x) 471 <
—p + (—un + p). According to Lemma 2, > 0. Then, W
is negative definite, which implies that the closed-loop system
has an asymptotically stable equilibrium point.

Assume now that t? 11 <1,,. Then, based on (26), one has
that p(td,,) > 0, ie., (1—5%)Anin(Q)ls]? + O(u*(3)) >
Le|le|[*. Based on (26) and Lemma 2, one has 7(t4, ) +
ﬁp(t?H) < 0, that is,

0> n(t)
+ (1 = 5%) Amin (Q)lI5]1* + O(w*(3)) — Le| e]|’]
> I[(1 = ) Amin (Q)lIs]1* + O (u*(8)) — Le[le]|?]
= Up(t1)-

Thus, p(t? +1) < 0, which contradicts the assumption that
p(tf,,) > 0. Therefore, t4,, > t:,,. Note that during the
instant ¢; = t?, then the interevent time of the dynamic
intermittent feedback is no smaller than the static intermit-
tent feedback. Based on Theorem 1, we can conclude that
the dynamic intermittent excludes the Zeno behavior. This
completes the proof. |

2From (20) and (27), one can observe that the static and dynamic inter-
mittent feedback designs share the same feedback control mapping. However,
as given in (22) and (26), us and ug are not the same due to the different
event instants.

IV. ACTOR/CRITIC LEARNING

In Section III, both the continuous and intermittent feedback
designs depend on the optimal policy mapping u*(+), which
is obtained by solving the HIB equation (16). In this section,
a novel online RL algorithm is presented to obtain the optimal
control policy in an online fashion.

A. Actor-Critic Network

To find the solution to HJB equation (16) in an online
fashion, we employ an actor-critic RL algorithm.

According to the Weierstrass high-order approximation the-
orem [46], we shall use a function approximator for the value
function, in a compact set 2 C R™. There exists a critic
approximator such that

V*(s) = (W) de(s) +ecls)
VV*(s) = [Voe(s)]"W* 4+ Vee(s)

where W* € RY are the critic weights, ¢.(-):R" — RY
is the basis, €(s) and Ve(s) are the approximation errors.
The ideal weights W* that provide the best N-dimensional
approximation to the value function V*(s) on the compact set
Qs are unknown. Therefore, we shall estimate W* by actual
weights W, as follows:

(28)

V(s) = W oe(s)

VV(s) = [Ve(s)] We. (29)

As shown in (14), the optimal control policy depends on
(0V*(s)/0s), and hence, the policy can be determined as

u(8) = —ytanh(D.(8))

. 1 . .
D.(3) = 2—GT(5)[V¢C(S)]TWC. (30)
yr
In order to ensure stability of the equilibrium point, the policy
that is going to be applied to the system will be implemented
by an actor network as follows:

Uuq(§) = —vytanh(D,(8))

Da(3) = ——GT(3)[V0(3)| "W,

2yr @D

B. Critic and Previous Data

In this section, the parameter update of the critic network
is presented. To obviate the requirement of persistency of
excitation (PE) condition while guaranteeing the parameter
convergence, history data are efficiently used for the critic
learning.

Using (28) in the Bellman equation (13), yields:

ep = U(s,u*) + (W) TVe.(s)[F(s) + G(s)u*]
=U(s,u*) + (W o

o = Voc(s)[F(s) + G(s)u*]. (32)

From (28), one can observe that the residual ep is due to the
value gradient approximation error Ve.(s), that is,

ep = —[Vee(s)]T[F(s) + G(s)u*]. (33)
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Accordingly, the HIB equation (16) can be represented using
the value function approximation (28) with a residual as

enjn(s) = (WHTV¢(s)F(s) + ~v*rn[l — tanhQ(DW)]
+Q(s)
D = =G (Vo) W*

In order to derive the update law for the critic network we
need to define the following error:

ec(t) = U(s(t),u*(t)) + WE(t)o(t). (34)

By denoting WC = W* — W, and from (32) and (34),
the relationship between e. and the Bellman residual € can
be expressed in terms of the error W, as

€. =¢€p — WCTU. (35)

The policy evaluation procedure can be formulated by
defining the following performance:

S )
E.(t) = ) 1+ gT(t)U(t)]Q.

In order to achieve that e, — ep as W. — W*, we need
to apply the gradient descent algorithm as follows:

0E, o T
CaWC == —acm[a WC + U(S, U)]

Assumption 5: For the critic network, the following holds

on a compact set {):

1) W* is bounded, i.e., |IW*| < Wiax-

2) HEC(S)H < Ecmax and ||VEC(S)|| < €cdmax-

3) The basis as well as its gradient are bounded,
ie., ||¢C(5)H < ¢cmax’ ||V¢C(S)” < ¢cdmax-

4) The HIB and the Bellman residuals are bounded,
ie., |lenjpl < en and |leg|l < eBmax-

5) The basis gradient is Lipschitz continuous in the
sense that there exists a constant Lg such that
[Voe(s1) = Ve(s2)l| < Lg|[s1 — s2ll. O

As shown in [47], in order to guarantee convergence of the

weights W, to the ideal ones W™*, the signal o is required to
be persistently excited in the following sense.

Definition 4 (Persistency of Excitation [47]): A vector sig-

nal y(t) € RP is exciting over the interval [t,¢ 4+ Tpg| with
Tpe € RT if there exists 31 € Rt and B2 € RT such that V¢

W, = —a

t+Tpe
Bilyp < / YW ()dr < Polyey. O
t

Remark 4: The PE condition on the signal o(t) is equiva-
lent to the requirement of positive definiteness of the matrix
M on an arbitrary finite interval [¢,¢ + T'], where

o(r)ot (1)
1 +oT()o(r)]*
Note that the PE condition requires future information and
cannot be checked during the learning phase. (]

To relax the dependence on future information and rely only
on past data, the following modified objective will be used:

t+Tpg
M(t) = /t M(r)dr; M(r) =

N 2

— €
E.=E.(t)+ E.(ty); E.(ty):= —k
; (1 + U,;Fak)
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where e.r, = Uy + WE(t)ox, U = U(s(ty),u(ty)), og =
o(tx) and t;, denotes the intermittent instant. Then, the tuning
law can be obtained as

OE,

oW,

C g W) S OkCek
N+ 0T (t)o(t) ; [1+0F0y]?

Condition 1: Let Z = [01 Jp] be the history stack.
Then, Z contains as many linearly independent elements as

W, = —ae.

(36)

the number of basis in (28). That is rank(Z) = N. O
Fact 1: For an arbitrary vector w, one has
1
1—|—wTw -2 [1+wTw]| —
T 1
= <= 0
1 —+ WTW ]_ + wTw) 4

Theorem 3: Let u be any admissible control policy. Let the
critic network (29) with an experience replay tuning law given
by (36) be used to evaluate the given control policy. Suppose
that the history stack satisfies Condition 1. Then, the critic
weight estimation error W, converges exponentially to the
residual set Ry = {W,|||W.| < c€Bmax}> Where epmax is a
bound for p(t) and c is a positive constant.

Proof: Given (35), the dynamics of W, can be expressed

;C: ( O—T(t) +§: UkO'g ‘| Wc
1+0T(tot)? = [1+ UgUk]Q
o()en(t) Y open(ty)
[ +0oT (o (1) ;; 1+ ogokf] o7

Consider the Lyapunov function
v, — %VVCTa;WT/C.
Differentiating V.. along the trajectories (37) yields
Ve = =WIL(t) + Ta]We + WL (2) + W]

where

o(t)o" (t) > opof
I'(t) = —_— . = __Tr"kE
) = 1+t " ,CZ:I [1+ 0T
a(t)ep(t) oreB(tr)
Ut) = ——————— YU, = _—
Y= e ,;[Hakak}

Under Condition 1, then I'y > 0 can be guaranteed, and in
addition, based on Fact 1, one has

N +1
[W(E) + Tl <

E€Bmax-
Therefore

: - N+1
Ve < _)‘min(rk)”VVCH2 +

EBmax”Wc”'

Then, V, is negative definite provided that
||WCH 2 CEBmax

where ¢ = (N + 1/2Amin(I'x)) > 0. This completes the proof.
|
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C. Actor Intermittent Learning

In this section, two types of intermittent conditions for
the actor learning using intermittent feedback are developed.
We shall use an impulsive system formulation to analyze
the closed-loop stability of the equilibrium point with the
intermittent actor-critic learning.

Definition 5 (Impulsive System): The impulsive system can
be described as

X = haow(Xx) vt € (th, try]
X+ = hjump(X)v t = 1g.

where x € R™ is the state, x* := limg ¢ x(), {tx}72,
is a monotonically increasing sequence of sampling instants
with ¢, being the kth consecutive sampling instant satisfying

khm ty = oo. The functions hgow and hjump are the flow and
— 00
the jump dynamics from R"x to R™x, respectively. (]

Given (30) and (31), we need to define the objective
function for the actor as
1
E, = iegRea
€q = Ue — Ug = y[tanh(D,) — tanh(D,)]
where e, denotes the difference between u, in (31) and u.
in (30). The actor learns in an intermittent fashion, i.e., the
actor weight updates only at the triggering instants, and held
constant otherwise.
Using a gradient descent algorithm for minimizing E,
yields

AW, (tr) = W — Wa(te)

= —,[Vo.Ge, + Vo Gtanh? (D, )e, + YW,].

Considering the intermittent actor tuning law, one can write
the update as an impulsive system

Wa(t) =0 Vte R*\ U t
keN
W =W, — a,[Vé.Ge, + Vo Gtanh?(Dy)e, + YW,
Vi = ty, (38)

with W5 = lim,\;, Wa(7). Accordingly, the dynamics of

the actor weight error W, := W*—W, is
Wa(t) =0 Vie R+\ Ut
keN
Wi = W, + 2o {7V¢.Gltanh(D,) — tanh(D.)]
+ tanh? (D )YVo.Geo +YW* — YW, } Vi=t,.
(39)

Given that (31) is applied to the system (7) yields

- oult)er(t) N ok

We = ac{ [1+ T(t)aa(t)]2 " ,; [1+ a(fkaak]z}
e2(t) = Ua(t) + WE(t)u(t)

etp = Uak + W, (t)oar (40)
where

oa(t) = Voc[F(s(t)) + G(s(t))ua(t)], oar = 0al(tr)

Ua(t) = U(s(t), ua(?), Uak = Ua(ts).

Based on (33) and (35), one has
eq =¢€f — VNVCToa,
— (Ve [F(s) + G(s)ua).

From (41) and (40), the dynamics of the critic error W, can
be expressed as

W =0 Vt=tg,

€% 41)

We = —e[Ta(t) + Tar]We + 0c[Wa(t) + W)
Vit R*\ U t (42)
keN
where
T N

T, () = a0, Z oakoak i

[1 + Jgaa} 1 1 + O’akdak}

U, (t) = 04EB U, = Z oakep(tr)

[1 + Jgaa} 27 [1 4o kaak} 2

Due to the unmatched parameterlzatlon of the value func-
tion, most existing RL-based adaptive optimal learning algo-
rithms only guarantee the uniformly ultimately boundedness
of the state and the actor-critic weights [31], [47]. In order to
guarantee asymptotical stability of the equilibrium point of the
closed-loop system, an additional robustifying term is added
into the actor network to improve control performance, that is,

1
= _ 2
ua—ua—l-é, 5——B||SH m (43)
where u, is defined in (31), A and B are positive design

parameters.
The closed-loop system dynamics can now be written as

= Pl = 6(0) |3t (- GTOVOE]" W, ) +9

Vit € RJr\ U tr
keN
5t =546, t=t. (44)

Finally, by combining (39), (42), and (44), the dynamics of the
system with an augmented state as y := [ST 5T WCT W(;T ]T
can be expressed in terms of the impulsive system as shown
in (45), as shown at the bottom of the next page.

The following theorem provides the stability analysis of
the augmented system (45) for the intermittent safe RL algo-
rithm with the actor-critic-barrier structure. Before moving on,
we define notations in (46), as shown at the bottom of the next
page, for theoretical discussions.

Theorem 4 (Safe RL With Static Intermittent Feedback):
Suppose that Assumptions 1-5 and Condition 1 hold. Consider
the dynamical system (1) with the control input (43). Let the
control input applied to the system be represented as u, in
(31) with the gradient-descent-based actor-critic learning given
by (38) and (40). Denote Q := {Q, x Qg x Qu. x Q. ).
Then, the following hold.

1) The equilibrium point of the closed-loop system with

augmented state x is asymptotically stable for yo € Q
provided that the event instants {¢;}7° , are determined

by

(1 — ﬂQ))\min(Q) ||SH2 + l@(u

L O(ua(s)) 47

le]|* <
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with the parameters o, Y, 74, and r. satisfying

qa — % > 0; /\min(rak) - % >0 (48)
and the robustfying term given in (43) satisfying
A 2
B> (ps+pa_+ pe)( 2+||SH ) (49)
Vaba||s||
2) Zeno behavior is excluded.
Proof: See the Appendix. |
Remark 5: The intermittent instants can be expressed as
to =0, thy1 = inf {t >t Nqg < O} (50)
teR+
with
1- 52 )\min Q 1 a
gi= L@y oy Loy e) el 1)
Le L.
d

To introduce a dynamic intermittent feedback, an additional
internal dynamical system is provided

¢=-Ec+q, <(to) =, tERY (52)

where ¢ is defined in (51) and £ € R™ is a parameter to
be designed later. An event is triggered when the following
condition is satisfied:

s(t) + pq(t) <0,

where ¢ € R*T is a parameter to be designed later.
The intermittent instants are determined by the following
rule:

t>0 (53)

to =10
e = inf (0> 0) A (5(0) +6a(0) S 0} (54

Lemma 3 [37]: There exists constants A, and B, such that
the dynamics of s(t) satisfies

131 < Acllsll + Bellel|- u
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To this end, the co-design of the dynamic triggering con-
dition and feedback gain based on intermittent RL can be
formulated in the next theorem.

Theorem 5 (Safe RL With Dynamic Intermittent Feedback):
Under Assumptions 1-5 and Condition 1, consider the
dynamical system (1) with the control input (43). Let the
control input applied to the system be represented as u, in
(31) with the gradient-descent-based actor-critic learning as
given in (38) and (40). Then, the following hold.

1) The equilibrium point of the closed-loop system with the
augmented state x is asymptotically stable for yo € Q
provided that the event instants {tx}3>, is determined
as (54).

2) Zeno behavior is excluded.

Proof: See the Appendix. [ ]

Corollary 1: Let {t;}32, and {t%}3°  be the triggering
time sequences determined by the static and dynamic intermit-
tent RL as designed in Theorems 4 and 5, respectively. Assume
also that £ = f?. Then, by denoting the next triggering instants
by the static and the dynamic intermittent RL as £7, , and 4
respectively, one has t? 112 t; -

Proof: The proof follows from Theorem 2. [ ]

Remark 6: The static and dynamic event-triggering con-
ditions (50) and (54) contain the parameters 3, = and ¢.
As ¢ — oo the dynamic intermittent feedback becomes the
static case. The parameter = act as the time constant of
the filter (52), which can not be too fast compared with
the time constant of the signal q. Also, one can reduce the
event-triggering frequency by selecting 3 close to 0. For more
details of the effect of parameters (3, = and ¢ on the static and
dynamic intermittent feedback designs, readers are referred
to [38], [41], and [48]. O

The online safe RL algorithm is shown in Fig. 1. The
learning framework consists of a barrier-function-based sys-
tem transformation and an actor-critic online learning struc-
ture. In contrast to the offline iterative algorithms, both the
critic and the actor updates are performed simultaneously
in real-time. The barrier function based system transformation

F) = Glo) [ytanh ( G- GT@ TG 09 = W) ) 45

X = _
—e[Ta(t) + Tar]We + ac[Po(t) + o]
0
0
+ &
X" =x(t)+ 0 (45)
o {7V p.Gtanh(D,) — tanh(D.)] + tanh®(Dy)yV¢.Geq + YW* — YW, }
1 _ N +1)°
Pa = Fmi + Na, pPs = ’YzDa Pec = (87) 2Bmax, Ga = Amin(2Y — ozaYTY)
meg = 2[2’Y¢cdmabe + 272¢cdmabe + QQaHYH'YQ(demabe + ||YHWmax + O4(z||YTY||VVmax + Q’YaaHYH(bcdmabe]
Ng = Qg (27¢cdmabe)2 + aa(272¢cdmabe + ||Y||Wmax)2 + 2aa(27¢cdmabe)(272¢cdmabe + ||Y||Wmax)
_ 1 ~ ~ _
D = m( admax¢cdmaxb%¥‘€€dmax + b2G¢gdmaxWanmax + Egdmaxb%‘)v Va= (Wmax(bcdmax + €cdmax)
o = {sllsh <\l b o = {1l < P b = {7 < [ @)
)\min(Q)ﬂ ¢ )\min(rak) - TC ¢ a_Ta
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S:st:: . (z) 05 -- ':‘l‘e) boundary
e G [@ET] 0§ f-ee-sssssesssossoesoeoecseoiooee
i = fx) + g

e(tn)

System
§=F(s)+G(s)u

A Static
Triggering
Condition (50)

Dynamic
Triggering
Condition (54)

‘\ Actor ;S-nl:
Error A\ By
AsStatic Event-Triggering Mechanism
B:Dynamic Event-Triggering Mechanism
Fig. 1. Intermittent online actor-critic-barrier safe RL framework.

Algorithm 1 Actor-Critic-Barrier Online Learning Algorithm

Require: Begin with initial state x(0) and initial actor-critic
weights W,(0) and W, (0). Set ¢ = 0 and ¢; = 0 then
propagate the time using ordinary differential equation
solver such as the Runge Kutta method with the time step
increment h;

1: (Barrier-function-based system transformation): Transform
the system (1) with state x to the equivalent system (7) with
state s;

2: (Penalty function design): Design the control input penalty
function ©(-) for the performance index(8);

3: (Robustifying the actor): Apply the actor with the robust
term § (43) to system (7);

4: (System evolution): Update the impulsive system (44);

5: (Actor-critic learning): Update the actor-critic networks
according to (40) and (38);

6: (Event instant determination): Determine the instant for
sampling update using static or dynamic event-triggering
condition ((50) or (54));

7: (Online data collection): Collect the online data to store
the term o and e.; for the critic learning (40) until
Condition 1 is satisfied;

8: Set t;+1 = t; + h and go to Step 3.

is used to tackle the full-state constraints. To obviate the
PE condition, the online data is collected until Condition 1
is satisfied. Options A and B in Fig. 1 represent the static
and dynamic event-triggering conditions. It can be seen that
the dynamic event-triggering condition can be viewed as a
filtered version of the static event-triggering condition. Finally,
the online actor-critic-barrier RL algorithm can be summarized
in Algorithm 1.

V. SIMULATIONS

Consider the controlled Van-der-Pol oscillator with the
dynamics given by

To 0
>
—1 +0.5(1—x§)x2] T [xl} u, t20.

The constraints on the input control and the state are

x1 € (—0.6,0.2), x2 € (—0.2,0.2); u € (0,1).

state evolution
o
?

Time/sec
(a)

04r = = = safe boundary

JR—

state evolution

Time/sec

(b)

Fig. 2. Evolution of the state trajectories by using a converse HJB approach
without constraints. The evolution of the state (a) z1 (¢) and (b) x2(¢).

051 - safe boundary

*

S
o
T

state evolution
=3
?

Time/sec

(a)

state evolution

04 L L L L L L L
0

Time/sec

®)
Fig. 3. Evolution of the state trajectories given our safe static intermittent
RL algorithm. The evolution of the state (a) z1(¢) and (b) z2(t).

i
1

06 05

control input

]

[ 0.1 0.2 0.3 0.4 0.5

(a)

——ogap
threshold

sampling gap and threshold

Time/sec

(b)

Fig. 4. Evolution of the control input signal, the threshold and the gap
signal given our safe static intermittent RL algorithm. (a) Control input signal.
(b) Threshold and the gap signal.

A. Case 1: Converse HIB Method Without Safety Constraints

According to the converse HJB method [49], given that
the performance parameters are selected as ) = Iax2 and
R =1, the optimal controller is u*(z) = —z1x2. Fig. 2 shows
with solid lines the state evolutions and with dashed lines the
bounds where one can see that the constraints are violated.

B. Case 2: Proposed Solution

Next, we apply the intermittent static feedback to the
safe-critical system to the safe-critical system. The state evo-
lution is shown in Fig. 3. The control input signal is shown
in Fig. 4(a) and the evolution of the gap signal is shown
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state evolution

Time/sec
(@)

state evolution

Time/sec
(b)

Fig. 5. Evolution of the state trajectories with our safe dynamic intermittent
RL algorithm. The evolution of the state (a) z1(¢) and (b) z2(t).

1

control input
g 8 =
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3

Time/sec

(@)
1 )
l—> = = =threshold
05
o= === A7
[ I 0 0.05 0.1 0.15 02 025 0.3
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Time/sec
(b)

3

o

=

o

)

sampling gap and threshold
o o o o

Fig. 6. Evolution of the control input signal and the gap for our safe dynamic
intermittent RL. (a) Control input signal. (b) Threshold and the gap signal.

in Fig. 4(b). In contrast to the previous case, one can observe
that the state approaches the origin without violating the input
and state constraints.

We now apply the intermittent dynamic feedback to the
safe-critical system, where the corresponding results are given
in Figs. 5 and 6. The state constraints, the input saturation
and the closed-loop stability of the equilibrium point are
guaranteed. In addition, the comparison between Figs. 4 and 5
can tell that the dynamic intermittent feedback design could
further reduce the sampling update.

VI. CONCLUSION

This article presents a novel safe RL algorithm using
intermittent static and dynamic feedback. A barrier function
transformation is used to transform the system to deal with the
full-state and input constraints. Then, based on an actor-critic
structure, a novel, safe RL algorithm is developed to find the
optimal safe controller in an online fashion for both cases.
In contrast to the persistent excitation condition, experience
replay technique is used in a way that recorded history data
is utilized together with the current data. Finally, simulation
results show the efficacy of the proposed framework.

Future work will focus on extending the results to
multi-agent systems with cooperative and noncooperative
agents.

APPENDIX
PROOF OF THEOREM 1

Consider the optimal value function V*(s) as a Lyapunov
function candidate. First, differentiating V*(s) along the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

trajectories yields

V*(s) = {Wa—*s(s)]TF(s) + [ava—p}TG(s)u*(é).

By inserting the HIB in V*(s), one has
V*(s) = —Q(s) — 4*rIn[1 — tanh?(D*)]
aV*(s)

+ {T} TG(s)u*(é). (55)

From (15), the term —~27In[1 — tanh?(D*)] in (55) can be
rewritten as

—42rIn[l — tanh?(D*))

=—-O(u*(s)) +~ [8‘/;5(8)

By using (11), we can rewrite (55) as

—727' ln[l — tanh2 (D* (S))]

— —O(u*(3) — /uu(()) 2y [tanhl (%)]dv

T
} G(s) tanh(D*). (56)

%/ AT
+y {({Was(s)} G(s) tanh(D* (s)). (57)
By considering (14), one has
u*(8)
r/ [D*(s)]dv = rD*(s)[u*(8) — u*(s)]. (58)
u*(s)

By considering (58), the term [(OV*(s)/ds)]*G(s)u*(8) in
(55) can be equivalently expressed as

[8%8(5)] TG(s)u*(é)
w (3)

(D*)do.

avr(s)]"
= —7{ (s)} G(s) tanh(D*) + 27‘7/
ds u*(s)
(59)
Collecting the results in (57) and (59), one can obtain

V= —Q(s) — O(u*(3))

u* (3) v
+2ry / {D* + tanh~! (—)}dv. (60)
u*(s) Y

Denote w := —tanh~1((v/7)), then one has
v = —ytanh(w), dv = —[1 — tanh?(w)]dw.
The integral in (60) satisfies

u*(3) v
2r’y/ [D* + tanh™? (—)} dv
u*(s) Y

D*(3)
< sz/ [w — D*)dw < ry? L | e
Dx(s)

Inserting (61) into (60) yields
V*(s) < —sTQs — O(u*(5)) + ry?LyeTe < —3%sTQs

(61)

given that the following condition is satisfied

r? L el < (1= B%)Amin(Q)[Is]* + O (u*(3)).
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According to Assumption 4, one has s(t) # 0 at the event
instants. Thus, e(t) = 0 and (||e(?)]|/]|s(¢)]|) = 0 when t = t.
At the event instant ¢ = tj, the triggering condition (21) is
violated, that is,

_ 32 .
el > L@ e Lo (s)
> (1_52) min(Q)”sH2

= L.

which is equivalent to

el > \/ L PP @)

That is,  (|]le(®)]|/||s()]]) evolves from 0 to
(1 = B*)Amin(Q)/Le))'/? between two successive event
instants. Then, the time that §|\e(t)||/||s(t)||) evolves from
0 to (((1 =A%) Amin(Q)/L.))"/? provides a lower bound on
the interevent time.

Next, we analyze the dynamics of (|le(?)||/|ls(¢)]]). Note
that tanh(z) = 1 — 22. Then, the Lipschitz constant of the
function tanh(-), denoted as Lyiann, is not greater than one.
Therefore, one has

[u(s +e)ll = lu™(s)|l
< A[tanh(D* (5 + ¢) — tanh(D*(5)))
< ’YLtanhLD”eH S IVLDHCH

(62)

The control input u*(s + e) satisfies
[u*(s + )l < vLp(llsll + llel)-

By applying the intermittent feedback (20), in (19) one has
13l < (b + bevLp)(lIs]| + [lel])-

Then, (|le]|/|lz||) satisfies, for V¢ € (ty,tx+1] and Vk € ZT

i (M) < (bF—Fbg’}/LD) (1 + M)2
dt \[lsll )~ 5]l

Based on the comparison lemma from [45], one has
llell - (t —tx) (br +bcyLD)
|z = 1= (t —t) (br + bg7LD)
Vt € (tk,tk+1] ,

keZ™.

Evaluating (63) at ¢t = t;+1 and combining with (62) yields

\/ (1= 82)Auin(Q) )l

IN

lle(t
Le [s@)
(tky1 — t)(br +bayLp)
= 1— (txy1 — tx)(br + bgyLD)
Vk e Z*

which further results in, for Vk € Z*

(1_62)Amin(Q)
—t, > Le

(bF + bG’yLD) (1 + 4/ _(1_62?:1“1((?))

Therefore, Zeno behavior is guaranteed to be excluded. This
completes the proof. |

tht1 (63)

PROOF OF THEOREM 4

Given that a policy u, is applied to the system (7), we shall
use the following Lyapunov equation:

1 S
V=Vis) + VH(38) + W lay Wet SWolay W,

Ve Va

where V*(s) is the optimal value function, W, and W, are the
critic and actor weight errors, respectively. In the following,
we shall analyze the stability of the augmented system (45).

First, based on the augment system dynamics (45), one has
AV*(s) = AV.(W.) = 0. As shown later, since the state
s is asymptotically stable, then, V*(57) < V*(3) and there
exists a class-K function x(-) such that AV*(3) = V*(§T) —
V*(8) < —k(8).

Consider the actor weight error dynamics in (39), the dif-
ference of the Lyapunov function V,(W,) can be written
as in (64), as shown at the bottom of this page. Based on

Assumption 5, AV, (W,) can be upper bounded as

AVa(Wa) < ~qalWal® + ma|Wal| + nq (65)

where are qq, Mg, and n, are defined in (46). Based on the
parameter design (48), g, > 0. Note that from (65), AV, (W,)
can be further upper bounded as

~ ~ r ~
AVa(Wa) < _qa||Wa||2 + 7a||Wa||2 + o mi + ngq
r ~
= - (Qa - %) ||VV(1||2 + pPa (66)
where p, = (1/2r,)m? + n, and 7, is selected such

that the condition (48) is satisfied. Hence, AV,(W,) <
0 if the actor network estimation error satisfies ||[W,| >
((pa/qa — (1a/2))) /2. Thus, W, converges to the residual
set Q‘;Va, which is defined in (46).

Differentiating V' yields

V=V*(s)+ V*(8) + Va(We) + Vo (W,).
From (45), one has

V*(3) = Va(W,) = 0. (67)

AV, (W,) = 2W I {yV$G|tanh(D,) — tanh(D,)] + tanh?(D,)yV¢Ge, + Y W*
+ o, YT [tanh® (D, )yVGeq + YW*] + o, Y TV pGtanh(D,) — tanh(D,)]}
+ ||y VoGtanh(D,) — tanh(D,)]||? + o [tanh® (D, )yVeGe, + Y W*||?
+ 20, {7V ¢G[tanh(D,) — tanh(D.)]} " {tanh? (D, )yVéGe, + YW*} = 2WEYW, + a, WEYTYW,. (64)
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First, we analyze the stability of the flow dynamics s(t).
Based on (56) and (57), one has

[avgs(s)]TF(S)

- v[ngs)rG(s)tanh(D*(s))

- /uu(:) 2y [tanh_l (%)} dv — Q(s) — O(u*(3)).
(68)

One can then obtain

P?fqﬂﬂg%

= —7 [8‘/(;8(5)} TG (s) tanh (D) + 2ry /u*(é)

uq (8)

(D*)dv

*(3)
+ 2r'y/ (D*)dwv. (69)

u*(s)

Therefore, V*(s) can be expressed as in (70), as shown at
the bottom of this page, where the last inequality results from
(43) and Assumption 5. From (61), one can obtain

Ua(é) v
2r'y/ [D*(s) + tanh™! (—) ] dv
u*(8) Y

< rPDa(3) = D*(3)°. (7
From the previous stability analysis for the jump dynamics,
it can be inferred that the actor weight error is bounded,
i.e., there exists a constant Wadmax such that HW | <

Wadmax- Then, from Assumption 5, one can obtain
[Da(3) = D*(3)]"R[Du(8) — D*(8)] < D.  (72)
From (61) and (70)-(72), V*(s) can be upper bounded as

V*(s) < =Q(s) = O(ua(8)) + 1L [le]|?
+9°D = Vaba Bllsl 1=
= —Q(s) = O(ua(3)) + Ly [lel” + ps
_deGB||SH2m
< —ﬂstQs-i-ps - deGBH5||2A+ 5T s (73)

where p, = 72D and the last inequality is guaranteed by
the intermittent condition (47). Then, without the robustifying

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

term §, V*(s) < 0 if ||s]| > ((ps//\min(Q)QQ))l/Q, ie., s
converges to the residual set €2, which is defined in (46).
When s is outside the set {25, as shown later, the robustifying
term § will be used to guarantee the closed-loop asymptotic
stability.

Second, for the critic weight error flow dynamics (42),
differentiating V,.(W,) yields

VC(WC) = _WCT[F(l(t) + Fak]Wc + WCT [‘I’a(t) + \I/ak]
~ N+1 ~
S _Amin(Fak)HVVcH2 + 6Bmax”VVcH
Te ~
< = Pwin(Tar) = 5 | [1We]* + pe (74)

where p. = ((N + 1)2/87"0)5Bmax and 7. is selected such that
the condition (48) is satisfied. Then, from (74) one can infer
that V. < 0 if [|[We|| > ((pe/Amin(Tak) — %))*/2. Thus, W,
converges to the residual set QW , which is defined in (46).

Hence, from (67), (73), and (74) the derivative of )V can
be expressed as

V= VH(s) 4+ VH(E) + Va(Wa) + V(W)
< —A%"Qs — Muin(Tar) = 5 | Wl

+ pe + ps — VabeB||s||” (75)

A+sTs’
Finally, consider the facts in (66) and (75), the closed-loop
augmented system (45) is asymptotically stable provided the
robustifying term 0 is designed to satisfy the condition (49).
This completes the proof.

The interevent time can be shown to be lower bounded by
a positive constant following the proof of Theorem 1. This
completes the proof. |

PROOF OF THEOREM 5

Consider the augmented system with dynamics (45), and let
W :=V+ L.s be a Lyapunov candidate. Then, based on (67),
(73), and (74), the time derivative of WW(¢) can be bounded as

W < Q) = [Amin(Car) = F] IWell? — O(ua(5))
+ Lellel® + Le(~Es + q)

= ~Qs) = [uin(Car) = ] IWe? - L2
+ (1= 6% Anin (@) 8112

T'c % -
< =i @1% = [Auin(Tar) = 2] Il — LeZe.

u*(3)

V(o) = ~Q() ~ O +2r |

av(s)1" 1
| P52 it s

IN

*(s)

— deGB||SH2m

[D*(s) + tanh ™! <%>]dv + QWL

Uuq (8) v
[D*(s) + tanh ™! (=)]dv
*(3) v

—Q(5) — O(ua(8)) + 21y /uqu) [D*(s) + tanh ™" (%)]dv + 2ry /uua(é) [D*(s) + tanh ™! (%)}dv

*(8)
(70)
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: Vad Vadlel -
¢ < L8 (Aol + Bellel) + —Y Nz psi? + alel® + 204 31 + 260, sl
@ + |3 2(w + bo|s]%)
a b ad|le _
< g[8 o mle s Lo D m g o)
2(w + bollz|”)
a b = bo||s||? _ 1
§Ae\/j+Be§+Be\/j§2+ S bt —————— [-E- 2424 )¢
b a> 200 27 2w+ bolls|?) ¢
< A% (Bt 2 5+B\/Eg2+ig3 (79)
= e b e 2 e a 2¢
From Theorem 4, one can obtain that W < 0, which shows REFERENCES

that the equilibrium point is asymptotically stable during the
flow.

For the jump dynamics, note that the variable ¢ in (52) only
evolves during flows and is kept constant otherwise. Hence,
AW(t) = AV(t). As shown in Theorem 4, the asymptotic
stability of the equilibrium point can be proved.

Denote b = (1 — %) Amin(Q) and a = L. Then, from (53),
the following holds:

als + 6q) = @ + Slls|® + O(ua(8)) — alle]®) <0 (76)
where w = ag satisfies
@ = —aw + b||s|* + O(ua(3)) — alle|?. (77)
From (76), one can obtain
agllel* = @ + bo|s||* + ¢O (ua(3)) = @ + bo|s|*.

Therefore, in the interval of [ty,tr+1), the variable £(t) :=

(Vad|le(t)||/(w(t) + bd||s(t)]|*)'/2) evolves from 0 to 1. We

can now bound the interevent interval by writing the dynamics

of £(t) as

Vageté Vaglle|

£= —~ (@ + 2bgsT )
@+ bolls|*lell 2@ + be|ls|*)*
(78)
where £(0) = 0. From Lemma 3, (17), and (77), one has
é=—3
I8l < Aellsll + Bellell
@ > —Ew + (b]s|* — alle|?).

Then, from (78), the dynamics of £ satisfies (79), as shown
at the top of this page, where the last inequality holds if = €
(0,24,) and ¢ € (0,(1/2A. — Z)]. Denote ((t,(o) as the
solution of the following differential equation:

éer\/%+(B+ <+B\f<2 53¢ Q=&

Based on the comparison principle [45] and (79) &(t) satisfies
&(t) < ¢(Co,t). Then, the time needed by £(t) to evolve from
0 to 1 is lower bounded by a positive constant 74 given as

v

/ a b,2 1 3
T =
0 Ae\/:l+(Be+E2)v+Be\/:v +_2tv

Therefore, condition (53) is Zeno-free. |
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