Online Facility Assignment

Abu Reyan Ahmed!, Md. Saidur Rahman? and Stephen Kobourov!

LDept. of Computer Science, University of Arizona,
{abureyanahmed@email,kobourov@cs}.arizona.edu
2Dept. of Computer Science and Engineering, Bangladesh University of Engineering and
Technology, saidurrahman@cse.buet.ac.bd

Abstract

We consider the online facility assignment problem, with a set of facilities F' of
equal capacity [in metric space and customers arriving one by one in an online
manner. We must assign customer c; to facility f; before the next customer c¢;41
arrives. The cost of this assignment is the distance between ¢; and f;. The total
number of customers is at most |F|l and each customer must be assigned to a
facility. The objective is to minimize the sum of all assignment costs. We first
consider the case where facilities are placed on a line so that the distance between
adjacent facilities is the same and customers appear anywhere on the line. We
describe a greedy algorithm with competitive ratio 4|F| and another one with
competitive ratio |F|. We also consider a slightly more general situation where
different facilities may have different capacities. Finally, we study a variant of
the online facility assignment problem in which the facilities are placed on the
vertices of a graph and present two algorithms for that setting.

Keywords: online facility assignment, greedy algorithms

1. Introduction

Let F' = {f1, f2,---, fir|} be a set of facilities, each with capacity I. We
first consider the case when facilities are placed on line L, such that the distance
between every pair of adjacent facilities is d, where d is a constant. An input
sequence I = {c1,¢a, -+ , ¢y} is a set of n customers who arrive one at a time in
an online manner, with ¢; corresponding to the location of customer i on the
line L. The distance between a customer ¢; and a facility f; is the Euclidean

O An earlier version of this paper appears in WALCOM’18 and this is an extended version for
the special issue of TCS. Here we provide expanded background about the problem (Related
Work) and complete proofs for several claims (e.g., Theorem 1 and Theorem 3). We add new
results for a more general setting where different facilities may have different capacities in
Section 3.1 and 3.4. We also discuss a capacity-sensitive variant of the greedy algorithm in
Section 3.2.

IWork on this project was funded in part by NSF grant CCF-AF 1712119.

Preprint submitted to Journal of Theoretical Computer Science March 31, 2018

distance between c¢; and f;. We later consider the case in which the facilities
are located on the vertices of a graph G = (V, E) and customers appear on the
vertices of G. In that case, the distance between a customer ¢; and a facility f;
is equal to the number of edges in the shortest path between ¢; and f;.

Any algorithm for this problem must assign a customer ¢; to a facility f;
before the next customer c¢; 1 arrives, where the cost of that assignment is the
distance between ¢; and f;. The total number of customers is at most |F|l as
every facility can serve at most | customers and each customer must be assigned
to a facility. The objective is to minimize the total cost of all assignments. We
call this problem the online facility assignment problem. This problem arises
naturally in different practical applications, such handling online orders for a
restaurant with multiple locations, and handling network packets in network
with multiple routers.

1.1. Related Work

In the offline version of this problem, the locations of all customers and all
facilities are known. The assignment cost of a customer is the distance between
the customer and the assigned facility. The goal is to assign all customers to
facilities, while maintaining the capacity constraints of the facilities, with the
objective of minimizing the total assignment cost. This offline problem can be
modeled using the well-studied transportation problem [1], which asks for the
optimal way to transport a single type of commodity from a set of sources to a
set of destinations, subject to facility capacity constraints. The transportation
problem and cycle-canceling flows are classic optimization problems usually
attributed to work in the 1940’s such that of Hitchcock in 1941 [2], but earlier
work dates back to 1931 [3]. The problem was also studied by Dantzig [4],
Charnes and Cooper [5], Ford and Fulkerson [6], among others, using variations
of a linear programming formulation.

The transportation problem can be considered as type of an offline facility
location problem. In the general setting the input is a set of customers with
fixed locations and the goal is to locate one or more facilities that can serve
the customers, while minimizing the total cost, which is usually a function
of the distances in customer-facility pairs. This problem has many variants,
e.g., the k-median problem [7], when there are no costs for opening facilities,
but k is an upper bound on the number of facilities that can be opened. The
Fermat-Weber problem is considered the first facility location problem, studied
as early as the 17th century [8]. Most facility location problems are NP-hard
and Shmoys et al. [9] provided the first constant approximation algorithm
for the uncapacitated facility location problem. Charikar [10] improved the
approximation ratio from 3.16 to 1.728, and Sviridenko [11] further improved it
to 1.67. These approximation algorithms can be divided into three categories:
rounding algorithms that rely on linear programming, primal-dual, and local
search algorithms. Note that all of these results are for the standard offline setting,
where demand points (customers) are known ahead of time. Meyerson [12] studied
an online version of the problem and provided an O(logn)-competitive algorithm.
In this model, a set of demand points appear in online. In order to provide

services to these demands some facility centers have to be opened providing a
facility cost for each center. Each demand point has to pay a service cost when
paired with a center. The objective of this problem is to minimize the total
facility cost plus service cost. Fotakis [13] presented the first deterministic online

algorithm for the same problem which achieves the optimal competitive ratio of
O(lo?ig n) .

A recently proposed facility location variant is the r-gathering problem. An
r-gathering of a set of customers C for a set of facilities F' is an assignment
of C to open facilities F/ C F such that at least r customers are assigned to
each open facility. There is a cost for assigning a customer to a facility and he
objective is to minimize the total assignment cost. The r-gathering problem was
independently introduced by Karger and Minkoff [14] and by Guha et al. [15]
(who called it load-balanced facility-location). Armon [16] describes a simple
3-approximation algorithm for the min-max variant of this problem. Akagi and
Nakano [17] provide an O((|C| + |F|) log|C| + |F|) time algorithm to solve the
r-gathering problem when all customers in C' and facilities in F' are on the real
line.

The online facility assignment problem is also related to the k-server problem
proposed by Manasse et al. [18], which requires scheduling the movement of
a set of k servers, represented as points in a metric space, in order to handle
requests that are also in the form of points in the space. For each request, the
algorithm must determine which server to move to the requested point, with
the goal of minimizing the total distance covered by all servers. Manasse et
al. [18] provided a 2-competitive algorithm for the 2-server problem, and a k-
competitive algorithm for the k-server problem on (k4 1) points in metric spaces.
Kleinberg [19] showed a universal lower bound of (5 + +/7)/2 for the competitive
ratio of any balancing algorithm for 2 servers. The famous k-server conjecture
that any metric space allows for a deterministic k-competitive k-server algorithm
is still open. This conjecture played a significant role for the development of
competitive analysis. It has been shown to be correct for some special cases,
including uniform spaces [20], lines [21], trees[22], weighted stars (all the requests
are placed at the leaves of a weighted star) [23], the 3-server problem in the
Manhattan plane [24], and spaces with k + 2 points [25].

The facility assignment problem can be seen as a generalization of the
matching problem [26], where each facility has capacity [> 1. In the online
matching problem, the facilities are correspond to the right side of a bipartite
graph. The customers appear in an online manner as vertices of the left side
of the graph each customer must be assigned to a facility before the next
customer appears. This problem was first introduced by Khuller et al. [27], and
independently by Kalyanasundaram et al. [28]. Koutsoupias et al. [29] provided
a O(n) competitive algorithm for online matching on a line. Bansal et al. [30]
provided a O(log2 n) competitive randomized algorithm for the online metric
matching problem. Kao et al. [31] provide a randomized lower bound of 4.5911
for online matching on a line. We provide a randomized algorithm, which is
2_competitive for a class of input sequences. Antoniadis et al. [32] describe an

2
o(n)-competitive deterministic algorithm for online matching on a line.

Despite similarities, the problems above are different from the online facility
assignment problem, which we introduce in this paper. In the facility location
problem, customer positions are known ahead of time and we have to place
facilities in a subset of given set of locations, whereas in the online facility
assignment problem customers appear in an online manner and the facilities are
given. The servers in the k-server problem are movable, whereas in the online
facility assignment problem the positions of facilities are fixed. In the online
matching problem, the facilities have unit capacity, whereas in the online facility
assignment problem capacities can be greater than one.

1.2. Our Contributions

We first consider the case where both the facilities F' and the customers C'
are on a line. We propose Algorithm Greedy and show that it has competitive
ratio 4| F|. Introducing randomization in Algorithm Greedy leads to an improved
performance of 9/2 for a special class of input instances. We then describe
Algorithm Optimal-Fill and show it has competitive ratio |F|.

We next consider the case where both the facilities F' and the customers C
are located on the vertices of an unweighted graph G = (V, E'). We show that
Algorithm Greedy has competitive ratio 2| E(G)| and Algorithm Optimal-Fill
has competitive ratio |E(G)||F|/r, where r is the radius of G. Finally, we
consider the case where a customer leaves after receiving service at a facility. We
define service time as the amount of service time needed, and study the facility
assignment problem with limited service time.

The rest of this paper is organized as follows. In Section 2 we provide basic
definitions. In Section 3 we study the online facility assignment problem on a
line. In Section 4 we study the graph version of the problem. In Section 5 we
introduce a service time parameter ¢ in our model and show that no deterministic
algorithm is competitive when ¢ = 2.

2. Preliminaries

A graph G = (V, E) consists of a finite set V of vertices and a finite set F
of edges; each edge is an unordered pair of vertices. We often denote the set of
vertices G by V(G) and the set of edges by E(G). We say G is unweighted if
every edge of G has equal weight. Let v and v be two vertices of G. If G has
a u, v-path, then the distance from u to v is the length of a shortest u, v-path,
denoted by dg(u,v) or simply by d(u,v). If G has no u, v-path then d(u,v) = oco.
The eccentricity of a vertex u in G is max,cy (¢)d(u,v) and denoted by e(u). The
radius r of G is min,ecy (g)€(u) and the diameter of G is maw,cy (gye(u). The
center of G is the subgraph of G induced by vertices of minimum eccentricity.

In the online facility assignment problem, we are given a set of facilities
F = {f1,f2, -+, fip|} of equal capacity [in a metric space, and an input
sequence of customers I = {cy,ca, - ,c,} which is a set of n customers who
arrive one at a time in an online manner, with ¢; corresponding to the location of
customer 7 in the given space. We say an input I is well distributed if there is at

least one customer between any two adjacent facilities. The capacity of a facility
is reduced by one when a customer is assigned to it. We denote the current
capacity of facility f; by capacity;. A facility f; is called free if capacity; > 0.
Any algorithm ALG for this problem must assign a customer ¢; to a free facility
fj before a new customer c;;q arrives. The cost of this assignment is the distance
between ¢; and f;, which is denoted by distance(f;,c;). We now define the cover
area of a facility situated on a line. Consider a facility f; with two adjacent free
facilities f; and f. Let p1 and (p2) be the mid-points of (f;, f;) and (fi, fx)-
The cover area of f; is then the line segment p; to ps. The total number of
customers is, at most, |F'|l and each customer must be assigned to a facility. For
any input sequence of customers I, Cost_ALG([) is defined as the total cost of
all assignments made by ALG. The objective is to minimize Cost_ ALG([).

We say an algorithm is optimal if, for any input sequence of customers, the
total cost of the assignment it provides is the minimum possible. We denote an
optimal algorithm by OPT. An online algorithm ALG is c-competitive if there
is a constant « such that, for all finite input sequences I,

Cost_ALG(I) < ¢.Cost_-OPT(I) + a.

The factor ¢ is called the competitive ratio of ALG. When the additive constant
« is less than or equal to zero (i.e., Cost_ ALG(I) < ¢.Cost_OPT(I)), we may
say, for emphasis, that ALG is strictly c-competitive. An algorithm is called
competitive if it attains a constant competitive ratio ¢. Although ¢ may be a
function of the problem parameters, it must be independent of the input I. The
infimum over the set of all values ¢ such that ALG is c-competitive is called the
competitive ratio of ALG and is denoted by R(ALG).

3. Facility Assignment on a Line

Let F' = {f1, f2,---, fir|} be a set of facilities placed on a line, such that the
distance between every pair of adjacent facilities is d, where d is a constant. An
input sequence I = {cy, ¢, -+ ,cn} is a set of n customers who arrive one at a
time in an online manner, with ¢; corresponding to the location of customer i
on the line. In Section 3.1 we describe Algorithm Greedy with competitive ratio
4|F|. In Section 3.3 we introduce randomization to Algorithm Greedy and show
that it is %—Competitive for a special class of input sequences. In Section 3.4 we
describe Algorithm Optimal-Fill and show it has competitive ratio |F|.

8.1. Algorithm Greedy

Here we describe and analyze the natural greedy algorithm, which assigns
each customer to the nearest free facility.

Algorithm Greedy

Input: Customers I = {c1,--- , ¢y}, facilities F' = {f1,---, fip|}, capacity
l

Output: An assignment of C' to F' and the total cost of that assignment

sum <+ 0;

for i + 1 to |F| do
L capacity; =1;
for : + 1 ton do
mMin <— oo;
index + —1;
for j < 1to f do
if capacity; > 0 and distance(f;,c;) < min then
min < distance(f;, ¢;);
L ndex < j;

assign ¢; to findes;
Capacity;, jer < CAPACILYipger — 1
sum <— sum —+ min;

I{esult: sum is the total cost

We can analyze the online algorithm in the context of a game between an
online player and a malicious adversary. The online player runs the online
algorithm on an input created by the adversary. The adversary, based on the
knowledge of the online algorithm, constructs the worst possible input (i.e., one
that maximizes the competitive ratio). Consider Algorithm Greedy above and
the adversary strategy of making an instance very costly for Algorithm Greedy
but, at the same time, inexpensive for OPT. The following lemma gives a lower
bound for OPT’s cost.

Lemma 1. Let d be the distance between all adjacent facilities. If the assign-
ments of OPT and Algorithm Greedy are not the same, then OPT’s cost is at
least 4.

2

PrOOF. Let ¢, be the first customer for which the assignments of OPT and
Algorithm Greedy differ. The optimal cost for assigning c, is at least %. Hence
the total optimal cost is at least %. O

The following theorem determines the worst input sequence an adversary can
construct for Algorithm Greedy and provides a competitive ratio.

Theorem 1. Let F'={f1, f2,--, fip|} be a set of facilities placed on the line,
such that the distance between every pair of adjacent facilities is d, where d is a
constant. Then R(Algorithm Greedy) < 4|F|.

PROOF. Recall the definition of a well distributed input sequence, namely that
there is at least one customer between any two adjacent facilities. When the
metric space is a line, all customers have cost less than d in the optimum

o] oo

e 4 €3 £
ko= k== == k== bommmmmm——e Bl
i
Greedy OPT

Figure 1: The configurations of Algorithm Greedy and OPT

assignment of a well distributed input sequence. However, if the input sequence
is not well distributed, there are some customers with assignment cost greater
than d. We consider these two cases separately. For both cases, assume now
that the facilities have unit capacity. Later we will also deal with the case for
capacity [, where [> 1.

Let f; is the leftmost facility and f, be the rightmost facility. Consider
a customer ¢ who appears to the left of f;. The distance between ¢ and f; is
distance(f;, c). Both Cost_Algorithm_Greedy(I) and Cost_OPT(I) must pay the
amount distance(f;, c¢). The ratio of Cost_Algorithm_Greedy(I) to Cost_ OPT(I)
increases when distance(f;, ¢) decreases. The case when ¢ appears to the right of
fr is analogous. Now consider the case where customers appear between f; and
fr, since the ratio does not increase if customers appear outside of this range
(because both OPT and Algorithm Greedy have to consider the region outside
this range).

We first consider the case when all customers have costs less than d in the
optimum assignment. In the worst case, the adversary places all the customers
very close to the facilities except the first customer ¢; as illustrated in Figure 1.
The total cost of Algorithm Greedy is no more than 2|F|d. In the optimum
assignment all customers ¢; have cost €; except ¢;. The cost of the first customer

¢y is v, where v > 2 (Lemma 1). Then COSt’Aéi()S?fg;li,((}Ir?edY(l) < 2ABld _ 4.

In the second case, the input sequence is not well distributed. We first provide
the intuition that shows why the ratio between Cost_Algorithm_Greedy(I) and
Cost_OPT(I) will not be greater than the ratio in the first case. The customers
are concentrated in some small areas and the effect of different assignments is
limited to only these spanning areas; see Figure 2. If the spanning areas are very
small, no algorithm can save that much. In extreme case, when all customers
are placed in the same location, all assignments are same.

When the input sequence is not well distributed, k& customers have costs
greater than d in the optimum assignment. Hence, the total cost of the optimum
assignment is at least kd. We have assumed that the customers at distance less
than d are assigned with cost zero by the optimal algorithm and there are |F|—k
such customers. In the assignment created by Algorithm Greedy, each of these
customers would have cost at most d. Note that if any of these customers have
cost greater than d, then that assignment A can be easily transformed to an
equivalent assignment B with total cost equal to that of the original assignment

Figure 2: The configurations of Algorithm Greedy and OPT

A and so that |F| — k customers have cost no more than d. The transformation
goes one step at a time, as follows. If a customer ¢; assigned to a facility f1 by
OPT has cost less than or equal to d and ¢; is assigned to a facility fy in A and
has cost greater than d, then we get a new assignment A’ by assigning c; to f;
and ¢y to fo, where co was the customer assigned to f; in A. Similarly, we can
swap the next pair to get assignment A", and continue this process until we get
the equivalent assignment B. There are |F| — k customers in B with cost at

most d and each of the remaining k customers have a cost at most (|F| — 1)d.
Cost_Algorithm_Greedy (1) (|F|=1)dk+(|F|=k)d _ (k+1)|F|
Then Cost_OPT(I) < kd =% 2
In the analysis above we assumed unit capacity; now let each facility have

capacity [, where [> 1. Suppose that there exists an input sequence of customers
I for which the ratio is greater than 4|F'|. We can partition [into Iy, I, - , I
in such a way that the following conditions hold:

e NI;=0forl<i,j<landi#j.
e [ULU---UIL =1.

e Exactly one customer from I; is assigned to a facility f; for 1 <4 <1 and
1<ji<|F|.

Then there exists a set Ly € {I1,I2, - ,I;} such that the ratio of the
corresponding cost of Algorithm Greedy to the cost of OPT is greater than 4|F|.
If we take a set of facilities with unit capacities and place the customers of I,,q,
in the same order as they appear in I, the ratio would be greater than 4|F)|
which is a contradiction to the bound of unit capacity. O

From the proof of Theorem 1 we can observe that the worst case scenario
arises when every facility has capacity equal to one. In other words, the online
matching problem and the online facility assignment problems are equivalent.
However, this is not true for the offline version of these problems. If every facility
has capacity equal to one, then the offline problem is just minimum weighted
bipartite matching. When the capacity is greater than or equal to one, this
problem becomes an instance of the transportation problem.

of] o] o] e To []

bo-nd bo-nd bo-nd bo-nd RREEEEE 4

Figure 3: The worst case of Algorithm Greedy when two pairs of adjacent facilities may have
different distances

@ @@ e @@ ® @

koo

[

CEEEE]
Greedy OPT

Figure 4: The worst case of Algorithm Greedy when different facilities may have different
capacities

Note that this algorithm does not generalize to non-equidistant facilities. In
particular, if the distances between adjacent facilities increase exponentially, this
algorithm can be forced to pay a factor of O(2!F!) more than OPT as shown in
Figure 3.

We now consider a more general version of this problem where different
facilities may have different capacities. The analysis is similar to the analysis
for non-equidistant facilities. We can set the capacities in such a way that the
distances between adjacent free facilities increase exponentially and the algorithm
can be forced to pay a factor of O(2/*') more than OPT, as shown in Figure 4.

3.2. Capacity Sensitive Greedy Approach

In Section 3.1 we described Algorithm Greedy which assigns a customer to
the nearest free facility. Note that the cover area of a facility in Algorithm
Greedy is not sensitive to the capacity value, as the distance between a customer
and a facility is defined as the Euclidean distance between them. Similarly, the
competitive analysis of the algorithm does not depend on the capacity value.
The analysis is similar when initial capacity is one or greater than one. The
following lemma provides an upper bound for Algorithm Greedy.

Lemma 2. Given two facilities fi and fo at distance d on the line M, we have
Cost_Algorithm_Greedy(I) < Cost. OPT(I) + #, for any input of customers I.

PROOF. We assume that the facilities have initial capacity equal to [. Hence the
number of customers |I| is at most 2{. In the worst case, the adversary places the
first I customers at the midpoint between two facilities. Without loss of generality,
Algorithm Greedy assigns these customers to f;. The adversary places the next

I customers on f;. Cost_ OPT(I) is equal to g Cost_Algorithm_Greedy(I) is

equal to 2 = Cost_ OPT(I) + #. O

We now introduce the idea of capacity sensitive approach. In this approach
the cover area of a facility changes with its capacity. The algorithm is given
below.

Algorithm Capacity-Sensitive-Greedy

Input: Customers I = {c1,--- ,¢c,}, facilities F' = {f1,--- , fip|}, capacity
l

Output: An assignment of C' to F' and the total cost of that assignment
for i< 1to f do

L capacity; =1,
let d be the distance between adjacent facilities;
for i + 1 to f do
left_cover_area; = %;
d.
2

)

right_cover_area; =

for i + 1 ton do
index < —1;
for j < 1to f do
L if capacity; > 0 and ¢; appears in the cover area of f; then
L index < j;

assign ¢; to findex;

Capacity;, ger < Capacity;,ge. — 1;

let f; be the left adjacent free facility of findes;
if capacityinges > capacity; then

o distance(findex,f1) .
left-cover_are;,en = Stcapacitpy e ~capaciiny
right_cover_area; = distance(findez, fi) — left-cover_area;, jo.;

else

diStance(f'indew 2 fi)
9l+(capacity; —capacity;pgey) ?

= distance(findex, 1) — right_cover_areay;

L right_cover_area; =

left_cover_area;, o

similarly update cover area of right adjacent facility;
sum < sum + distance(findez, Ci);

I{esult: sum is the total cost

We use CSG to denote Algorithm Capacity-Sensitive-Greedy. The following
lemma provides an upper bound for CSG.

Lemma 3. Given two facilities f1 and fo at distance d on the line M, we have
Cost_-CSG(I) < Cost_.OPT(I) + %, for any input of customers I.

ProOOF. We assume that the facilities have initial capacity equal to [. Hence the
number of customers |I| is at most 2I. In the worst case, the adversary places
the first customer ¢; at the midpoint between the two facilities. Let CSG assign
the customer to fi1, which without loss of generality is to the left of fy. Let the

10

size of the right cover area of f; be x before the arrival of ¢;. After assigning
xr

c1 to fi the size of the right cover area of fi becomes 7. The adversary places
the next customer co on fo. The customer ¢y will be assigned to fo by CSG
and the size of the right cover area of f; becomes x again. Note that now the
cover areas of both facilities is the same as before any customer appeared. The
adversary places customer c3 again at the midpoint between the two facilities,
c3 gets assigned to f1, the adversary places customer ¢4 on fo and CSG assigns
it to fy. Continuing this process, half of the customers assigned to f; and the

other half to fy by CSG. The value of Cost_OPT(I) is equal to %. The value of
Cost_CSG(I) is equal to Cost_OPT(I) + #. O

8.8. Algorithm o-Randomized-Greedy

In this section we introduce randomness to the greedy method of the pre-
vious section and show that better competitive ratios can be obtained.With
deterministic online algorithms, the adversary knows the full strategy and can
select the worst input sequence. This is not possible if ALG is a randomized
algorithm. An oblivious adversary must choose a finite input sequence I in
advance. ALG is c-competitive against an oblivious adversary if for every such
I, E[Cost-ALG(I)] < ¢.Cost_OPT(I) + o where « is a constant independent
of I, and FEJ.] is the mathematical expectation operator taken with respect to
the random choices made by ALG. Since the offline player does not know the
outcomes of the random choices made by the online player, Cost_ OPT(I) is not
a random variable and there is no need to take its expectation.

We introduce randomness in Algorithm Greedy, described in the previous
section, and call the new method Algorithm o-Randomized-Greedy. Let f, be
the facility which is nearest to customer ¢, and let o be a real number. Then
o-Randomized-Greedy checks whether the distance between ¢, and f; is less
than o and if so then ¢, is assigned to f,. Otherwise, c-Randomized-Greedy
tosses a fair coin before assigning a customer to a facility, choosing the nearest
free facility to the right (left) if the coin comes heads (tails).

We will next show that Algorithm o-Randomized-Greedy performs better
than Algorithm Greedy.

11

Algorithm o-Randomized-Greedy
Input: Customers I = {ci,--- ,¢,}, facilities F' = {f1,---, fip|},

capacity= [
Output: An assignment of C' to F' and the total cost of that assignment
sum <+ 0;

for i + 1 to |F| do

L capacity; =1;

for : + 1 ton do

mMin <— oo;

index + —1;

for j «+ 1 to |F| do

if capacity; > 0 and distance(f;,c;) < min then
min < distance(f;, ¢;);

L ndex < j;

if min > o then

randomly select the nearest free facility fi to the left or right;
min < distance(fx, ¢;);

index < k;

assign ¢; to findex;
Capacity;, jer < CAPACtyY;, ger — 1
sum < sum + min;

P:esult: sum is the total cost

Theorem 2. Let I be a well distributed request sequence for Algorithm Greedy.
Let v be the optimal cost for the first customer and €; be the optimal cost for
ith customer where i > 1. If 0 > ¢; for all i and o < ~ then Algorithm
o-Randomized-Greedy is %-competitive for I.

PROOF. Let F'= {f1, f2, -+, fip|} be a set of facilities, such that the distance
between every pair of adjacent facilities is d, where d is a constant. Recall that
if an input I of customers has the property that all assignments cost less than
d in the optimum solution, then I is well distributed. The first customer c; is
placed closer to fo (Figure 1) in order to fool Algorithm Greedy. Algorithm
Greedy assigns ¢ to fa. Except the first customer ¢;, the adversary places
every customer ¢y very close to facility fi. Since Algorithm Greedy has already
assigned ¢; to fo, it can not assign ¢y to the same facility. Similarly, for every
customer c, Algorithm Greedy assigns it to fi+1 although it is very close to fx.
Algorithm o-Randomized-Greedy overcomes this situation by using randomness.
Consider the first customer ¢; who is close to fo. Algorithm o-Randomized-
Greedy chooses either f; or fo with equal probability % Similarly for every
customer cg, Algorithm o-Randomized-Greedy chooses either fr11 or fi with
equal probability % Then

12

E[Cost_o-Randomized-Greedy(I)] = %+ Sy s (2id — &
+arrr {20 F] = 1)d - 5}
F|—-2 4
<$+dylfT? 4
<§+2d
— 9

)}

!
Since the optimum cost is at least d/2, Algorithm o-Randomized-Greedy is
%—compctitive for I. O

This shows that Algorithm o-Randomized-Greedy can obtain better (ex-
pected) competitive ratios than Algorithm Greedy, for appropriate values of o.
In the theorem above the value of o is very small compared to d. If a customer
¢; is placed beside a facility f; such that the distance between ¢; and f; is less
than o, then it is assumed that there is no harm to assign c; to f;.

8.4. Competitive Analysis of Algorithm Optimal-Fill
In Section 3.1, we showed that Algorithm Greedy can be easily fooled by
placing all the customers very close to the facilities except for the first customer.
We next describe Algorithm Optimal-Fill, which is more efficient than Algorithm
Greedy. The idea is that when a new customer ¢; arrives, Algorithm Optimal-Fill
finds out facility f; that would be selected by an optimal assignment of all the
customers ci, ¢z, - - -, ¢;. Algorithm Optimal-Fill then assigns ¢; to f;.
Algorithm Optimal-Fill
Input: Customers I = {c1,---, ¢y}, facilities F = {f1,---, fip|}, capacity
l
Output: An assignment of C' to F' and the total cost of that assignment
sum < 0;
for : + 1 ton do
let f; be the new facility chosen by an optimal assignment of customers
C1,C2, " 5 G4
assign ¢; to fj;
sum < sum + distance(f;, c;);

Result: sum is the total cost

The following theorem shows that Algorithm Optimal-Fill performs better
than deterministic greedy method.

Theorem 3. Let F'={f1, f2,---, fip|} be a set of facilities placed on the line,
such that the distance between every pair of adjacent facilities is d, where d is a
constant. Then R(Algorithm Optimal-Fill) < |F|.

PROOF. In the worst case, the adversary can place each customer except the
first one on top of a facility, so the cost is zero, while Algorithm Optimal-Fill
has to pay for each of these customers. The adversary pays only for the first
customer and all others are free, because they are placed on top of their facilities.
However, Algorithm Optimal-Fill has to pay at least d for each of them. The

13

Lram— +
Optimal-Fill OPT

Figure 5: The adversary places the first customer c¢1 between f3 and f4. Algorithm Optimal-Fill
assigns c¢; to f3 because it is a little bit closer compared to f4. The adversary now places
c2 exactly on f3. Algorithm Optimal-Fill assigns c2 to f4 because f3 and f4 are chosen by
an optimal assignment for customers ¢; and c2. The adversary then places c3 exactly on fa.
Algorithm Optimal-Fill assigns ¢z to f2 because f2 is the new facility chosen by an optimal
assignment for customers ci,c2 and c3.

two algorithms (OPT and Optimal-Fill) are illustrated with an example with 5

facilities and 5 customers in Figure 5.)

Then COSLAlg(g::;%gg‘t(l[r;lal_ﬁu(]) _ d+2d+ Jﬁ'l 1)d+5 < ‘F‘

We now prove that for any input sequence,2 the ratio between the cost of
Algorithm Optimal-Fill and the cost of OPT is no more than |F| when |F| > 2.
We can assume that the customers are placed in the leftmost and the rightmost
facilities, as described in Theorem 1. We only consider well distributed input
sequence and unit capacities, because the analysis for input sequences that
are not well distributed and capacities greater than one is the same as that in
Theorem 1.

First observe that if at any step Algorithm Optimal-Fill pays a cost x, then
the optimal algorithm has to pay at least |%|2. The claim is trivially true
when x < d. Hence, we consider the case when x > d. We use induction on
the number of customers. Consider the first time when Algorithm Optimal-Fill
pays a cost greater than or equal to d; see Figure 6. The first two customers
are placed in the cover areas of two different facilities. Hence, the assignments
of Algorithm Optimal-Fill are same as the assignments of OPT. Both of the
assignment costs are less than g. When the third customer appears, Algorithm
Optimal-Fill pays a cost more than d for the first time. Although before the
arrival of the third customer, the optimal cost for both of the previous customers
were less than %, now both the optimal assignment have switched with a cost

more than 2. The reason is that the optimal cost for the third customer is

2
far less than % compared to the optimal cost of the remaining two customers.
The new facility used by the optimal algorithm is the rightmost facility. Hence,
Algorithm Optimal-Fill has to assign the new customer to the rightmost facility
with cost greater that 2d, whereas Cost_OPT(I) is at least d because of the
assignment costs of first two customers. Hence, the claim is true for the first
time when Algorithm Optimal-Fill pays a cost greater than or equal to d. Let
the cost Algorithm Optimal-Fill has payed for the last customer be x. Note

that, [%] is equal to the number of customers between the last customer and

14

(@)

F - F-=-=-=-=--- - F-=--==-=- -
(b)
e F---=d
Optimal-Fill OPT

Figure 6: Algorithm Optimal-Fill pays cost greater than or equal to d first time. In Figure (a)
we can see that we have two customers ¢; and ca. The assignment costs of both customers for
Algorithm Optima-Fill and the optimal algorithm are same. Both of the assignment costs are

less than %. In Figure (b) a new customer c3 arrives. As the optimal assignments changes for

both ¢; and cg, Algorithm Optimal-Fill has to pay a cost greater than d for c3.

the facility to which it has been assigned by Algorithm Optimal-Fill.

Consider a new customer ¢ with assignment cost of ¢, greater than or equal
to d in Algorithm Optimal-Fill; see Figure 7. Let the optimal cost for customer
c; be % + ¢;. Hence, the total cost is equal to g +e1 + % + e+ -+ g + €, =
%—I—el +é€9+- - -+€g. Let the last customer for which Algorithm Optimal-Fill payed
greater than or equal to d be ¢; where j < k. Let the cost Algorithm Optimal-Fill
has payed for the customer c; be y. According to the induction hypothesis, the
optimal algorithm has to pay at least L%J% for customers cy,c9, -+ ,cx_1. The
customers that are located between ¢ and the facility fi in which ¢; has been
assigned by Algorithm Optimal-Fill have switched their optimal assignments
after the arrival of ¢, otherwise Algorithm Optimal-Fill would not assign ¢ to

fr. Hence, the optimal assignment cost for customers cq,ca, -+, c;—1 is equal
to %761+g762+"'+g76j_1 = @7617627"‘763'_1 Wthh is
at least L%Jg = w. Hence, €1 + €2 + -+ €;-1 < 0. The current optimal

assignment cost for ¢; is 4 + ¢;. Here, €; > 0 because the assignment cost
of ¢; by Algorithm Optimal-Fill is greater than or equal to d. Let Algorithm

Optimal-Fill assign c¢; to f;. Then ¢; > € — €2 — -+ — €j_1 as customers
c1,¢2, - ,cj—1 are placed between c¢; and f;. Thus ¢; > 0 when j < i < k
because the assignment cost of ¢; by Algorithm Optimal-Fill is less than d.

Hence, (k_;)d terteat ey > @.

If the maximum assignment cost of Algorithm Optimal-Fill is z, then the total
assignment cost of Algorithm Optimal-Fill is no more than @ The cost of

15

—_ —_

—————— 4 —————— 4 -
(a)
[['
‘ fi ‘ ‘ ‘ i
- Fo-- Fo-- Fommmmn- -
= = =3 e
(b)
— Fo---
Optimal-Fill OPT

Figure 7: In Figure (a) we can see the situation before the customer c; appears. When the
customer c¢j appears, the existing customers ci1,c2,--- ,cx—1 change their optimal assignments
as shown in Figure (b).

optimal assignment is at least | Z | %, which is approximately 5. Hence the ratio is
z+1 and the maximum value of z is | F'| — 1, giving us R(Algorithm Optimal-Fill)
< |F]|. O

We can generalize the idea of the above proof as shown in the following
theorem.

Theorem 4. Let F' = {f1, fa,---, fir|} be a set of facilities placed on the line
arbitrarily with arbitrary capacities. Then R(Algorithm Optimal-Fill) < |F|.

PROOF. First consider the case where each facility has the same capacity and
the distances between two adjacent facilities are different. The proof is similar to
the proof of previous theorem. If Algorithm Optimal-Fill pays a cost z, then the
optimal algorithm has to pay approximately 3 in total for the existing customers.
Hence, R(Algorithm Optimal-Fill) < |F|. When facility capacities are different,
we have a similar scenario as that in Section 3.1. Hence, the competitive ratio
does not change. O

The results above show that the performance of Algorithm Optimal-Fill is
better than Algorithm Greedy, since Algorithm Greedy can be as far from OPT
as a factor of O(2171).

4. Facility Assignment on Connected Unweighted Graphs

We now consider the case where the facilities F' are placed on the vertices of
a connected unweighted graph G = (V| F)) and customers arrive one by one in an
online manner at vertices of G. We show that Algorithm Greedy has competitive
ratio 2|E(G)| and Algorithm Optimal-Fill has competitive ratio |E(G)||F|/r,
where 7 is the radius of G.

16

Fo- -
Greedy OPT Greedy OPT

Figure 8: The configurations of Algorithm Greedy and OPT for a tree and a cycle.

4.1. Competitive Analysis of Algorithm Greedy

In Section 3.1 we analyzed Algorithm Greedy on a line. The following theorem
describes the performance of Algorithm Greedy in the graph setting.

Theorem 5. Let M be a connected unweighted graph. Then R(Algorithm
Greedy) < 2|E(M)].

PRrROOF. We assume that the facilities have unit capacity since the analysis is
similar for capacity [, where [> 1. Two facilities f; and f; are adjacent if there
exists a path P from f; to f; such that no other facilities are situated on P.
Recall the definition of a well distributed input sequence: an input I is well
distributed if there is at least one customer between any two adjacent facilities.
We first prove the claim for an input I which is well distributed. Then we show
how to transform I to I’ such that I’ is well distributed and the competitive
ratios of T and I’ are the same.

We consider two cases; M is a tree and M contains at least one cycle. If M is
a tree, we assume that every leaf contains a facility, since R(Algorithm Greedy)
does not increase in the other case. In the worst case Cost_Greedy(I) is less
than 2|E(M)| and Cost_OPT(I) is equal to one as shown in Figure 8. A square
box represents a facility and the input customers are shown by their sequence
numbers. In this case competitive ratio is 2| E(M)].

If M contains a cycle, R(Algorithm Greedy) does not increase. Consider a
set of facilities F' placed situated on a cycle. In the worst case Cost_Greedy([)
is less than |E(M)| and Cost_OPT(I) is equal to one, as shown in Figure 8. In
this case the competitive ratio is |E(M)].

Now suppose the input sequence I is not well distributed. Let M’ be the
minimum subgraph of M so that all customers are situated on M’. Consider the
set of facilities situated on M’. In the worst case the customers assigned to those
facilities by Algorithm Greedy incur total cost less than 2| E(M’)| and OPT incurs
only unit cost. If OPT incurs cost « to assign a customer to a remaining facility,
then Algorithm Greedy incurs at most x + |E(M’)| cost to assign a customer to
that facility. Hence, Cost_Greedy () < Cost_ OPT(I) — 1 + |[E(M')|(|JE(M)| —
|[E(M")|) +2|E(M")]|. Tt follows that if |E(M)| is small then Algorithm Greedy

17

1

0@ @ d

-———

s F
Optimal-Fill OPT

Figure 9: Worst case of Algorithm Optimal-Fill

will perform similar to OPT. The larger the value of |E(M’)| the more well
distributed the input I becomes. Hence R(Algorithm Greedy) < 2|E(M)|. O

Theorem 5 immediately yields the following corollary.

Corollary 1. Let M be a connected unweighted graph and a set of facilities F
is placed on the vertices of M so that distance between two adjacent facilities is
equal. Then R(Algorithm Greedy) < 4|F]|.

4.2. Competitive Analysis of Algorithm Optimal-Fill

In Section 3.4 we showed that Algorithm Optimal-Fill was more efficient
than Algorithm Greedy, when the metric space was a line. In the case of a
connected unweighted graph, it is not straight-forward to determine whether
Algorithm Optimal-Fill is better than Algorithm Greedy. The answer depends
on the number of edges, facilities and the radius of the graph. The following
theorem describes the performance of Algorithm Optimal-Fill.

Theorem 6. Let M be a connected unweighted graph and a set of facilities F'
is placed on the vertices of M. Then R(Algorithm Optimal-Fill) < w

PROOF. The proof is similar to the analysis of Theorem 5. It is sufficient to
consider the case when M is a tree and I is well distributed. Let x be a vertex
in the center of M which is not a facility. If no such vertex exists, the first
customer c; is placed on a vertex which is not a facility and the distance from
the center of M is minimum. Otherwise, ¢; is placed on x. In the worst case,
Algorithm Optimal-Fill pays a cost equal to the distance between two facilities
for each customer, except the first one (see Figure 9). The adversary pays a cost
which is no more than radius only for the first customer. Algorithm Optimal-Fill
traverses an edge no more than |F| times. Hence, R(Algorithm Optimal-Fill) is

at most W.
T

18

5. Facility Assignment with a Finite Service Time

Until now we have assumed that if a customer c¢; is assigned to a facility f;,
then ¢; remains there forever. In other words, the service time of an assignment
is infinite. Hence a facility with capacity [can provide service to at most [
customers. If there are |F| facilities, the total number of customers is limited
to |F|l. In this section we study the facility assignment problem with a finite
service time t. We assume a unit time interval between arrivals of customers.
When t = 1, the service time is unit. Let ¢, be assigned to f,. and let us
consider the case where all facilities have unit capacities (I = 1). If ¢, is next to
cw then we can also assign ¢, to f, although c,, was assigned to f,. For unit
service time, both Algorithm Greedy and Algorithm Optimal-Fill provide the
optimal solution. When the service time is two (¢ = 2), we can not assign ¢, to
f«. However, if c, arrives just after cy, then we can assign c, to f,.

Theorem 7. Lett be the time needed to provide service to a assigned customer.
No deterministic algorithm ALG is competitive for t = 2.

PROOF. Let I = (¢1,c¢a,- - ,¢,) be the input sequence. The adversary places the
first customer ¢; between any two adjacent facilities f; and f; 1. Suppose ALG
has assigned c¢; to f;. The adversary now places cg,c3, - , ¢, exactly on the
facilities assigned for ¢1,co, - ,¢,—1. The adversary runs the optimal algorithm.
It assigns ¢; to f;4+1, which incurs cost less than d, the distance between f; and
fi+1. The adversary does not pay any cost for the later assignments, because
each customer is placed exactly on a facility. However, ALG pays at least d for
each assignment except the first one. O

6. Conclusion

We considered the online facility assignment problem and analyzed several
algorithms: Algorithm Greedy, Algorithm o-Randomized-Greedy and Algorithm
Optimal-Fill. We analyzed the performance of these algorithms in two metric
spaces: the 1-dimensional line and a simple, connected, unweighted graph. On
the line, we made another strong assumption: that the distance between any two
adjacent facilities is the same. The algorithms we describe do not generalize to the
case when these distances are arbitrary. In Theorem 2, we further assumed that
the input sequence of customers is also well distributed. It would be interesting
to find out what happens one or both of these assumptions are dropped. In
the graph setting we do not make any assumptions about how the facilities are
distributed among the vertices, or about how customers are distributed among
the vertices. However, our results in this setting are weaker, in the sense that
they depend on parameters such as the number of edges in the graph and its
radius. A natural question to ask is whether stronger results exist in the graph
setting, as well as in other metric spaces.

19

7.

Acknowledgments

We are grateful to Marc Demange for correcting an error in Theorem 3 and

to the anonymous reviewers of the conference version of this paper.

References

1]

[2]

[10]

[11]

E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart, and Winston, New York, 1976.

F. L. Hitchcock, The distribution of a product from several sources to
numerous localities, MIT Journal of Mathematics and Physics 20 (1941)
224-230.

A. Schrijver, On the history of the transportation and maximum flow
problems, Mathematical Programming 91 (3) (2002) 437-445.

G. B. Dantzig, Application of simplex method to a transportation problem,
John Wiley & Sons, 1951.

A. Charnes, W. W. Cooper, The stepping stone method of explaining linear
programming calculations in transportation problems, Management Science
1 (1) (1954) 49-69.

L. Ford Jr, D. R. Fulkerson, Solving the transportation problem, Manage-
ment Science 3 (1) (1956) 24-32.

K. Jain, V. V. Vazirani, Approximation algorithms for metric facility loca-
tion and k-median problems using the primal-dual schema and lagrangian
relaxation, J. ACM 48 (2) (2001) 274-296.

Z. Drezner, H. W. Hamacher, Facility Location: Applications and Theory,
Springer Science & Business Media, 2004.

D. B. Shmoys, E. Tardos, K. Aardal, Approximation algorithms for facility
location problems (extended abstract), in: Proceedings of the Twenty-ninth
Annual ACM Symposium on Theory of Computing, STOC ’97, ACM, New
York, NY, USA, 1997, pp. 265-274.

M. Charikar, S. Guha, Improved combinatorial algorithms for the facility
location and k-median problems, in: Proceedings of the 40th Annual IEEE
Symposium on Foundations of Computer Science, 1999, pp. 378-388.

M. Sviridenko, An improved approximation algorithm for the metric unca-
pacitated facility location problem, in: W. Cook, A. Schulz (Eds.), Integer
Programming and Combinatorial Optimization, Vol. 2337 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2002, pp. 240-257.

A. Meyerson, Online facility location, in: 42nd IEEE Symposium on the
Foundations of Computer Science (FOCS), IEEE, 2001, pp. 426-431.

20

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[24]

[25]

[26]

D. Fotakis, On the competitive ratio for online facility location, Algorithmica
50 (1) (2008) 1-57.

D. R. Karger, M. Minkoff, Building Steiner trees with incomplete global
knowledge, in: Proceedings 41st Annual Symposium on Foundations of
Computer Science, 2000, pp. 613-623. doi:10.1109/SFCS.2000.892329.

S. Guha, A. Meyerson, K. Munagala, Hierarchical placement and network de-
sign problems, in: 41st Annual Symposium on the Foundations of Computer
Science (FOCS), IEEE, 2000, pp. 603-612.

A. Armon, On min-max r-gatherings, Theoretical Computer Science 412 (7)
(2011) 573-582.

T. Akagi, S.-i. Nakano, On r-gatherings on the line, in: J. Wang, C. Yap
(Eds.), Frontiers in Algorithmics, Vol. 9130 of Lecture Notes in Computer
Science, Springer International Publishing, 2015, pp. 25-32.

M. S. Manasse, L. A. McGeoch, D. D. Sleator, Competitive algorithms for
server problems, Journal of Algorithms 11 (2) (1990) 208-230.

J. M. Kleinberg, A lower bound for two-server balancing algorithms, Infor-
mation Processing Letters 52 (1) (1994) 39 — 43.

D. D. Sleator, R. E. Tarjan, Amortized efficiency of list update and paging
rules, Communications of the ACM 28 (2) (1985) 202-208.

M. Chrobak, H. Karloff, T. Payne, S. Vishwanathan, New results on server
problems, SIAM Journal on Discrete Mathematics (1990) 291-300.

M. Chrobak, L. L. Larmore, An optimal on-line algorithm for k-servers on
trees, STAM Journal on Computing 20 (1) (1991) 144-148.

Y. Bartal, E. Koutsoupias, On the competitive ratio of the work function
algorithm for the k-server problem, Theoretical Computer Science 324 (23)
(2004) 337 — 345.

W. W. Bein, M. Chrobak, L. L. Larmore, The 3-server problem in the plane,
Theoretical Computer Science 289 (1) (2002) 335 — 354.

E. Koutsoupias, C. Papadimitriou, The 2-evader problem, in: Information
Processing Letters, 1996, pp. 473-482.

A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Vol. 24
of Algorithms and Combinatorics, Springer, Berlin, 2003.

S. Khuller, S. G. Mitchell, V. V. Vazirani, On-line algorithms for weighted
bipartite matching and stable marriages, Theoretical Computer Science
127 (2) (1994) 255 — 267.

21

[28]

[29]

[30]

[31]

[32]

B. Kalyanasundaram, K. Pruhs, Online weighted matching, Journal of
Algorithms 14 (3) (1993) 478 — 488.

E. Koutsoupias, A. Nanavati, The online matching problem on a line, in:
R. Solis-Oba, K. Jansen (Eds.), Approximation and Online Algorithms,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004, pp. 179-191.

N. Bansal, N. Buchbinder, A. Gupta, J. S. Naor, An O(log? k)-competitive
algorithm for metric bipartite matching, Algorithmica 68 (2) (2012) 390-403.

M.-Y. Kao, J. H. Reif, S. R. Tate, Searching in an unknown environment:
An optimal randomized algorithm for the cow-path problem, Information
and Computation 131 (1) (1996) 63 — 79.

A. Antoniadis, N. Barcelo, M. Nugent, K. Pruhs, M. Scquizzato, A o(n)-
competitive deterministic algorithm for online matching on a line, in: In-
ternational Workshop on Approximation and Online Algorithms, Springer,
2014, pp. 11-22.

22

