1907.01004v3 [cs.CV] 27 Aug 2019

arxiv

Symmetry Detection and Classification in
Drawings of Graphs

Felice De Lucal0000-0001-5937-7636] \[q Tqbal Hossain(5)[0000-0001-6212-7638]
and Stephen Kobouroy[0000—-0002—0477—2724]

Department of Computer Science, University of Arizona, USA
{felicedeluca,hossain,kobourov}@cs.arizona.edu

Abstract. Symmetry is a key feature observed in nature (from flowers
and leaves, to butterflies and birds) and in human-made objects (from
paintings and sculptures, to manufactured objects and architectural de-
sign). Rotational, translational, and especially reflectional symmetries,
are also important in drawings of graphs. Detecting and classifying sym-
metries can be very useful in algorithms that aim to create symmetric
graph drawings and in this paper we present a machine learning approach
for these tasks. Specifically, we show that deep neural networks can be
used to detect reflectional symmetries with 92% accuracy. We also build
a multi-class classifier to distinguish between reflectional horizontal, re-
flectional vertical, rotational, and translational symmetries. Finally, we
make available a collection of images of graph drawings with specific
symmetric features that can be used in machine learning systems for
training, testing and validation purposes. Our datasets, best trained ML
models, source code are available online.

1 Introduction

The surrounding world contains symmetric patterns in objects, animals, plants
and celestial bodies. A symmetric feature is defined by the repetition of a pat-
tern along one of more axes, called azes of symmetry. Depending on how the
repetition occurs the symmetry is classified as reflection when the feature is re-
flected across the reflection axis, and translation when the pattern is shifted in
the space. Special cases of reflection symmetries are horizontal (reflective) sym-
metry when the axis of symmetry is horizontal or a vertical (reflective) symmetry
when such axis is vertical. Rotational symmetries occur when the translational
axes of symmetry are radial.

Symmetry has been studied in many different fields such as psychology, art,
computer vision, and even graph drawing. In psychology, for example, studies on
the impact of symmetry on humans show that the vertical symmetry in objects
is perceived pre-attentively. A similar study conducted in the context of graph
drawing also shows that the vertical symmetry in drawings of graphs is best
perceived among all others [8]. In this context, algorithms to measure symmetries
in graph drawings have been proposed although it has been shown that these
measures do not always agree with what humans perceive as symmetric [34].



Convolutional Neural Networks (CNN) have become a standard image clas-
sification technique [18]. CNNs automatically extract features by using informa-
tion about adjacent pixels to down-sample the image in the first layers, followed
by a prediction layer at the end.

Led by the lack of a reliable way to identify a symmetric layout and eventually
classify it by the symmetry it contains, in this paper we consider CNNs for
the detection and classification of symmetries in graph drawing. Specifically we
consider the following two problems: (i) Binary classification of symmetric and
non-symmetric layout; and (ii) multi-class classification of symmetric layouts
by their type: horizontal, vertical, rotational, translational. In particular, our
contributions are as follows:

1. We describe a machine learning model that can be used to determine whether
a given drawing of a graph has reflectional symmetry or is not-symmetric (bi-
nary classification). This model provides 92% accuracy on our test dataset.

2. We describe a multi-class classification model to determine whether a given
drawing of a graph has vertical, horizontal, rotational, or translational sym-
metry. This model provides 99% accuracy on our test dataset.

3. We make available training datasets, as well as the algorithms to generate
them.

The full version of this paper contains more details, figures and tables [7].

2 Related Work

Symmetry detection has applications in different areas such as computer vision,
computer graphics, medical imaging, and robotics. Competitions for symmetry
detection algorithms have taken place several times; for example, see Liu et
al. [20]. For reflection and translation symmetries the problem can be interpreted
as computing one or more axes of symmetry [17]. In the context of graph drawing,
symmetry is one of the main aesthetic criteria [26].

Symmetry detection and computer vision: Detection of symmetry is an im-
portant subject of study in computer vision [1,21,24]. The last decades have
seen a growing interest in this area although the study of bilateral symmetries
in shapes dates back to the 1930s [2]. The main focus is on the detection of
symmetry in real-world 2D or 3D images. As Park et al. [25] point out, al-
though symmetry detection in real-world images has been widely studied it still
remains a challenging, unsolved problem in computer vision. The method pro-
posed by Loy and Eklundh [22] performed best in a competition for symmetry
detection [20] and is considered a state-of-the-art algorithm for computer vision
symmetry detection [6,25]. Symmetries in 2D points set have also been stud-
ied and Highnam [11] proposes an algorithm for discovering mirror symmetries.
More recently, Cicconet et al. [6] proposed a computer vision technique to de-
tect the line of reflection (mirror) symmetry in 2D and the straight segment



that divides the symmetric object into its mirror symmetric parts. Their tech-
nique outperforms the winner of the 2013 competition [20] on single symmetry
detection.

Symmetry detection and graphs: In graph theory the symmetry of a graphs is
known as automorphism [23] and testing whether a graph has any axial sym-
metry is an NP-complete problem [3]. A mathematical heuristic to detect sym-
metries in graphs is given in [9]. Klapaukh [15,16] and Purchase [26] describe
algorithms for measuring the symmetry of a graph drawing. While the first mea-
sure analyzes the drawing to find reflection, rotation and translation symmetries,
the latter considers only the reflection. Welsh and Kobourov [34] evaluate how
well the measures of symmetry agree with human evaluation of symmetry. The
results show that in cases where the Klapaukh and Purchase measures strongly
disagreed on the scoring of symmetry, human judgment agrees more often with
the Purchase metric.

Symmetry detection and machine learning: Convolutional neural networks can
be a powerful tool for the automatic detection of symmetries. Vasudevan et
al. [33] use this approach for the detection of symmetries in atomically resolved
imaging data. The authors train a deep convolutional neural network for sym-
metry classification using 4000 simulated images, 3 convolutional layers, a fully
connected layer, and a final ‘softmax’ output layer on this training dataset. Af-
ter training over 30 epochs, the authors obtained an accuracy of 85% on the
validation set. Tsogkas and Kokkinos [32] propose a learning-based approach to
detect symmetry axes in natural images, where the symmetry axes are contours
lying in the middle of elongated structures. To the best of our knowledge, there
are no prior machine learning approaches for detecting or classifying symmetries
in graph drawings.

Neural networks for image classification and detection: Convolutional Neural
Networks (CNNs) are standard in image recognition and classification, object
detection, and video analysis. The Mark I Perception machine was the first im-
plementation of the perceptron algorithm in 1957 by Rosenblatt [27]. Widrow
and Hoff proposed a mutlilayer perceptron [35]. Back-propagation was intro-
duced by Rumelhart et al. [28]. LeNet-5 [19] was deployed for zip code and
digit recognition. In 2012, Alex Krizhevsky [18] introduced CNNs with AlexNet.
Szegedy et al. [14] introduced GoogLeNet and the Inception module. Other no-
table developments include VGGNet [30] and residual networks (ResNet) [10].

3 Background and Preliminaries

In this section we give a brief overview of machine learning in the context of our
experiments. We also attempt to clarify some of the terminology we use through-
out the paper, focusing in particular on Deep Neural Networks and Convolutional
Neural Networks.



A deep neural network is made of several layers of neurons. Information flows
through a neural network in two ways: via the feedforward network and via
backpropagation. During the training phase, information is fed into the network
via the input units, which trigger the layers of hidden units, and these in turn
arrive at the output units. This common design is called a feedforward network.
Not all units fire all the time. Each unit receives inputs from the units of the
previous layer, and the inputs are multiplied by the weights of the connections
they travel along. Every unit adds up all the inputs it receives in this way and
if the sum exceeds a certain threshold value, the unit fires and triggers the units
it is connected to in the next layer.

Importantly, there is a feedback process called backpropagation that can be
used to improve the weights. This involves the comparison of the output the net-
work produces with the output it was meant to produce, and using the difference
between them to modify the weights of the connections between the units in the
network, working from the output units, through the hidden units, and to the
input units. Over time, backpropagation helps the network to “learn,” reducing
the difference between actual and intended outputs.

Convolutional neural network (CNN) are used mainly for image data classifi-
cation where intermediate layers and computations are a bit different then fully
connected neural networks. Each pixel of input image is mapped with a neuron
of the input layer. Output neurons are mapped to target classes. Figure 1 shows
a simple CNN architecture. Different types of layers in a typical CNN include:
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Fig. 1: A typical convolutional neural network.

— conwvolution layer (convnet): in this layer a small filter (usually 3 x 3) is taken
and moved over the image. Applying filters in the layer helps to detect low
and high level features in the image so that spatial features are preserved in
the layer. The convolutional layer helps to reduce the number of parameters
compared to a fully connected layer. Keeping the same set of filters helps to
share parameters and sparsity helps to further reduce the parameters. For
example, in a 3 x 3 filter every node in the next layer is only connected to
9 nodes in the previous layer. This sparse connection helps to avoid over-
fitting.

— activation layer: this layer applies an activation function from the previous
layer. Example functions include ReLLU, tanh and sigmoid.



— pooling: the pooling layer is used to reduce size of the convnet. Filter size
f, stride s, padding p are used as parameters of the pooling layer. Average
pooling or max pooling are the standard options. After applying the pooling
to a given image shape (Np x N,, x N,), it turns into L% +1]x L% +
1] x N..

— Fully Connected Layer (FCL): a fully connected layer creates a complete
bipartite graph with the previous layer. Adding a fully-connected layer is
useful when learning combinations of non-linear features.

We now review some common machine learning terms. Training loss is the error
on the training set of data, and wvalidation loss is the error after running the
validation set of data through the trained network. Ideally, train loss and valida-
tion loss should gradually decrease, and training and validation accuracy should
increase over training epochs. The training set is the data used to adjust the
weights on the neural network. The validation set is used to verify that increase
in accuracy over the training data actually yields an increase in accuracy. If the
accuracy over the training data set increases, but the accuracy over the valida-
tion data decreases, it is a sign of owerfitting. The testing set is used only for
testing the final solution in order to confirm the actual predictive power of the
network. A confusion matrixz is a table summarizing the performance in classifi-
cation tasks. Each row of the matrix represents the instances in a predicted class
while each column represents the instances in an actual class. The precision p
represents how many selected item are relevant and recall r represents how many

relevant items are selected. F'1-score is measured by the formula 2 x ;i’; .

4 Datasets

In this section we describe how we generated datasets for our machine learning
systems. To the best of our knowledge, there is no dataset of images suitable
for training machine learning systems for symmetry detection in graph drawings.
Our dataset contains images that feature different types of symmetries, including
reflection, translation or rotation symmetries and variants thereof. An overview
all types of layouts is given in Fig. 2.

We started with a dataset of simple symmetric images and inspected the
results trying to identify which characteristic of the layout leads to its classi-
fication as symmetric or not symmetric. If we observed a characteristic in the
symmetric layouts we generated non symmetric layouts that expose it and sym-
metric layouts without it. Then we fed them to the system for the classification.
In case of inaccurate results we included the new layouts (that we call breaking
instances of the dataset) in the training system and repeated the process until
we could not identify any other specific feature.

In order to distinguish inputs of different sizes, we refer to layouts in our
dataset as small or large based on the number of vertices, |V|. A small layout
has |V| € [5,8] while a large layout has |V| € [10,20]. The number of edges
is a random integer |E| € [|V], 1.2 * |V|]]. The layouts included in the global
dataset used for all experiments can be summarized as follows:
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Fig. 2: Examples of the different layout instances in our dataset.



— SmallSym: small reflective symmetric layout

— SmallNonSym: non symmetric generated from SmallSym with random node
positions

— ReflectionalLarge: large reflective symmetric layouts with random axis of
symmetry

— NonSymLarge: non symmetric generated from ReflectionalLarge layouts

— HorizontalLarge: large reflective symmetric layouts with a 0 degree axis of
symmetry

— VerticalLarge: large reflective symmetric layouts with a 90 degree axis of
symmetry

— RotationalLarge: rotational symmetric with random axes between 4 and 10

TranslationalLarge: translational symmetric translated along x-axis

In the remainder of this section we discuss how we generated our layouts and
the process that led to them.

4.1 Reflectional Layout Generation

A reflectional symmetric layout may expose different characteristics such as “par-
allel lines” orthogonal to the axis of symmetry and edge crossings on the axis of
Symimetry.

The generation procedure for symmetric graphs and layouts thereof differs
slightly depending on the type of symmetry we attempt to capture.

We used the procedure for generating a graph and a reflectional symmetric
layout with the “parallel lines” feature following the algotithm in [8] as follows.
Given a graph with 3 vertices, called a component, we assign to each vertex of
the component positive random coordinates. Then we copy this component and
replace the z-coordinates of each vertex with the negative value of the original.
This results in a layout with two disjoint components that are then connected
by a random number of edges in [1, [|V|/3]] selecting random vertices in one
component and connecting them to their corresponding vertices in the other
component. This results in layouts with vertical axis of symmetry; see Fig. 3(b).
To create layouts with horizontal axis of symmetry we add a 90 degree rotation;
see Fig. 3(a).

The procedure for generating a graph and a reflectional symmetric layout
without the “parallel lines” feature is described in Algorithm SymGG. This al-
gorithm gives an overview on how to create the symmetric versions with the
different features. In the following we explain how we defined SymGG based
on experimental improvements of our dataset. Given a symmetric graph with
n vertices by Algorithm SymGG, we create a non-symmetric layout by assign-
ing to each vertex of the input graph any random y-coordinate and a positive
random x-coordinate to the vertices with identifier < § and a negative random
x-coordinate, otherwise.

To create reflectional symmetric layouts, instead, if a vertex with identifier
i < % gets coordinates (z,,y,) then the vertex with identifier i, = i + % gets
assigned coordinates (—x.., y,). If the graph has an odd number of vertices then



the vertex with identifier n — 1 gets = 0. Note that, by construction, the
resulting layouts have a vertical axis of symmetry; see Fig. 3(e). To create layouts
with horizontal axis of symmetry we add a 90 degree rotation; see Fig. 3(f).

Algorithm SymGG(n,m): Symmetric graph generation with n vertices and
m edges

1: define G = (V, E) where |V| =n with id [0,n — 1] and |E| =0

2: add m edges to G selecting one or more edge types from [3-6] and continuing with
steps [7-12]

3: for a random edge choose random integers u,v in [0,n — 1] such as (u,v) ¢ E;

4: for a random edge that does not cross the axis of reflection choose random integers
u,v in [0, [n/2] — 1] such as (u,v) ¢ E;

5: for parallel edge feature choose random integer u in [0, [n/2] —1] and v = u+|n/2]
such as (u,v) ¢ E;

6: for crossing edge feature choose random integer v in [0, [n/2|—1] and v in [n/2, n—1]

such as (u,v) ¢ F;

Generate the symmetric edge (u_sym,v_sym) of (u,v)

usym =uF [n/2]| if u = |n/2]

9: v.sym =v F |n/2] if v 2 [n/2]

10: usym =uifnisoddand u =n—1

11: vsym=vifnisoddandv=n—1

12: add (u,v) and (u-sym,v_sym) to E

4.2 Dataset Definition

Here we describe the process that led to us to the dataset of reflectional sym-
metric layouts.

To this aim we generated the SmallSym, SmallNonSym, NonSymLarge and
ReflectionalLarge layouts.

First improvement: At first, we trained our system with the reflective sym-
metric layouts and random layouts generated using the approach in [8] as de-
scribed above.

Observations: Using this simple dataset we observed that the system could
always classify the layouts correctly for any of the used layouts.

Layouts characteristic: Analyzing the used dataset we observed that the genera-
tion algorithm used gives symmetric layout for reflective symmetry with a clear
symmetric feature that is ‘parallel lines’ orthogonal to the reflection axis. These
lines separate two identical but reflected subcomponents, as Fig. 3(a-b) show.



Breaking layout: After identifying the ‘parallel lines’ feature, we generated non-
symmetric layouts with the same feature. These layouts were created starting
from the symmetric layouts and then assigning random positions to the vertices
not linked to the parallel edges; an example of random layout with parallel edges
is shown in Fig. 4b. Without re-training the system, these layouts are misclassifed
as symmetric, breaking the previously built model.

// - x‘\\ ° )
@ (b) © @ © X0

Fig. 3: Symmetric layouts in the dataset: (a) Horizontal, (b) Vertical, (¢) Transla-
tional, (d) Rotational, (e) Vertical without parallel lines, (f) Horizontal without
parallel lines.

Second improvement: Here we added to our dataset the breaking instances
of the previous model and new symmetric layouts that do not show the ‘parallel
lines’ feature. The parallel lines of a symmetric layouts are given by vertices that
are connected to their reflected copy (since they share either the x or y coordinate
in the space). The new layouts we generated have the two subcomponents not
only connected by edges between a vertex and his reflected copy but also by
edges connecting a random vertex of one component to a random vertex of the
other (and viceversa to keep the symmetry). These edges generate crossings
on the axis of symmetry of the symmetric layout, instead of the parallel lines.
Pseudocode for the symmetric graph generation Algorithm SymGG (with even
number of edges as input) can be found above.

Analogously we generated some random layouts that show the same feature,
starting from a symmetric layout with non-parallel edges and shuffling the po-
sition of the vertices not connected to such edges. Figure 3(e) illustrates and
example of symmetric layout with crossings while Fig. 4(c) depicts a non sym-
metric layout with crossings.

Observations: Training the system with these new layouts we obtained good
results on all layouts, including those misclassified in the previous setup.

Breaking instance: Inspecting the current dataset we identified another char-
acteristic of the current symmetric layouts: an even number of vertices. We
then generates symmetric layouts with an odd number of vertices. The genera-
tion algorithm for these layouts is given in Algorithm SymGG. Again, without
training, the the current system fails on such layouts misclassifying them as a
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Fig.4: Non symmetric layouts in the dataset: (a) Random, (b) with Parallel
Lines, (c) with Crossings

non-symmetric. Further, we observed that rotating the symmetric layouts also
makes our machinery fail.

Final improvement: Here we added to our dataset instances with odd num-
ber of vertices for both symmetric and non symmetric layouts. We also added
instances rotated by a random angle between 0 and 360. Since we could not find
further breaking instance for this dataset, we used it for our experiments.

4.3 Other symmetric layouts

In addition to the instances above we generated the translational layouts and
rotational layouts using the algorithm in [8], as follows.

To create translational symmetric layouts we use the same process of gen-
eration of reflectional symmetric layout with parallel edges above but instead
of taking the negative value of the z-coordinate of the copied component we
shift each component by a predefined value . If a vertex in the given compo-
nent gets coordinates (x,y) then the vertex in the copied component is assigned
coordinates (x — ¢,y); see Fig. 3(c).

The generation process for rotational symmetric layouts is different, since the
number of vertices depends on the number of symmetric axes. To generate such
layouts we start from a given graph component with n vertices and then we select
a random number of radial symmetric axes in the range [4, 10]. After assigning a
random position to the vertices of the component we copy and shift it over the
reflection axes. Then we choose two random vertices in the component and use
them to connect pairs of rotationally consecutive components; see Fig. 3(d).

5 Experimental Setup

Our images are in black and white with a size of 200 x 200 pixels. We use 1 pixel
for the edge width and 3 x 3 pixels for a vertex. We configured our system with
the following settings: 1 grayscale channel, with resealing by 1/255, batch size
16 and number of epochs 20. In all of our experiment we use 80% of our data
as training set, 10% as validation set, and 10% as test set. Test sets are never
used in during training, those are reserved for computing the final accuracy.
During training, in every epoch we check the validation accuracy and save the
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best trained model as checkpoint. The best trained model is used on the final
test set.

Since images of graph drawings have different features than that of real-world
images (e.g., textures and shapes), we tested different popular CNN architectures
with same parameter settings.

Name parameters |layers|references|our training time (h)
ResNet50 23.59M | 177 [10] 15.25
MobileNet 3.23M 93 12 6.22
MobileNetV2 2.26M 157 29 8.36
NASNetMobile 4.27TM 771 [36] 5.79
NASNetLarge 84.93M | 1041 36 10.21
VGG16 107.01M | 23 30 24.24
VGG19 112.32M | 26 [4] 25.32
Xception 20.87TM | 134 [5] 19.59
InceptionResNetV2| 54.34M | 782 [31] 15.18
DenseNet121 7.04M 429 [13] 20.11
DenseNet201 18.32M | 709 [13] 28.49

Table 1: Overview of the CNN models used in the experiment.

We use CNN architectures from the Keras implementation; Keras is a high-
level API of Tensorflow that supports training with multiple CPUs!. For our
experiments, we used the High Performance Computing system at the University
of Arizona. Specifically, training was done on 28 CPUs, each with Intel Xeon
3.2GHz processor and 6GB of memory. Training time for the different models
ranged from 6 to 29 hours; see Table 1.

6 Detecting reflectional symmetry

Small Binary Classification (SPBC) Experiment: In this experiment we
test how accurately we can distinguish between drawings of graphs with re-
flectional symmetry and ones without. We use a binary classifier trained on
SmallSym and SmallNonSym instances from our dataset; see Fig. 2. We use the
InceptionResNet CNN model with 12000 images for training, 2000 images for
validation, and 2000 image for testing. The model achieves 92% accuracy. We
evaluated several different models before settling on InceptionResNet; see the
full paper for more details [7].

We cross-validate our results with two earlier metrics specifically designed to
evaluate the symmetry in drawing of graphs, namely the Purchase metric [26]
and the Klapaukh metric [15]. These two metrics were not designed for binary

! https://github.com/keras-team/keras/tree/master/keras/applications
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classification, but given a graph layout they provide a score in the range [0, 1].
We interpret a score of > 0.5 as a vote for “symmetry” and a score of < 0.5 as
a vote of “no symmetry.” We can now compare the performance of our CNN
model against those of the Purchase metric and the Klapaukh metric on the
same set of 2000 test images. We report accuracy, precision, recall and F1-score
in Table 2. We can see that while the two older metrics perform well, the CNN
is better in all aspects (except recall, where the Purchase metric is .01% better).

Model Accuracy |Precision |recall |[F'1-Score
Purchase [26] 82% 0.67 0.96 |0.79
Klapaukh [15] |82% 0.80 0.86 |0.83
InceptionResNet [92% 0.90 0.95 (0.93

Table 2: Comparison between the CNN model and existing symmetry metrics.

Training loss, validation loss, training accuracy and validation accuracy for
our Experiment SPBC are shown in the full version of the paper [7].

7 Detecting different types of symmetries

Multi-class symmetric layouts classification (LHVRT) Exrperiement:
In this experiment we test how accurately we can distinguish between draw-
ings of graphs with different types of symmetries. We use a multi-class classi-
fier trained on several types of symmetries: Horizontal, Vertical, Rotational and
Translational. Recall that Horizontal and Vertical are special cases of reflection
symmetry, where the axis of reflection is horizontal or vertical, respectively.

We train the CNN with HorizontalLarge, VerticalLarge, RotationalLarge, and
TranslationalLarge instances from our dataset; see Fig. 2.

We use the ResNet50 CNN model with 16000 images for training, 2000 im-
ages for validation, and 4280 image for testing. The model achieves 99% accuracy.
Table 3 shows the corresponding confusion matrix. We evaluated several differ-
ent models before settling on ResNet50. Training loss, validation loss, training
accuracy and validation accuracy for our Experiment LHVRT are shown in the
full version of the paper, where more results and discussion thereof can also be
found [7].

8 Conclusions

In the experiments above we achieved high accuracy for both detection and
classification. Compared to existing evaluation metrics for symmetric layout we
observed that our machinery outperforms the mathematical formulae proposed
when used as classifiers.
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HorizontalLarge| RotationalLarge | TranslationalLarge | Vertical Large
HorizontalLarge [1280 0 0 0
RotationalLarge |0 800 0 0
TranslationalLarge|0 0 798 2
VerticalLarge 0 0 1 1599

Table 3: Confusion matrix from ResNet50. Each row of the matrix represents
the instances in a predicted class while each column represents the instances in
an actual class.

Note, however, that there are many limitations to consider. First of all, we
generated all the datasets and have not tested the models on layouts obtained
from other layout algorithms. Further, the graphs we used are small and we have
not confirmed how well humans agree with the decisions of the machine learning
system. Finally, the two tasks we performed are limited in power, and we do
not yet have a model that can accurately predict whether a graph drawing is
symmetric or not, or which of two drawings of the same graph is more symmetric.

Nevertheless, we believe our dataset can be useful for future experiments and
our initial results on limited tasks indicate that a machine learning framework
can be useful for symmetry detection and classification. Our dataset, models,
results details can be found in https://github.com/enggiqbal/mlsymmetric
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Appendix
9 Discussion

We performed further experiments to test the behavior of the machine learning
system on slightly larger graphs and with slightly more difficult tasks. We report
on two such experiments, LNBC and LRefRotTra, below.

9.1 Experiment LNBC (ReflectionalLarge, NonSymLarge)

In this experiment we use more complex input instances when detecting symme-
tries. The dataset ReflectionalLarge and NonSymLarge are used as symmetric
and non-symmetric in this experiment with 10000 samples; see Fig. 2. We use
80% of our data as training set, 10% as validation set, and 10% as test set.
Note that ReflectionalLarge dataset combines all types of reflection symmetries,
including horizontal reflection, vertical reflection and arbitrary axis reflection.
This makes the set of symmetric instances more varied then when considering
only one type of symmetry. Further, NonSymLarge contains more complex non-
symmetric instances, where starting from a symmetric layout a few vertices are
slightly perturbed in order to break the symmetry. This task is clearly harder
and accuracy decreases to 78%; see Table 5.

The experiment above motivates three more focused experiments that we use
to identify the nature of the difficulty of the LNBC task .

— Experiment LHnonSym: tests whether the model can distinguish be-
tween complex non-symmetric (dataset NonSymLarge) and only horizontal
symmetric samples (dataset HorizontalLarge).

— Experiment LVnonSym: tests whether the model can distinguish between
complex non-symmetric (dataset NonSymLarge ) and only vertical symmet-
ric samples (dataset VerticalLarge).

— Experiment LHVSym: tests whether the model can distinguish between
horizontal symmetric (dataset HorizontalLarge) and only vertical symmetric
samples (dataset VerticalLarge).

Table 5 shows that several of models achieve 100% accuracy for all 3 of these
experiments (LHnonSym, LVnonSym and LHVSym). This provides a possible
explanation for the low accuracy of the LNBC experiment: the machine learning
algorithms are struggling to distinguish symmetric from non-symmetric layouts
when both the symmetric instances are more complex (different types of symme-
tries) and when the non-symmetric instances are also more complex (different
types of non-symmetric layouts).

9.2 Experiment LRefRotTra (ReflectionalLarge, RotationalLarge,
TranslationalLarge)

We next conducted an experiment to detect the type of symmetry in a given lay-
out, from the possible options: reflectional, rotational, and translational. Note
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that in this experiment we do not distinguish among the various types of reflec-
tional symmetry (horizontal, vertical, arbitrary axis). That is, the reflectional
layouts include vertical, horizontal, and reflectional with random angle of ro-
tation samples. From the total of 24720 instances in these three datasets, we
choose 80% for training, 10% for validation, and 10% for testing; see the Reflec-
tionalLarge, RotationalLarge and TranslationalLarge rows in Fig. 2.

The best performing models achieve 69% accuracy, which indicates difficulty
in distinguishing the different types of symmetries. In particular, the confusion
matrix in Table 4 shows that the translational symmetric instances are incor-
rectly detected as reflectional symmetric instances.

ReflectionalLarge|RotationalLarge| TranslationalLarge
ReflectionalLarge [872 0 0
RotationalLarge |0 800 0
TranslationalLarge|800 0 0

Table 4: Confusion matrix of Ezperiment LRefRotTra. Each row of the matrix
represents the instances in a predicted class while each column represents the
instances in an actual class. Note that the translational symmetric instances are
incorrectly detected as reflectional symmetric instances.

10 Experimental statistics

In this section we present some statistics of training progress of different models.
Figure 5 show training loss, validation loss, training accuracy and validation
accuracy of different CCN architectures for Experiment SPBC. For each graphic,
the z-axis represents the epochs and the y-axis represents the value of loss or
accuracy, depending on the color of the line (see legend). Overall, we ovserve that
InceptionResNet V2 has the best behavior showing decreasing loss and increasing
accuracy. Figure 6 shows similar statistics for Fxperiment LHVRT where only
two models converge fast, namely ResNet50, InceptionResNetV2.

We summarize results of all experiments in the Table 5 where training and
validation accuracy are reported.
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model SPBC LNBC LHnonSym | LHVSym [LVnonSym| LHVRT |LRefRotTra
tracc|vacc|tracc|vacc|tracc|vacc |tracc|vacc|tracc|vacc |tracc|vacc|tracc|vacc
ResNet50 0.89 |0.85| 0.89 |0.76| 1.0 [1.0 1.0 |1.0 1.0 |[1.0 1.0 |1.0 1.0 |0.68
MobileNet 0.95 [0.89 0.96 {0.72]| 1.0 |1.0 1.0 [1.0 1.0 |1.0 1.0 |1.0 1.0 [0.69
MobileNetV2 0.92 |0.55| 0.93 |0.42| 1.0 |1.0 1.0 |1.0 1.0 |0.89 1.0 |0.8 1.0 |0.68
NASNetMobile 0.97 10.52[ 0.98 [0.63| 1.0 [0.59 [ 1.0 [1.0 1.0 |0.53 [ 1.0 |0.68] 1.0 |0.66
NASNetLarge 0.64 |0.56 | 0.87 |0.67 | 0.99 |0.68 1.0 |0.92| 1.0 |0.54 | 0.97 |0.38| 1.0 |0.67
VGG16 0.51 |0.52 0.47 |0.41 | 0.56 |0.58 | 0.45 |0.47 | 0.51 |0.53 | 0.36 |0.38 | 0.51 [0.33
VGG19 0.51 |0.51] 0.46 |0.42| 0.56 |0.58 | 0.45 [0.46| 0.51 |0.53 | 0.36 [0.37 | 0.51 |0.34
Xception 0.94 |0.72[ 0.97 |0.71| 1.0 [1.0 1.0 |1.0 1.0 |[1.0 1.0 |[1.0 1.0 |0.68
InceptionResNetV2| 0.97 [0.94] 0.99 |0.78| 1.0 [1.0 1.0 |1.0 1.0 [1.0 1.0 [1.0 1.0 |0.69
DenseNet121 0.95 |0.87| 0.96 |0.62| 1.0 |1.0 1.0 |1.0 1.0 [1.0 1.0 |[1.0 1.0 |0.69
DenseNet201 0.86 10.83[ 0.89]0.69| 1.0 [0.99 [ 1.0 [1.0 1.0 [1.0 1.0 [1.0 1.0 [0.68

Table 5: Training accuracy (tracc) and validation accuracy (vacc) achieved by
different models for the different tasks, at a glance.
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