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Abstract— We develop a method for obtaining safe initial
policies for reinforcement learning via approximate dynamic
programming (ADP) techniques for uncertain systems evolving
with discrete-time dynamics. We employ the kernelized Lipschitz
estimation to learn multiplier matrices that are used in semidef-
inite programming frameworks for computing admissible initial
control policies with provably high probability. Such admissible
controllers enable safe initialization and constraint enforcement
while providing exponential stability of the equilibrium of the
closed-loop system.

Index Terms— Approximate dynamic programming (ADP),
data-driven Lipschitz constant estimation, incremental quadratic
constraints, kernel density estimation (KDE), semidefinite
programming.

I. INTRODUCTION

R
ECENT advances in the field of deep and machine
learning have led to a renewed interest in using learning

for control of physical systems [1]. Reinforcement learning
(RL) is a learning framework that handles sequential decision-
making problems, in which an “agent” or decision maker
learns a policy to optimize a long-term reward by interacting
with the (unknown) environment. At each step, an RL agent
obtains evaluative feedback (called reward or cost) about
the performance of its action, allowing it to improve the
performance of subsequent actions [2], [3]. While RL has wit-
nessed huge success in recent times [4]–[7], there are several
unsolved challenges which restricts the use of these algorithms
for industrial systems. In most practical applications, control
policies must be designed to satisfy operational constraints.
This leads to the challenge that one has to guarantee con-
straint satisfaction during learning and policy optimization.
Therefore, initializing with an unverified control policy is not
“safe” (in terms of stability or constraint handling). In other
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words, using online RL for expensive equipment or safety-
critical applications necessitates that the initial policy used
for obtaining data for subsequently improved policies must be
at least stabilizing and, generally, constraint enforcing. The
work presented in this article is motivated by this challenge.
We present a framework for deriving initial control policies
from historical data that can be verified to satisfy constraints
and guarantee stability while learning the optimal control
policy online, from operational data.
A successful RL method needs to balance a fundamental

tradeoff between exploration and exploitation. One needs to
gather data safely (exploration) in order to best extract infor-
mation from these data for optimal decision-making (exploita-
tion). One way to solve the exploration and exploitation
dilemma is to use optimistic initialization [8]–[11], but this
assumes that the optimal policy is available until the data are
obtained that proves otherwise. Such approaches have been
applied to robotics applications, where systems with discrete
and continuous state-action spaces [12], [13]. A limitation of
these methods is that before the optimal policy is learned,
the agent is quite likely to explore actions that lead to violation
of the task-specific constraints as it aims to optimize the
cumulative reward for the task. This shortcoming significantly
limits such methods to apply to industrial applications since
this could lead to irreparable hardware damage or harm human
operators due to unexpected dynamics. Consequently, safe
learning focuses on learning while enforcing safety constraints.
There are primarily two types of approaches to safe RL and
approximate/adaptive dynamic programming (ADP). These
include modification of the optimization criterion with a safety
component such as barrier functions by transforming the
operational constraints into soft constraints [14], [15] and
modifying the exploration process through the incorporation of
external system knowledge or historical data [16]. Our method
is among the latter class of methods because our operational
constraints are hard constraints and softening them could lead
to intermittent failure modes.
High-performance model-based control requires precise

model knowledge for controller design. However, it is well
known that for most applications, accurate model knowledge
is practically elusive due to the presence of unmodeled dynam-
ical interactions (e.g., friction and contacts). Recent efforts
tackle this issue by learning control policies from operational
(online) or archival data (off-line). Since the exact structure of
the nonlinearity may be unknown or not amenable for analysis,
researchers have proposed “indirect” data-driven controllers
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that employ nonparametric learning methods, such as Gaussian
processes to construct models from operational data [17],
[18] to improve control policies online [19]. Conversely,
“direct” methods, such as those proposed in [20]–[23], directly
compute policies using a combination of archival/legacy and
operational input–output data without constructing an inter-
mediate model. For example, in [24], a human expert was
introduced into the control loop to conduct initial experiments
to ensure safety while generating archival data. A common
assumption in many of these approaches is the availability
of an initial control policy that is stabilizing and robust
to uncertain dynamics. Designing such safe initial control
policies in a computationally tractable manner remains an open
challenge.
In this article, we present a formalism for synthesizing safe

initial policies for uncertain nonlinear systems. We assume the
presence of historical/archival/legacy system-related data, with
which we estimate Lipschitz constants for the unmodeled sys-
tem dynamics. The estimation of the Lipschitz constant is done
via kernel density estimation (KDE). The estimated Lipschitz
constant is used to design control policies using semidefinite
programming methods that incorporate stability and constraint
satisfaction while searching for policies. We show that the
proposed approach can design feasible policies for different
constrained tasks for several systems while respecting all
active constraints.
Our key insight is that information regarding the structure

of classes of unmodeled nonlinearities can be encapsulated
using only a few parameters, without knowing the exact form
of the nonlinearity. These classes include, for example, sector-
bounded nonlinearities [25], Lipschitz and one-sided Lipschitz
nonlinearities [26], and monotone nonlinearities [27], to name
a few (see [25]–[28] and the references therein. It is well
known that these nonlinearities can be represented by using
multiplier matrices for linear matrix inequality (LMI)-based
analysis and design [29]. Learning these multiplier matrices
from data is an open problem, but if possible, would eliminate
the need to model the unknown component perfectly in order
to compute a safe control policy. For example, the class
of Lipschitz nonlinearities (which constitute a large class of
nonlinearities observed in applications) can be described using
only a few parameters: the Lipschitz constants of the nonlinear
components. This article is a first attempt at learning multiplier
matrices for a class of Lipschitz nonlinearities in a data-driven
manner.
Recent work has investigated the utility of Lipschitz proper-

ties in constructing controllers when an oracle is available [30],
[31] or in designing models for prediction [32] with online data
used for controller refinement [33]. In this article, we construct
control policies that respect constraints and certify stability
(with high probability) for applications where only off-line
data are available and no oracle is present. We do so through
the systematic use of multiplier matrices that enable the
representation of nonlinear dynamics through quadratic con-
straints [29], [34] without requiring knowledge of the underly-
ing nonlinearity. The control policies can then be obtained by
solving semidefinite programs. However, the construction of
multiplier matrices for Lipschitz systems requires knowledge

of the Lipschitz constants, which are not always available and
therefore must be estimated. We refer to the estimation of Lip-
schitz constants from data as Lipschitz learning. Historically,
methods that estimate the Lipschitz constant [35]–[37] do not
provide certificates on the quality of the estimate. Herein,
we provide conditions that, if satisfied, enable us to estimate
the Lipschitz constant of an unknown locally Lipschitz non-
linearity with high probability. To this end, we employ KDE,
a nonparametric data-driven method that employs kernels to
approximate smooth probability density functions to arbitrarily
high accuracy. We refer to our proposed KDE-based Lip-
schitz constant estimation algorithm as kernelized Lipschitz
learning.

A. Contributions

Compared with the existing literature on safe learning,
the contributions of this article are threefold. First, we for-
mulate an algorithm to construct stabilizing and constraint
satisfying policies for nonlinear systems without knowing the
exact form of the nonlinearity. Then, we leverage a kernelized
Lipschitz learning mechanism to estimate Lipschitz constants
of the uncertain dynamics with high probability, and finally,
we use a multiplier-matrix-based controller design based on
Lipschitz learning from legacy data that forces exponential
stability on the closed-loop dynamics (with the same proba-
bility as the kernelized Lipschitz learner).

B. Structure

The rest of this article is structured as follows. We present
the formal motivation of this article in Section II. Our kernel-
ized Lipschitz learning algorithm is described in Section III,
and benchmarking of the proposed learner on benchmark
Lipschitz functions is performed. The utility of Lipschitz
learning in policy design via multiplier matrices is elucidated
in Section IV, and a numerical example demonstrating the
potential of our overall formalism is provided in Section V.
We provide the concluding remarks and discuss future direc-
tions in Section VI.

C. Notation

We denote R as the set of real numbers, R+ as the set of
positive real, N as the set of natural numbers, and N+ :=

N∪{0}. The measure-based distance between two measurable
subsets A and B of a metric space R

n equipped with the metric
ρµ is given by ρµ(A, B) = µ(A△B), where µ is a measure
on R

n and A△B is the symmetric difference (A\B)∪ (B\A).
We define a ball Bǫ(x) := {y: ρ(x, y) ≤ ǫ} and the sum
A⊕ ǫ :=

⋃

x∈A Bǫ(x). The complement of a set A is denoted
by Ac. The indicator function of the set A is denoted by
1A. A block diagonal matrix is denoted by blkdiag(·). For
every v ∈ R

n , we denote ‖v‖ = (v⊤v)1/2, where v⊤ is
the transpose of v. The sup-norm or ∞-norm is defined as
‖v‖∞ , supt∈R

‖v(t)‖. We denote by λmin(P) and λmax(P)
as the smallest and largest eigenvalues of a square, symmetric
matrix P , respectively. The symbol ≻ (≺) indicates positive
(negative) definiteness and A ≻ B implies A−B ≻ 0 for A and
B of appropriate dimensions. Similarly, � (�) implies positive
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(negative) semidefiniteness. The operator norm is denoted ‖P‖

and is defined as the maximum singular value of P . For a
symmetric matrix, we use the ⋆ notation to imply symmetric
terms, that is, [ a b

b⊤ c
] ≡ [ a b

⋆ c ]. The symbol Pr denotes the
probability measure.

II. PROBLEM FORMULATION

Consider the following discrete-time nonlinear system:

xt+1 = F(xt , ut ), t ∈ N

qt = Cq xt

where xt ∈ R
nx and u = ut ∈ R

nu denote the state and the
control input of the system, respectively.
For simplicity of exposition, we consider input-affine sys-

tems of the form

xt+1 = Axt + But + Gφ(qt), t ∈ N (1a)

qt = Cq xt (1b)

where the system matrices A, B , G, and Cq have appro-
priate dimensions. Denote by φ ∈ R

nφ the system’s
uncertainty or unmodeled nonlinearity, whose argument
q = qt ∈ R

nq is represented by a linear combination of the
state. The origin is an equilibrium state for (1), that is,
φ(0) = 0.
We use the following assumptions.
Assumption 1: The matrices B and G are known, and G

has a full column rank. The matrix Cq and function φ are
unknown. The matrix A is unknown. �

Remark 1: The assumption on knowledge of B and G is
mild. Indeed, the input matrix B is known classically in many
ADP frameworks [3], [38] and G can be assumed to be the
identity if the vector field through which the nonlinearity acts
is unknown. �

We require the following definition to describe the class of
nonlinearities considered in this article.

Definition 1: A function f :X → R
nx is Lipschitz contin-

uous in the domain X ⊂ R
n f if

‖ f (x1)− f (x2)‖ ≤ L f ‖x1 − x2‖ (2)

for some L f > 0 and all x1, x2 ∈ X. We define the scalar

L
∗
f = inf

R+

{

L f : condition (2) holds
}

(3)

as the Lipschitz constant of f in X. A function is globally
Lipschitz if (2) holds for X ≡ R

n f . �

Assumption 2: The nonlinearity φ is globally Lipschitz
continuous, that is

‖φ(q1)− φ(q2)‖ ≤ L
∗
φ‖q1 − q2‖ (4)

for any q1, q2 ∈ R
nq , and the global Lipschitz constant L

∗
φ is

unknown. �

Remark 2: While the matrix A is typically known in
practice or can easily be estimated from data by using
standard system identification methods, we do not require
that A is known. Instead, one can choose any matrix A0
of appropriate dimensions such that (A0, B) is a stabiliz-
able pair and use our proposed method on the effective

nonlinearity Gφ(q)+ (A − A0)x , which is Lipschitz, since
Gφ and (A − A0)x are each Lipschitz. �

Given a control policy u(x), we define an infinite-horizon
cost functional given an initial state x0 ∈ R

nx as

J (x0, u) =

∞
∑

t=0

γ t U(xt , u(xt)) (5)

where U is a function with nonnegative range, U(0, 0) = 0,
and {xk} denotes the sequence of states generated by the
closed-loop system

xt+1 = Axt + Bu(xt)+ Gφ
(

Cq xt

)

. (6)

The scalar γ ∈ (0, 1] is a forgetting/discount factor intended
to enable the cost to be emphasized more by current state and
control actions and lend less credence to the past.
Before formally stating our objective, we need to introduce

the following standard definition [1].
Definition 2: A continuous control policy u(·) : Rnx → R

nu

is admissible on X ⊂ R
nx if u(0) = 0 and u(·) stabilizes the

closed-loop system (6) on X and J (x0, u) is finite for any
x0 ∈ X . �

We want to design an optimal control policy that achieves the
optimal cost

J∞(x0) = inf
u∈U

J (x0, u) (7)

for any x0 ∈ R
nx . Here, U denotes the set of all admissible

control policies. In other words, we wish to compute an
optimal control policy

u∞ = arg inf
u∈U

J (x0, u). (8)

Directly constructing such an optimal controller is very chal-
lenging for general nonlinear systems; this is further com-
plicated because system (1) contains unmodeled/uncertain
dynamics. Therefore, we shall use ADP: a class of iterative,
data-driven algorithms that generate a convergent sequence of
control policies whose limit is provably the optimal control
policy u∞(x).
Recall from [38] and [39] that a necessary condition for

convergence of policy iteration methods (a subclass of ADP)
is the availability of an initial admissible control policy
u0(x), which is nontrivial to derive for systems with some
uncertain dynamics. Therefore, our objective in this article is
to systematically derive an initial admissible control policy
using only partial model information via kernelized Lipschitz
learning and semidefinite programming. We also extend this
idea to handle the case when the control input is constrained.
In such cases, along with an admissible controller, we also
derive a domain of attraction of the controller within which the
control policy is guaranteed to satisfy input constraints and the
closed-loop system remains stable. We refer to the derivation
of admissible control policies with guaranteed stabilizability
and/or constraint enforcement as safe initialization for ADP: a
crucial property required for ADP algorithms to gain traction
in expensive industrial applications.
We invoke the assumption in [21] and [22] regarding the

availability of legacy/archival/historical data generated by the
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system during prior experiments, that is, at design time,
we have a data set D consisting of unique triples: state-input
pairs along with the corresponding state update information.
Concretely, we have access to D = {x j , u j , x+j }

N
j=1. For each

{x j , u j , x+j } ∈ D, we estimate the nonlinear term using (1),
that is

φ
(

q j

)

= G†
(

x+j − Ax j − Bu j

)

(9)

where G† exists by Assumption 1. Note that we also need to
estimate the matrix Cq [see (1)] so that q j can be calculated
from x j . While estimating the exact elements of these matrices
is quite challenging, we can estimate the nonzero elements in
the matrices, which is enough to design safe initial control
policies, because the exact elements of Cq will be subsumed
within the Lipschitz constant.

Remark 3: The problem of estimating the sparsity pattern
of Cq is analogous to the problem of feature selection and
sparse learning, known as automatic relevance determination
(ARD) [40]. The basic idea in ARD is to give feature
weights some parametric prior densities; these densities are
subsequently refined by maximizing the likelihood of the
data [40], [41]. For example, one can define hyperparameters
that explicitly represent the relevance of different inputs to a
machine learning algorithm with respect to the desired output
(e.g., a regression problem). These relevance hyperparameters
determine the range of variation of parameters relating to a
particular input. ARD can then determine these hyperparame-
ters during learning to discover which inputs are relevant. �

We need the following assumption on the data {q j , φ(q j )},
without which one cannot attain the global Lipschitz constant
of the nonlinearity φ(·) with high accuracy.

Assumption 3: Let Q denote the convex hull of the samples
{q j}. The Lipschitz constant of φ(·) in the domain Q is
identical to the global Lipschitz constant L∗φ . �

Assumption 3 ensures that the samples obtained from the
archival data are contained in a subregion of R

nq where the
nonlinearity φ(·)’s local Lipschitz constant is the same as its
global Lipschitz constant.

Example 1: Suppose φ(q) = 1.5 sin(q). As long as the
convex hull of the samples {q} contains zero, the Lipschitz
constant of φ on the convex hull Q and on R is identical. �

In Section III, we will leverage the data set D to estimate
the Lipschitz constant of φ(·) using the kernelized Lipschitz
learning/estimation and consequently design an initial admissi-
ble linear control policy u0 = K0x via semidefinite programs.
We will demonstrate how such an initial admissible linear
control policy fits into a neural-network-based ADP formu-
lation (such as policy iteration) to asymptotically generate the
optimal control policy u∞(x).

Remark 4: The control algorithm proposed in this article
is a direct data-driven controller because no model of φ(·) is
identified in the controller design step. �

Remark 5: Although we focus only on discrete-time sys-
tems, our results hold for continuous-time systems with slight
modifications. �

Remark 6: If nφ > 1, our proposed Lipschitz learning
algorithm will yield nφ Lipschitz constant estimates, one for

each dimension of φ(·). To avoid notational complications,
we proceed (without loss of generality) with nφ = 1. For
larger nφ , our algorithm can be used componentwise. �

III. KERNELIZED LIPSCHITZ LEARNING

In this section, we provide a brief overview of KDE and
provide a methodology for estimating Lipschitz constants from
data.

A. Empirical Density of Lipschitz Estimates

With the data {φ(q j), q j}
N
j=1, we obtain n ∈ N underesti-

mates of the global Lipschitz constant L
∗
φ using

ℓ jk =
|φ

(

q j

)

− φ(qk)|

‖q j − qk‖
(10)

where k ∈ {1, . . . , N}\ j . The sequence {ℓ jk} is empirical
sample drawn from an underlying univariate distribution L.
Note that the true distribution L has finite support: its support
is bounded below (componentwise) by zero since all ℓ jk ≥ 0
and bounded above by the true Lipschitz constant L

∗
φ . This

leads us to the key idea of our approach that is to identify the
support of the distribution L to yield an estimate of the true
Lipschitz constant of φ(·).

Remark 7: Variants of the estimator (10), such as maxk ℓ jk ,
have been widely used in the literature to construct algorithms
for determining Lipschitz constants (see [35], [36], [42]). �

In the literature, common methods of tackling the support
estimation problem are by assuming prior knowledge about
the exact density of Lipschitz estimates [42] or using Stron-
gin overestimates of the Lipschitz constant [36]. However,
we avoid these overestimators because they are sometimes
unreliable, even for globally Lipschitz functions [37, Th. 3.1].
Instead, we try to fit the density directly from local estimates
and the data in a nonparametric manner using the KDE and
characteristics of the estimated density.

B. Plug-in Support Estimation

With a set of n underestimates {ℓr }
n
r=1, we generate an

estimate L̂n of the true density L using a kernel density
estimator

L̂n(ℓ) =
1

nhn

n
∑

r=1

K

(
ℓ− ℓr

hn

)

(11)

where K : R → R is a smooth function called the kernel
function and hn > 0 is the kernel bandwidth. A plug-in
estimate of the support S of the true density L is

Ŝn :=
{

ℓ ∈ R≥0|L̂n(ℓ) ≥ βn

}

(12)

where βn is an element of a sequence {βn} that converges to
zero as n →∞; this plug-in estimator was proposed in [43].

C. Implementation

Implementing the plug-in estimator involves first construct-
ing a KDE of L with n samples. Then, if one picks β ≡ βn

small enough, one can easily compute Ŝ from (12). Then

L̂φ := max
(

Ŝn

)

. (13)
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Algorithm 1 Kernelized Lipschitz Estimation

Require: Initial data set, {xk, φ(Cq xk)}
N
k=1

Require: Confidence parameter, 0 < β ≪ 1
1: {qk, φ(qk)} ← Estimate Cq via ARD
2: for k in 1, . . . , N do

3: for j in {1, . . . , N} \ k do

4: ℓ← append ℓ jk computed by (10)
5: L̂n ← KDE with cross-validated K and h using {ℓr }

6: Ŝn ← compute using (12)
7: L̂φ ← max(Ŝn).

This is a very straightforward operation with the avail-
ability of tools, such as ksdensity (MATLAB) and the
KernelDensity tool in scikit-learn (Python). The
pseudocode is detailed herein in Algorithm 1.

Remark 8: Note that the true support S is a subset of
R≥0. Therefore, when computing the density estimate, this
information should be fed into the tool being used. For
example, in MATLAB, one has the option {‘support’,
‘positive’}. Essentially, this subroutine transforms the
data into the log scale and estimates the log density so that,
upon returning to linear scale, one preserves positivity. �

D. Theoretical Guarantees

We formally describe the density L. We consider that the
samples q ∈ Q are drawn according to some probability
distribution µ0 with support X. For any set S, suppose that
µ0 can be written as µ0(S) =

∫

S
Ω(q) dµ(q), where µ is the

Lebesgue measure and Ω is continuous and positive on X. Let
µX denote the product measure µ0×µ0 on X×X. Since µ0 is
absolutely continuous with respect to the Lebesgue measure,
µX assigns zero mass on the diagonal {(q, q) : q ∈ X}. The
cumulative distribution function for L is then given by

L̃(λ) = µX

({

(q1, q2) : q1 6= q2,
|φ(q1)− φ(q2)|

‖q1 − q2‖
≤ λ

})

.

Since L̃ is nondecreasing, L exists almost everywhere by
Lebesgue’s theorem for differentiability of monotone func-
tions, and L’s support is contained within [0,L∗φ] because
of (10).
We investigate the worst case sample complexity involved

in overestimating L
∗
φ under the following mild assumption.

Assumption 4: The nonlinearity φ(·) is twice continuously
differentiable, that is, φ(·) ∈ C2. �

Lemma 1: Suppose that Assumptions 3 and 4 hold. Then,
there exists some q∗ ∈ Q such that ‖∇φ(q∗)‖ = L∗φ .

Proof: Suppose that {(qk
1 , qk

2 )}
∞
k=1 denotes a sequence of

paired samples in Q such that |φ(qk
1)− φ(q

k
2 )|/‖q

k
1 − qk

2‖ →

L∗φ as k → ∞. Since Q is the convex hull of finitely many
samples, it is compact, so we can choose a subsequence of
{qk
1 , qk

2 }
∞
k=1 that converges to (q

∞
1 , q∞2 ) where both limits are

in Q. If q∞1 = q∞2 , then a Taylor expansion estimate implies
‖∇φ(q∞1 )‖ ≥ L

∗
φ . Since L

∗
φ is an upper bound of ‖∇φ‖ at any

sample in Q, ‖∇φ(q∞1 )‖ = L∗φ and q∗ = q∞1 . If q∞1 6= q∞2 ,
then the result follows by applying the mean value theorem to

ϕ(t) = φ
(

q∞1 + t
(

q∞2 − q∞1
))

− φ
(

q∞1
)

for t ∈ [0, 1], for which ϕ(0) = 0 and ϕ(1) = L∗φ‖q
∞
1 − q∞2 ‖.

Also, dϕ/dt = (∇φ(q∞1 + t (q∞2 − q∞1 )))
⊤(q∞2 − q∞1 ). Since

‖∇φ‖ ≤ L
∗
φ , this implies |dϕ/dt| ≤ L

∗
φ‖q

∞
2 −q∞1 ‖. Reordering

q∞1 and q∞2 if needed, we have

L
∗
φ

∥
∥q∞2 − q∞1

∥
∥ = ϕ(1) =

∫ 1

0
(dϕ/dt)ds ≤ L

∗
φ

∥
∥q∞2 − q∞1

∥
∥.

Hence, the rightmost inequality must be an equality, which
implies that dϕ(s)/dt = L

∗
φ‖q

∞
1 − q∞2 ‖ for all s, that is,

if the Lipschitz constant is attained with q∞1 6= q∞2 , then φ(·)
restricted to the segment connecting q∞1 and q∞2 is linear with
slope L

∗
φ . This concludes the proof. �

Lemma 1 enables the worst case complexity result described
in the following theorem.

Theorem 1: Let ϕ ′(q1, q−1) = |φ(q1)−φ(q−1)|/‖q1−q−1‖,
and suppose that Assumptions 3 and 4 hold. There exists C0 >

0 such that for all sufficiently small δ > 0 and and any set
{q j}

n
j=1 of n uniform random samples in X, the probability

that some pair q+, q− ∈ {q j} gives the Lipschitz estimate

φ′(q+, q−) ≥ (1− δ)L
∗
φ − C0δ

is at least 1 − ǫ(n, δ). Here, ǫ(n, δ) ≤ 3 exp(−nκδ2 nq−1),
where κ is a constant depending on nq .

Proof: By Lemma 1, there exists at least one q∗ such that
‖∇φ(q⋆)‖ = L∗φ . For the worst case analysis, suppose that this
occurs only at a single sample, q⋆. A Taylor expansion at q⋆

yields

φ
(

q⋆ + q
)

= φ
(

q⋆
)

+∇φ
(

q⋆
)⊤

q +R(q) (14)

where R is a remainder term with |R(q)| ≤ CR‖q‖
2 when

‖q‖ ≤ η, for some CR > 0 and η > 0. Note that

∇φ(q⋆)⊤q = ‖∇φ(q⋆)‖‖q‖ cos θ

where θ is the angle between ∇φ(q⋆) and q . To obtain a good
estimate of ‖∇φ(q⋆)‖, one needs to sample two points in this
neighborhood: one point q+ with cos θ ≈ 1 and a second
point q− with cos θ ≈ −1. Each of these conditions defines a
cone. Regarding one of these cones in cylindrical coordinates
0 ≤ ℓ ≤ η and ‖y‖ ≤ χℓ for χ = tan θ , we can integrate
the nq − 1 dimensional volume to get the volume of this cone
as C0χ

nq−1ηnq for some dimension-dependent constant C0. A
calculation shows that cos θ ≥ 1−χ2/2 for small θ . With q+
and q− as one sample from each cone, we have that q+ − q−
is contained in the cone ‖y‖ ≤ χℓ, and so we can use (14) to
approximate
∣
∣φ

(

q⋆ + q+
)

− φ
(

q⋆ + q−
)∣
∣

=

∣
∣
∣∇φ

(

q⋆
)T
(q+ − q−)+R(q+)−R(q−)

∣
∣
∣

≥
∥
∥∇φ

(

q⋆
)∥
∥‖q+ − q−‖

(

1−
χ2

2

)

− |R(q+)−R(q−)|.

Dividing by ‖q+ − q−‖ and using the defining property of q⋆

gives

φ′(q+, q−) ≥

(

1−
χ2

2

)

L∗φ −
|R(q+)−R(q−)|

‖q+ − q−‖
. (15)

Subsequently, one can decompose q+ = q
‖
+ + q⊥+ , with

q
‖
+ parallel to ∇φ(q

⋆) and q⊥+ perpendicular and satisfying
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‖q⊥+‖ ≤ χ |q
‖
+|. Identical arguments can be used to infer

‖q⊥−‖ ≤ χ |q
‖
−|, and hence, ‖q+ − q−‖ ≥ ‖q

‖
+ − q

‖
−‖ −

‖q⊥+ −q⊥−‖. Since q+ and q− are chosen from opposite cones,
we have ‖q‖+ − q

‖
−‖ = ‖q

‖
+‖ + ‖q

‖
−‖. Using ‖q

⊥‖ ≤ χ‖q‖‖

and cos θ ≥ 1− χ2/2, we have ‖q+ − q−‖ ≥ (‖q+‖ + ‖q−‖)

(1− χ)(1− χ2/2). Hence

|R(q+)−R(q−)|

‖q+ − q−‖
≤

CR

(

‖q+‖
2 + ‖q−‖

2
)

(‖q+‖ + ‖q−‖)(1− χ)
(

1− χ2/2
)

≤
2 CRmax{‖q+‖, ‖q−‖}

2

max{‖q+‖, ‖q−‖}(1− χ)
(

1− χ2/2
)

≤
2 CRη

(

1+ χ2
)1/2

(1− χ)
(

1− χ2/2
) .

By combining the aforementioned inequality with (15), one
obtains

ϕ ′(q+, q−) ≥
(

1−
χ

2

)

L
∗
φ −

2 CRη
(

1+ χ2
)1/2

(1− χ)
(

1− χ2/2
) .

Set δ = χ/2 and take η = δ. Then, there exists C0 > 0 such
that for all sufficiently small δ

ϕ ′(q+, q−) ≥ (1− δ)L
∗
φ − C0δ, (16)

which implies that ϕ ′→ L∗φ as δ→ 0.
From the assumption on uniformly drawn samples, the prob-

ability of sampling in one of the (χ, η) cones is

∫ η

0
κ(χr)nq−1 dr =

κχnq−1ηnq

nq

for some κ > 0 that depends on nq . Using δ = η = χ/2 and
absorbing the factors of 2 and 1/nq into κ yields κδ2nq−1.
Let X1± be the event of sampling at least one point in the

(χ, η) cone as above, and let X0± be the event of sampling
nothing in the (χ, η) cone. The probability of sampling at least
one of each of the points q+ and q− just described is

1− P(X0+ ∩ X0−)− P(X0+ ∩ X1−)− P(X1+ ∩ X0−)

≥ 1−
(

1− 2κδ2 nq−1
)n
− 2

(

1− κδ2 nq−1
)n

where the factor 2 before κ in the second term comes from
the fact that both cones are excluded and they are disjoint, and
the 2 before the third term comes by combining the final two
terms in the first expression.
By using the fact that for any ǫ ′ ∈ (0, 1) and n > 0,

the inequality (1 − ǫ ′)n ≤ exp(−nǫ ′) holds, we can conclude
that

1− P(X0+ ∩ X0−)− P(X0+ ∩ X1−)− P(X1+ ∩ X0−)

≥ 1− exp
(

−2 nκδnq−1
)

− 2 exp
(

−nκδnq−1
)

≥ 1− ǫ

for any given ǫ > 0. The latter can be ensured by choosing n

large enough. This gives a lower bound on the probability of
obtaining (16) and, hence, the desired result. �

TABLE I

KERNELIZED LIPSCHITZ LEARNING OF BENCHMARK FUNCTIONS

E. Benchmarking the Lipschitz Estimator

Our Lipschitz estimator is tested on well-studied benchmark
examples studied previously in [32] and [35]; the benchmark
functions are described in Table I along with their domains and
true local Lipschitz constants. Note that all the functions are
not globally Lipschitz (e.g., φ2), not differentiable everywhere
(e.g., φ1 and φ4), and, in the special case of φ4, specifically
constructed to ensure that naive overestimation of L∗φ using
Strongin methods provably fails [37]. To evaluate the proposed
Lipschitz estimator, we vary the number of data points N and
the confidence parameter β. Over 100 runs, we report mean
± one standard deviation of the following quantities: the time
required by our learning algorithm, the estimated Lipschitz
constant L̂φ , and the error L̂φ −L

∗
φ (which should be positive

when we overestimate L
∗
φ).

The final column of Table I reveals an important empirical
detail; all our estimates of L

∗
φ are overestimates for β ≤ 0.01

and n ≥ 100. This is a critical advantage of our proposed
approach because an overestimate will enable us to provide
stability and constraint satisfaction guarantees about the data-
driven controller, in Section IV. Furthermore, the estimation
error is small for every test run, and as expected, the error
increases as β decreases because a smaller value of β indi-
cates the need for greater confidence, which results in more
conservative estimates.

IV. SAFE INITIALIZATION VIA LEARNED
MULTIPLIER MATRICES

In this section, we begin by reviewing a general ADP pro-
cedure and then explain how to safely initialize unconstrained,
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as well as input-constrained ADP. A key insight is that estimat-
ing the Lipschitz constant is equivalent to learning a multiplier
matrix in a purely data-driven manner. This enables the use of
semidefinite programs to compute safe and admissible initial
control policies for ADP.

A. Unconstrained ADP

Recall the optimal value function given by (7) and the
optimal control policy (8). From the Bellman optimality princi-
ple, we know that the discrete-time Hamilton–Jacobi–Bellman
(HJB) equations are given by

J∞(xt) = inf
u
(U(xt , u(xt))+ γ J∞(xt+1)) (17a)

u∞(xt) = arg inf
u

(U(xt , u(xt))+ γ J∞(xt+1)) (17b)

where J∞(xt) is the optimal value function and u∞(xt) is
the optimal control policy. The key operations in ADP meth-
ods [38] involve setting an admissible control policy u0(x) and
then iterating the policy evaluation step

Jk+1(xt) = U(xt , uk(xt))+ γJk+1(xt+1) (18a)

and the policy improvement step

uk+1(xt) = argmin
u(·)

(U(xt , u(xt))+ γJk+1(xt+1)) (18b)

until convergence.
1) Semidefinite Programming for Safe Initial Control

Policy: Recall the following definition.
Definition 3: The equilibrium point x = 0 of the closed-

loop system (6) is globally exponentially stable with a decay
rate α if there exist scalars C0 > 0 and α ∈ (0, 1) such that
‖xt‖ ≤ C0α

(t−t0)‖x0‖ for any x0 ∈ R
nx . �

Conditions for global exponential stability (GES) of the
equilibrium state, adopted from [28], are provided next.

Lemma 2: Let V (·, ·) : [0,∞) × R
nx → R be a continu-

ously differentiable function such that

γ1‖x‖2 ≤ V (t, xt) ≤ γ2‖x‖2 (19a)

V (t + 1, xt+1)− V (t, xt) ≤ −
(

1− α2
)

V (t, xt) (19b)

for any t ≥ t0 and x ∈ R
nx along the trajectories of the system

x+ = ϕ(x) (20)

where γ1, γ2, and α are positive scalars, and ϕ(·) is a nonlinear
function. Then, the equilibrium state x = 0 for system (20) is
GES with decay rate α. �

The following design theorem provides a method to con-
struct an initial linear stabilizing policy u0(x) = K0x such
that the origin is a GES equilibrium state of the closed-loop
system (6).

Theorem 2: Suppose that Assumptions 1 and 2 hold and
that there exist matrices P = P⊤ ≻ 0 ∈ R

nx×nx , K0 ∈ R
nu×nx ,

and scalars α ∈ (0, 1), ν > 0 such that

9 + Ŵ⊤MŴ � 0 (21)

where

9 =

[

(A + B K0)
⊤P(A + B K0)− α

2 P ⋆

G⊤P(A + B K0) G⊤PG

]

Ŵ =

[

Cq 0
0 I

]

, and M =

[

ν−1
(

L∗φ

)2
I 0

0 −ν−1 I

]

.

Then, the equilibrium x = 0 of the closed-loop system (6) is
GES with decay rate α.

Proof: Let V = x⊤Px . Then, (19a) in Lemma 2 is
satisfied with γ1 = λmin(P) and γ2 = λmax(P). Let 1V =

V+ − V . Note that

V+ =
(

x+
)⊤

Px+

= ((A + B K0)x + Gφ)⊤P((A + B K0)x + Gφ)

= x⊤(A + B K0)
⊤P(A + B K0)x

+2x⊤(A + B K0)
⊤PGφ + φ⊤G⊤PGφ.

Therefore
[

x

φ

]⊤

9

[

x

φ

]

= x⊤(A + B K0)
⊤P(A + B K0)x − α

2 x⊤Px

+2x⊤(A + B K0)
⊤PGφ + φ⊤G⊤PGφ

= V+ − α2 V = 1V +
(

1− α2
)

V

and
[

x

φ

]⊤

Ŵ⊤MŴ

[

x

φ

]

=

[

q

φ

]⊤

M

[

q

φ

]

= ν
((

L
∗
φ

)2
q⊤q − φ⊤φ

)

.

Thus, premultiplying and postmultiplying (21) with
[

x φ
]⊤

and its transpose, respectively, we get

1V +
(

1− α2
)

V + ν
(
(

L
∗
φ

)2
q⊤q − φ⊤φ

)

≤ 0.

By inequality (4) in Assumption 2 and recalling that φ(0) = 0,
we get (L∗φ)

2 q⊤q − φ⊤φ ≥ 0. Since ν > 0, this implies
1V + (1− α2)V ≤ 0, which is identical to (19b). �

Note that we do not need to know φ(·) to satisfy condi-
tions (21). Instead, Theorem 2 provides the conditions that
leverage matrix multipliers similar to those described in [29].
Note that the estimation of the Lipschitz constant is the key
step in learning a multiplier matrix M since this matrix is
parameterized solely by L∗φ and ν is an optimization variable.
We shall now provide LMI-based conditions for computing

the initial control policy K0 and the initial domain of attraction
P and ν via convex programming.

Theorem 3: Fix α ∈ (0, 1) and let L̂φ be obtained via (13).
If there exist matrices S = S⊤ ≻ 0, Y , and a scalar ν > 0
such that the LMI conditions







−α2 S ⋆ ⋆ ⋆

0 −ν I ⋆ ⋆

AS + BY GS −S ⋆

L̂φCq S 0 0 −ν I






� 0 (24)

are satisfied, then the matrices K0 = Y S−1, P = S−1, and
scalar ν satisfy conditions (21) with the same α and L

∗
φ

replaced by L̂φ .
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Proof: A congruence transformation of (24) with the
matrix blkdiag ([P ν−1 I P I ]) and substituting S with P−1

and Y with K0P−1 yields






−α2P ⋆ ⋆ ⋆

0 −ν−1 I ⋆ ⋆

A + B K0 G −P ⋆

L̂φCq 0 0 −ν I






� 0.

Taking the Schur complement with the submatrices shown by
the guidelines in the abovementioned inequality, we get (22),
as shown at the bottom of the page. Since ν > 0, taking the
Schur complement again yields (23), as shown at the bottom
of this page, which can be rewritten as

9 −

[

0
I

]

ν−1 I

[

0
I

]⊤

+

[

Cq

0

]
(

L̂φ

)2
ν−1 I

[

Cq

0

]⊤

� 0

which is exactly (21) if L̂φ = L
∗
φ . Thus, conditions (21)

and (24) are equivalent when L̂φ = L
∗
φ . �

Based on Theorem 1, we will get a perfect estimate of the
Lipschitz constant only with infinite data, which is impractical.
However, a much more practical result is provided next. This
is based on the observation that our proposed kernelized
Lipschitz learner typically provides the overestimates of L

∗
φ .

In such cases, that is, when L̂φ ≥ L∗φ , an advantage of
our method is that any feasible solution of the LMI (24)
is guaranteed to be an admissible control policy. This is
demonstrated by the following result.

Theorem 4: Let (P, K0, ν, α) be a feasible solution to con-
ditions (21) with an overestimate of the Lipschitz constant
L̂φ > L

∗
φ . Then, (P, K0, ν, α) is also a feasible solution to

conditions (21).
Proof: Let δL = L̂φ−L∗φ . Since L̂φ is an overestimator of

L
∗
φ , δL > 0. Since (P, K , ν, α) is a feasible solution to (21)
with L̂φ , it satisfies

9 + Ŵ⊤
[

−ν−1
(

L
∗
φ + δL

)2
I 0

0 I

]

Ŵ � 0

which can be written as

9 + Ŵ⊤MŴ + Ŵ⊤
[

−ν−1
(

2L∗φδL + δL2
)

I 0
0 0

]

︸ ︷︷ ︸

:=δM

Ŵ � 0.

As ν > 0, we infer that δM � 0 and, hence, Ŵ⊤δMŴ � 0.
Therefore, 9+Ŵ⊤MŴ � 0. Since the other conditions in (21)
are independent of L∗φ , the other conditions are automatically
satisfied. This concludes the proof. �

Theorem 4 indicates that if our learned L̂φ is an overestimate
of L∗φ , and we use L̂φ to obtain a safe stabilizing control
policy, then this is also a safe stabilizing control policy for

the true system (1). Having a feasible solution to (21) with an
underestimator of L

∗
φ is not sufficient to guarantee a feasible

solution for the true Lipschitz constant because δM may not
be negative semi-definite in that case. Of course, extremely
conservative overestimates of L̂φ will result in conservative
control policies or result in infeasibility. In our proposed
approach, we have observed that the confidence parameter
β dictates the conservativeness of the overestimate, that is,
β → 1 makes the estimate L̂φ more conservative.

2) Safely Initialized PI: We begin by proving the following
critical result.

Theorem 5: Let U(x, u) be defined as in (5). If K0 is
obtained by solving (24) for L̂φ ≥ L

∗
φ , then the initial control

policy u0 = K0x is an admissible control policy on R
nx .

Proof: Clearly, u0 is continuous and (by Theorems 2
and 3) is a stabilizing control policy for (1). It remains to show
that the cost induced by u0 is finite. Since u0 is stabilizing
and L̂φ ≥ L∗φ , we know that ‖xt‖ → 0 as t → ∞, which
implies u0 → 0 and, therefore, U(xt , ut ) → 0 as t → ∞.
Since U(xt , ut) converges to a finite limit, U(xt , ut ) is bounded
for all t ≥ 0. Therefore, any partial sum

∑t ′

t=0 U(xt , ut ) is
bounded and monotonic, that is, J converges to a finite limit.�
Admissibility of u0 for the specific linear quadratic regulator

(LQR) cost function follows directly from Theorem 5.
Corollary 1: Let

U(xt , ut) = x⊤t Qxt + u⊤t Rut (25)

for some matrices Q = Q⊤ � 0 and R = R⊤ ≻ 0. Then,
the initial control policy u0 = K0x obtained by solving (24)
is an admissible control policy on R

nx . �

Now, we know that u0 = K0x is an admissible control
policy, and we are ready to proceed with the policy itera-
tion steps (18). Typically, an analytical form of Jk is not
known a priori, so we resort to a shallow neural approxima-
tor/truncated basis expansion for fitting this function, assuming
that Jk is smooth for every k ∈ N ∪ {∞}. Concretely,
we represent the value function and cost functions as

Jk(x) := ω
⊤
k ψ(x) (26)

where ψ0(·) : R
nx → R

n0 denotes the set of differentiable
basis functions (equivalently, hidden-layer neuron activations)
and ω : R

n0 is the corresponding column vector of basis
coefficients (equivalently, neural weights).
It is not always clear how to initialize the weights of

the neural approximators (26). Commonly, small random
numbers drawn from a uniform distribution are used [44],
but there is no safety guarantee associated with random
initialization. An alternative initialization method used in
the literature employs proportional–integral–derivative (PID)

[

−α2 P 0
0 −ν−1 I

]

+

[

(A + B K0)
⊤ C⊤

q

G⊤ 0

][

P 0
0 L̂

2
φν
−1 I

][

(A + B K0)
⊤ C⊤

q

G⊤ 0

]⊤

� 0 (22)

[

(A + B K0)
⊤P(A + B K0)− α

2 P (A + B K0)
⊤PG

G⊤P(A + B K0) −ν−1 I + G⊤PG

]

+

[

Cq

0

]
(

L̂φ

)2
ν−1 I

[

Cq

0

]⊤

� 0 (23)
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controllers [45]. While PID can be tuned to stabilize sys-
tems without a model, it is considerably harder to enforce
constraints while ensuring that stability and regions of con-
straint satisfaction are not considered during initialization.
In addition, many PID initialization frameworks in the litera-
ture are used for data generation and collection; these data
are then used to generate neural weights by least-squares
fitting the neural approximator. While these neural weights
are indeed the optimal weights based on the collected data,
the induced control policy is rarely guaranteed to be constraint-
satisfying or even stable.
To address these issues, we propose initializing the weights

as follows. Since our initial Lyapunov function is quadratic,
we include the quadratic terms of the components of x to be
on the basis ψ(x). Then, we can express the initial Lyapunov
function x⊤Px obtained by solving (24) with appropriate
weights in ψ(x), setting all other weights to be zero. With
the approximator initialized as above, the policy evaluation
step (18a) is replaced by

ω⊤k+1(ψ(xt )− γψ(xt+1)) = U(xt , uk(xt)) (27a)

from which one can solve for ωk+1 recursively via

ωk+1 = ωk − ηkϕk

(

ω⊤k ϕk − U(xt , uk(xt))
)

where ηk is a learning rate parameter that is usually selected
to be an element from the sequence {ηk} → 0 as k →∞, and
ϕk = ψ(xt )−γψ(xt+1). Subsequently, the policy improvement
step (18b) is replaced by

uk+1 = argmin
u(·)

(

U(xt , u(xt))+ γω
⊤
k+1ψ(xt+1)

)

.

This minimization problem is typically nonconvex and, there-
fore, challenging to solve to optimality. In some specific cases,
one of which is that the cost function is quadratic as described
in (25), the policy improvement step becomes considerably
simpler to execute, namely

uk+1(x) = −
γ

2
R−1B⊤∇ψ(x)⊤ωk+1 . (27b)

This can be evaluated as R and B are known, and ψ is
differentiable and chosen by the user, so ∇ψ is computable.
A pseudocode for ease of implementation is provided in
Algorithm 2.
Since we prove that u0 is an admissible control policy,

we can use arguments identical to [44] to claim that if the
optimal value function and the optimal control policy are
dense in the space of functions induced by the basis function
expansions (26), then the weights of the neural approximator
employed in the PI steps (27) converge to the optimal weights,
that is, the optimal value function J∞ and the optimal control
policy u∞ are achieved asymptotically. This is encapsulated
in the following theorem.

Theorem 6: Let Jk and uk be obtained by the updates (27).
If K0 is obtained by solving (24) for L̂φ ≥ L∗φ , then we have
that the value function Jk(x)→ J∞(x) and the control policy
uk(x) → u∞(x) as k → ∞, where J∞ and u∞ are optimal
solutions of the discrete-time HJB equations described in (17).

Proof: This follows from Theorem 5 and [44, Th. 3.2]. �

Algorithm 2 Safely Initialized PI for Discrete-Time Systems
Require: Termination condition constant ǫac
Require: Historical data D
1: Estimate Lipschitz constant L̂φ using Algorithm 1

Require: Compute stabilizing control gain K0 via
SDP (24)

2: Fix admissible control policy u0(x) = K0x

3: while ‖Jk − Jk−1‖ ≥ ǫac do

4: Solve for the value Jk(x) using

Jk+1(xt) = U(xt , uk(xt))+ γJk+1(xt+1).

5: Update the control policy u(k+1)(x) using

uk+1(xt) = argmin
u(·)

(U(xt , uk(xt ))+ γJk+1(xt+1)).

6: k := k + 1

B. Input-Constrained ADP With Safety Enhancements

Herein, we tackle the case when the control input is to be
constrained, which is very common in practical applications.
We make the following assumption on the constraints.

Assumption 5: The control input u ∈ U, where

U =
{

u ∈ R
nu : ξ⊤i u ≤ 1

}

(28)

for i = 1, . . . , nc, where nc is the number of input constraints,
and ξi ∈ R

nu for every i . �

Remark 9: The matrix inequality (28) defines a polytopic
input constraint set. Clearly, constraints of the form |u| ≤ ū

can be written as
[

ξi

ξi+1

]

u =

[

0 · · · 1/ū · · · 0
0 · · · −1/ū · · · 0

]

u ≤

[

1
1

]

which is of the form (28). �

Note that with any control policy u0 = K0x , the constraint
set described in (28) is equivalent to the set

X =
{

x ∈ R
nx : ξ⊤i K0x ≤ 1

}

(29)

for i = 1, . . . , nc. Before we state the main design theorem,
we require the following result from [46, p. 69].

Lemma 3: The ellipsoid

EP =
{

x ∈ R
nx : x⊤Px ≤ 1

}

(30a)

is a subset of X if and only if

ξi K⊤
0 P−1K0 ξ

⊤
i ≤ 1 (30b)

for i = 1, . . . , nc. �

1) Constrained Admissible Initial Control Policy and Invari-

ant Set Estimation: Since the control input is constrained,
we need to characterize an invariant set of the form EP

within which all control actions satisfy (28) and the following
stability certificate holds.

Definition 4: The equilibrium point x = 0 of the closed-
loop system (6) is locally exponentially stable with a decay
rate α and a domain of attraction EP if there exist scalars
C0 > 0 and α ∈ (0, 1) such that ‖xt‖ ≤ C0α

(t−t0)‖x0‖ for any
x0 ∈ EP . �
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A standard result for testing local exponential stability of
the equilibrium point adopted from [47] is provided next.

Lemma 4: Let V : [0,∞) × EP → R be a continuously
differentiable function such that the inequalities (19) hold for
any t ≥ t0 and x ∈ EP along the trajectories of system (6),
where γ1, γ2, and α are positive scalars. Then, the equilibrium
x = 0 for system (6) is locally exponentially stable with a
decay rate α and a domain of attraction EP . �

The following design theorem provides a method to con-
struct a stabilizing policy such that the origin is a locally
exponentially stable equilibrium of the closed-loop system
and constraint satisfaction is guaranteed within a prescribed
ellipsoid EP ⊂ X without knowing the nonlinearity φ(·).

Theorem 7: Fix α ∈ (0, 1) and L̂φ . Suppose that L̂φ ≥ L∗φ ,
and there exist matrices S = S⊤ ≻ 0, Y , and a scalar ν > 0
such that the LMI conditions (24) and

[

1 ξ⊤i Y

⋆ S

]

� 0 (31)

for every i = 1, . . . , nc. Then, the equilibrium x = 0 of the
closed-loop system (6) is locally exponentially stable with a
decay rate α and a domain of attraction EP defined in (30a).
Furthermore, given that the initial state x0 ∈ EP , then the
control actions ut satisfy the constraints (28) for all t ≥ 0.

Proof: From Theorem 2, we know that (19) holds. Taking
Schur complements of (31) yields (30b), which, by Lemma 3,
implies that EP ⊂ X and, hence, the input constraints are
satisfied for all t ≥ 0 by the closed-loop system with policy
u = K0x because x0 ∈ EP . Thus, all the conditions of
Lemma 4 are satisfied, which concludes the proof. �

Remark 10: Note that conditions (24) and (31) are LMIs
in S, Y , and ν for a fixed L̂φ value. Therefore, one can
maximize the volume of EP by solving a constrained convex
program with cost function − log |S| (the log determinant of
S) subject to the constraints (24) and (31) while line searching
for α. This will reduce the conservativeness of the domain of
attraction. �

2) Safely Initialized Input-Constrained PI: By adopting
the work of [48]–[52] for input-constrained/actuator saturated
ADP, we choose a cost function of the form

U(x, u) = Q(x)+ 2
∫ u

0

(

ū tanh−1(υ/ū)
)⊤

R dυ (32)

where Q(x) : R
nx → R is a positive-definite function

satisfying Q(0) = 0 and R ≻ 0.
We begin by demonstrating that the constrained policy is an

admissible policy on its domain of attraction.
Theorem 8: Let U be defined as in (32). Then, the initial

control policy u0 = K0x obtained by solving (24) and (31) is
an admissible control policy on EP .

Proof: By definition Q(0) = 0. Also, the integrand in (32)
is zero when the upper limit is zero. Therefore, U(0, 0) = 0.
For any x0 ∈ EP , u0 is a stabilizing constrained control policy,
and therefore, ‖xt‖ → 0 and ‖ut‖ → 0 as t → ∞. Hence,
U → 0 as t → ∞. The rest of the proof follows identically
as in the proof of Theorem 5. �

Since the control policy is constrained, we can initialize
ADP safely using the neural approximator (26), as discussed

in Section IV-B1. The policy evaluation step is given by

ω⊤k+1(ψ(xt)− γψ(xt+1))

= Q(xt)+ 2
∫ uk (xt )

0

(

ū tanh−1(υ/ū)
)⊤

R dυ. (33a)

Some algebraic manipulation yields

ω⊤k+1(ψ(xt)− γψ(xt+1))

= Q(xt)+ 2ūu⊤R tanh−1(u/ū)

+ū2diag(R)⊤








ln
(

1− u21/ū
2
)

ln
(

1− u22/ū
2
)

...

ln
(

1− u2nu
/ū2

)








(33b)

where u1, u2, u3, . . . , unu
are the individual components of

the vector u. Subsequently, the policy improvement step is
given by

uk+1 = −ū tanh
( γ

2ū
R−1B⊤∇ψ(xt+1)

⊤ωk+1

)

. (33c)

Since the initial control policy is constrained and admissible,
one can use [49] to prove the convergence of the value function
and the control policy to the optimal using the constrained
policy iteration steps (33b) and (33c). This is summarized in
the following theorem.

Theorem 9: Let Jk and uk be obtained by the updates (33).
If K0 is obtained by solving (24) and (31) for L̂φ ≥ L∗φ , then
we have that the value function Jk(x) → J̄∞(x) and the
control policy uk(x)→ ū∞(x) as k →∞, where J̄∞ and ū∞
are the optimal value function and optimal constrained control
policy, respectively. Furthermore, uk ∈ U for every k ∈ N+.

Proof: This follows directly from Theorem 8 and
[49, Th. 2]. The constraint admissibility of u0 is a direct
consequence of (31), and all subsequent policies uk ∈ U

because of the update (33c) since ‖ tanh(·)‖∞ ≤ 1. �

C. Discussion

The value iteration algorithm (see Algorithm 3) does not
generally require an admissible control policy in order to con-
verge optimally using data. Although this is true in off-policy
implementations (that is, when the updated control policy is
not used online), in on-policy implementations, a lack of stabi-
lizing initial policies could result in unsafe transient behavior
unless the underlying system is open-loop stable, leading to
unsafe exploration during the initial data collection phase. Of
course, if the underlying system is stable or bounded, then
the VI algorithm does not require an admissible initial control
policy.
Q-learning is a provably convergent direct optimal adap-

tive control algorithm and model-free reinforcement learning
technique [53]–[56]. Q-learning can be used to find an optimal
action-selection policy based on measurements of the previous
state and action observations controlled using a suboptimal
policy. In most of the existing works, the reward/cost function
is manipulated to guarantee the correction of the unsafe actions
in the learning phase. Our proposed method does not require
a corrective modification of the reward/cost function online
for safety. Instead, historical data and solving SDPs based on
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Algorithm 3 Safely Initialized VI for Discrete-Time Systems
Require: Termination condition constant ǫac
Require: Historical data D
1: Estimate Lipschitz constant L̂φ using Algorithm 1

Require: Compute stabilizing control gain K0 via
SDP (24)

2: Fix safe initial control policy u0(x) = K0x

3: while ‖Jk − Jk−1‖ ≥ ǫac do

4: Solve for the value Jk(x) using

Jk+1(xt) = U(xt , uk(xt))+ γJk(xt+1).

5: Update the control policy u(k+1)(x) using

uk+1(xt) = argmin
u(·)

(U(xt , uk(xt))+ γJk+1(xt+1)).

6: k := k + 1

Lipschitz estimation are used to generate safe control policies
that enable safe data collection during on-policy Q-learning
implementation because the states are guaranteed not to
diverge with the initial policy (conversely, this divergence
could occur if the initial policy was unsafe).

V. NUMERICAL EXAMPLES

A. Example 1: Nonlinear Torsional Pendulum

We demonstrate our proposed approach using the torsional
pendulum, which is modeled by discretizing the system

θ̇ = ω (34a)

J ω̇ = u − Mgl sin θ − fdω (34b)

with mass M = 0.333 kg, length l = 0.667 m, acceleration
due to gravity g = 0.981 m/s2, friction factor fd = 0.2,
and moment of inertia J = 0.1975 kg·m2. With Euler
discretization and a sampling time of τ = 0.01 s, we get
a discrete-time model of the form (1) with

x =

[

θ

ω

]

, A = I + τ

[

0 1
0 − fd

]

, B = τ

[

0
1

]

, G = τ

[

0
−1

]

.

We assume that the nonlinearity φ = Mgl sin θ/J is com-
pletely unknown; clearly, φ(·) has a Lipschitz constant L

∗
φ =

Mgl/J = 11.038, which is also unknown to us.
In the data collection phase, we initialize system (34) from

ten different initial conditions in the space [−π, π] × [−2, 2]
and collect data each 0.1 s, leading to a total data set of N =

50 samples. Note that the initialization procedure mentioned
in [49] requires 400 data points, which is considerably more
than ours, and in that procedure, the original policy in the
pretraining phase is not guaranteed to be admissible. ARD
reveals that the nonlinearity only acts through the second state,
and the argument of the nonlinearity is q = θ . Proceeding
as in Algorithm 1, we perform cross validation using an
Epanechnikov kernel with bandwidth hn = 0.05 and choose
β = 0.01. This yields the overestimate L̂φ = 11.511 > L

∗
φ .

Using this Lipschitz estimate, we solve (24) with α = 0.95
and ν = 1 for an initial value function x⊤Px and control
policy estimate K0x .

Fig. 1. Comparison of states xt , inputs ut , and cost function values
for unconstrained ADP with safe initialization for Lipschitz estimates with
increasing confidence L̂φ(β = 0.1) = 11.14 and L̂φ(β = 0.001) = 12.29.
We also compare this article to an LQR controller that is known to work for
linear systems.

We construct a 2 − 11 − 1 (input layer-hidden layer-
output layer) value function neural approximator with a set
of polynomial basis functions

ψ(x1, x2) =

{
x21

2
,

x22

2
, x1x2,

x21x2

2
,

x1x
2
2

2
,

x41

4
,

x42

4
,

x31

3
,

x32

3
,

x21x22

2
,

x41x42

4

}

(35)

where x1 and x2 denote the first and second components of x ,
respectively. Our initial weight vector is set to

ω0 =
[

2P11 2P22 P12 + P21 0 · · · 0
]⊤

where Pi j is the (i, j)th element of P . We fix the learning rate
at η = 10−4 and the forgetting factor γ = 0.95.

1) Unconstrained Scenario: We first test the unconstrained
scenario, where the cost function is

∑

‖Qx‖1 + u⊤Ru, with
Q = I2 and R = 0.5, and compare four initial policies
and value functions obtained through: 1) kernelized Lipschitz
learning with β = 0.1; 2) kernelized Lipschitz learning with
β = 0.001; 3) solving an algebraic Riccati equation and
ignoring the nonlinearity; and 4) randomly initializing with
small weights from a normal distribution with small variance
and zero mean as in [44], which is the most common initializer.
The comparison study results are shown in Fig. 1. We observe
that all the methods listed earlier work and result in stabiliz-
ing control policies that result in the state of the torsional
pendulum to converge to its equilibrium. Interestingly, both
the Lipschitz constant estimates result in similar trajectories,
implying that the SDPs (24) are not extremely sensitive to
the Lipschitz estimate. However, based on the J subplot that
shows the variation of

∑

x⊤Qx + u⊤Ru with time, there is a
slight improvement of performance in the β = 0.1 (continuous
red line) case compared to the β = 10−3 (blue dashed line)
case since the Lipschitz estimate in the former is closer to
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Fig. 2. Illustration of constrained-input value-iteration-based ADP with safe
initialization. The top plot shows the variation of ‖x‖ over time. The middle
plot demonstrates that input constraints are satisfied for all t , and the bottom
plot demonstrates that the initial control policy was close to the optimal, but
learning was necessary to change the weights to the optimal values.

the true Lipschitz constant. As expected, the cost incurred
by the control policy ignoring the nonlinearity (black dotted
line) is by far the worst since the control actions required
early on are of larger magnitude and the tracking performance
is severely compromised. Randomly selecting weights also
results in worse performance than our proposed method,
as the cost incurred is increased due to oscillatory behavior
in the states and poor tracking in the initial time frame.
Summarily, this experiment demonstrates the effectiveness of
the proposed approach and its robustness to Lipschitz estimate
conservatism.
In Fig. 2, we demonstrate the on-policy value iteration algo-

rithm with safe initialization. All initial conditions converge to
the origin using our proposed approach. In contrast, randomly
initializing a policy and value as is typical in on-policy value
iteration results in the states initially diverging (not shown in
the plot) and poor performance before the rank condition is
reached for determining a least-squares solution to update the
neural weights.

2) Constrained Scenario: We also test the scenario where
the control actions are constrained by |u| ≤ 1. In this case,
we use the cost functional defined in (32) with ū = 1, Q = I2,
and R = 0.5. We begin by solving (24) and (31) with ν = 1
and α = 0.95 to get P and K0, as in Section V-A1. We also
select the same basis functions (35). We randomly initialize
(using 20 random initial conditions) system (34) from within
the domain of attraction of the initial control policy, that is,
from within the set {x⊤Px ≤ 1}. We know from Theorem 7
that this ensures that the initial control policy will satisfy input
constraints. Consequently, because the policy improvement
step is also guaranteed to satisfy input constraints and the
initial policy is stabilizing, there are no constraint violations,
and the initialization is deemed safe. The performance of the
proposed algorithm is provided in Fig. 3. The convergence of
‖xt‖ to zero and the satisfaction of input bounds are illustrated.

Fig. 3. Illustration of constrained-input policy-iteration-based ADP with safe
initialization. The top plot shows the variation of ‖x‖ over time. The middle
plot demonstrates that input constraints are satisfied for all t , and the bottom
plot demonstrates that the initial control policy was close to the optimal, but
learning was necessary to change the weights to the optimal values.

TABLE II

MODEL PARAMETERS AND NOMINAL VALUES

Finally, we demonstrate the convergence of the neural weights
ωt , noting that learning did occur, that is, the weights were not
static throughout the simulation (which would indicate that the
initial policy was optimal).

B. Example 2: Excitation Control of Hydrogenerator

Developing excitation control systems without complete
model information is an important open challenge in smart
grids and multimachine power systems [57]. To this end,
we demonstrate the potential of our proposed framework on a
practical system: a 300-MW hydrogenerator in the Northeast-
ern China power grid. A complete description of the power
grid topology and its components is provided in [57]. A state-
space model of the hydrogenerator dynamics is given by

δ̇ = ω − ω0
H

ω0
ω̇ = Pm −

Vs

η1
Eq sin δ −

D

ω0
(ω − ω0)− Vs0 sin 2δ

Td0 Ėq = E f −

(

1+
xd − x ′d

η1

)

Eq +
xd − x ′d

η1
Vs cos δ

where Vs0 = V 2
s (xq − x ′d)/2η1η2, η1 = x ′d + xT + xL , and

η2 = xq + xT + xL . The equilibrium state of this model
is given by x∞ := [δ0, ω0, Eq0]

⊤ with the corresponding
equilibrium control u∞ := E f 0. All model parameter values
and equilibrium values are provided in Table II; physical
meanings of the parameters are discussed in [57].
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Fig. 4. Temporal variation of states (δ,ω, Eq) and control input (1E f ) for
Example 2.

Our objective is to design a constrained control action
u = E f , where |u − u∞| ≤ 10, such that the state of the
system is driven to the equilibrium state x∞ while minimizing
a quadratic cost function given by (x − x∞)

⊤Q(x − x∞) +

R(u − u∞)
2, with Q = diag[100, 10000, 100] and R = 1.

With Euler discretization and a sampling time of τ = 1 ms,
we get a discrete-time model of the form (1). We choose

x =





δ

ω

Eq



, A =





0 1 1
0 − 0.0034 2
0 0 − 0.2402





B =





0
0

0.0960





by fitting a linear model to N = 1000 data points generated
from the true system with small random control actions near
the equilibrium control; (A, B) is ensured to be a stabilizable
pair. Note that even though the residual model is not globally
Lipschitz, we can leverage the sampled data to compute a
local Lipschitz constant (in a neighborhood of x∞) of L̂φ =

0.9910 with 99% confidence using the KDE method. Using
this Lipschitz estimate, we solve (24) with α = 1 and ν = 1
for an initial value function x⊤Px and control policy estimate
K0x . The initial admissible control is computed to be

K0 = [−997.43 488.01 − 4999.97].

We randomly initialize the system from within 5% of the
equilibrium state; this is a considerably more difficult scenario
than that studied in [57] because we allow our initial angular
frequency to be different from ω0, which causes strong oscilla-
tory initial behavior and instability if the initial control policy
is constructed using small random neural network weights
instead of our proposed method. Furthermore, in our cases,
different to those studied before, the initial control policy is
constrained, making it even more challenging to stabilize the
power system.
We run the constrained policy iteration using a neural

approximator with basis functions involving polynomials of x

up to degree 4, with higher order polynomials having smaller

coefficient weights to ensure stable numerical conditioning.
A learning rate of 10−4 is chosen, and the simulation is run
for 50 s. We observe from Fig. 4, the proposed ADP method
works well, and the states converge to the equilibrium state
without control constraint violation despite severely oscillatory
dynamics until |ω − ω0| becomes small.

VI. CONCLUSION AND FUTURE WORK

This article provides a methodology for constructing
admissible initial control policies for ADP methods using
multiplier matrix learning by using KDE and semidefinite
programming for a class of nonlinear systems with uncer-
tain Lipschitz dynamics. Such admissible controllers enable
safe initialization, that is, with constraint satisfaction using
only historical data, which is necessary not only in policy
iteration methods but also in value iteration and Q-learning
for safely obtaining initial data online for on-policy learning
when the underlying system is not open-loop stable. Sim-
ulations on a discretized torsional pendulum model and a
high-dimensional linear system are provided to show the effi-
ciency of our approach. Future research efforts will focus on
more general costs and uncertain nonlinear safety constraints
while ensuring feasibility with a high probability in terms of
regret.
In addition, while we have not explicitly considered robust-

ness in the article, the robustness properties of optimal con-
trollers and ADP for nonlinear systems have been well studied
in the literature (see [6], [58], [59], and the references therein).
In addition, a robust initial control policy and a corresponding
robust constraint-admissible set can be constructed with mul-
tiplier matrix learning as discussed in this article via semidefi-
nite programming; we consign to find the optimal policy with
respect to a worst case disturbance (H∞ control or zero-sum
game) of this method to future work.
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