
1

Same Stats, Different Graphs: Exploring the
Space of Graphs in Terms of Graph Properties

Hang Chen, Utkarsh Soni, Yafeng Lu, Vahan Huroyan, Ross Maciejewski, Stephen Kobourov

Abstract—Data analysts commonly utilize statistics to summarize large datasets. While it is often sufficient to explore only the
summary statistics of a dataset (e.g., min/mean/max), Anscombe’s Quartet demonstrates how such statistics can be misleading. We
consider a similar problem in the context of graph mining. To study the relationships between different graph properties, we examine
low-order non-isomorphic graphs and provide a simple visual analytics system to explore correlations across multiple graph properties.
However, for larger graphs, studying the entire space quickly becomes intractable. We use different random graph generation methods
to further look into the distribution of graph properties for higher order graphs and investigate the impact of various sampling
methodologies. We also describe a method for generating many graphs that are identical over a number of graph properties and
statistics yet are clearly different and identifiably distinct.

Index Terms—Graph mining, graph properties, graph generators

✦

1 INTRODUCTION

S TATISTICS are often used to summarize a large dataset. In
a way, one hopes to find the “most important” statistics that

capture one’s data. For example, when comparing two countries,
we often specify the population size, GDP, employment rate,
etc. The idea is that if two countries have a “similar” statistical
profile, they are similar (e.g., France and Germany have a more
similar demographic profile than France and USA). However,
Anscombe’s quartet [1] convincingly illustrates that datasets with
the same values over a limited number of statistical properties
can be fundamentally different – a great argument for the need to
visualize the underlying data; see Fig. 1.

Fig. 1. Anscombe’s quartet: All four datasets have the same mean and
standard deviation in x and y and (x,y)-correlation.

Similarly, in the graph analytics community, a variety of
properties and statistics are being used to summarize graphs, such
as graph density, average path length, global clustering coefficient,

This is a journal version of a paper that appeared in the proceedings of the
26th Symposium on Graph Drawing and Network Visualization (GD’18).

• H. Chen, V. Huroyan, S. Kobourov are with the Department of Computer
Science at The University of Arizona, Tucson, AZ, USA.

• U. Soni, Y. Lu, R. Maciejewski are with School of Computing, Informatics,
and Decision Systems Engineering at Arizona State University, AZ, USA.

etc. However, summarizing a graph with a fixed set of graph
properties leads to the problem illustrated by Anscombe. It is easy
to construct several graphs that have the same properties (e.g.,
number of vertices, number of edges, number of triangles, girth,
clustering coefficient) while the underlying graphs are clearly
different and identifiably distinct; see Fig. 2. From a graph
theoretical point of view, these graphs are very different: they
differ in connectivity, planarity, symmetry, and other properties.

Fig. 2. These four graphs share the same 5 common properties: |V |= 12,
|E| = 21, number of triangles |△ | = 10, girth = 3 and global clustering
coefficient GCC= 0.5. However, structurally the graphs are very different:
some are planar, others are not, some show regular patterns and are
symmetric, others are not, and finally, one of the graphs is disconnected,
another is 1-connected and the rest are 2-connected.

Recently, Matejka and Fitzmaurice [2] proposed a dataset
generation method that can modify a given 2-dimensional point
set (like the ones in Anscombe’s quartet) while preserving its
summary statistics but changing its visualization (what they call
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“graph”). Given the graphs in Fig. 2, we consider whether it is
also possible to modify a given graph and preserve a given set
of graph properties while changing other graph properties. Note
that the problem is much easier for 2D point sets and statistics,
such as mean, deviation and correlation, than for graphs where
many graph properties are structurally correlated (e.g., diameter
and average path length). With this in mind, we first consider how
can we fix a few graph properties (such as the number of nodes,
number of edges, number of triangles) and vary another property
(such as the clustering coefficient or connectivity). We find that
there is a spectrum of possibilities. Sometimes the “unrestricted”
properties can vary dramatically, sometimes not, and the outcome
depends on two issues: (1) the inherent correlation between some
properties (e.g., density and number of triangles), and (2) the bias
in graph generators.

We begin by studying the correlation between graph properties
across the set of all non-isomorphic graphs with up to 10 vertices.
Recall that two vertex-labeled graphs are isomorphic if just by
relabeling the vertices of one of the graphs we can obtain the other.
Thus, two non-isomorphic graphs must be structurally different.
The statistical properties derived for all graphs for a fixed number
of vertices provide further information about certain “restrictions.”
In other words, the range of one property may be restricted if
another property is fixed. However, we cannot explore the entire
space of graph properties and correlations. As the number of
vertices grows, the number of different non-isomorphic graphs
grows super-exponentially. For |V | = 1,2 . . .9 the numbers are
1,2,4,11,34,156,1044,12346, 274668, but already for |V | = 16
we have 6×1022 non-isomorphic graphs.

To go beyond ten vertices, we use graph generators based
on models, such as Erdös-Rényi and Watts-Strogatz. However,
different graph generators have different biases and these can
impact the results. We study the extent to which sampling using
random generators can represent the whole graph set for an
arbitrary number of vertices with respect to their coverage of the
graph properties. One way to evaluate the performance of random
generators is to compare the generated graphs to the total set of
non-isomorphic graphs, which is available for |V | ≤ 10 vertices.
If we randomly generate a small set of graphs (also for |V | ≤ 10
vertices) using a given graph generator, we can explore how well
the sample and generator cover the space of graph properties. In
this way, we can begin exploring the problem “same stats, different
graphs” for larger graphs.

We have put together a visual analytics exploration tool for
the space of all low-order (≤ 10) non-isomorphic graphs and
sampled higher order graphs. We include a generator for “same
stats, different graphs,” i.e., multiple graphs that are identical over
a number of graph properties, yet are clearly different. Data and
tools are available at http://differentgraphs.cs.arizona.edu. This
work illustrates the challenges associated with analyzing graphs
based solely on sampling summary properties. Overcoming such
challenges is critical for network analysis, graph mining, etc.,
where the analysis of graphs is often done at the graph property
level, which can miss critical topological information.

1.1 Definitions and Conventions

The object of study in this paper are simple, undirected, un-
weighted graphs, G = (V,E) with |V | nodes and |E| edges.
Specifically, we study the set of non-isomorphic graphs, consid-
ering each of them as a high-dimensional point. Recall that two

graphs G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if they
are identical up to relabeling their vertices; that is, if there exists a
bijection f : V1 →V2 such that for any u1,v1 ∈V1 and {u1,v1} ∈E1
if and only if { f (u1), f (v1)} ∈ E2.

Throughout the paper we use the term graph properties to
refer to the properties of a graph (e.g., diameter, density). We also
use the term statistics when describing a graph via a collection
of graph properties (e.g., the values for diameter, density). The
10 properties under consideration are discussed in Section 2.1. By
ground truth dataset we refer to the dataset in R10 that represents
the set of 10 properties of all non-isomorphic graphs with fixed
number of vertices |V |.

Note that the set of all non-isomorphic graphs is not in a
bijection with the ground truth dataset in 10 dimensional space. A
pair of non-isomorphic graphs does indeed correspond to a pair of
distinct points in R10. On the other hand, a pair of non-isomorphic
graphs that share the same 10 graph properties get mapped to the
same point in R10, which is an instance of the titular “same stats,
different graphs.”

1.2 Structure of This Paper
This paper is organized as follows: Section 2 summarizes related
work; Section 3 presents preliminary experiments and findings
about low-order graphs; Section 4 discusses methods of gener-
ating different graphs with same or similar properties; Section 5
discusses different measures for estimating graph generators from
the point of view of coverage and representation of the underlying
space of non-isomorphic graphs; Section 6 compares the coverage
and representation of the graph generators used in the paper. We
conclude with a brief discussion and directions for future work in
section 7

2 RELATED WORK

There is a great deal of related work, but here we focus on graph
properties that are studied in the graph analysis and graph mining
literature, a review of the major random graph generators, and
work on exploration and visualization of graph properties.

2.1 Graph Properties
Graph mining is applied in different domains from bioinformat-
ics and chemistry, to software engineering and social science.
Essential to graph mining is the efficient calculation of various
graph properties (e.g., diameter, density) and summary statistics
(e.g., averages, modes) that can provide useful insight about the
structural properties of a graph. For consistency, we refer to the
graph properties and summary statistics as graph properties. We
reviewed recent graph mining systems and identified some of the
most frequently extracted graph properties. We list those, along
with their definitions, in Table 1. These properties range from
basic, e.g., vertex count and edge count, to complex, e.g., cluster-
ing coefficients [3], [4], [5], [6], [7] and average path length [3],
[4], [6], [7]. Many of them can be used to derive further graph
properties. For example, graph density can be determined directly
as the ratio of the number of edges |E| to the maximum number of
edges possible |V |× (|V |− 1)/2, and real-world graphs are often
found to have a low graph density [12]. Node connectivity and
edge connectivity may be used to describe the resilience of a
graphs [13], [14], and graph diameter [15] captures the maximum
among all pairs of shortest paths [16], [17].

http://differentgraphs.cs.arizona.edu
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TABLE 1. The set of graph properties considered in this paper.

Name Formula Reference

Average Clustering Coefficient
ACC(G) = 1

n ∑
n
i=1 c(ui),ui ∈V,n = |V |

[3], [4], [5], [6], [7]
c(ui) =

2T (ui)

(degree(ui)
2 )

, where T (ui) is the number of triangles through node ui

Global Clustering Coefficient GCC(G) = 3×|triangles|
|connected triples| [5], [6]

Square Clustering SCC(G) = 1
n ∑

n
i=1 c4(ui),ui ∈V,n = |V | [8]

where c4(ui) is the quotient between the number of squares which ui partici-
pated and the total number of possible squares

Average Path Length APL = mean{∑v∈V dist(u,v),u̸=v
n−1 } [3], [4], [6], [7]

Degree Assortativity r = ∑xy xy(exy−axby)

σaσb
[7], [9]

Diameter diam(G) = max{dist(v,w),v,w ∈V} [3], [5], [7], [10]

Density den = 2|E|
|V |(|V |−1)

Ratio of Triangles Rt = |triangles|
(|V |

3 )

Node Connectivity Cv: the minimum number of nodes to remove to disconnect the graph [11]

Edge Connectivity Ce: the minimum number of edges to remove to disconnect the graph [11]

Other graph properties measure how tightly nodes are grouped
in a graph. For example, clustering coefficients have been used
to describe many real-world graphs and can be measured locally
and globally. Nodes in a highly connected clique tend to have a
high local clustering coefficient, and a graph with clear clustering
patterns will have a high global clustering coefficient [18], [19],
[20], [21]. Studies have shown that the global clustering coefficient
has been found to typically be larger in real-world graphs than
in Erdös-Rényi graphs with the same number of vertices and
edges [6], [21], [22], and a small-world graph should have a
relatively large average clustering coefficient [23], [24], [25].
Small-world graphs also have an average path length (APL) that
is logarithmic in the number of vertices, while real-world graphs
have small (often constant) APL [21], [22], [23], [24], [25], [26].

Degree distribution is one frequently used property describing
the graph degree statistics. Many real-world graphs, including
communication, citation, biological and social graphs, have been
found to follow a power-law shaped degree distribution [6], [21],
[27]. Other real world graphs have been found to follow an expo-
nential degree distribution [28], [29], [30]. Degree assortativity is
of particular interest in the study of social graphs and is calculated
based on the Pearson correlation between the vertex degrees of
connected pairs [31]. A random graph generated by Erdös-Rényi
model has an expected assortative coefficient of 0. Newman [31]
extensively studied assortativity in real-world graphs and found
that social networks often have positive assortativity, i.e., vertices
with a similar degree preferentially connect together, whereas
technological and biological graphs tend to have negative assorta-
tivity implying that vertices with a smaller degree tend to connect
to high degree vertices. Assortativity has been shown to affect
clustering [32], resilience [31], and epidemic-spread [33].

Note that there are many other graph properties, but many
of them are local, defined on the level of individual vertices, or
individual edges. Examples include degree centrality of a vertex,
betweenness centrality of a vertex or an edge, etc. Since we are
interested in global properties, properties of the graph as a whole,
we cannot directly use such local properties. We represent graphs
by the 10 properties in Table 1, i.e., we represent each graph as a
single data point in R10.

2.2 Graph Generators

Graph properties have been used to describe various classes of
graphs (e.g., geometric, small-world, scale-free) and a variety of
algorithms have been developed to automatically generate graphs
that mimic these various properties. Charkabati et al. [3] divide
graph models and generators into the following broad categories:

1) Random Graph Models: The graphs are generated by a
random process.

2) Preferential Attachment Models: In these models, the “rich
get richer,” as the graph grows, leading to power law effects.

3) Geographical Models: These models consider the effects of
geography (i.e., the positions of the nodes) on the topology
of the graph. This is relevant for modeling router or power
grid graphs.

The Erdös-Rényi (ER) graph model is a simple graph gener-
ation model [6] that creates graphs either by choosing a graph
randomly with equal probability from a set of all possible graphs
of size |V | with |E| edges [34] or by creating each possible edge
of a graph with |V | vertices with a given probability p [35].
The latter process gives a binomial degree distribution that can
be approximated with a Poisson distribution. Note that fixing
the number of nodes and using p = 1/2 results in a uniform
sampling from the space of isomorphic graphs. Even though this
graph generator does not sample uniformly from the space of
non-isomorphic graphs, the probability of having two isomorphic
graphs if we generate k graphs with |V |= n according to ER graph
generator with p = 1/2 is greater than or equal to

1−
(

k
2

)
∗ n!

2n(n−1)/2 . (1)

Table 2 shows the number of graphs for fixed number of vertices
|V | that one needs to generate to have a high probability of
avoiding two isomorphic graphs in the sample.

The Watts and Strogatz [25] (WS) model addresses a limita-
tion of the ER model. Specifically, the WS model can be used
to generate graphs that exhibit small-world properties and that
have higher clustering coefficients. However, the WS model can
generate disconnected graphs. We utilize the variation suggested
by Newman and Watts [36] to ensure connectivity as some graph
properties are not well defined for disconnected graphs.



4

TABLE 2. This table demonstrates the relationship between the graph nodes |V |= n, the size of the sample k and the probability of having two
isomorphic graphs in the sample calculated by the formula (1) defined in Sec. 2.2.

n 5 6 7 8 9 10 11 12 13 14 15 16
k 2 2 4 14 60 440 4,240 55,500 985,000 23,800,000 787,000,000 35,600,000,000
probability 0.88 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99

It is also possible to create graphs where the degrees follow
other common probability distributions, e.g., exponential [37] or
Gaussian [38]. Graphs with any given degree sequence can be
generated using the configuration model [21]. Models have also
been proposed for generating synthetic scale-free graphs with a
scaling exponent [39].

The model proposed by Gilbert [40], the geometric model
(GE), places nodes according to a Poisson point process in some
metric space (e.g., the unit square in 2D), and adds edges between
pairs of nodes that are within a pre-specified distance threshold.
Barabasi and Albert (BA) [41] described another popular model
for generating undirected graphs. It is a graph growth model in
which each added vertex has a fixed number of edges |E|, and
the probability of each edge connecting to an existing vertex v is
proportional to the degree of v. Dorogovtsev et al. [42] and Albert
and Barabasi [43] also developed a variation of the BA model with
a tunable scaling exponent. We use the NetworkX version of the
BA model in this paper, which is a direct implementation of the
original BA model [41].

2.3 Generating Non-Isomorphic Graphs

The graph generators in the previous subsection generate graphs
by sampling the space of all isomorphic graphs. However, there is
also work on generating graphs from the set of all non-isomorphic
graphs with fixed number of vertices. McKay [44] proposes an
isomorphic-free generation method, which is known as canonical
deletion. Such generators rely on an algorithm (implemented in
the Nauty program) to efficiently test whether two graphs are
isomorphic [45]. The algorithm has been revised to improve
performance [46] (in terms of running time); for example, testing
whether two graphs on 100 vertices are isomorphic takes 1 second
on average. Goldberg [47] proposes several algorithms to generate
non-isomorphic graphs uniformly at random. Even though the
algorithm provides good theoretical guarantees on the running
time and space, it is practical only for low-order graphs. There
are other methods to generate graphs from the set of all non-
isomorphic graphs uniformly at random [48], [49], but they are
also not practical beyond low-order graphs.

2.4 Exploring Graph Properties

Bach et al. [50] introduce an interactive system to create random
graphs that match user-specified properties based on a genetic
algorithm. The properties considered are |V |, |E|, average vertex
degree, number of components, diameter, ACC, density, and the
number of clusters (as defined by Newman and Girvan [51]). The
goal is to generate graphs that get as close as possible to a set of
target properties; however, there are no guarantees that the target
values can be obtained. Somewhat differently, we are interested
in creating graphs that match several target properties exactly, but
differ drastically in other parameters.

Kennedy et al. [52] provide an interactive graph analysis
system called Graph Landscape, which allow researchers to ex-
plore graphs, graph sets, and benchmark collections regarding

Fig. 3. Graph properties correlation matrix plots for the edge density
dataset (left) and the ground truth set of all non-isomorphic graphs on
|V |= 9 vertices (right).

their properties. Unlike our paper, the system aims to enable the
analysis of differences and similarities between different sets of
graphs and to assess their value for experimental evaluations.

Also related is work on graph anonymization, where the goal is
to generate one or more graphs with same set of fixed properties as
those in a given source graph [53], [54], [55]. As the given graph
could contain sensitive data, the generated graphs can be used
instead in order to preserve anonymity. There are various kinds of
graphs anonymization algorithms, each of which serve different
purposes. Some examples of anonymization algorithms include
K-neighborhood anonymity, edge randomization and cluster based
generalization; see survey by Wu et al. [53]. Although related, this
work is different from ours as only certain parts of the graph
need to be modified and only certain graph properties need to
be maintained, e.g., preserving the spectral information of the
underlying graph as in Ying et al. [56].

3 PRELIMINARY EXPERIMENTS AND FINDINGS

Unlike the traditional setting of Anscombes quartet, in the graph
setting some properties are correlated with each other. Thus, fixing
one property (e.g., high edge density) may allow us to vary a
property such as assortatitivity, but not other properties such as
diameter. This lead us to study such correlations, which in turn
lead us to graph generators (as the ground truth data is too large
for |V | > 10), which in turn lead us to evaluating the generators,
which in turn lead us to the qualities of the generators, which lead
us to the notions of coverage and representativeness.

In this section we present some preliminary findings about
the relationships between the graph properties described in Sec-
tion 2.1. Note that our analysis focuses on the 10 dimensional
space, where each dimension corresponds to one of 10 graph
properties. As discussed in Section 2.1, there are many other graph
properties. However, many properties are local (vertex-based or
edge-based). Our choice of 10 global properties is the result
of analyzing the graph mining literature and selecting the most
commonly studied graph properties that can also be efficiently
computed. Similarly, as discussed in Section 2.2, while there are
many different graph generators, we focus on 5, ensuring that
we have one from each of the three major types. In Section 3.1
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we consider the properties of graphs with 100 vertices and next, in
Section 3.2 we analyze properties of graphs with up to 10 vertices.

3.1 Graph Properties in Higher-Order Graphs

In a recent study of the ability to perceive different graph
properties, such as edge density and clustering coefficient in
different types of graph layouts (e.g., force-directed, circular), we
generated a large number of graphs with 100 vertices. Specif-
ically, we generated graphs that vary in a controlled way in
edge density and graphs that vary in a controlled way in the
average clustering coefficient [57]. A post-hoc analysis of this
data (http://vader.lab.asu.edu/GraphAnalytics/) reveals some inter-
esting patterns among the properties listed in Table 1.

The edge density dataset has 4,950 graphs and for each graph,
we compute the 10 properties described in Table 1. We then
compute Pearson correlation coefficients and observe high positive
(purple) correlations and negative (brown) correlations for many
property pairs, Fig 3. For example, the average clustering coeffi-
cient is highly correlated with the global clustering coefficient and
the number of triangles.

These graphs were created for a very specific purpose and
cover only a limited space of all graphs with |V | = 100. The
type of generators we used, and the way we used them (some
properties were controlled), could bias the results and influence
the correlations. The fact that these correlations exist when some
properties are fixed indicates that we can keep certain graph
properties fixed while manipulating others. This motivated us to
conduct the following experiments:

1) Generate all non-isomorphic lower order graphs (|V | ≤ 10)
and analyze the relationships between graph properties. We
consider this type of data as ground truth due to its complete-
ness.

2) Use different graph generators and compare how well they
represent the space of non-isomorphic graphs and how well
they cover the range of possible values in the ground truth
data.

An analysis of the set of 274,668 non-isomorphic graphs on |V |=
9 vertices shows that the correlations are quite different than those
in graphs from our edge density experiment; see Fig. 3.

3.2 Graph Properties in Lower-Order Graphs

We start the experiment by looking at the pairwise relationships
of graph properties of low-order graphs, where all non-isomorphic
graphs can be enumerated. If two properties, say s1 and s2, are
highly correlated, then fixing s1 is likely to restrict the range
of possible values for s2. On the other hand, if s1 and s2 are
independent, fixing s1 might not impact the range of values for s2,
yielding the same stats (s1) for different graphs (s2). We first study
the correlations between the properties under consideration.

We focus on the analysis of graphs with |V | = 5,6, . . . ,10
(unless otherwise stated) and compute all properties for all non-
isomorphic graphs in this range. One reason we do not consider
|V | < 5 is that many of the properties require at least 3 vertices
(e.g., GCC, ACC, ). Another reason is that the number of different
graphs on 1, 2, 3 and 4 vertices is very small: 1, 2, 4 and 11.

We next consider the pairwise correlations between the dif-
ferent graph properties and how this changes as the graph order
increases, Fig 4. To compare the coverage of graph properties
with different |V |, we scale the values of graph properties into

the same range. By definition, clustering coefficients (ACC, GCC,
SCC) are in the [0,1] range and degree assortativity is in the
[−1,1] range. We keep their values and ranges without scaling.
Edge density, number of triangles, diameter and connectivity (Cv
and Ce), are normalized into [0,1] (dividing by the corresponding
maximum value). APL, is also normalized into [0,1], subject to
some complications: we compute the exact average path length to
divide by in our ground truth datasets, but not when we use the
generators, where we use the maximal path length encountered
instead (which may not be the same as the maximum).

It is easy to see that the coverage of values expands with
increasing |V |. Fig. 5 shows this pattern for three pairs of prop-
erties. This indicates that we are more likely to find larger ranges
of different graph properties for graphs with more vertices given
the same set of fixed properties. With this in mind, we consider
graphs with more than 10 vertices, but this time relying on random
graph generators. Fig. 6 shows how correlation values between
all pairs of graph properties change when the number of vertices
increases. The blue trend lines for the ground truth data show the
correlation values calculated using the set of all possible graphs
for a given number of nodes. The orange trend lines show the
correlation values calculated from graphs generated with the ER
model. Specifically, the ER-model data is created as follows: for
each value of |V | = 5,6, . . . ,15 we generate 100,000 graphs with
p selected uniformly at random in the [0,1] range.

For most of the cells in the matrix, Fig. 6, the correlation
values seem to converge as |V | becomes larger than 8 (both in the
ground truth and the ER-model generated graph sets). The pattern
of the change in correlation values appears to be the same for
both sets. Analyzing the trend lines of the ER-model, we observe
four patterns of change in the correlation values: convergence to
a constant value, monotonic decrease, monotonic increase, and
non-monotonic change. Fig. 6 highlights these patterns using box
outlines of different colors. There are exceptions that do not fit
these patterns, e.g., (Sc, r) and in two cases, (r, Cv) and (r, Ce), the
trend lines show different patterns.

4 FINDING SAME STATS, DIFFERENT GRAPHS

In this section we consider examples of the “same stats, different
graphs” phenomenon. In order to study and find “same stats,
different graphs,” we run several small experiments:

• The first experiment indicates that very sparse or very dense
graphs have few isomorphic copies, while graphs with edge
density close to 0.5 have many such copies.

• The second experiment shows that graphs with the same
edge densities do not necessarily have the same number of
isomorphic copies.

• The third experiment shows that even the best graph gener-
ator (in terms of representativeness), ER, does not represent
the space of all non-isomorphic graphs well.

We start with the case when the two graphs are indeed iso-
morphic. Structurally the path graph 1-2-3-4 is indistinguishable
from the path graph 1-3-2-4, however, for an isomorphic graph
generator, these two graphs are different. Intuitively, very sparse or
very dense graphs have few isomorphic copies, while graphs with
edge density 0.5 have many such copies. Consider for example
graphs with 4 vertices. There is only one graph for with 4 vertices
and 0 edges (the empty graph) and only one graph with 4 vertices
and 6 edges (the complete graph). Relabeling those graphs does
not create different isomorphic copies. On the other hand, there
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Fig. 4. Correlations between graph properties in the ground truth for |V | = 5,6,7,8,9. Note that for |V | = 9 there are already 274,668 points. Points
are plotted to overlap, with the largest sets plotted first (i.e., |V | = 9, ...|V | = 5) to enable us to identify the range of properties that can be covered
with a given number of vertices.

Fig. 5. The convex hull of graph coverage across several graph prop-
erties. Each row represents all graphs for a fixed number of vertices
(|V | = 5...|V | = 10). Columns are pairs of graph properties. The color
is uniform for each image and corresponds to the average number of
graphs in the image (the more of them, the darker the color).

are three structurally different graphs with 4 vertices and with 3
edges; their degree sequences are {2, 2, 1, 1}, {3, 1, 1, 1}, {2, 2,
2, 0}. Since their degree sequences are different, changing labels
leads to different isomorphic copies.

It is then natural to ask whether two graphs with the same
edge densities have the same number of isomorphic copies.
Unfortunately, this is not the case, as illustrated in Fig. 7 and
Fig. 8 by two small graphs with |V |= 4 and |E|= 2. Structurally,

Fig. 6. Trends in the correlations with increasing |V |: the x-axis shows
the number of vertices and the y-axis shows the correlation value for the
pair of graph properties.

Fig. 7. All isomorphic graphs |V |= 4, |E|= 2 whose edges are disjoint.

there are only two different types of graphs with 4 vertices and 2
edges. In the first type the the two edges form a path; see Fig. 8. In
the second type the two edges are disjoint; see Fig.7. Importantly,
there are only 3 graphs for which the edges are disjoint, while there
are 12 graphs for which the edges form a path. If a pair of graphs
is isomorphic then they have the same properties, including the 10
properties that we are measuring. However, a pair of graphs can be
structurally different (non-isomorphic) while still having the same
properties. To find such low-order graphs we can explore the entire
set of non-isomorphic graphs (as we have explicit representations
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TABLE 3. Illustration of the number of repetitions in the set of 12,346 graphs generated by the ER model with |V |= 8 and p = 1/2. The size of the
sample is equal to the number of non-isomorphic graphs with |V |= 8. The table indicates the number of sets of graphs having the same exact 10

properties (although they may not be isomorphic). For example, there are 2 sets with 8 graphs that each have the exact same 10 properties. To put
this in perspective, in the ground truth there are only 7 pairs of “same 10 stats, but different graphs,” while in this sample we have 1,955 such pairs.

# of sets with graphs that have the same 10 properties 2 7 37 109 348 833 1955 3713
# of graphs in the set 8 7 6 5 4 3 2 1

Fig. 8. All isomorphic graphs |V |= 4, |E|= 2 whose edges form a path.

for all of them). For larger graphs, we use the graph generators
together with some filters.

Examining the ground truth data for |V |= 7, we find a pair of
graphs that have exactly the same 10 properties. For |V | = 8, we
find 8 pairs of graphs that have exactly the same 10 properties. For
|V | > 8 we have found many more graphs with exactly the same
10 properties, such as the triple of graphs shown in Fig. 9.

In Sec. 6.1 and Sec. 6.3 we analyze the 5 graph generators
in terms of representation and coverage, and we explore their
performance as generators of non-isomorphic graphs. We use the
ER generator with probability of adding any edge p = 1/2 and
|V | = 8, and generate 12,346 graphs (equal to the number of
non-isomorphic graphs on |V | = 8)). We compute the number of
repetitions (over the 10 properties). Results are given in Table 3.

Comparing to the total set of non-isomorphic graphs for
|V | = 8, the set generated by ER has more graphs with the same
properties. There are 1,955 pairs that have exactly the same 10
graph properties in the sample, while in the total set of non-
isomorphic graphs there are only 7 such pairs. Fig. 10 shows the
two most common graphs that appear in the ER model samples.

4.1 A Tool for Finding Similar Graphs
We provide an analytic tool (http://findgraph.cs.arizona.edu/) for
exploring the “same stats, different graphs” phenomenon, that
is, looking for graphs with several fixed properties and one that
varies. In this tool, we separate our task into two parts and integrate
them in one interface. For graphs with |V | ≤ 10 we examine all
possible non-isomorphic graphs. For graphs with |V |> 10 we use
graph generators and a filter.

For graphs with |V | ≤ 10, since the ground truth is known,
we know whether graphs with fixed several properties exist or
no. In order to find such graphs, we create one interactive
parallel coordinate plot (PCP) for each set of non-isomorphic

graphs with fixed |V |. We provide an online version of PCP
(http://differentgraphs.cs.arizona.edu/pcp/index.html). In order to
make the waiting time affordable, we use k-means clustering
instead of all non-isomorphic graphs with fixing |V |.

4.2 Finding Similar Low-Order Graphs
For |V | ≤ 10, we examine our dataset of all possible non-
isomorphic graphs, looking for graphs with several fixed prop-
erties and one that varies. We use a spring layout to visualize this
series of same stats, different graphs.

Fig. 9. An example of three different graphs that have exactly the same
10 properties: 9 verties, 10 edges, GCC = ACC = SCC = Rt = 0, APL =
2.11, r =−0.47, diam = 4, Cv =Ce = 1

Fig. 10. Illustration of the graphs that appeared most frequently in the
sample generated by the ER model with p = 1/2, V = 8. Each of the two
graphs appeared 8 times.

For the first experiment, we fix |V | = 9, APL ∈ (1.42,1.47),
den ∈ (0.52,0.57), GCC ∈ (0.5,0.6), Rt ∈ (0.15,0.25). Since all
our properties are normalized to [0,1] and assortativity is in
[−1,1], we consider 10 possible ranges for assortativity, each of
size 0.2 and we find graphs for seven of the ten possible ranges;
see Fig. 11. This figure also illustrates the output of our “same
stats, different graphs” generator: fix several graph properties and
generate graphs that vary in another properties.

Similarly, for the second experiment, we fix |V |= 9, diam = 3,
Cv = 2, Ce = 2, and r ∈ (−0.29,−0.22) and look for graphs with
different GCC values. GCC is in the range 0 to 1 and we find
graphs for nine of the ten possible ranges by jumps of 0.1; Fig. 12.

As a final example, we fix |V | = 9, SCC ∈ (0.75,0.85),
ACC ∈ (0.75,0.8), r ∈ (−0.3,−0.2), Rt ∈ (0.35,0.45) and find
graphs with varying connectivity. Specifically, we look for differ-
ent values of edge connectivity, Ce, which is in the range 0 to
|V |−1; Fig. 13.

Note that the graphs in Figures 11-13 are different in structure
even though they possess similar values for many properties. For

http://findgraph.cs.arizona.edu/
http://differentgraphs.cs.arizona.edu/pcp/index.html
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Fig. 11. Examples of graphs with fixed number of vertices |V |= 9 and 4 other fixed properties (APL ∈ (1.42,1.47), den ∈ (0.52,0.57), GCC ∈ (0.5,0.6),
Rt ∈ (0.15,0.25)), but with varying assortativity values (between -1 and 1 by jumps of 0.2). The empty slots represent that there is no graph with the
specified set of properties.

Fig. 12. Examples of graphs with fixed number of vertices |V |= 9 and 4 other fixed properties (diam = 3, Cv = 2, Ce = 2, and r ∈ (−0.29,−0.22)), but
with varying global clustering coefficient (GCC in the range between 0 and 1 by jumps of 0.1). The empty slots represent that there is no graph with
the specified set of properties.

Fig. 13. Examples of graphs with fixed number of vertices |V |= 9 and 4 other fixed properties (SCC ∈ (0.75,0.85), ACC ∈ (0.75,0.8), r ∈ (−0.3,−0.2),
Rt ∈ (0.35,0.45)), but with varying edge connectivity (in the range between 0 and 8 by jumps of 1). The empty slots represent that there is no graph
with the specified set of properties.

example, in Fig.12, there are more and more triangles as we go
from left to right.

4.3 Finding Similar Graphs Using Generators
This approach relies on generating many graphs and filtering
graphs based on several fixed properties. For the two most im-
portant properties of a graph, |V | and |E|, we generate all graphs
with a fixed |V | and choose |E| as follows:

1) UN: select |E| uniformly from its range. This is equivalent
to forcing the edge density in the generated set to follow a
uniform distribution;

2) ER: select |E| from by the binomial distribution, that is, each
edge appears with fifty percent probability.

Using both edge selection strategies for all four generators, we
compare the statistics distribution to the ground truth for |V |= 9.
Fig. 14 illustrates how different properties are distributed for the
UN and ER generators. It shows that although the ER generates
a distribution that is more similar to the ground truth, it does
not cover the range of values (larger min and smaller max) than
the UN generator. The WS and BA models also do not provide
good coverage of the various graph properties. We next discuss
the notions of representation and coverage of the ground truth.

5 GENERATOR EVALUATION

For low order graphs (in this setting graphs with |V | ≤ 10), we
can explore statistical coverage and representation of a generated
sample by comparing it with the set of all graphs with fixed
number of vertices. However, it is difficult to generate all non-
isomorphic graphs with more than 10 vertices due to the super-
exponential increase in the number of graphs (e.g., for |V | = 16
there are 6 × 1022 different graphs). Nevertheless, these higher
order graphs are common in many domains. We turn to graph

generators in order to further explore the issue of “same stats,
different graphs” for larger graphs.

Fig. 14. Distribution of the 10 properties, including min/mean/max and
standard deviation. Ground truth is colored black, ER with p = 1/2 in
orange, UN in red.

In this section, we discuss two approaches for measuring the
quality of the statistical approximation of the set of properties
for the sampled graphs when compared against the ground truth.
Note that we are going to generate graphs with a fixed number
of vertices (e.g., |V |= 9) and compare the sample to the set of all
different graphs with the same number of vertices. The comparison
is done with respect to the 10 properties defined in Sec. 2.1. The
first measure, which we refer to as representation, evaluates the
extent to which the set of sampled graphs represents the properties
of the set of all graphs with fixed number of vertices. The second
measure, which we refer to as coverage, evaluates the extent to
which the sampled set of graphs covers a similar range of values
as the set of all graphs with a fixed number of vertices. Both



9

settings refer to the 10 dimensional space defined in Sec. 2.1.
We analyze graphs sampled from the following five models:

ER with probability 1/2 (ER), ER with p selected uniformly
at random from the [0,1] range (UN), geometric (GE), Watts
and Strogatz (WS), and Barabasi and Albert (BA). We use the
implementations of the generators (ER, WS, BA, GE) from
NetworkX [58].

Fig. 15. Example of a dataset in 2D where the diameter of the sample
(points circled in red) is the same as the diameter for the ground truth
(all points in blue), but the sample does not cover the dataset well (see
points with yellow circle).

5.1 Representation

Our goal here is to explore whether a small sample of graphs
with a fixed number of vertices can represent the set of all non-
isomorphic graphs with the same number of vertices and how
this representation changes as the sample size becomes larger
(i.e., going from 1% to 100%). For this purpose, we review
and analyze the following four methods: Pearson correlations,
Kolmogorov-Smirnov (KS) test, Kullback-Leibler (KL) diver-
gence, and Wasserstein distance, which is also known as the earth
mover (EM) distance.

One possible way to measure how representative a graph
generator is to generate graphs with it, compute the graph prop-
erties described in Table 1, calculate relative correlations between
the graph properties, and compare the results with those in the
ground truth. Since we consider 10 properties we have 45 such
comparisons, Fig. 17, which makes it difficult to compare the
different generators.

The KS test [59] is a nonparametric test used to compare a
sample with a reference distribution (one-sample case), that is,
to quantify how well the sample represents the given distribution.
The KS test can also be used to compare two samples (two-sample
case) and quantify whether both samples represent the same
distribution. The null distribution of this statistic is calculated
under the null hypothesis that the samples are drawn from the
same distribution (in the two-sample case). In our setting, we need
to compare sampled data with the ground truth. To do so, we
propose to uniformly sample 10% of the ground truth and use
the KS test with the generated sample and the uniformly sampled
dataset. We repeat this procedure 10 times and average the results.
However, similar to pairwise correlations, the KS test results in 10
different numbers, one for each property.

Unlike relative correlations and the KS test, KL divergence
and EM distance would give us a single value associated with the

generated dataset. However, since we have a discrete dataset and
the underlying distribution is unknown, we use the formulas for a
multinomial normal distribution. For this, one needs to calculate
the mean and the covariance of the generated data and the ground
truth, then use the formulas for KL divergence and EM distance:

DKL(N0|N1) =
1
2

(
tr(Σ−1

1 Σ0)+(µ0 −µ1)
T

Σ1(µ0 −µ1)

−k+ ln
(

det(Σ1)

det(Σ0)

))
,

DEM(N0|N1) = ∥µ0 −µ1∥2
2 + tr

(
Σ0 +Σ1 −2(Σ1/2

1 Σ0Σ
1/2
1 )1/2

)
.

Fig. 16. Example of a dataset in 2D where the volume of the bounding
box (points circled in red) is the same as the volume of the bounding
box of the ground truth (all points in blue), but the sample does not
cover the dataset well (see the blue points in the middle). This example
demonstrates that split bounding box would perform better in this case.

5.2 Coverage

In this section we introduce four different measures: diameter,
volume of the bounding box, split bounding box, and volume of
the robust ellipse to measure the coverage of the sampled dataset.
The ultimate goal is to see whether these coverage measures
are consistent for different generators and under different sample
sizes. Next, we define the four measures mentioned above and dis-
cuss their advantages and limitations for our setting. For a discrete
dataset S⊂Rd , the diameter measures the largest possible distance
between all the pairs of points in S. The precise mathematical
definition of the diameter is:

diam(S) = sup
x,y∈S

∥x− y∥.

If the diameter of the sampled dataset is smaller than the diameter
of the ground truth, then the sampled dataset does not cover the
complete range of graph properties. However, if the diameter of
the sampled dataset is the same, or in the same range as the
diameter of the ground truth, it does not necessarily imply that
the sampled dataset covers the range of the graph properties of all
graphs; see Fig. 15.

The complexity of calculating the diameter of a discrete set S
is O(|S|2), this is the complexity of finding the distances between
all possible points of |S|. For large datasets it would be too time
consuming to compute the diameter. To overcome this issue, we
uniformly subsample points from the dataset and find the diameter
of the subsampled dataset. To make sure that the results are
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accurate, we calculate the diameter for 10 such subsamples and
report their average.

We also propose to use the volume of the bounding box. For a
set S = {x1, . . . ,xn} ⊂ Rd the bounding box of S is defined as

BB(S) = {(ai,bi), i = 1,2 . . .d |ai = min{x1(i), . . .xn(i)},
bi = max{x1(i), . . .xn(i)}, for i = 1, . . . ,d}.

The volume of the bounding box for a set S ⊂Rd is the volume of
the d-dimensional hyperrectangle BB(S) which is Πd

i=1(bi −ai).

TABLE 4. The ratio of the volumes of convex hulls for sampled (1%) and
the ground truth in 8D (excluding Ce and Cv), |V | = 9.

UN GE ER WS BA
Ratio 11.96% 14.78% 0.81% 1.25% 0.11%

Although the bounding box captures information for each
dimension and maintains extreme point information for each
dimension, similar to the diameter, it can suffer if the dataset is not
concentrated around a hyperrectangle. The bounding box volume
is highly influenced by outliers, especially for small sample sizes.
If the ratio of the bounding boxes volumes is small it implies that
the sample does not cover the ground truth; however, it is hard to
make a conclusion if the ratio is around 1; Fig. 16.

We also consider the split bounding box measure as a gener-
alization of the standard bounding box, where we create multiple
bounding boxes that span the data. We divide the range of each
data dimension into multiple parts of equal size resulting in
multiple hypercubes. Next, for each hypercube, we compute the
bounding box of the sample and the ground truth data (restricted to
this hypercube), calculate the ratio of their volumes, and average
them across all hypercubes; see Fig. 16. Dividing the range of
each measure into k equal parts results in k10 hypercubes for our
dataset. As a result, when the number of dimensions is high, this
measure requires a large sample size.

A possible way to overcome the limitations associated with
the bounding box and split bounding box is to consider the convex
hull. We can compute the convex hull of the sample and the ground
truth dataset and calculate the ratio of their volumes. However, the
O(n⌊d/2⌋) convex hull computation is computationally expensive
in high dimensions. We show the convex hull results based on 8
of the 10 properties (excluding Ce and Cv) computed using the
QHull algorithm [60]; see Table 4.

A computationally efficient alternative to the convex hull
is the robust ellipse measure. We compute the singular values
of the dataset (similar to principal component analysis) and
multiply them to obtain the robust ellipse measure. As in the
other approaches, we compute the robust ellipse measures for
the generated sample and the ground truth dataset, calculate
their volumes, and consider their ratio. This measure, unlike the
diameter, bounding box and convex hull measures, should be more
robust to outliers. One limitation of this measure is that it depends
on the density of the dataset. Note that for the representation
measures, small values mean that the sample represents the ground
truth well. For the coverage measures, the bigger the value, the
better the coverage.

6 COMPARISON BETWEEN GRAPH GENERATORS

In this section, we use the measures of representation and coverage
defined in Sec. 5 to compare between the five generators discussed

in Sec. 2.2. In Sec. 6.1 we present results for the representation
measure, in Sec. 6.3 we present results for the coverage measure,
and in Sec. 6.5 we discuss the limitations of graph generators.

6.1 Representation of the Graph Generators
We start our analysis with Pearson correlations. For each of the
five generators, we generate a sample with a size of 1% of the
ground truth dataset. We present the relative correlations for the
sampled and ground truth datasets by calculating all pairwise 2D
statistics of all non-isomorphic graphs with |V | = 9. While we
computed these tables for all five generators, we only show the
results for the best (ER) and worst (GE) performing generators,
Fig. 17. When comparing the ground truth and ER values, we
see that they are nearly identical for all entries in the matrices
and the largest difference is 0.09. When comparing the ground
truth and GE, however, the differences are obvious and as large
as 1.00 (e.g., in the correlation between APL and density). For
the most representative model, ER, all pairwise correlations are
similar for the ground truth and the sampled datasets. However,
the graphs generated by ER do not cover the entire spectrum of
possible values for each property.

To effectively visualize the data, we use violin plots [61] (as
implemented in the matplotlib library). Violin plots show more
information than Box plots, as the kernel density visualization
makes it possible to see more details about the data distribution
(e.g., clusters). To make it easy to distinguish the results for the
different generators, we use persistent colors across the visual-
izations and a color scheme from colorbrewer (Colorbrewer 2.0:
http://colorbrewer2.org/).

TABLE 5. The ranking (best to worst from left to right) of graph
generators based on the representation measures KL and EM. It is

notable that both the KL and EM measures give the same ranking of
the 5 generators. We are particularly interested in the best generators,
and for |V |= 7, |V |= 8, |V |= 9 both KL and EM rank ER as best and

BA as second best.

|V | generators
7 ER BA UN WS GE
8 ER BA WS UN GE
9 ER BA UN WS GE

Going beyond correlations, we also compute the KL diver-
gence and the EM distance defined in Sec. 5.1 for samples
generated by the five generators for |V |= 7,8,9. (We do not report
results for |V |= 5,6 as the sample sizes are too small and they do
not contain enough information to calculate the KL divergence).
In Fig. 18, we report the results of the 10 different samples for
each generator with sample size equal to the size of the ground
truth dataset. As discussed in Sec. 5.1, numbers close to 0 mean
that the sample generated by the generator represents the ground
truth well. The best generator for |V | = 7,8,9 is ER under both
KL divergence and EM distance measures. Overall, GE, UN and
WS are consistently outperformed by ER and BA.

6.2 Consistency of the Representation Measure
An important question is whether the measures that we use (Sec. 5)
behave consistently. Consistency refers to being able to obtain
similar results for the representation measure when the size of
the ground truth data is changing, which happens (1) when we
consider graphs with different number of vertices and (2) when
we use different sample sizes. We summarize the results from

http://colorbrewer2.org/
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Fig. 17. Relative correlations between the 10 properties for graphs with |V | = 9. The left table shows the correlations for the dataset sampled by
the ER p = 1/2 graph generator of size 1% of the ground truth dataset. The middle table shows correlations for the ground truth. The right table
presents the relative correlations for the dataset sampled by the GE graph generator of size 1% of the ground truth dataset.

Fig. 18. Representation comparison of the five graph generators (UN, GE, ER, WE and BA) over ten samples, with sample sizes equal to the size
of the ground truth dataset for |V |= 7, |V |= 8, and |V |= 9. KL divergence is on the left and EM distance is on the right; see Sec. 5.1.

our consistency experiments, Fig. 18, in Table 5. According to
our experiments, KL and EM measures for representation are
consistent for |V |= 7, |V |= 8 and |V |= 9.

Another question is, how big does the sample need to be to
represent the underlying ground truth dataset well. To answer this
question, we run experiments for |V | = 9. For each of the five
generators, we generate a sample with size 1%, 2%, 5%, and 10%
of the ground truth dataset. The results are reported in Fig. 19.
We also show the results with a sample generated from the ground
truth dataset by taking a uniform sample from it, which can be
considered as a benchmark. In Fig. 19, we see that ER performs
as well as the uniform sample from the ground truth dataset. We
also note that as the sample gets larger, the values for both KL
divergence and EM distance get smaller (they are decreasing).
This behavior is expected as the more graphs contained in the
sample, the more representative they can be. Also worth noting is
that the larger the sample size is, the less variation within the ten
samples, as shown by the the progressively smaller violin plots.

6.3 Coverage of the Graph Generators
We start our analysis of the coverage measures by visualizing
the 2D plots between the ten graph properties; see Fig. 20. We

only show the results for the UN and WS graph generators which
achieve the best and worst coverage results, respectively. The
ground truth is represented in black, the UN data in red (left) and
the WS data in purple (right). Note that under each colored dot
(red or purple) there exists a black dot, as the generators (red or
purple) sample from the ground truth (black). Further, the fewer
black points that are visible in the plot, the better the generator
covers the ground truth. It is easy to see that UN performs much
better, whereas WS misses large ranges of possible values, most
noticeable in the density and assortativity columns (den and r).

Next, we use the four coverage measures discussed in Sec. 5.2.
We run experiments for |V | = 5,6,7,8, and 9 with sample size
equal to the ground truth dataset size, compute the four measures
for ten different samples and report the results using violin plots;
see Fig. 21. Unlike representation, where the ER-model was the
best model, the ER-model performs poorly in coverage.

Fig. 21 shows that for |V |= 5,6,7,8,9 the samples generated
by the WS and BA models achieve poor coverage results, that is,
the generated samples do not cover the range of graph properties
for the ground truth well. The samples generated by the UN and
GE models achieve the best coverage (high values for bounding
box, split-bounding box and diameter). This implies that the UN
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Fig. 19. Comparison of stability with different sample sizes, 1%, 2%, 5% and 10% (with respect to the ground truth size) for graphs with |V |= 9 for
two different representation measures and five different graph generators. The uniform sample from the ground truth data is shown in black.

and GE cover the ground truth data best. Three of the measures,
namely diameter, bounding box and robust ellipse give consistent
results. The results for split bounding box do not always agree
with the other three measures, which can be explained by taking
into consideration two observations: (1) for ten dimensional data
such as ours, the number of boxes jumps from 1 to 1024, and (2)
for small values of |V | there are not enough data points to calculate
an accurate split bounding box measure.

Note that UN and GE have worse results in terms of repre-
sentation but the best results in terms of coverage. This is not
particularly surprising as good representation and good coverage
are correlated with different properties of the graph generators.
For example, the UN and GE generators are more likely to
create unusual/extreme graphs (fully connected, very sparse, etc.),
whereas ER generates the most likely/typical graphs. We also note
that if we use the strategy described in Sec. 5.2 to approximate the
diameter, in some cases the diameter of the ground truth dataset
might be smaller than the diameter of the sampled dataset. We
observe such behaviour in Fig. 21 and Fig. 22.

6.4 Consistency of the Coverage Measure
As with the representation measure, we also consider the issue of
consistency of the different coverage measures when we vary the
sample size or the size of the ground truth data (by changing the
number of vertices). Unlike the measures for representation (KL
divergence and EM distance), some of the measures for coverage
are not stable for small values of |V |. In Fig. 21, we observe that
for the bounding box and the split-bounding box measures, for
|V |= 5,6,7 there is a high variation among the 10 samples.

We also observe some variation in the diameter, but only for
the ER generator; see Fig. 21 and Fig. 22. However, this is an
expected behaviour, since the UN and GE graph generators are
able to capture the extreme cases. Thus, even for small samples,
the ratio of diameters of the sample and the ground truth is close
to 1. However, for the ER graph generator, for smaller samples the
generator does not always capture the extreme cases.

6.5 Limitations of BA and WS
None of the graph generators explicitly optimize representation or
coverage, but some are better than others. As shown in Figures 18,
19, 21 the BA and WS generators perform poorly across all
representation and coverage measures. The underlying generation

methods and the specific parameter settings used might explain
why. The WS small-world graph generator requires 3 parameters:
the number of vertices n, a number k that specifies how many
neighbors each node should be connected to, and a probability
p for adding these edges. For our experiments we used n = 9, k
chosen uniformly at random in the range 2 to |V |−1, and p chosen
uniformly at random in the range [0,1]. Since the WS generator
begins with a k-connected ring, and only switches an edge from
one node to another, the result is graphs with k ∗ n edges, which
limits the number of non-isomorphic graphs.

Similarly, the BA generator requires 2 parameters: the number
of vertices n and the number of edges m to attach from a new node
to existing nodes. We use n = 9 and randomly chose an integer
value from 1 to |V |−1 for m. Thus, the possible number of edges
can only be (n−m)∗m, which in the case of |V |= 9 leads to only
four possible values of |E| (8,14,18,20). This restricts the range
of different graphs that can be generated.

7 CONCLUSIONS AND FUTURE WORK

We discussed an exploration of the space of graphs, treating
each graph as a high dimensional object, where the number of
dimensions is determined by the number of global properties
associated with each graph. For low-order graphs (|V | ≤ 10) and
for a small number of fixed properties (10 in this paper) we can
directly explore the space. This allows us to find many instances
of the “same stats, different graphs” phenomenon. One natural
question is to determine the “true” set of dimensions for the
space of non-isomorphic graphs, where we consider a set of graph
properties that suffice to always distinguish two non-isomorphic
graphs.

For larger graphs we can use random graph generators. Since
most practical random graph generators sample the space of
isomorphic graphs, they are not equally well-suited for the task
of generating non-isomorphic graphs. We considered two par-
ticular measures, coverage and representation, and find that UN
does a good job in coverage and ER is best for representation.
We provide online exploration tool, source-code and data at
http://differentgraphs.cs.arizona.edu

To “see” the difference between two non-isomorphic graphs,
it often suffices to look at the drawings of the graphs. However, as
graphs get larger, some graph drawing algorithms may not allow us
to distinguish differences in properties between two graphs purely

http://differentgraphs.cs.arizona.edu
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from their drawings. We recently studied how the perception
properties, such as density and ACC, is affected by different
graph drawing algorithms [57]. The results confirm the intuition
that some drawing algorithms are more appropriate than others in
aiding viewers to perceive differences between underlying graph
properties. Further work in this direction might help ensure that
differences between graphs are captured in the different drawings.
Other interesting open problems that arise from this work include:
designing efficient generators for graphs with the same stats or
graphs that share some stats and vary in others, finding theoretical
guarantees and bounds on how likely it is to find such graphs for
specific generators, computing bounds on how many graphs have
the same subset of stats.
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Fig. 20. Illustration of coverage for different generators based on 2D projections of the ground truth and generated data for |V |= 9. The ground truth
is colored in black. The left figure shows a 1% sample from the UN generator (red). The right figure shows a 1% sample from the WS generator
(purple). The corresponding correlation for the sample and the ground truth are shown next to each plot. Note that under each colored dot (red
or purple) there exists a black dot, as the generators (red or purple) sample from the ground truth (black). Further, the fewer black points that are
visible in the plot, the better the generator covers the ground truth.
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Fig. 21. Coverage comparison of the five graph generators (UN, GE, ER, WE and BA) over ten samples with sample sizes equal to the size of the
ground truth dataset for |V |= 5,6,7,8,9. Each subfigure shows results for different coverage measures; see Sec. 5.2.

Fig. 22. Comparison of stability when using different sample sizes, 1%, 2%, 5% and 10% (with respect to the ground truth size) for graphs with
|V |= 9 for four different coverage measures and five different graph generators. The uniform sample from the ground truth data is shown in black in
all plots.
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