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Computer-based interactive items have become prevalent in recent educational assessments. In such
items, detailed human–computer interactive process, known as response process, is recorded in a log file.
The recorded response processes provide great opportunities to understand individuals’ problem solving
processes. However, difficulties exist in analyzing these data as they are high-dimensional sequences
in a nonstandard format. This paper aims at extracting useful information from response processes. In
particular, we consider an exploratory analysis that extracts latent variables from process data through
a multidimensional scaling framework. A dissimilarity measure is described to quantify the discrepancy
between two response processes. The proposed method is applied to both simulated data and real process
data from 14 PSTRE items in PIAAC 2012. A prediction procedure is used to examine the information
contained in the extracted latent variables. We find that the extracted latent variables preserve a substantial
amount of information in the process and have reasonable interpretability. We also empirically prove
that process data contains more information than classic binary item responses in terms of out-of-sample
prediction of many variables.

Key words: response process, log file analysis, PIAAC, multidimensional scaling.

1. Introduction

Computer-based problem-solving items have become prevalent in large-scale assessments.
These items are developed to measure skills related to problem solving in work and personal
life. Thanks to the human–computer interface, it is possible to record the entire problem-solving
process, as is the case of scientific inquiry items in the Programme for International Student
Assessment (PISA) and Problem Solving in Technology-Rich Environments (PSTRE) items in
the Programme for the International Assessment of Adult Competencies (PIAAC). The responses
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Figure 1.
Main page of the sample item.

of such items are complex and are often in the form of a process. More precisely, the record of
each item response contains a sequence of ordered and time-stamped actions.

An example of a PIAAC PSTRE item is shown in Figures 1, 2 and 3. Figure 1 displays the
main page of the item. The left panel of the main page provides item instructions. In this item,
respondents are asked to identify websites that do not require registration or a fee from those listed
in the web browser in the right panel. Respondents can visit a website by clicking its link. Figures
2 and 3 show the web pages of the first and the second links, respectively. Further information of
the second website can be found by clicking on the “Learn More” button shown in Figure 3. If a
website is considered useful, it can be bookmarked by either using the menu item “Bookmark” or
clicking the bookmark icon in the tool bar. Suppose that a respondent completes the task through
the following steps: click on the first link, read the first website, go back to the main page, click
on the second link, and bookmark the second website by clicking the bookmark icon. All these
actions are recorded in the log file in order. The sequence “Start, Click_W1, Back, Click_W2,
Toolbar_Bookmark, Next” constitutes a response process.

In this paper, we present a generic method to extract useful information regarding participants
from their response processes. Latent variable or latent classmodels have been used in the literature
to summarize item responses. Existing models and methods such as item response theory models
(Lord, 1980) and cognitive diagnosis models (Rupp, Templin, & Henson, 2010) are not directly
applicable to response processes. The analysis of process data is difficult for several reasons. First,
response processes are in a nonstandard format. A response process is a sequence of actions and
each action is a categorical variable. In addition, process length varies across individuals. Because
of the nonstandard format, classic models do not apply to process data. Second, computer-based
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Figure 2.
Website in the first link in Figure 1.

assessments and their log files cover a large variety of items. Many human–computer interfaces
generate log files that records detailed information of response processes. Thismakes confirmatory
analysis practically infeasible due to the large amount and variety of items. It is too expensive
to perform confirmatory analysis for each potential human–computer interface and then verify it
empirically. Furthermore, the cognitive process of human–computer interaction is not thoroughly
understood, which adds to the difficulty of confirmatory analysis. Lastly, response processes are
often very noisy. For instance, the lagged correlations of action occurrences are often very close to
zero, that is, response processes behave likewhite noise from an autoregressive process viewpoint.

Assessment of data beyond traditional responses has been studied previously. It has been
shown that item response time can reveal test-taker response behaviors that are helpful for test
design (Qian, Staniewska, Reckase, & Woo, 2016; van der Linden, 2008). Models have been
proposed to perform cognitive assessments using both traditional responses and response time
(Klein Entink, Fox, & van der Linden, 2009, Wang, Zhang, Douglas, & Culpepper, 2018, Zhan,
Jiao, & Liao, 2018). The study of process data is at a more preliminary stage. Most works such as
Greiff, Niepel, Scherer, andMartin (2016) andKroehne andGoldhammer (2018) first summarized
process data into several variables and then investigated their relationship with other variables of
interest using standard statistical methods. The design of these summary variables is usually item
specific and thus hard to generalize. He and von Davier (2015, 2016) explored the association
between action sequence patterns and traditional responses using n-grams.Although the procedure
of extracting n-gram features is generic, nontrivial preprocessing steps are needed to enhance the
interpretability of the selected n-grams.

The objective of the present analysis is to perform exploratory analysis on process data.
In particular, we propose a generic method to extract features (latent variables) from response
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Figure 3.
Website in the second link in Figure 1.

processes. The proposed method does not rely on prior knowledge of the items or the response
processes and is applicable essentially to all process responses. We apply it to all 14 PIAAC
PSTRE items that cover a range of human–computer interfaces.

The basic technique of our proposed method is multidimensional scaling (Borg & Groenen,
2005). It constructs features based on the relative differences among individuals. Though numer-
ous variants of multidimensional scaling (MDS) exist, their common goal is to locate objects in a
vector space according to their pairwise dissimilarities in such a way that similar objects are close
together, while less similar objects are far apart. MDS has been used for data visualization and
dimension reduction in cognitive diagnosis, test analysis, and many other areas of psychometrics
(Karni & Levin, 1972; Meyer & Reynolds, 2018; Shoben, 1983; Skager, Schultz, & Klein, 1966;
Subkoviak, 1975). In the context of process data analysis, if the differences between two processes
can be properly summarized by a dissimilarity measure, then the coordinates obtained fromMDS
can be treated as features storing information of the original processes. With a proper rotation,
each feature describes the variation of certain ability or behavior pattern among the group of
respondents.

We use a prediction procedure to demonstrate that response processes contain more infor-
mation than traditional item responses. We denote the features extracted from response processes
by θ . For each response process, there is a binary response, denoted by r , indicating whether the
respondent has successfully accomplished the task. To compare the information contained in θ and
r , we adopt a third variable, denoted by y (such as numeracy score, literacy score, etc.), and inspect
the prediction of y based on r and that based on θ . In the empirical analysis of PSTRE in PIAAC,
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we find that the prediction based on θ outperforms that based on r for a wide range of y variables
including assessment scores, basic demographic variables, and some background variables.

The rest of this paper is organized as follows. In Section 2, we introduce a dissimilarity
measure for action sequences and describe the proposed feature extraction procedure.A simulation
study is presented in Section 3 to demonstrate the procedure and how the latent structure of action
sequences is reflected in extracted features. In Section 4, we show through a case study of PIAAC
PSTRE item response processes that features extracted from process data contain much richer
information than binary responses. Section 5 contains some concluding remarks.

2. Feature Extraction via Multidimensional Scaling

Consider a problem-solving item in which a student takes a number of actions to complete a
task. We use A = {a1, . . . , aN } to denote the set of possible actions of this item where N is the
number of distinct actions. A response process is a sequence of actions s = (s1, . . . , sL) where
each si is an action in A and L is the process length, i.e., the number of actions taken in the
response process. An action in A may appear multiple times or never appear in s. We observed
the response processes of n students and use subscript to index different observations: s1, . . . , sn .
The process length also varies among individuals; we use Li to denote the length of si . The
heterogeneous length of response processes for the same item is one of the technical difficulties
in process data analysis. In what follows, we describe a procedure that transforms the response
processes with heterogeneous length to homogeneous-dimension latent vectors that may be used
for standard analysis.

The core of the procedure is MDS, which has been widely used as a data visualization and
dimension reduction tool in many fields including psychometrics (Takane, 2006). The goal of
MDS is to locate objects in a vector space according to their pairwise dissimilarities in such a
way that similar objects are close together, while dissimilar objects are far apart. We begin the
discussion with a description of a dissimilarity measure between discrete action sequences. This
measure is key to the subsequent application of multidimensional scaling, and it summarizes the
variation among response processes. An appropriate dissimilarity measure should accommodate
three characteristics of response processes. First, process data are a collection of discrete pro-
cesses on which arithmetic calculation cannot be performed. Second, processes from different
respondents are of very different lengths. Third, the order of actions matters. Although the order
of actions may not affect the final outcome of the task, it can reflect respondents’ problem solving
strategies and other useful information.

Based on these considerations, we adopt the following dissimilarity measure that was first
proposed in Gómez-Alonso and Valls (2008). Let si = (si1, . . . , si Li ) and s j = (s j1, . . . , s j L j )

be two action sequences. Define the dissimilarity between si and s j as

d(si , s j ) = f (si , s j ) + g(si , s j )

Li + L j
, (1)

where f (si , s j ) quantifies the dissimilarity among the actions that appear in both si and s j and
g(si , s j ) is the count of actions appearing in only one of si and s j .

We now provide the precise definition of f and g. For an action a ∈ A, let sa be a sequence
consisting of chronologically ordered positions of a in sequence s. The length of sa , La , is the
number of times that a appears in s. We use sa(k) to denote the kth element of sa , namely the
position of the kth appearance of a in s. For two sequences si and s j , let Ci j denote the set of
actions that appear in both si and s j and Ui j denote the set of actions that appear in si but not in
s j . Then, f (si , s j ) and g(si , s j ) are defined as
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f (si , s j ) =
∑

a∈Ci j

∑K a
i j

k=1 |sa
i (k) − sa

j (k)|
max{Li , L j } , (2)

and
g(si , s j ) =

∑

a∈Ui j

La
i +

∑

a∈U ji

La
j , (3)

where K a
i j = min(La

i , La
j ).

We use a simple example to demonstrate how the dissimilarity is calculated. Consider a
set of four possible actions A = {X, Y, Z , W } and two sequences, s1 = (X, Y, X, Y, Z) and
s2 = (W, X, Y, W ). Since X and Y appear in both sequences, C12 = {X, Y }. Action X appears in
s1 at positions 1 and 3 and appears in s2 in position 2, so sX

1 = (1, 3) and sX
2 = (2). The difference

between s1 and s2 in the appearance of X is |1 − 2| = 1. Similarly, we can find sY
1 = (2, 4),

sY
2 = (3) and the difference in the appearance of Y is |2 − 3| = 1. Therefore, f (s1, s2) =

(|1− 2| + |2− 3|)/5 = 0.4. Since U21 = {W } and U12 = {Z} with W appearing twice in s2 and
Z appearing once in s1, g(s1, s2) = 2+1 = 3. According to (1), d(s1, s2) = (0.4+3)/9 = 0.38.

The calculation of the dissimilarity described in (1) does not require inputs of informative
behavior patterns or themeaning of each action. This is crucial for our automated feature extraction
procedure at the exploratory stage of the analysis.

For action sequences s1, . . . , sn , let an n × n symmetric matrix D = (di j ) denote their
dissimilarity matrix, where di j = d(si , s j ) measures the dissimilarity between si and s j , i, j =
1, . . . , n. Higher dissimilarities indicate larger differences and the dissimilarity between two
identical objects is zero, namely dii = 0 for i = 1, . . . , n. MDS maps each action sequence to a
latent vector x in the K -dimensional Euclidean spaceRK such that they govern the dissimilarities.
Mathematically, applying MDS to objects with dissimilarity matrix D essentially minimizes

∑

i< j

(
di j − ‖xi − x j‖

)2 (4)

with respect to X = (x1, . . . , xn)T , where xi ∈ R
K is the latent vector of si inRK and ‖xi −x j‖ =√

(xi − x j )T (xi − x j ). Many algorithms have been proposed to solve the optimization problem.
For simplicity, we use stochastic gradient descent (Robbins & Monro, 1951) to minimize (4).

Combining the calculation of the dissimilarity matrix and MDS, we present the feature
extraction procedure for process data.

Procedure 1. (Feature extraction for process data)

1. Compute the dissimilarity matrix D of n action sequences s1, s2, . . . , sn by calculating
the pairwise dissimilarities di j , 1 ≤ i, j ≤ n according to (1)–(3).

2. Obtain K raw features x̃1, . . . , x̃K by minimizing (4).
3. Obtain K principal features x1, . . . , xK by performing principal component analysis

(PCA) on the K raw features.

Procedure 1 extracts features with homogeneous dimension from action sequences with
heterogeneous length. These features have a standard form and, as we will show in the simulation
and case study, contain compressed information of the original sequences. Therefore, they can
be easily incorporated as a surrogate of the action sequences in well-developed statistical models
such as (generalized) linear models to study how process data reflect respondents’ latent traits and
how it is related to other quantities of interest. We will demonstrate how these can be achieved in
the next two sections.
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Principal component analysis is performed in Step 3 of Procedure 1mainly for seeking feature
interpretations. As we will show in the case study, the first several principal features usually have
clear interpretations, although the feature extraction procedure does not take into account the
meaning of actions.

Procedure 1 requires the specification of K , the number of features to be extracted. If K is
too small, there are not enough features to characterize the variation of action sequences, leading
to substantial information loss in extracted features. On the other hand, if K is too large, some
features can be redundant and can cause overfitting and instability in subsequent analyses. A
suitable K can be chosen by m-fold cross-validation. We randomly split the n(n − 1)/2 pair-
wise dissimilarities into m disjoint subsets. For each candidate value of K and each subset of
dissimilarities, we perform MDS using the rest of dissimilarities and calculating the discrepancy
between the estimated and true dissimilarities for the subset. The value of K that produces the
smallest total discrepancy among m subsets is chosen as the number of features to be extracted.
This cross-validation procedure is summarized in Procedure 2.

We conclude this section with a remark on the random split in Step 2 of Procedure 2. To
guarantee that the validation loss V (K ) is computable, each�(−q) must include at least one index
pair involving i for i = 1, . . . , n. A random split of � can violate this requirement but with only
a slim chance if n is moderately large. For implementation, one can check the requirement after
generating a random split. If it is violated, simply repeat the generation and checking steps until
an appropriate split is obtained.

Procedure 2. (Choose K by cross-validation)

1. Randomly split � = {(i, j): i < j; i, j = 1, . . . , n} into m disjoint subsets
�1,�2, . . . , �m.

2. For each candidate value of K and each q in {1, 2, . . . , m}, obtain x(K ,q)
i , i = 1, . . . , n,

by minimizing
∑

(i, j)∈�(−q)

(
di j − ‖xi − x j‖

)2

with respect to x1, . . . , xn, where �(−q) = �\�q .
3. For each candidate value of K , calculate

V (K ) =
m∑

q=1

∑

(i, j)∈�q

(
di j − ‖x(K ,q)

i − x(K ,q)
j ‖

)2
.

4. Choose K that produces the smallest V (K ).

3. Simulations

In this section, we demonstrate the proposed feature extraction procedure on simulated data.

3.1. Data Generation

Twenty-six possible actions (N = 26) are considered in our simulations. Each possible action
is denoted by an upper-case English letter, namelyA = {A, B, . . . ,Z} with a1 = A and aN = Z.
We use A and Z to denote the start and the end of an item. As a result, each action sequence starts
with A and ends with Z.
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The action sequences used in this section are generated from a Markov model, which is
characterized by a probability transition matrix P = (pi j )1≤i, j≤N , whose element in the i th row
and j th column is the probability that the next action is a j given the current action is ai , i.e.,
P(st+1 = a j | st = ai ) = pi j . Because of the special roles of A and Z, the first element in each
row of P is zero and all the elements in the last row except for the last one are zeros. Therefore,
the Markov model for generating action sequences is determined by the (N − 1) × (N − 1)
submatrix in the upper right corner of P. We call this submatrix the core matrix of P and denote
it by P̃. The probability transition matrices used in our simulation study are randomly generated.
The way in which they are generated will be explained in detail in the experiment settings. Given
a probability transition matrix P, we generate an action sequence by starting fromA and sampling
the subsequent actions according to P until Z appears.

3.2. Experiment Settings

We consider two strategies for generating action sequences. With strategy I, a set of n action
sequences are generated from the previous Markov model under two different transition matrices,
n/2 sequences for each matrix. Action sequences generated from this strategy have a latent group
structure. Sequences generated from the same transitionmatrix form a group and tend to be similar.
The two probability transition matrices, P(1) and P(2), are randomly generated. More specifically,
P(g) is generated by first constructing an (N − 1) × (N − 1) matrices U(g) = (u(g)

i j )1≤i, j≤N−1

for g = 1, 2. The elements of U(g) are generated independently from a uniform distribution on
interval [− 10, 10]. Then, P̃(g) = ( p̃(g)

i j )1≤i, j≤N−1, the core matrix of P(g), is computed fromU(g)

by

p̃(g)
i j = exp(u(g)

i j )
∑N−1

l=1 exp(u(g)
il )

. (5)

In strategy II, each of n action sequences is generated from a unique probability transition matrix.
To construct these matrices, we first obtain a uniform matrix U as in strategy I. Then, we draw n
independent samples, θ

(1)
0 , . . . , θ

(n)
0 , from N (0, 4) and compute the core matrix P̃(i) for the i th

sequence according to

p̃(i)
jk = exp(θ(i)

0 u jk)
∑N−1

l=1 exp(θ(i)
0 u jl)

. (6)

With this strategy, sequences with similar θ0 resemble each other. In other words, θ0 serves as a
continuous latent variable determining the characteristics of the sequences.

We consider three choices of n, 200, 500, and 1000. For each strategy and each choice of
n, we generate 100 sets of action sequences and extract features according to Procedure 1. The
number of features to be extracted is chosen by fivefold cross-validation described in Procedure
2.

To show that extracted features retain the information in action sequences, we derive several
variables from action sequences for each dataset and examine howwell these derived variables can
be predicted from the extracted features. Good prediction performances indicate that a significant
amount of information in action sequences is preserved in extracted features. The derived variables
are indicators describing whether an action or an action pair appears in a sequence. We say an
action pair (ai , a j ) appears in a sequence if both actions appear in the sequence and action a j is
immediately after action ai . For example, in sequence “A, B, D, Z”, both action B and action pair
(B, D) appear. Although both B and Z appear and Z appears later than B, they are not contiguous
in the sequence. Therefore, action pair (B, Z) does not appear in the sequence. We do not consider
indicators for actions and action pairs that appears fewer than 0.05n times or more than 0.95n
times in a dataset. Logistic regression is used to predict the derived variables from extracted
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Figure 4.
Simulation results for datasets generated from strategy I.

features. For each data set, n sequences are split into training and test sets in the ratio of 4:1.
A logistic regression model is estimated for each derived variable on the training set, and its
prediction performance is evaluated on the test set. The average prediction accuracy and the worst
prediction accuracy among all the derived variables are recorded for each dataset.

To inspect the ability of the extracted features in unveiling the latent structures in action
sequences, we build a logistic regression model to identify the group structure from the extracted
features for datasets generated from strategy I and a linear regression model of θ0 on the extracted
features for datasets generated from strategy II. The models are fitted on the training set. The
logistic model of group identity is evaluated by the prediction accuracy on the test set, while
the linear regression model of θ0 is evaluated by out-of-sample R2 (OSR2), the square of the
correlation between the predicted and true values. As an analogy to the in-sample R2 in linear
regression, a higher OSR2 indicates a better prediction performance.

3.3. Results

Figures 4 and 5 display the results for datasets generated by strategies I and II, respectively.
The left and middle panels of both figures present the average and worst prediction accuracy for
derived variables. Under all the settings, for almost all datasets, the averaged prediction accuracy
is greater than 0.9 and the worst prediction accuracy is greater than 0.7. These results demonstrate
that the derived variables can be predicted well and imply that a significant amount of information
in action sequences is compressed into the extracted features.

The right panel of Figure 4 presents the prediction accuracy for group identity. For most of
the datasets, the prediction accuracy is higher than 0.9, indicating that group structures in action
sequences can be identified very accurately by extracted features. The right panel of Figure 5 gives
the OSR2 for predicting θ0. It reflects that continuous latent characteristics in action sequences can
be captured well by features extracted from Procedure 1 as the correlation between the predicted
and true values is higher than 0.8 for most of the datasets.

To take a closer look at how the extracted features reveal the latent structure of action
sequences, in Figure 6, we plot the first two principal features for one dataset of 1000 sequences
under each strategy. For the dataset generated from strategy I (left panel of Figure 6), the group
structure is clearly shown in the figure and the two groups can be roughly separated by a horizontal
line at zero. The data shown in the right panel of Figure 6 are generated from strategy II. It is
evident that sequences located closer have similar latent characteristics.

Author's personal copy



PSYCHOMETRIKA

Figure 5.
Simulation results for datasets generated from strategy II.

Figure 6.
First two principal features for one dataset with 1000 sequences generated from strategy I (left) or strategy II (right). The
data points in the right panel are colored according to the value of the latent variable θ0.

4. Case Study

4.1. Data

The data considered in this study come from the PIAAC 2012 survey from five countries:
the UK, Ireland, Japan, the Netherlands, and the USA. There are 14 PSTRE items and 11,464
respondents in the dataset in total. Each person responded to all or a subset of the 14 items. There
are 7620 respondents who answered 7 items and 3645 respondents who answered all 14 items. For
each item, there were around 7500 respondents. Altogether there are 106,096 respondent–item
pairs. Both the response process and the response outcome (correct or incorrect) were recorded
for each pair.

Table 1 summarizes some basic descriptive statistics of the dataset by item, where n denotes
the number of respondents, N is the number of possible actions, L̄ stands for the average process
length, and Correct% is the percentage of correct responses. For items with partial credits, we
treat the responses with full credits as correct and all other responses as incorrect. The 14 items
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Table 1.
Descriptive statistics of 14 PIAAC problem-solving items.

ID Description n N L̄ Correct%

U01a Party Invitations—Can/Cannot Come 7620 207 24.8 54.5
U01b Party Invitations—Accommodations 7670 249 52.9 49.3
U02 Meeting Rooms 7537 328 54.1 12.8
U03a CD Tally 7613 280 13.7 37.9
U04a Class Attendance 7617 986 44.3 11.9
U06a Sprained Ankle—Site Evaluation Table 7622 47 10.8 26.4
U06b Sprained Ankle—Reliable/Trustworthy Site 7612 98 16.0 52.3
U07 Digital Photography Book Purchase 7549 125 18.6 46.0
U11b Locate E-mail—File 3 E-mails 7528 236 30.9 20.1
U16 Reply All 7531 257 96.9 57.0
U19a Club Membership—Member ID 7556 373 26.9 69.4
U19b Club Membership—Eligibility for Club President 7558 458 21.3 46.3
U21 Tickets 7606 252 23.4 38.2
U23 Lamp Return 7540 303 28.6 34.3

n, number of respondents; N , number of possible actions; L̄ , average process length; Correct%, percentage
of correct responses.

vary in content, task complexity, and difficulty. Items U02 and U04a are the most difficult items
as only around 10% of respondents had the correct answer. The tasks of these two items are also
relatively complicated, requiring more than 40 actions on average and having a large number of
possible actions. U06a is the simplest item in terms of task complexity since respondents took only
10.8 actions on average to finish the task and the item has the fewest possible actions. Despite the
simplicity, less than30%of respondents answeredU06a correctly. Thevariety of itemsnecessitates
automatic methods to extract features from process data and to avoid identifying important actions
and patterns manually, which is time-consuming and requires extra work if coding is changed.

4.2. Feature Interpretation

We extracted features for each of the 14 items by Procedure 1. The number of features is
chosen from {10, 20, . . . , 100} by fivefold cross-validation, and the selected number for each item
is given in the second column of Table 2.

Many of the principal features, especially the first several ones, have clear interpretations.
We find the interpretation of a feature by examining the characteristics of the action sequences
corresponding to the two extremes of the feature and then confirm it by calculating the correlation
between the feature and a variable constructed according to the interpretation. Table 2 lists the
interpretation of the first three principal features for each item.

The first principal feature of each item usually indicates attentiveness. An inattentive respon-
dent often tries to skip a task directly or submits an answer by guessing randomly without mean-
ingful interactions with the simulated environment, while an attentive respondent usually tries
to understand and to complete the task by exploring the environment, thus taking more actions.
Attentiveness in response process can be reflected in the process length. In Table 2, the numbers in
the parentheses after the interpretation of the first principal feature of each item give the absolute
value of the correlation between the first principal feature and the logarithm of the process length.
For 13 out of 14 items, the absolute correlation is higher than 0.85. To explore the relation between
the 14 first principal features, we multiply the features by the sign of their correlation with the
corresponding process length. With the redirection, a higher first principal feature indicates a
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Table 2.
Interpretation of first three principal features.

Item K Feature Interpretation

U01a 50 1 Attentiveness in item response process (0.68)
2 Intensity of mail and folder viewing actions
3 Intensity of mail moving actions

U01b 30 1 Attentiveness in item response process (0.96)
2 Intensity of creating new folders actions
3 Intensity of mail moving actions

U02 50 1 Attentiveness in item response process (0.94)
2 Intensity of mail moving actions
3 Intensity of mail viewing actions

U03a 70 1 Attentiveness in item response process (0.86)
2 Intensity of search and sort actions
3 Times of answer submission

U04a 70 1 Attentiveness in item response process (0.98)
2 Intensity of switching environments
3 Intensity of arranging tables actions

U06a 60 1 Attentiveness in item response process (0.91)
2 Intensity of clicking radio buttons
3 Chance of classifying a website as useful

U06b 20 1 Attentiveness in item response process (0.94)
2 Intensity of selecting answers
3 Intensity of choosing website 2 against choosing website 4

U07 100 1 Attentiveness in item response process (0.96)
2 Intensity of actions related to website 6
3 Intensity of actions related to website 3

U11b 40 1 Attentiveness in item response process (0.94)
2 Intensity of actions related to email in save folder
3 Intensity of mail moving actions

U16 70 1 Attentiveness in item response process (0.95)
2 Intensity of “Other_Keypress”
3 Intensity of email viewing against email replying

U19a 40 1 Attentiveness in item response process (0.91)
2 Intensity of typing emails
3 Intensity of ticking and clicking email environment button

U19b 50 1 Attentiveness in item response process (0.89)
2 Intensity of sorting actions
3 Number of checked boxes

U21 50 1 Attentiveness in item response process (0.92)
2 Intensity of making reservations
3 Number of games selected

U23 40 1 Attentiveness in item response process (0.87)
2 Click customer service against clicking not needed links
3 Obtain Authorization number or not

Number in parentheses represents absolute value of correlation between first principal feature and logarithm
of sequence length.

more attentive respondent. For a given pair of items, we calculate the correlation between their
first principal features among the respondents who responded to both items. These correlations
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range from 0.36 to 0.74, implying that the respondents who tend to skip one item are likely to
skip other items as well.

Some other features reveal whether the respondent understands the requirements of items.
For example, item U11b requires respondents to classify emails in the “Save” folder. The second
feature of U11b reflects if a respondent was working on the correct folder. Similarly, item U01b
requires creating a new folder. The second feature of this item is related towhether this requirement
is followed.

There are also features related to respondents’ information and computer technology skills.
Examples include the second feature of U03a, indicating whether search or sort tools are used, and
the second feature of U04a, reflecting whether window split is used to avoid frequent switching
between windows.

4.3. Reconstruction of Derived Variables

In this subsection, we demonstrate that the extracted features contain a substantial amount
of information of the action sequences by showing that some key variables derived directly from
the action sequences can be accurately reconstructed from the features.

Derived variables are binary variables indicating whether certain actions or patterns appear
in the action sequences. For the example item described in the introduction, whether the first link
is clicked is a derived variable. Item response outcomes (correct or incorrect) can also be treated
as derived variables since they are entirely determined by the action sequences. In PIAAC data,
besides the item response outcomes, 79 derived variables are recorded for the 14 items. These
variables were derived during the item development process for each item to better track whether
the test takers follow the pre-defined strategies. For instance, in the email-related environment
(e.g., U01a), a binary variable is defined for each email to indicate whether the respondent opened
the email. The following experiment examines how well the 93 (79 + 14) derived variables
can be reconstructed from the features extracted from Procedure 1 by predicting the derived
variables from the extracted features. A higher prediction accuracy indicates the variable can be
reconstructed accurately.

For a given item, let Y denote a generic binary derived variable and x be a vector of principal
features extracted from its response process. We consider the logistic regression model for each
derived variable

log

(
p

1 − p

)

= ηT β, (7)

where p is the probability of Y = 1 and ηT = (1, xT ). For each derived variable, the respondents
with the variable are randomly divided into a training set and test set in the ratio 4:1. The logistic
regression model (7) is fit on the training set, and the value of derived variable in the test set
is predicted as 1 if the fitted probability is greater than 0.5, and 0 otherwise. The prediction
performance is evaluated by prediction accuracy.

Figure 7 presents a histogram of the prediction accuracy for the 93 derived variables. Formost
of the variables, the model constructed from the extracted features has more than 90% accuracy.
This result confirms that the feature extracted by Procedure 1 is a comprehensive summary of the
response processes.

Given that the features contain information about action sequences, a natural question is
whether these features are useful for assessing respondents’ competency and understanding their
behavior. We will try to answer this question in the remainder of this section.

4.4. Cross-Item Outcome Prediction

In this section, we explore if the features obtained from the process data of one item are
helpful to predict the outcomes of another item. Intuitively, if the extracted features characterize
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Figure 7.
Histogram of the prediction accuracy of derived variables.

the behavioral patterns and/or intellectual levels of respondents, which affect their performance in
general, then these features should be able to tell more about whether the respondents can answer
other items correctly than a single binary outcome.

Let Y j denote the outcome of item j and x j ∈ R
K j denote the features extracted from item

j , j = 1, . . . , 14. We model the relation between the outcome of item j and the outcome and the
features of item j ′ �= j by a logistic regression

log

(
p j

1 − p j

)

= ηT
j ′β, (8)

where p j is the probability of Y j = 1 and η j ′ is a vector of covariates of item j ′. If process data
are not taken into account, only Y j ′ provides information about Y j and ηT

j ′ = (1, Y j ′). In this case,
available information for telling the outcome of item j is very limited, especially when the correct
rate of item j ′ is close to 0 or 1. If process data are collected, then the features extracted according
to Procedure 1 provide another source of information and we could use ηT

j ′ = (1, Y j ′ , xT
j ′ , Y j ′xT

j ′)

as the covariates from item j ′. Note that the interaction term Y j ′xT
j ′ is included to increase the

flexibility of the model. We call a model the baseline model if it only incorporates the outcome
in η j ′ and the process model if it utilizes the features extracted from process data.

Given that we want to model the outcome of item j based on the information provided in
item j ′, respondents who responded to both items are randomly split into training, validation, and
test sets in the ratio 4:1:1. Both the baseline model and the process model are fit on the training
set. To avoid overfitting in the process model, L2 penalties on the coefficients are incorporated.
The process model is fitted on the training set for a grid of penalty parameters. The fitted process
model that corresponds to the penalty parameter producing the highest prediction accuracy on
the validation set is chosen to compare with the baseline model. The prediction accuracy of the
process model for all combinations of j and j ′ is plotted against that of the corresponding baseline
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Figure 8.
Left: Prediction accuracy of the process model against the baseline model; middle: prediction accuracy of the process
model against the baseline model for respondents who answered the predictor item correctly; right: prediction accuracy
of the process model against the baseline model for respondents who answered the predictor item incorrectly.

model in the left panel of Figure 8. For most of the item pairs, the prediction accuracy is improved
when the features extracted from process data are utilized, implying that the information in the
process data is helpful in predicting the performance of respondents.

To take a closer look at the results, the middle and right panels of Figure 8 compare prediction
accuracy separately for those who answered item j ′ correctly and incorrectly. The improvement in
prediction accuracy is more obvious for the “incorrect” group. The main reason is that the action
sequences corresponding to the incorrect responses usually provide more information about the
respondents. There are usually more ways to answer a question incorrectly than correctly. An
incorrect response may be the consequence of misunderstanding the item requirements or lack
of basic computer skills. It may also result from the respondents’ carelessness or inattentiveness.
These varieties are reflected in the response processes, and thus, in the extracted features. As an
illustration, the histograms of the first principal feature of itemU01a stratified by the respondents’
outcomes of U01a and U01b are plotted in Figure 9. In the U01a incorrect group, there is a
significant difference in the feature distributions for those who answered U01b correctly and
incorrectly, while the two distributions are almost identical in the U01a correct group. Recall
that the first principal feature describes the respondents’ attentiveness. Among the respondents
who answer U01a incorrectly, those with lower feature values lack attentiveness. By including
the features in the model, we are able to identify them and know that they are unlikely to answer
U01b and other items correctly.

4.5. Score Prediction

The 14 interactive items in PIAACwere designed to study the PSTRE skills. The respondents’
competency in literacy and numeracy were measured using items designed specifically for these
two scales. We will show in this subsection that the process data from problem-solving items can
cast light on respondents’ proficiency in other scales. Let Z denote the score of a specific scale.
We consider a linear model to explore the relation between Z and problem-solving items

Z = ηT β + ε, (9)

where ε is a Gaussian random noise and η is a vector of predictors related to one or more problem-
solving items and will be specified later.
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Figure 9.
Histograms of the first principal feature of U01a stratified by the outcomes of U01a and U01b.

4.5.1. Score Prediction Using a Single Item In the first experiment, we model the scores based
on the information provided in a single item. In the model that only incorporates the binary
outcome, namely the baseline model, the linear predictor is ηT = (1, Y j ). In the process model,
we use ηT = (1, Y j , xT

j , Y j xT
j ). For each of the 14 problem-solving items, the respondents are

randomly split into training, validation, and test sets in the ratio 4:1:1. Both the baseline and
the process model are fitted on the training set for literacy and numeracy scores separately. To
avoid overfitting, L2 penalties are placed on the coefficients in the process model for a grid of
penalty parameters. The penalty parameter that produces the best prediction performance on the
validation set is selected to obtain the final estimated process model. The prediction performance
is evaluated by OSR2.

The left panel of Figure 10 presents the OSR2 of the baseline model and the process model for
all combinations of score and item. For both literacy and numeracy scores, including information
from process data is beneficial to score prediction. Although the problem-solving items are not
designed to measure numeracy and literacy in PIAAC, process data can provide information
leading to substantial improvements in these two scales.

The right panel of Figure 10 presents OSR2 of the process model stratified by the outcome of
an item. Similar to the outcome prediction in the previous subsection, the prediction performance
for the respondents who answered an item incorrectly is usually much better than that for those
who answered correctly since action sequences corresponding to incorrect answers often have
more information than those corresponding to correct answers.

4.5.2. Score Prediction Using Multiple Items In the second experiment, we will examine how
the improvement in score prediction brought by process data changes as the number of the items
incorporated in the analysis increases. We only consider the 3645 respondents who responded to
all 14 problem-solving items in this experiment. Among these respondents, 2645 are randomly
assigned to the training set, 500 to the validation set and 500 to the test set. For each score, two
models, a baseline model and a process model, are considered for a given set of items. For the
baseline model, the linear predictor consists of the binary outcomes of the available items. For
the process model, in addition to the binary outcomes, the linear predictor includes the first 20
principal features for each available item. Let Sm = { j1, . . . , jm} be a set containing the indices of
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Figure 10.
Left: OSR2 of the baseline and process model on the test set. Right: OSR2 of the process model stratified by outcomes.

the items to be incorporated, where m denotes the number of indices in the set and ranges from 1
to 14 in our analysis. Then, the linear predictor for the baseline model is ηT = (1, Y j1 , . . . , Y jm ),
while the linear predictor of the process model is ηT = (1, Y j1 , . . . , Y jm , x j1 , . . . , x jm ) where
x j ∈ R

20 is the first 20 principal features for item j . The set of available items is determined
by forward Akaike information criterion (AIC) selection of the outcomes on the training set.
Specifically, for a given m, Sm contains the items whose outcomes are the first m outcomes
selected by the forward AIC selection among all 14 outcomes Y1, . . . , Y14. For a given score,
a sequence of baseline models and the process models are fitted on the training set. Similar to
the previous subsection, L2 penalty is added on the coefficients of the process models to avoid
overfitting, and the penalty parameter is selected based on the OSR2 on the validation set.

Figure 11 presents the OSR2 of the baseline model and the selected process model on the
test set. Regardless of the number of items available, the process model outperforms the baseline
model in both literacy and numeracy score prediction. The improvement is more significant for
literacy. The OSR2 of the process model with only five items is comparable to the OSR2 of the
baselinemodelwith all 14 items. In the process of completing the task in the problem-solving item,
respondents need to comprehend the item description and provided materials, so the outcomes
and the action sequences of problem-solving items can reflect respondents’ literacy competency
to some extent. Our experiment shows that process data can provide more information than binary
outcomes. Properly incorporating process data in data analysis can exploit the information from
items more efficiently.

5. Concluding Remarks

In this article, we present a method to extract informative latent variables from process data
and illustrate the method via simulation studies and a case study of PIAAC 2012 data. The latent
variables in the process data are extracted by an automatic procedure involving MDS of the
dissimilarity matrix among response processes. The dissimilarity measure used in this article
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Figure 11.
OSR2 of the baseline and process model with various number of items.

is just one of the possible choices. Other choices such as Levenshtein distance (Levenshtein,
1966) and optimal symbol alignment distance (Herranz, Nin, & Sole, 2011) can also be used,
and similar observations can be made as shown in “Appendix.” However, these measures are
often more computationally demanding. The Levenshtein distance between two sequences can be
computed by dynamic programming with time complexity O(L1L2), where L1 and L2 denote
the lengths of the two sequences. The time complexity for calculating the dissimilarity measure
used in this article is O(L1 + L2). Another thing to be noted is that both the Levenshtein distance
and the symbol alignment distance are genuine distance, whereas the dissimilarity used in this
article is not since it does not satisfy the triangle inequality.

The proposed feature extraction method together with the prediction procedure in this article
can be used to study the relationship between response processes and other variables of interest.
For example, the respondents of our process data came from five different countries and they
varied in age, gender, and many other demographic variables. We can study the difference among
demographic groups in problem solving strategies. These results will help us identify the reasons
for poor performance in different groups so that tailored suggestions can be provided for perfor-
mance improvement. Another potential application is to provide career suggestions. If extracted
features can accurately predict the level of various job-related skills, then we can make recom-
mendations on suitable jobs by comparing the skill profile obtained from the response processes
and the skill requirement for different jobs.

There are at least two directions along which the current method can be generalized to
incorporate more information of response processes. In the current dissimilarity measure, two
actions are either the same or not. Sometimes more delicate information about actions such as an
N × N matrix of action similarity is available. How to incorporate such information in measuring
the discrepancy between response processes needs further exploration. In this article, we only
consider the action sequences in response processes. In many cases, time stamps of actions are
also available in process data. The time elapsed between two consecutive actions may provide
additional information about respondents and can be useful in cognitive assessments. Generalizing
the current dissimilarity measure to incorporate response time or reaction time in the analysis of
process data is another future direction.
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The proposed method is implemented in R package ProcData available at http://
scientifichpc.com/processdata/procdata.html. The code for producing the simulation study is
included in the online supplementary materials.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Appendix

To compare the prediction performance of features extracted fromdifferent dissimilaritymeasures,
we compute the Levenshtein distance matrix of the action sequences for each item and extracted
features using Procedure 1 with the number of features K chosen by fivefold cross-validation.
With these newly extracted features, we repeat the experiment of score prediction using multiple
items (Section 4.5.2). All the settings are the same as before. A comparison of the prediction
performance with the results in the main text is presented in Figure 12. Although the OSR2 for
the Levenshtein distance features is lower than that for the features extracted previously, it is still
higher than that from the baseline model and the general trend of OSR2 as the number of items
increases is similar.

Figure 12.
Comparison of score prediction for features extracted based on different dissimilarity measures. “OSS” and “L” stand for
the measure used in the main text and the Levenshtein distance, respectively.
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