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Abstract

We show new applications of the nearest-neighbor chain algorithm, a technique that originated in

agglomerative hierarchical clustering. We use it to construct the greedy multi-fragment tour for

Euclidean TSP in O(n log n) time in any fixed dimension and for Steiner TSP in planar graphs in

O(n
√

n log n) time; we compute motorcycle graphs, a central step in straight skeleton algorithms, in

O(n4/3+ε) time for any ε > 0.
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1 Introduction

The nearest-neighbor chain (NNC) technique is used for agglomerative hierarchical cluster-

ing [36, 35], and has only seen one other use besides it, in stable matching [22]. In this

paper, we use it to speed up an algorithm for Euclidean TSP called multi-fragment heuristic.

We also use it to speed up the computation of motorcycle graphs, which is a central step

in algorithms for computing straight skeletons. In the full version of the paper [32], we

follow this approach for two additional problems: a special case of stable matching and a
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geometric coverage problem. All the mentioned problems share a property with agglomerative

hierarchical clustering, which we call global-local equivalence, and which is the key to using

the NNC algorithm. First, we review the NNC algorithm in its original context.

1.1 Prior work: NNC in hierarchical clustering

Given a set of points, the agglomerative hierarchical clustering problem is defined procedurally

as follows: each point starts as a base cluster, and the two closest clusters are repeatedly

merged until there is only one cluster left. This creates a hierarchy, where any two clusters

are either nested or disjoint. A key component of hierarchical clustering is the function

used to measure distances between clusters. Popular metrics include minimum distance (or

single-linkage), maximum distance (or complete-linkage), and centroid distance.

We call two clusters mutually nearest neighbors (MNNs) if they are the nearest neighbor

of each other. Consider this alternative, non-deterministic procedure: instead of repeatedly

merging the two overall closest clusters, merge any pair of MNNs. The non-determinism

comes from the fact that there can be multiple pairs of MNNs, and thus several valid

choices. Clearly, this may merge clusters in a different order. Nonetheless, if the cluster-

distance metric satisfies a property called reducibility, this procedure results in the same

hierarchy [9, 10, 35]. A cluster-distance metric d(·, ·) is reducible if for any clusters A, B, C:

if A and B are MNNs, then

d(A ∪ B, C) ≥ min (d(A, C), d(B, C)). (1)

In words, the new cluster A ∪ B resulting from merging A and B is not closer to other

clusters than both A and B were. The relevance of this property is that, if, say, C and D

are MNNs, merging A and B does not break that relationship. The net effect is that MNNs

can be merged in any order and produce the same result. Many commonly used metrics

are reducible, including minimum–, maximum–, and average–distance, but others such as

centroid and median distance are not.

The NNC algorithm exploits this reducibility property, which was originally observed

by Bruynooghe [10]. We briefly review the algorithm for hierarchical clustering, since we

discuss it in detail later in the context of the new problems. For extra background on NNC

for hierarchical clustering, see [36, 35]. The basic idea is to maintain a stack (called chain)

of clusters. The first cluster is arbitrary. The chain is always extended with the nearest

neighbor (NN) of the current cluster at the top of the chain. Note that the distance between

clusters in the chain keeps decreasing, so (with an appropriate tie breaking rule) no repeated

clusters or “cycles” occur, and the chain inevitably reaches a pair of MNNs. At this point,

the MNNs are merged and removed from the chain. Crucially, after a merge happens, the

rest of the chain is not discarded. Due to reducibility, every cluster in the chain still points

to its NN, so the chain is still valid. The process continues from the new top of the chain.

The algorithm is efficient because each cluster is added to the chain only once, since it

stays there until it is merged with another cluster. As we will see in detail for our problems,

this bounds the number of iterations to be linear in the input size, with the cost of each

iteration dominated by a NN computation.

Recently, the NNC algorithm was used for the first time outside of the domain of

hierarchical clustering [23]. It was used in a stable matching problem where the two sets

to be matched are point sets in a metric space, and each agent in one set ranks the agents

in the other set by distance, with closer points being preferred. In this setting, there is an

analogous phenomenon: the stable matching is unique, and it can be obtained in two ways;

by repeatedly matching the closest pair (from different sets), or by repeatedly matching

MNNs. They used the NNC algorithm to solve the problem efficiently.
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1.2 Our Contributions

Our new observation is that this equivalence between merging closest pairs and MNNs is not

unique to hierarchical clustering and stable matching: it also applies to the problems in this

paper. We coin the term global-local equivalence for it. The main thesis of this paper is that

NNC is an efficient algorithm for problems with global-local equivalence, which may include

even more problems than those discussed here and in the full version of the paper.

Section 3 speeds up the multi-fragment heuristic for Euclidean TSP with a variant of NNC

that uses a new data structure that we describe in Section 2, the soft nearest-neighbor data

structure. We extend this result to Steiner TSP in Section 3.3. Section 4 is on motorcycle

graphs. Each section contains background on the corresponding problems.

2 The Soft Nearest-Neighbor Data Structure

Throughout this section, we consider points in R
δ, for some fixed dimension δ, and distances

measured under any Lp metric d(·, ·). We begin with a formal definition of the structure and

the main result of this section.

I Definition 2.1 (Dynamic soft nearest-neighbor data structure). Maintain a dynamic set of

points, P , subject to insertions, deletions, and soft nearest-neighbor queries: given a query

point q, return either of the following:

The nearest neighbor of q in P : p∗ = arg minp∈P d(q, p).

A pair of points p, p′ in P satisfying d(p, p′) < d(q, p∗).

We make a general position assumption: the distances between q and the points in P are

all unique. If this is not the case, the query point q can be perturbed slightly.

I Theorem 2.2. In any fixed dimension, and for any Lp metric, there is a dynamic soft

nearest-neighbor data structure that maintains a set of n points with O(n log n) preprocessing

time and O(log n) time per operation (queries and updates).

We label the two types of answers to soft nearest-neighbor (SNN) queries as hard or soft.

A “standard” NN data structure is a special case of a SNN structure that always gives hard

answers. However, in light of Theorem 2.2, a standard NN structure would not be as efficient

as a SNN structure. For comparison, the best dynamic NN structure in R
2 requires O(log4 n)

time per operation [12].

Given a point set P and a point q, let p∗
i denote the i-th closest point to q in P . In our

implementation, we use the following data structure.

I Definition 2.3 (Dynamic ε-approximate k nearest-neighbor (k-ANN) data structure). Maintain

a dynamic set of points, P , subject to insertions, deletions, and ε-approximate k nearest-

neighbor queries: given a query point q and an integer k with 1 ≤ k ≤ |P |, return k points

p1, . . . , pk ∈ P such that, for each pi, d(q, pi) ≤ (1 + ε)d(q, p∗
i ), where ε > 0 is a constant

known at construction time1. We assume that p1, . . . , pk are sorted by non-decreasing distance

from q.

We reduce each SNN query to a single k-ANN query with constant ε and k. Once we

show this reduction, Theorem 2.2 will follow from the following result by Arya et al. [4]:

1 Some approximate nearest-neighbor data structures [4] do not need to know ε at construction time, and,
in fact, allow ε to be part of the query and to be different for each query. Clearly, such data structures
are also valid for our needs.
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I Lemma 2.4 ([4]). In any fixed dimension, for any Lp metric, and for any constant

ε > 0, there is a dynamic ε-approximate k nearest-neighbor data structure with O(n log n)

preprocessing time and O(log n) time per operation (query and updates) for constant k.

2.1 Soft nearest-neighbor implementation

We maintain the point set P in a dynamic k-ANN structure initialized with an approximation

factor ε that will be determined later. The chosen ε will depend only on the metric space.

In what follows, q denotes an arbitrary query point and p∗
i the i-th closest point to q in P .

Using this notation, p∗ = p∗
1. Recall the assumption that the points returned by a k-ANN

structure are sorted by distance from the query point, so only the first one can be p∗. Queries

rely on the following lemma.

I Lemma 2.5. Let p1, . . . , pk be the answer given by a k-ANN structure, initialized with

approximation factor ε, to a query (q, k). If p1 6= p∗, then, for each pi in p1, . . . , pk,

d(q, pi) ≤ (1 + ε)i−1d(q, p1).

Proof. For i = 1, the claim is trivial. For i = 2, . . . , k, note that d(q, p∗
i ) ≤ d(q, pi−1). This

is because there are at least i points within distance d(q, pi−1) of q: p∗, p1, . . . , pi−1. Thus,

d(q, pi) ≤ (1 + ε)d(q, p∗
i ) ≤ (1 + ε)d(q, pi−1). The claim follows by induction on i. J

Let S(q, r1, r2) denote a closed shell centered at q with inner radius r1 and outer radius

r2 (i.e., S(q, r1, r2) is the difference between two balls centered at q, the bigger one of radius

r2 and the smaller one of radius r1).

We call a pair (ε, k) valid SNN parameters (for a given metric space) if any set of k points

inside a shell with inner radius 1 and outer radius (1 + ε)k−1 contains two points, p and p′,

satisfying d(p, p′) < 1/(1 + ε).

Suppose that (ε∗, k∗) are valid parameters. Initially, we construct the k-ANN structure

using ε∗ for the approximation factor. Then we answer queries as in Algorithm 1.

Algorithm 1 Soft nearest-neighbor query.

Ask query (q, k∗) to the k-ANN structure initialized with ε∗.

Measure the distance between each pair of the k∗ returned points, p1, . . . , pk∗ .

if any pair (pi, pj) satisfies d(pi, pj) < d(q, p1)/(1 + ε∗) then

return pi, pj .

else

return p1.

I Lemma 2.6. If (ε∗, k∗) are valid SNN parameters, Algorithm 1 is correct.

Proof. The algorithm considers two cases. First, if a pair pi, pj of points returned by the

k-ANN structure satisfies d(pi, pj) < d(q, p1)/(1 + ε∗), pi and pj are a valid soft answer to

the query, as d(q, p1)/(1 + ε∗) ≤ d(q, p∗).

In the alternative case, no pair among the returned points is at distance < d(q, p1)/(1 + ε∗).

Consider the shell S(q, d(q, p1), (1+ε∗)k∗−1d(q, p1)). If we scale distances so that d(q, p1) = 1,

then this shell has inner radius 1 and outer radius (1 + ε∗)k∗−1. Given that (ε∗, k∗) are valid

SNN parameters, if all k∗ of the returned points were inside this shell, at least two of them

would be at a distance smaller than 1/(1 + ε∗). However, without the scaling, this distance
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would be smaller than d(q, p1)/(1 + ε∗), which corresponds to the first case. Thus, at least

one of the returned points lies outside the shell. In particular, the farthest point from q, pk∗ ,

satisfies d(q, pk∗) > (1 + ε∗)k∗−1d(q, p1). By the contrapositive of Lemma 2.5, we have that

p∗ = p1. J

As a side note, a SNN structure always returns a hard answer when queried from a point

that is part of the closest pair of the set of points it maintains, as there is no closer pair. In

this way, a SNN structure can be used to find the closest pair in (Rδ, Lp), for constant δ,

in O(n log n) time by querying from every point. This matches the known runtimes in the

literature [7].

We left open the issue of finding valid parameters (ε∗, k∗), which we defer to Appendix A.

In particular, it is not hard to see that they exist in any metric space (Rδ, Lp) (see Lemma A.1).

3 Multi-Fragment Euclidean TSP

Given an undirected, complete graph G with uniquely and positively weighted edges, the

traveling salesperson problem asks to find a cycle passing through all the nodes of minimum

weight. In this section, we consider a classic greedy heuristic for constructing TSP tours, the

multi-fragment algorithm.

Given two disjoint paths, p and p′, in G, we define the cost of connecting them, cost(p, p′),

as the weight of the cheapest edge between an endpoint of p and an endpoint of p′. We

use p ∪ p′ to denote the path resulting from connecting p and p′ into a single path along

that edge.

The multi-fragment algorithm works as follows. A path generally has two endpoints, but,

in this algorithm, each node starts as a single-node path. While there is more than one path,

we connect the two paths such that the cost of connecting them is minimum. We call this

the closest pair. Once there is a single path left, we connect its endpoints to complete the

tour. We call the tour resulting from this process the multi-fragment tour, and the problem

of constructing this tour multi-fragment TSP.

Euclidean TSP is the variant of TSP where the nodes are points in the plane, and the

weights of the edges are the Euclidean distance between the points. Thus, here the goal is to

find a closed polygonal chain, called a tour, through all the points of shortest length. The

problem is NP-hard even in this geometric setting [27], but a polynomial-time approximation

scheme is known [3].

The multi-fragment algorithm was proposed by Bentley [5] specifically in the geometric

setting. Its approximation ratio is O(log n) [37, 8]. Nonetheless, it is used in practice

due to its simplicity and empirical support that it generally performs better than other

heuristics [19, 30, 33, 34, 6].

We are interested in the complexity of computing the multi-fragment tour in the geometric

setting. A straightforward implementation of the multi-fragment algorithm is similar to

Kruskal’s minimum spanning tree algorithm: sort the
(

n
2

)

pairs of points by increasing

distances and process them in order: for each pair, if the two points are endpoints of separate

paths, connect them. The runtime of this algorithm is O(n2 log n). Eppstein [21] uses

dynamic closest pair data structures to compute the multi-fragment tour in O(n2) time (for

arbitrary distance matrices). Bentley [5] gives a K-d tree-based implementation and says

that it appears to run in O(n log n) time on uniformly distributed points in the plane. We

give a NNC-type algorithm that compute the multi-fragment tour for Euclidean TSP in

O(n log n) in any fixed dimensions. We do not know of any prior worst-case subquadratic

algorithm.

ISAAC 2019
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3.1 Global-local equivalence for multi-fragment TSP

In this section, we prove global–local equivalence for multi-fragment TSP in general graphs.

That is, this result is not restricted to the Euclidean setting.

We say two paths are mutually nearest neighbors if the cost of connecting them is lower

than the cost of connecting either with a third path. We consider an alternative algorithm

to the multi-fragment algorithm, which connects MNNs paths instead of the closest pair.

We use CP-MF to refer to the multi-fragment algorithm, and MNN-MF to refer to this

new algorithm.

Clearly, CP-MF is a special case of MNN-MF. We show that any run of MNN-MF outputs

the same solution as CP-MF.

Note the similarity between multi-fragment TSP and hierarchical clustering. Instead of

merging clusters, we merge paths. The difference is that, in a cluster, it does not matter

in which order the points were added when determining the distance to another cluster. In

contrast, in a path, it is important which points are the endpoints.

We can see that in multi-fragment TSP we have a notion equivalent to reducibility in

agglomerative hierarchical clustering (Equation 1).

I Lemma 3.1 (Reducibility in multi-fragment TSP). Let a, b, and c be paths in an undirected,

complete graph G with positively weighted edges. Then, cost(a ∪ b, c) ≥
min (cost(a, c), cost(b, c)).

Proof. The cost of connecting paths is defined as the minimum weight among the edges

connecting their endpoints. The claim is clear given that two endpoints of a ∪ b are a subset

of the four endpoints of a and b. J

Given that we have reducibility, we can adapt the proof of global-local equivalence for

agglomerative hierarchical clustering presented by Müllner [35] to multi-fragment TSP. The

proof is in Appendix B.

I Lemma 3.2 (Global-local equivalence in multi-fragment TSP). Let G be an undirected,

complete graph with uniquely and positively weighted edges. Then, CP-MF and MNN-MF

output the same solution.

3.2 Soft nearest-neighbor chain for multi-fragment Euclidean TSP

In general graphs, computing the multi-fragment tour with CP-MF requires O(n2 log n)

time, where the bottleneck is to sort the Θ(n2) edges from cheapest to most expensive.

Given that we have global-local equivalence (Lemma 3.2), this can be improved to O(n2) by

implementing MNN-MF via a straightforward adaptation of the NNC algorithm. NNC builds

a chain of paths in order to find MNN paths. We only need to spell out how to find the

“nearest neighbor” of a path. We can find it in O(n) time by scanning through the adjacency

list of each endpoint. Thus, we can finish the O(n) iterations of the algorithm in O(n2) time.

Similarly, in the geometric setting, for points in R
2, we can pair NNC with the dynamic

NN data structure from [12], which runs in O(log4 n) amortized time per operation. Thus,

we can compute the multi-fragment tour in O(n log4 n) time. However, we do not go into

the details of these results and jump directly to our main result, which further improves the

runtime in the geometric setting:

I Theorem 3.3. The multi-fragment tour of a set of n points in any fixed dimension, and

under any Lp metric, can be computed in O(n log n) time.
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We use a variation of the NNC algorithm that uses a SNN structure instead of the usual

NN structure, which we call the soft nearest-neighbor chain algorithm (SNNC). For this, we

need a SNN structure for paths in the plane (polygonal chains) instead of points. That is, a

structure that maintains a set of (possibly single-point) paths, and, given a query path q,

returns the closest path to q or two paths in the set which are closer to each other than q to

its closest path in the set. The distance between paths is measured as the minimum distance

between an endpoint of one and an endpoint of the other, so, for the purposes of this data

structure, only the coordinates of the endpoints are important.

A soft nearest-neighbor structure for paths

We simulate a SNN structure for paths with a SNN structure for points. Given a set of

paths, we maintain the set of path endpoints in the SNN structure for points. Updates are

straightforward: we add or remove both endpoints of the path. Given a query path q with

endpoints {q1, q2}, we do a SNN query from each endpoint of the path. If both answers are

hard (assuming that the path has two distinct endpoints, otherwise, just the one), then we

find the true NN of the path, and we can return it. However, there is a complication with

soft answers: the two points returned could be the endpoints of the same path. Thus, it

could be the case that we find two closer points, but not two closer paths, as we need. The

solution is to modify the specification of the SNN structure for points so that soft answers,

instead of returning two points closer to each other than the query point to its NN, return

three pairwise closer points. We call this a three-way SNN structure. In the context of using

the structure for paths, this guarantees that even if two of the three endpoints belong to the

same path, at least two different paths are involved.

Lemma 3.4 shows how to obtain a three-way SNN structure for points, Algorithm 2 shows

the full algorithm for answering SNN queries about paths using a three-way SNN structure

for points, and Lemma 3.5 shows its correctness.

I Lemma 3.4. In any fixed dimension and for any Lp metric, there is a three-way SNN

structure with O(n log n) preprocessing time and O(log n) operation time (queries and up-

dates).

Proof. Recall the implementation of the SNN structure from Section 2. To obtain a three-way

SNN structure, we need to change the values of ε and k to make the shell smaller and k

bigger, so that if there are k points in a shell of inner radius 1 and outer radius (1 + ε)k, then

there must be at least three points at pairwise distance less than 1. The method described

in Section A for finding valid parameters in (Rδ, Lp) also works here. It only needs to be

modified so that the area (or surface) of the shell is accounted for twice. Since k and ε are

still constant, this does not affect the asymptotic runtimes in Theorem 2.2. J

I Lemma 3.5. In any fixed dimension, and for any Lp metric, we can maintain a set of n

paths in a SNN structure for paths with O(n log n) preprocessing time and O(log n) operation

time (queries and updates).

Proof. All the runtimes follow from Lemma 3.4: we maintain the set of path endpoints in a

three-way SNN structure S. The structure S can be initialized in O(n log n) time. Updates

require two insertions or deletions to S, taking O(log n) time each. Algorithm 2 for queries

clearly runs in O(log n) time. We argue that it returns a valid answer. Let q be a query path

with endpoints {q1, q2}, and consider the three possible cases:

ISAAC 2019
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Algorithm 2 Soft-nearest-neighbor query for paths.

Let q1 and q2 be the endpoints of the query path, q.

Let S be a three-way SNN structure containing the set of path endpoints.

Query S with q1 and q2.

if both answers are hard then

Let p1 and p2 be the respective answers.

return the closest path to the query path among the paths with endpoints p1 and p2.

else if one answer is hard and the other is soft then

Let p be the hard answer to q1 and (a, b, c) the soft answer to q2 (wlog). Let P and P ′

be the two closest paths among the paths with endpoints a, b, and c.
if d(p, q) < d(P, P ′) then

return the path with endpoint p.

else

return (P, P ′).

else (both answers are soft)

Let (a1, b1, c1) and (a2, b2, c2) be the answers to q1 and q2.

return the closest pair of paths among the paths with endpoints a1, b1, c1, a2, b2, c2.

Both answers are hard. In this case, we find the closest path to each endpoint, and, by

definition, the closest of the two is the NN of q.

One answer is soft and the other is hard. Let p be the hard answer to q1 and (a, b, c) the

soft answer to q2 (wlog). Let P and P ′ be the two closest paths among the paths with

endpoints a, b, and c. If d(p, q) < d(P, P ′), then, the path with p as endpoint must be

the NN of q, because there is no endpoint closer than d(P, P ′) to q2. Otherwise, P, P ′ is

a valid soft answer, as they are closer to each other than either endpoint of q to their

closest endpoints.

Both answers are soft. Assume (wlog) that the NN of q is closer to q1 than q2. Then, the

soft answer to q1 gives us two paths closer to each other than q to its NN, so we return a

valid soft answer. J

The soft nearest-neighbor chain algorithm

We use a SNN for paths (Lemma 3.5). In the context of this algorithm, let us think of a

SNN answer, hard or soft, as being a set of two paths. If the answer is hard, then one of the

paths returned in the answer is the query path itself, and the remaining path is its NN. Now,

we can establish a comparison relationship between SNN answers (independently of their

type): given two SNN answers {a, b} and {c, d}, we say that {a, b} is better than {c, d} if

and only if d(a, b) < d(c, d).

The algorithm is given in Algorithm 3. The input is a set of points, which are interpreted

as single-point paths and added to the SNN structure for paths. We assume unique distances

between the points. The algorithm maintains a stack (the chain) of nodes, where each node

consists of a pair of paths. In particular, each node in the chain is the best SNN answer

among two queries for the two paths in the predecessor node (when querying from a path,

we remove it from the structure temporarily, so that the answer is not the path itself).

Figure 1 shows a snapshot of the algorithm. Nodes 3 and 5 are soft answers, whereas

nodes 2 and 4 are hard answers. The pair of paths in the fifth node are the overall closest

pair, so the SNN structures will return that pair when queried from each of them. The

algorithm will connect them, remove the fifth node from the chain, and continue from the

fourth node.
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Proof.

1. The claim holds initially. Each time two paths u, v are replaced by u ∪ v, one endpoint of

each becomes a vertex in the new path u ∪ v, and the other endpoints become endpoints

of u ∪ v.

2. We show it for the specific case where R is immediately after {s, t} in the chain, which

suffices. Note that R 6= {s, t}, or it would not have been added to the chain. We

distinguish between two cases:

s and t were MNNs when R was added. Then, R had to be a soft answer from s or t,

which would have to be better than {s, t}.

s and t were not MNNs when R was added. Then, s had a closer path than t (wlog).

Thus, whether the answer for s was soft or hard, the answer had to be better than

{s, t}.

3. Assume, for a contradiction, that a path p appears in two non-consecutive nodes, X =

{p, x} and Z = {p, z} (this covers the case where p appears more than twice). Let Y be

the successor of X. By Invariant 2, Z is better than Y . It is easy to see that if z1 and z2

are the two endpoints of path z, then z1 and z2 were endpoints of paths since the beginning

of the algorithm. Thus, the answer for p when X was at the top of the chain had to be a

pair at distance at most min(d(p, z1), d(p, z2)). However, min(d(p, z1), d(p, z2)) = d(p, z),

contradicting that Z is better than Y .

4. Clearly, each node in the chain contains paths that were present in S at the time the

node was added. Therefore, the invariant could only break when removing paths from S.

In the algorithm, paths are removed from S when merging the paths in the top node.

Thus, if a path p is removed from S, it means that p is in the top node. By Invariant 3,

besides the top node, p can only occur in the second-from-top node. In the algorithm,

when we merge the paths in the top node, we remove the top node from the chain, as

well as its predecessor if has a path in common with the top node. J

I Lemma 3.7. Paths connected in Algorithm 3 are MNNs in the set of paths in the SNN

structure.

Proof. Let {u, v} be the node at the top of the chain at some iteration of Algorithm 3. Let

A the best SNN answer among the queries from u and v. In the algorithm, u and v are

connected when A = {u, v}. Thus, we need to show that if A is {u, v}, then u and v are

MNNs. We show the contrapositive: if u and v are not MNNs, then A is not {u, v}. If u and

v are not MNN, at least one of them, u (wlog), has a closer path than the other, v, so the

answer for u is better than {u, v}. J

Proof of Theorem 3.3. We show that Algorithm 3 computes the multi-fragment tour in

O(n log n) time.

For its correctness, note that the output is a single cycle that visits every vertex (Invari-

ant 1). This cycle is constructed by only merging pairs of paths that are MNNs (Lemma 3.7).

Thus, Algorithm 3 implements MNN-MF. By global-local equivalence (Lemma 3.2), this

produces the multi-fragment tour.

For the runtime, note that the chain is acyclic in the sense that each node contains a path

from the current set of paths in S (Invariant 4) not found in previous nodes (Invariant 3).

Thus, the chain cannot grow indefinitely, so, eventually, paths get connected. The main loop

does not halt until there is a single path.

If there are n points at the beginning, there are n − 1 connections between different

paths in total, and 2n − 1 different paths throughout the algorithm. This is because each

connection removes two paths and adds one new path. At each iteration, either two paths

are connected or one node is added to the chain. There are n − 1 iterations of the first kind,
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each of which triggers the removal of one or two nodes in the chain. Thus, the total number

of nodes removed from the chain is at most 2n − 2. Since every node added is removed, the

number of nodes added to the chain is also bounded by 2n − 2. Thus, the total number of

iterations of the second kind is also at most 2n − 2, and the total number of iterations is at

most 3n − 3. Therefore, the total running time is O(P (n) + nT (n)), where P (n) and T (n)

are the preprocessing and operation time of a SNN structure for paths. By Lemma 3.5, this

can be done in O(n log n) time. J

3.3 Steiner TSP

In the traditional, non-Euclidean setting, a TSP instance consists of a complete graph with

arbitrary distances. We remark that global-local equivalence (Lemma 3.2) still holds in this

general setting. In this context, the nearest neighbor of a path can be found in O(n) time

by iterating through the adjacency lists of both endpoints, where n is the number of nodes.

Using this linear search, we can easily compute the multi-fragment tour in O(n2) time with

a NNC-based algorithm. It is a simpler version of Algorithm 3 that only has to handle

hard answers and does not need any sophisticated data structures. This improves upon the

natural way to implement the multi-fragment heuristic, which is to sort the Θ(n2) edges by

weight. Sorting requires Θ(n2 log n) time.

This is the first use of NNC in a graph-theoretical setting, but the fact of the matter is

that the NNC algorithm can be used in any setting where we can find nearest neighbors

efficiently. Consider the related Steiner TSP problem [16]: given a weighted, undirected

graph and a set of k node sites P ⊆ V , find a minimum-weight tour (repeated vertices and

edges allowed) in G that goes at least once through every site in P . Nodes not in P do

not need to be visited. For instance, G could represent a road network, and the sites could

represent the daily drop-off locations of a delivery truck.

Recently, Eppstein et al. [24] gave a NN structure for graphs from graph families with

sublinear separators, which is the same as the class of graphs with polynomial expansion [18].

For instance, planar graphs have O(
√

n)-size separators2. This data structure maintains

a subset of nodes P of a graph G, and, given a query node q in G, returns the node in P

closest to q. It allows insertions and deletions to and from the set P . We cite their result in

Lemma 3.8.

I Lemma 3.8 ([24]). Given an n-node weighted graph from a graph family with separators of

size S(n) = nc, with 0 < c < 1, which can be constructed in O(n) time, there is a dynamic3

nearest-neighbor data structure requiring O(nS(n)) space and preprocessing time and that

answers queries in O(S(n)) time and updates in O(S(n) log n) time.

As mentioned, one way to implement the multi-fragment heuristic is to sort the
(

k
2

)

pairs

of sites by increasing distances, and process them in order: for each pair, if the two sites

are endpoints of separate paths, connect them. The bottleneck is computing the distances.

Running Dijkstra’s algorithm from each site in a sparse graph, this takes O(k(n log n)) (or

O(kn) in planar graphs [28]). When k is Θ(n), this becomes O(n2 log n). We do not know of

any prior faster algorithm to compute the multi-fragment tour for Steiner TSP.

2 Other important families of sparse graphs with sublinear separators include k-planar graphs [17],
minor-closed graph families [31], and graphs that model road networks (better than, e.g., k-planar
graphs) [25].

3 They ([24]) use the term reactive for the data structure instead of dynamic, to distinguish from other
types of updates, e.g., edge insertions and deletions.
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Since we have global-local equivalence, we can use the NNC algorithm to construct the

multi-fragment tour in O(P (n) + kT (n)) time, where P (n) and T (n) are the preprocessing

and operation time of a nearest-neighbor structure. Thus, using the structure from [24],

we get:

I Theorem 3.9. The multi-fragment tour for the steiner TSP problem can be computed in

O(nS(n) + kS(n) log n)-time in weighted graphs from a graph family with separators of size

S(n) = nc, with 0 < c < 1.

Finally, in graphs of bounded treewidth, which have separators of size O(1), the data

structure from [24] achieves P (n) = O(n log n) and T (n) = O(log2 n), so we can construct a

multi-fragment tour in O(n log n + k log2 n).

4 Motorcycle Graphs

An important concept in geometric computing is the straight skeleton [2]. It is a tree-like

structure similar to the medial axis of a polygon, but which consists of straight segments

only. Given a polygon, consider a shrinking process where each edge moves inward, at the

same speed, in a direction perpendicular to itself. The straight skeleton of the polygon is

the trace of the vertices through this process. Some of its applications include computing

offset polygons [20] and medical imaging [15]. It is a standard tool in geometric computing

software [11].

The fastest algorithms for computing straight skeletons consist of two phases [14, 29],

neither of which dominates the other in computation time [13]. We focus on the first phase,

which is a motorcycle graph computation induced by the reflex vertices of the polygon.

The motorcycle graph problem can be described as follows (see Figure 2, top) [20].

The input consists of n points in the plane, with associated directions and speeds (the

motorcycles). Consider the process where all the motorcycles start moving at the same time,

in their respective directions and speeds. Motorcycles leave a trace behind that acts as a

“wall” such that other motorcycles crash and stop if they reach it. Some motorcycles escape

to infinity while others crash against the traces of other motorcycles. The motorcycle graph

is the set of traces.

Most existing algorithms rely on three-dimensional ray-shooting queries. This is because if

time is seen as the third dimension, the position of a motorcycle starting to move from (x, y),

at speed s, in the direction (u, v), forms a ray (if it escapes) or a segment (if it crashes) in

three dimensions, starting at (x, y, 0) in the direction (u, v, 1/s). In particular, the impassable

traces left behind by the motorcycles correspond to infinite vertical “curtains” – wedges or

trapezoidal slabs, depending on whether they are bounded below by a ray or a segment.

Thus, ray-shooting queries help determine which trace a motorcycle would reach first, if

any. Of course, the complication is that as motorcycles crash, their potential traces change.

Early algorithms handle this issue by computing the crashes in chronological order [20, 14].

The best previously known algorithm, by Vigneron and Yan [39], is the first that computes

the crashes in non-chronological order. It runs in O(P (n)+n(T (n)+ log n) log n) time, where

P (n) and T (n) are the preprocessing time and operation time (maximum between query and

update) of a dynamic ray-shooting data structure for curtains in R
3.

We propose a NNC-based algorithm which improves the number of ray-shooting operations

needed from O(n log n) to 3n. Besides the ray-shooting structure, Vigneron and Yan also

use range searching data structures, which do not increase the asymptotic runtime but make

the algorithm more complex. Our algorithm only uses a ray-shooting data structure.
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Our main structure is a chain (a stack) of undetermined motorcycles. It starts (and

restarts, if it becomes empty) with an arbitrary motorcycle, and it is repeatedly extended

with the NN of the motorcycle m at the top of the chain, until one of the following cases is

reached: (a) m has no NN (it escapes), (b) the NN of m is determined, or (c) the NN of m

is already in the chain. In Case (a), we label m as determined and remove it from the chain.

In Case (b), we clip m’s curtain, mark it as determined, and remove it and the previous

motorcycle (if any) from the chain, as m may not be its NN anymore after the clipping.

In contrast to typical applications of the NNC algorithm, here “proximity” is not sym-

metric: there may be no “mutually nearest-neighbors”. In fact, the only case where two

motorcycles are MNNs is the degenerate case where two motorcycles reach the same point

simultaneously. That said, mutually nearest neighbors have an appropriate analogue in

the asymmetric setting: nearest-neighbor cycles, m1 → m2 → · · · → mk → m1. Case (c)

corresponds to finding such a cycle. If we find a nearest-neighbor cycle of undetermined

motorcycles, then each motorcycle in the cycle crashes into the next motorcycle’s trace. It

is easy to see from our definition of nearest neighbors that no motorcycle outside the cycle

would “interrupt” the cycle by making one of them crash early. Thus, in Case (c), we can

determine all the motorcycles in the cycle at once (this can be seen as a type of chronological

global-local equivalence; See Figure 2, bottom). We clip their curtains appropriately and we

remove them and the prior motorcycle (if any) from the chain.

The process continues until all motorcycles are determined. Note that we only modify

the curtain of the newly determined motorcycles. Thus, if at some step we determine the

motorcycle (or motorcycles) at the top of the chain, only the NN of the would-be top

motorcycle in the chain may have changed. This is why the would-be top motorcycle is

removed from the chain in Cases (b) and (c). The rest of the chain remains consistent.

4.2 Analysis

Clearly, every motorcycle eventually becomes determined, and we have already argued in the

algorithm description that irrespective of whether it becomes determined through Case (a),

(b), or (c), its final position is correct. Thus, we move on to the complexity analysis. Each

“clipping” update can be seen as an update to the ray-shooting data structure: we remove

the wedge and add the slab.

I Theorem 4.1. The NNC algorithm computes the motorcycle graph in time O(P (n)+nT (n)),

where P (n) and T (n) are the preprocessing time and operation time (maximum between query

and update) of a dynamic, three-dimensional ray-shooting data structure.

Proof. Each step of the algorithm requires one ray-shooting query from the motorcycle at

the top of the chain. At each iteration, either a motorcycle is added to the chain, or at least

one motorcycle is determined.

Motorcycles begin as undetermined and, once they become determined, they remain

so. This bounds the number of Cases (a–c) to n. In Cases (b) and (c), one undetermined

motorcycle may be removed from the chain. Thus, the number of undetermined motorcycles

removed from the chain is at most n. It follows that there are at most 2n iterations where a

motorcycle is added to the chain.

Overall, the algorithm takes at most 3n iterations, so it needs no more than 3n ray-

shooting queries and at most n “clipping” updates where we change a triangular curtain into

a slab. It follows that the runtime is O(P (n) + nT (n)). J

See Appendix C for additional results in special cases and some remarks.
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5 Conclusions

Before this paper, NNC had been used only in agglomerative hierarchical clustering and

stable matching problems based on proximity. This paper adds: its first use without a NN

structure (multi-fragment TSP, which uses our new soft NN structure); its first use in a

graph-theoretical framework (Steiner TSP, Subsection 3.3); and its first use in problems

without symmetric distances (motorcycle graphs, where it finds nearest-neighbor cycles).

The full version of the paper considers two additional problems [32]. The NNC technique

is versatile enough that it seems likely that it will find more uses.
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A Choice of Parameters

We left open the issue of finding valid SNN parameters. Recall that (ε, k) are valid if any set

of k points inside a shell with inner radius 1 and outer radius (1 + ε)k−1 contains two points,

p and p′, satisfying d(p, p′) < 1/(1 + ε). To simplify the question, we can scale distances by

(1 + ε), so that the inner radius is 1 + ε, the outer radius (1 + ε)k, and the required distance

between the two points is < 1. As a further simplification, we can reduce the inner radius to

be 1. This makes the shell grow, and thus, if (ε, k) are valid parameters with this change,

then they are also valid under the original statement. Hence, to clarify, the goal of this

section is to show how to find, for any metric space (Rδ, Lp), a pair of parameters (ε, k) such

that any set of k points inside a shell with inner radius 1 and outer radius (1 + ε)k contains

two points, p and p′, satisfying d(p, p′) < 1.

This question is related to the kissing number of the metric space, which is the maximum

number of points that can be on the surface of a unit sphere all at pairwise distance ≥ 1.

For instance, it is well known that the kissing number is 6 in (R2, L2) and 12 in (R3, L2).

It follows that, in (R2, L2), (ε∗ = 0, k∗ = 7) are valid SNN parameters. Of course, we are

interested in ε∗ > 0. Thus, our question is more general in the sense that our points are not

constrained to lie on a ball, but in a shell (and, to complicate things, the width of the shell,

(1 + ε)k − 1, depends on the number of points).

I Lemma A.1. There are valid SNN parameters in any metric space (Rδ, Lp).

Proof. Consider a shell with inner radius 1 and outer radius 1 + c, for some constant c > 0.

A set of points in the shell at pairwise distance ≥ 1 corresponds to a set of disjoint balls of

radius 1/2 centered inside the shell. Consider the volume of the intersection of the shell with

such a ball. This volume is lower bounded by some constant, v, corresponding to the case

where the ball is centered along the exterior boundary. Since the volume of the shell, vs, is

itself constant, the maximum number of disjoint balls of radius 1/2 that fit in the shell is

constant smaller than vs/v. This is because no matter where the balls are placed, at least v

volume of the shell is inside any one of them, so, if there are more than vs/v balls, there

must be some region in the shell inside at least two of them. This corresponds to two points

at distance < 1.

Set k to be vs/v, and ε to be the constant such that (1 + ε)k = 1 + c. Then, (ε, k) are

valid parameters for (Rδ, Lp). J
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The dependency of k-ANN structures on 1/ε is typically severe. Thus, for practical

purposes, one would like to find a valid pair of parameters with ε as big as possible. The

dependency on k is usually negligible in comparison, and, in any case, k cannot be too

large because the shell’s width grows exponentially in k. Thus, we narrow the question to

optimizing ε: what is the largest ε that is part of a pair of valid parameters?

We first address the case of (R2, L2), where we derive the optimal value for ε analytically.

We then give a heuristic, numerical algorithm for general (Rδ, Lp) spaces.

Parameters in (R2, L2)

Let εϕ ≈ 0.0492 be the number such that (1 + εϕ)10 = ϕ, where ϕ = 1+
√

5

2
is the golden

ratio. The valid SNN parameters with largest ε for (R2, L2) are (ε∗ < εϕ, k∗ = 10) (ε∗ can

be arbitrarily close to εϕ, but must be smaller). This follows from the following observations.

The kissing number is 6, so there are no valid parameters with k < 6.

The thinnest annulus (i.e., 2D shell) with inner radius 1 such that 10 points can be placed

inside at pairwise distance ≥ 1 has outer radius ϕ = (1 + εϕ)10. Figure 3, top, illustrates

this fact. In other words, if the outer radius is any smaller than ϕ, two of the 10 points

would be at distance < 1. Thus, any valid pair with k = 10 requires ε to be smaller than

εϕ, but any value smaller than εϕ forms a valid pair with k = 10.

For 6 ≤ k < 10 and for k > 10, it is possible to place k points at pairwise distance > 1

in an annulus of inner radius 1 and outer radius (1 + εϕ)k, and they are not packed

“tightly”, in the sense that k points at pairwise distance > 1 can lie in a thinner annulus.

This can be observed easily; Figure 3 (bottom) shows the cases for k = 9 and k = 11.

Cases with k < 9 can be checked one by one; in cases with k > 11, the annulus grows

at an increasingly faster rate, so placing k points at pairwise distance > 1 of each other

becomes increasingly “easier”. Thus, for any k 6= 10, any valid pair with that specific k

would require an ε smaller than εϕ.

Parameters in (Rδ, Lp)

For other Lp spaces, we suggest a numerical approach. We can do a binary search on the

values of ε to find one close to optimal. For a given value of ε, we want to know if there is

any k such that (ε, k) are valid. We can search for such a k iteratively, trying k = 1, 2, . . .

(the answer will certainly be “no” for any k smaller than the kissing number). Note that,

for a fixed k, the shell has constant volume. As in Lemma A.1, let v be the volume of the

intersection between the shell and a ball of radius 1/2 centered on the exterior boundary

of the shell. As argued before, if kv is bigger than the shell’s volume, then (ε, k) are valid

parameters. For the termination condition, note that if in the iterative search for k, k reaches

a value where the volume of the shell grows more than v in a single iteration, no valid k for

that ε will be found, as the shell grows faster than the new points cover it.

Besides the volume check, one should also consider a lower bound on how much of the

shell’s surface (both inner and outer) is contained inside an arbitrary ball. We can then see

if, for a given k, the amount of surface contained inside the k balls is bigger than the total

surface of the shell, at which point two balls surely intersect. This check finds better valid

parameters than the volume one for relatively thin shells, where the balls “poke” out of the

shell on both sides.
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A remark on the use of our algorithm for computing straight skeletons: degenerate

polygons where two shrinking reflex vertices collide gives rise to a motorcycle graph problem

where two motorcycles collide head on. To compute the straight skeleton, a new motorcycle

should emerge from the collision. Our algorithm does not work if new motorcycles are added

dynamically (such a motorcycle could, e.g., disrupt a NN cycle already determined), so it

cannot be used in the computation of straight skeletons of degenerate polygons.

As a side note, the NNC algorithm for motorcycle graphs is reminiscent of Gale’s top

trading cycle algorithm [38] from the field of economics. That algorithm also works by finding

“first-choice” cycles. We are not aware of whether they use a NNC-type algorithm to find

such cycles; if they do not, they certainly can; if they do, then at least our use is new in the

context of motorcycle graphs.
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