
Computer Physics Communications 256 (2020) 107463

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

OpenFSI: A highly efficient and portable fluid–structure simulation
package based on immersed-boundarymethod✩

Huilin Ye a, Zhiqiang Shen a, Weikang Xian a, Teng Zhang b, Shan Tang c,∗, Ying Li a,∗
a Department of Mechanical Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
b Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, NY 13244, USA
c State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of
Technology, Dalian, 116023, PR China

a r t i c l e i n f o

Article history:
Received 4 January 2020
Received in revised form 15 June 2020
Accepted 22 June 2020
Available online 30 June 2020

Keywords:
Fluid–structure interaction
Lattice model
Lattice Boltzmann method
Immersed boundary method

a b s t r a c t

We have developed a highly efficient and portable fluid–structure interaction (FSI) simulation package,
so-called OpenFSI. Within this package, the structure dynamics is accounted by a lattice model
(LM) implemented in the framework of Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS), demonstrating the same accuracy as finite element analysis. The fluid flow is resolved by
Palabos, which adopts the Lattice Boltzmann method (LBM) to efficiently solve the Boltzmann equation
that can recover the Navier–Stokes equation in mesoscale. Additionally, the immersed boundary
method (IBM) is employed to couple LM and LBM together, therefore endowing the flexibility to choose
alternative solid and fluid solvers. The whole simulation is fulfilled within the framework of Palabos,
and the LAMMPS framework is called in Palabos as an external library and coupled through IBM. To
demonstrate the capability and accuracy of the proposed package, the validations for the LM are first
performed by conducting the deflections of two-dimensional (2D) and three-dimensional (3D) beams
in LAMMPS, and comparing the results with those in finite element analysis. Followed are the classical
benchmarks of flow passing 2D flexible beam behind a cylinder and 3D flow passing a fixed cylinder. In
the results, the free-falling of spheres and flapping of a deformable plate in cross-flow are investigated.
Furthermore, the possibility to study complex FSI phenomena is demonstrated by the cases of spheres
passing a dam and swimming of microswimmers. Lastly, the efficiency of this simulation package is
explored by examining an extremely large system with thousands of red blood cells in blood flow. The
OpenFSI package is found to have excellent linear scalability up to 8192 processors, due to the particle-
based LM and LBM for structure and fluid flow respectively, as well as advanced cyberinfrastructure
of LAMMPS package. Therefore, OpenFSI presents an alternative option to efficiently solve large scale
FSI problems, hence to facilitate the unveiling of underlying physical mechanisms.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Fluid–structure interaction (FSI), a complicated system involv-
ing fluid, solid and interaction between each other, has achieved
great progress in simulation studies with the advancement of
modern computing technology. However, it remains a challenge
to fully understand FSI problems with broad applications, due
to their multiphysics and multidisciplinary nature [1–6]. The
separated fluid and solid have their own governing equations
that two systems are required to describe and track them ei-
ther simultaneously or asynchronously, depending on interaction
manner. Moreover, the solid or fluid may partially be controlled

✩ The review of this paper was arranged by Prof. David W.Walker.
∗ Corresponding authors.

E-mail addresses: shantang@dlut.edu.cn (S. Tang), yingli@engr.uconn.edu
(Y. Li).

or influenced by other physical processes such as electrical, chem-
ical or biological aspect. Therefore, to interpret the motion of
the whole system, it requires the synthesis of broad perspectives
through connecting different knowledges and skills. Nevertheless,
researchers make great efforts and attain increasing advance-
ments in a broad range of FSI applications, including: powder
bed fusion in additive manufacturing [7,8]; vascular FSI with
red blood cells in microvasculature [9–11]; flapping of creatures
like fish swimming and bird flying and nonlivings like flag and
foil in the flow [12–14]; transport of contaminants, sediment, or
other solutes in rivers and streams [15,16]; turbulent flows that
contain particles occurring in a variety of industrial, biological,
and environmental processes [17,18]. Despite the theoretical and
experimental progress, developing reliable and efficient modeling
techniques for FSI problems emerges as an indispensable tool to
unveil underlying physical mechanisms of these phenomena.

https://doi.org/10.1016/j.cpc.2020.107463
0010-4655/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2020.107463
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2020.107463&domain=pdf
mailto:shantang@dlut.edu.cn
mailto:yingli@engr.uconn.edu
https://doi.org/10.1016/j.cpc.2020.107463

2 H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463

Conventional numerical approaches for FSI problems are usu-
ally established based on conforming meshes. Among those, the
Arbitrary Lagrangian–Eulerian (ALE) [19–22] and the space–time
finite-element method [23,24], as representations of the con-
forming approaches, are the most well-known methods using
boundary-fitted mesh. In these methods, the structure and flow
are meshed separately. A Lagrangian mesh is adopted to describe
the material points and then capture the motion of the structure.
And another one is used to discretize the flow which is required
to conform the instantaneous shape of the structure. Using the
body-conformal mesh, the boundary condition of the flow is
allowed to directly apply on the solid surface. More importantly,
the boundary layer can be well resolved through locally refining
the flow mesh near the solid surface. However, these advantages
are paid by computational cost. The moving of mesh points in
bulk flow is needed to follow the boundary of the structure. This
may cause the distortion of fluid mesh, especially when encoun-
tering large translations or rotations of the structure. Hence, a
re-meshing or mesh-updating process is necessary to ensure the
conforming of fluid and structure [25]. This process on one hand,
consumes large computational time, on the other hand, lowers
the accuracy due to the transferring of information from the
degenerated mesh to the new one.

Contrary to the conforming mesh-based approaches, the non-
body-conformal mesh-based approach is designed to consider
fluid and structure as two separated computational fields. Usu-
ally, the fluid model is constructed on fixed Cartesian mesh. And
a Lagrangian mesh is adopted to track the structure and allowed
to move on the top of the background fixed Cartesian mesh.
The numerical algorithms to solve fluid and structure motion
can perform either sequentially (staggered) or simultaneously
(monolithic). Although monolithic techniques demonstrate high
numerical convergence and robustness due to the fully-coupled
fashion, the price needed to pay is that the monolithic approach
requires the writing of a fully-integrated fluid–structure solver,
which closes the door on the use of existing fluid and structure
software [26,27]. However, the staggered approach outperforms
the monolithic approach in terms of the efficiency, and the flex-
ibility of the adoption of existing well-validated fluid and solid
solvers, due to the uncoupled fashion. One of the popular stag-
gered approach is so-called immersed boundary method (IBM),
which is first proposed by Peskin [28] in 1970s to study the
heart valve flow, and then refined by many other researchers
with extensive applications in FSI problems [29–40]. In IBM, the
interaction is accomplished by the interpolation of interfacial
forces and velocities through interpolation functions between
fluid and structure domains. The construction of interpolation
function should meet the continuity of velocity and force across
the fluid–structure interface [41]. Up to now, there are two well-
known interpolation functions: reproducing kernel function [42,
43] and Dirac delta function [41]. Reproducing kernel function
is first proposed in reproducing kernel particle method (RKPM)
that is one of the mesh-free methods [42,43]. It is well-known
due to the high order of interpolation and the suitability for both
uniform and non-uniform meshes. However, a search algorithm
should be completed in each time step in RKPM to identify
new sets of neighbors after immersed solid advances to a new
position, which will consume a lot of computational time. On the
contrary, Dirac delta function is constructed based on uniform
Cartesian mesh, which acts as a template that is independent
on spatial discretization. Therefore, delta function can be easily
implemented into an existing fluid or solid solver with high effi-
ciency. One should note that the simplicity of Dirac delta function
leads to the drawback that the boundary interface between fluid
and solid is smoothed. The boundary condition is applied on the
region around the boundary rather than at the actual location.

Nevertheless, in terms of efficiency that is essential in modeling
complex and large scale FSI problems, Dirac delta function will
outperform the reproducing kernel function.

In the meantime, owing to the simplified mesh generation
in IBM, the computation on structured meshes becomes more
efficient and the domain-decomposition based partition is easier.
Most importantly, IBM enables us to have large freedom to choose
the solvers for fluid and structure in FSI modeling, thus allow-
ing us to integrate existing packages or software with ‘legacy’
codes to account for fluid or structure. Since the algorithms used
in these packages and software have demonstrated efficiency
and accuracy with a variety of benchmarks, to directly utilize
them can reduce the time of code development and we just
need to focus on the efficiency of the implementation of the
interface between these individual packages or software. Among
the fluid solvers in computational fluid dynamics, Lattice Boltz-
mann method (LBM)–based solvers are chosen due to the high
parallelization across multiple processors in high-performance-
computing (HPC) [44–46]. LBM is a mesoscopic approach to solve
the Boltzmann equation that can recover the Navier–Stokes equa-
tion [47]. It was first introduced by Feng and Michaelides [48] to
fluid–particle interactions and then has been extensively adopted
in IBM for a broad range of FSI problems [49–51,35,38,33]. How-
ever, none of these are open-source yet. Here, we adopt Palabos
to account for fluid dynamics, which is an open-source LBM
solver. Most importantly, the LBM in Palabos is implemented
using C++ with parallel features through Message Passing In-
terface (MPI) [52] that it possesses high efficiency when running
in the contemporary HPC system. Thanks to this, Palabos has
been widely used in the modelings of multiphase flow in porous
media [53], turbulent flow [54], biological blood flow [55], to
name a few. One of the applications in large scale problems is
conducted by Tan et al. [55]. In [55], Palabos is utilized to model
the blood flow coupled with the solid solver through IBM. Besides
the efficiency of Palabos, to implement solid solver in LAMMPS
software is essential to account for the large numbers of red blood
cells in blood flow. LAMMPS software is well-known in molecular
simulation due to the high efficiency in handling the exascale
particle system. It is supported by large on-line communities and
has active mailing list. Further, it is easy for user and developer to
extend new functionality and features like interaction potentials
and fluid models. Therefore, it is natural to build the structure
solver on this platform with the destination of developing robust,
portable and open-source FSI package.

Among the solid solvers, finite element analysis (FEA) is usu-
ally employed in FSI to couple with LBM [30,31,56,35]. Although
it demonstrates extensive applications in modeling of large defor-
mation of nonlinear structures [57–59] and high Reynolds num-
ber flow [60,56], FEA is not suitable to be implemented within
the LAMMPS framework, which favors the particle-based model.
On the contrary, Lattice Model (LM) is intrinsically a general-
ized coarse-grained model, which can be seamlessly integrated
into LAMMPS due to its particle-based nature. In particular, LM
stands out due to its high efficiency in modeling solid structures
[61–63]. It simulates the deformation of solids with a system
of discrete particles connected with springs. It has been widely
used in rocks [64], concretes [65], and composites [66]. Recently,
it was employed to describe non-uniform deformation of soft
materials, and to study the dynamics of soft materials in the
fluid flow [67,68]. With the same accuracy as FEA, LM can be
considered as an alternative approach to study FSI problems.
However, most of LMs are limited to the regular lattices, which
may prevent the application of LM in FSI. Current study adopts
the LM recently derived by Zhang [69], in which the irregular
lattice can also demonstrate the same accuracy with FEA for neo-
Hookean solids. In this kind of LM, the lattice spring deformation

H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463 3

energies are assumed to link with the strain energy in FEA. The
spring stiffnesses are obtained by the FEA shape functions directly
and the averaged volumetric strain is adopted when calculating
the bulk deformation energy.

With the help of IBM, the Palabos and LAMMPS are coupled
together to account for fluid and structure dynamics, respectively.
As both Palabos and LAMMPS are efficiently parallelized, the
coupling plays a key role in determining the efficiency of FSI
package. Here, the delta function is adopted in IBM instead of
reproducing kernel function which requires a time-consuming
searching process. And only regular computation domains are
studied in current work that delta function can easily account for.
In present work, through performing several classical FSI prob-
lems, efficiency and robustness are demonstrated with the pro-
posed framework. We name this simulation package as OpenFSI.
Currently, OpenFSI is open-source (https://github.com/huilinye/
OpenFSI) with the purpose to help interested users utilize this
package to solve their own physical problems.

This paper is organized as follows. In Section 2, the whole
computation framework of OpenFSI is given. The LBM is firstly
introduced for fluid flow. Then 1D, 2D and 3D LMs are described.
And the IBM is discussed in detail to couple the fluid dynam-
ics and immersed structures, especially in terms of the consis-
tent CPU mapping technique in the coupling between individual
solvers. In Section 3, numerical validations for the proposed FSI
scheme are presented, including deflections of flexible 2D and 3D
beams, flow passing a 2D flexible beam behind a cylinder, flow
passing a fixed 3D cylinder and deformation of capsule in bi-shear
flow. Further studies of complex FSI problems such as flapping of
flexible plate in cross-flow and swimming of microswimmers, are
examined in Section 4. In addition, a special Section 5 is presented
to study the computational efficiency and linear scalability of
OpenFSI. Conclusion remarks are provided in Section 6.

2. Computational method

2.1. Overview of the computational framework for OpenFSI

Prior to introduce the detailed numerical methods, we present
the whole computational framework of OpenFSI in Fig. 1. A FSI
simulation package typically contains three parts: fluid solver,
solid solver, and fluid–structure coupling interface. Here the fluid
is considered as Newtonian fluid and the flow is incompressible,
governed by the Navier–Stokes equations (NSE). We adopt the
Palabos that is Lattice Boltzmann method (LBM)–based approach
to solve Boltzmann equation that can recover the NSE. Three
different flow conditions such as simple shear flow, Poiseuille
flow, and uniform flow through configuring different boundary
conditions are investigated. The solid structure represented by
LM is solved within LAMMPS framework. 1D, 2D, and 3D LMs
are implemented by different force fields, which are energetically
equivalent to the corresponding continuummodels. The force and
velocity information on the interfacial region between fluid and
structure are transferred upon the IBM. With the force spread
from the solid structure, we can advance the LBM and obtain the
new velocities in the fluid domain. The fluid velocity information
is passed to LAMMPS for structural dynamics, and the structure
motion is solved based on the LM. This sustained cycling fulfills
the whole FSI process. In the following, we will introduce these
solvers one by one.

2.2. Fluid solver: Lattice Boltzmann method (LBM)

Here, the fluid is considered as Newtonian fluid, and the flow
model is 2D or 3D incompressible flow. The dynamics of the

fluid flow is governed by the NSE, which can be described in an
Eulerian coordinate system as:
∂u
∂t

+ u · ∇u = −
1
ρ f ∇p +

µ

ρ f ∇
2u + F, (1)

∇ · u = 0, (2)

where ρ f , u, p are the fluid density, velocity, and pressure, respec-
tively. µ is the dynamic viscosity of the fluid, and F is the body
force.

Owing to its efficiency, in computational fluid dynamics, LBM
has been extensively adopted to solve the discrete Boltzmann
equation that can recover incompressible NSE through Chapman–
Enskog analysis [47], instead of directly solving the NSE. The
underlying theory and accuracy can be found in the literature [49,
47]. For sake of simplicity, we briefly summarize the fundamen-
tals of LBM and introduce the model setups in present work.
The explicit parameter underpinning LBM is density distribution
function fi(x, t). It is constructed in the phase space (x, ei), where
x is the position and ei is lattice velocity in ith direction. The
advance of density distribution function includes two processes:
streaming and collision. The linearized Boltzmann equation has
the form:

(∂t + ei¸∂α)fi = −
1
τ
(fi − f eqi) + Fi. (3)

The L.H.S of Eq. (3) can be discretized into fi(x+ei, t+1)− fi(x, t),
corresponding to the streaming process. The term −

1
τ
(fi − f eqi)

in the R.H.S represents the collision process. Here, the collision
model is the simplest Bhatnagar–Gross–Krook (BGK) scheme [50].
Fi is a discretized external forcing term.

In our simulation scheme, D3Q19 model is used [70], where
the fluid particles have possible discrete velocities stated as
Eq. (4) in Box I.

The equilibrium distribution function f eqi (x, t) can be calcu-
lated as:

f eqi (x, t) = ωiρ

[
1 +

ei · u
c2s

+
(ei · u)2

2c4s
−

(u)2

2c2s

]
, (5)

where the weighting coefficients ωi = 1/3 (i = 0), ωi = 1/18 (i =

1 − 6), ωi = 1/36 (i = 7 − 18). The term cs represents the sound
speed which equals to ∆x/(

√
3∆t). ∆x and ∆t are spatial and

temporal discretization sizes, respectively. The relaxation time τ
is related to the kinematic viscosity in NSE with the form of

ν = (τ −
1
2
)c2s ∆t. (6)

The external forcing term can be discretized by the form [71]:

Fi = (1 −
1
2τ

)ωi

[
ei − u
c2s

+
(ei · u)

c4s
ei

]
· F. (7)

Once the particle density distributions fi are known in the
whole fluid domain, the fluid density and momentum are calcu-
lated as

ρ =

∑
i

fi, ρu =

∑
i

fiei +
1
2
F∆t. (8)

In the current LBM scheme, the Zou/He boundary condition
is adopted to account for the pressure and velocity in the com-
putational boundaries [72]. The fluid domain is assumed to be
rectangular and three different flow conditions are examined:
simple shear flow, Poiseuille flow, and uniform flow. In the simple
shear flow, the upper and lower bounds are applied Dirichlet con-
dition to impose the velocities. The boundaries in flow direction
are applied with periodic boundary conditions and boundaries
in the other directions are Neumann condition for velocity. In
the Poiseuille flow, we apply a body force to the fluid in the

https://github.com/huilinye/OpenFSI
https://github.com/huilinye/OpenFSI
https://github.com/huilinye/OpenFSI

4 H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463

Fig. 1. Schematic of the computational framework of OpenFSI.

[e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18] =[0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 −1 1 −1 0 0 0 0 1 1 −1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 −1 1 −1

]
.

(4)

Box I.

whole domain that mimics the pressure-driven profile. Therefore,
a periodic boundary condition is applied in the flow direction and
other directions are imposed on wall condition. In Palabos, the
wall condition is fulfilled by the bounce-back scheme [47]. In the
uniform flow, the uniform velocity boundary is exerted on the
inlet and Neumman condition for velocity in the outlet. The other
directions are applied with Neumman condition for velocity and
Dirichlet condition for pressure. Besides the boundary condition,
the unit conversion is internally implemented in the Palabos.
The units are denoted as lattice units. To indicate a dimensional
physical quantity, a reference scale is required. For example, the
length reference in Palabos is usually the length of the resolution
of fluid mesh ∆x, therefore, for a quantity with length l will
be denoted as l∗ = l/∆x in lattice unit. Also, the time step
∆t is typically chosen as the time reference. In mechanics, the
dimension of any quantity can be expressed as a combination
of length, time, and mass. The mass reference in Palabos can
be chosen as the fluid density ∆ρ that is a combination of the
dimensions of length and mass. Then any mechanical quantity p
has a reference Cp in Palabos, where Cp is defined as ∆xm∆tnρq.
The superscripts m, n, and q are determined by the dimension of
quantity p. Further detailed information of unit conversion can be
found in [73].

2.3. Lattice model (LM) for immersed structures

Fig. 2 presents the relationship between the LM and contin-
uum model. LM should intrinsically reflect the same macroscopic
properties of the continuum model, such as the in-plane shear,
out-of-plane bending, and Young’s modulus, etc. The typical pa-
rameters in LM are spring constant (linear and angle springs)
and some constraints (area and volume). Before solving realistic
problems, the parameters in the LM should be first calibrated

to reproduce the same behaviors of structures in the contin-
uum model. After the relationship between LM parameters and
macroscopic properties is established, the LM can be adopted to
model solid structures due to its efficiency and accuracy. Next, we
will introduce the LM and discuss the relationship between LM
parameters and macroscopic properties of the continuum model
in 1D, 2D and 3D.

2.3.1. 1D lattice beam model
In this work, a 1D coarse-grained lattice model is employed

to account for the 1D continuum beam. As shown in Fig. 2, the
beam is discretized into particles consecutively connected with
linear springs. Additionally, an angle spring is exerted between
the adjacent linear springs. For this model, the total energy U1D
of the beam has the form:
U1D = Ulinear + Uangle + Utorsion

=
1
2

∑
i

ks(dx)2 +
1
2

∑
j

kθ (dθ)2 +
1
2

∑
k

kτ (dτ)2, (9)

where the dx is the stretch of linear spring, dθ is the angle
variance of spring angle, and dτ is the torsion angle. ks, kθ , and
kτ are linear, angle, and torsion spring constants, respectively.
From the beam model theory [74–76], we can directly obtain
the relationship between lattice force constants and macroscopic
properties of the continuum model as follows:

ks =
EA
r0

, kθ =
EI
r0

, kτ =
GJ0
r0

, (10)

where r0 is the radius of a beam, A is the area of cross-section
of the beam, I and J0 are the in-plane and out-of-plane moments
of inertia, respectively. E and G are Young’s and shear moduli of
the beam, respectively. It should be noted that here, the torsion

H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463 5

Fig. 2. Sketch of lattice models and continuum models. For sake of clarity, only one diagonal spring (red spring) in 3D hexahedron element is shown. Actually, there
are total 28 springs in the 3D hexahedron element, where any two nodes are connected with one spring. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

of the beam is not considered. Because the diameters of the
filamentous micro-organisms we study are too small, the torsion
has a negligible effect on the dynamics of the beam.

2.3.2. 2D and 3D solid lattice model
The 2D and 3D solid lattice models used in this work are for-

mulated by Zhang [69], and they are adapted to be implemented
in LAMMPS accordingly. Here, the main framework and related
underlying principles are provided in case one has interests to re-
produce the same work and modify them accordingly for specific
physical problems. At the same time, more details can be found in
Ref. [69]. In the following, neo-Hookean material [77] is adopted
to describe the solid part in LMs. It is a simple and widely used
constitutive model for hyperelastic materials. The strain energy
density Uneo of a neo-Hookean solid can be described as [77]:

Uneo = µs(I1 − 3)/2 − µs ln J + λ(ln J)2/2, (11)

where µs is the shear modulus, λ is the Lame constant, I1 is
the first invariant of the right Cauchy–Green deformation tensor,
I1 = λ2

1+λ2
2+1 for plane strain deformation and I1 = λ2

1+λ2
2+λ2

3
for 3D deformation, λi, i = 1, 2, 3 is the principal stretches. J is
the determinant of the deformation gradient tensor Fde.

First, we discuss the 2D square LM. The essential part relies on
the estimation of strain energy density based on spring stretch
and area change in a square lattice unit (Fig. 2). For example, the
energies associated with I1 and area change J are:

UI1 =
1
2
µs(I1−3) =

µs

2A0
[(r212+r223+r234+r214)/6+(r213+r224)/3−2],

(12)

UJ =
1
2
λ(ln J)2 − µs ln J =

1
2
λ(ln(A/A0))2 − µs ln(A/A0), (13)

where rij denotes the length of the spring, i, j = 1, 2, 3, 4 are
indexes of the nodes in the square lattice. A and A0 are the
areas of the square lattice unit and corresponding initial value,
respectively.

Then we demonstrate the equivalence between the LM and
FEA based on irregular lattices. In the framework of finite element
analysis (FEA), the deformation gradient tensor in an irregular
element is [78]:

Fij =
∂xi
∂Xj

= xai
∂Na

∂Xj
, (14)

where Na(X1, X2) is the shape function, a = 1, 2, 3, 4, and i, j =

1, 2. In 2D plane strain problems, we have I1 = FijFij +1, then the
strain energy corresponding to I1 can be obtained:

A0UI1 =

∫
1
2
µs(xai x

b
i
∂Na

∂Xj

∂Nb

∂Xj
−2)dA0 = −

1
2
kabxai x

b
i −µsA0, (15)

where kab = −
∫

µs ∂Na

∂Xj
∂Nb

∂Xj
dA0. In FEA, the shape function should

meet
∑4

a=1 N
a
= 1, we have the following relations

4∑
a=1

kab = −µs
∫

(
4∑

a=1

∂Na

∂Xj
)
∂Nb

∂Xj
dA0 = 0, (16)

We substitute Eq. (16) into Eq. (15), considering the symmetry of
kab, the strain energy can be expressed by summation of energies
for springs in the lattice structure,

UI1 =
1
2
A−1
0

4∑
b=2,b>a

3∑
a=1

kabr2ab − µs, (17)

where kab is the spring constant. For irregular lattices, kab can be
calculated through Gaussian quadrature with isoparametric map-
ping. And the energy associated with the area strain is calculated
by the same method used in F-bar method [79]. It should be noted
that, the above demonstration for the equivalence between LM
and FEA is based on the construction of I1, therefore, this kind of
analysis will be suitable for other hyper-elastic materials such as
Gent [80] and Arruda–Boyce [81] models, which are formulated
based on I1.

For the 3D problem, the solid structure is partitioned into hex-
ahedron elements, then one hexahedron element has 28 lattice
springs. The strain energy associated with I1 can be written as

UI1 =
1
2
V−1
0

8∑
b=2,b>a

7∑
a=1

kabr2ab − µs, (18)

and the energy associated with the volumetric deformation J is

UJ =
1
2
λ(ln(V/V0))2 − µs ln(V/V0), (19)

where V and V0 are the volumes of the hexahedron element
and the corresponding initial value, respectively. Similar to the
2D case, the spring constant kab and volumetric energy can be
calculated. The area in 2D case is relatively easy to be obtained,

6 H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463

here we introduce the form to estimate the 3D volume of hex-
ahedron element. With the form of deformation gradient tensor
Fij = xai

∂Na

∂Xj
, we can have the volume of the hexahedron element:

V =

∫
det(F)dξ =

∫
1
6
ϵijkϵlmnFliFmjFnkdξ,

=

∫
1
6
ϵijkϵlmnxal

∂Na

∂ξi
xbm

∂Nb

∂ξj
xcn

∂Nc

∂ξk
. (20)

Next, we introduce the process about how to pre-calculate
the spring constants to prepare for the simulation. First, we con-
struct a model in FEA, and then mesh it with either quadrilateral
or hexahedron element. Using this configuration, the values of
spring constant can be computed based on Eq. (16). It should be
noted that the values of spring constants are only dependent on
the initial nodal positions inside an element. Therefore, it is not
necessary to repeatedly perform Gaussian quadrature during the
simulations. With these spring constants, we can easily calculate
the bonded forces in LAMMPS. Along with the result of energy-
relevant to the area or volume deformation, we can solve the
motion equation of the solid.

2.3.3. Shell and membrane lattice model
The shell and membrane lattice models adopted here are origi-

nally developed by Fedosov [82]. The accuracy and efficiency have
been further confirmed by our recent work [9]. In the following,
we just briefly represent them accordingly for the completeness
of the records. Shell and membrane usually point to the open and
closed 2D structures in 3D space, respectively. In FSI, they are
adopted to describe biological particles such as capsules [83–85]
and vesicles [86]. And they can play significant roles in the mod-
eling of red blood cells (RBCs) in blood flow [87,88,40]. The elastic
particles are considered as membrane enclosing internal fluid and
immersed in the external fluid environment. The internal and
external fluid can be either the same (fluid-filled membrane) or
not (cytoplasm and plasma fluid). In simulations, the membrane
is discretized into many interacting particles, which are usually
connected in a triangular pattern (cf. Fig. 2). The mechanical
properties of the elastic particle are accounted for by exerting a
variety of constraints on the membrane. Potential function used
to describe the membrane is given as:

U({xi}) = Ustretching + Ubending + Uarea + Uvolume, (21)

where Ustretching represents the in-plane stretching property of
membrane. Ubending denotes the out-of-plane bending resistance.
Uarea and Uvolume ensure the total area and volume conservation,
which correspond to the area incompressibility of membrane and
incompressibility of the internal fluid, respectively. It should be
emphasized that the choices of the potential terms will corre-
spond to membrane models. For example, a capsule usually has
no resistance to the out-of-plane bending [58], hence, the poten-
tial Ubending should be removed from the total potential. Here,
we use the RBC membrane model as an example to introduce
the different potential forms. The stretching potential Ustretching
consists of two parts: attractive worm-like chain model (WLC)
and repulsive power function (POW). They are expressed by:

UWLC =
kBTlm
4p

3x2 − 2x3

1 − x
, UPOW =

kp
l

, (22)

where kB is the Boltzmann constant. x = l/lm ∈ (0, 1), l is the
length of the spring and lm is the maximum spring extension. p
is the persistent length, and kp is the POW force coefficient. The
bending potential has the form

Ubending =

∑
k∈1...Ns

kb[1 − cos(θk − θ0)], (23)

where kb is the bending stiffness. θk and θ0 are the dihedral angle
between two adjacent triangular elements and its initial value,
respectively. Ns denotes the total number of dihedral angles. To
ensure the conservation of total area for the RBC, local, and global
area constraints are applied. They are expressed as:

Uarea =

∑
k=1...Nt

kd(Ak − Ak0)2

2Ak0
+

ka(At − At0)2

2At
, (24)

where the first term represents the local area constraint, and Nt
is the total number of triangular elements. Ak and Ak0 denote
the kth element area and its initial area, respectively. kd is the
corresponding spring constant. The second term is the global
area constraint. At and At0 are the total area and its initial value,
respectively. ka is the spring constant. The total volume constraint
is also imposed by a harmonic potential

Uvolume =
kv(V − V0)

2V0
, (25)

where kv is the spring constant. V and V0 are the total volume and
its initial value, respectively. With the potential forms, the nodal
force exerted on the membrane can be obtained as the derivation
of the potential as:

fi = −
∂U({xi})

∂xi
. (26)

The coefficients in the above potential forms are usually cho-
sen according to the corresponding macroscopic properties such
as shear modulus, bending modulus, bulk modulus, etc. The
macroscopic properties can be obtained through experiments as
a priori. Then we can connect the parameters in coarse-grained
shell/membrane model with these macroscopic properties. By
extending the linear analysis of a two-dimensional sheet of a
spring network built with equilateral triangles, the macroscopic
properties can be expressed by the coarse-grained parameters as
follows [89,90,82]

µs
=

√
3kBT

4plmx0
(

x0
2(1 − x0)3

−
1

4(1 − x0)2
+

1
4
) +

3
√
3kp

4l30
,

K = 2µs
+ ka + kd,

Y =
4Kµs

K + µs , (27)

where µs is the shear modulus. K represents the area compres-
sion modulus and Y denotes the Young’s modulus. In addition
to the above potentials, corresponding interaction should be em-
ployed to avoid the overlapping between RBCs or nodes that
pertain to different structures. For example, there are many RBCs
in the flow, the nodes in one RBC cannot penetrate into other
RBCs. Here, a short-range and pure repulsive Lennard–Jones po-
tential FLJ(r) = 4ϵ[(σ

r)
12

− (σ
r)

6
], r < rcut is introduced, ϵ and σ

are depth of the well and zero potential distance, respectively. rcut
is the cut-off distance that nodes used to discretize the structure
can interact with each other.

2.4. Fluid–structure coupling: Immersed boundary method

Recently, Tang et al. [91] have developed the Multiscale Uni-
versal Interface (MUI) for facilitating the coupling effort for a
wide range of multiscale/multiphysics simulations. In MUI, all the
simulation models can be considered as a cloud of data points,
each carrying three essential attributes, such as position, type,
and value. Note that a continuum object in the FEA model is
discretized into a finite number of nodes and meshes. These
nodes are considered to be the data points and their connections
(meshes) can be temporarily ignored. Then, the coupling interface
within MUI can define a generic push method for solvers to

H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463 7

Fig. 3. (a) A data sampler method to interpolate or extrapolate the force and velocity between fluid and solid solvers, adapted from Ref. [91]. (b) Schematic of the
IBM. Solid squares represent the Eulerian fluid nodes (x), and solid circles denote vertices of the Lagrangian structure nodes (X).

exchange points carrying different types of data in a unified fash-
ion. For instance, the fluid solver (Palabos) needs the solid force
values from solid solver (LAMMPS) at fluid–structure interface;
while the solid solver requires the fluid velocity values from a
fluid solver at the same boundary. Thus the solvers will take the
responsibility to determine which points get pushed in, because
the interface region can be tracked during the FSI simulation.
It has been confirmed that MUI can provide an efficient and
accurate way to couple different solvers together [91,92].

Inspired by the MUI, a generic fetch method for data inter-
pretation on top of data points can be established for interfacial
coupling between fluid and solid solvers. However, building such
a method is not trivial due to the fact that solvers may be
agnostic of the math and method used by their peers. For exam-
ple, the fluid and solid solvers use the Eulerian and Lagrangian
frameworks, respectively. To resolve this issue, a data sampler
method, based on the weighted interpolation using nearby points
(cf. Fig. 3(a)) [93], can be implemented and used. During this
sampling process, the solver will invoke the fetch method with a
point of interests and a sampler. Then, the coupling interface will
collect all the data points that lie within the sampler’s support
domain around the point of interest. Afterwards, the coupling
interface will feed the sampler with the collected points and let
the sampler to perform its own interpolation. Finally, the sampler
will return the interpolated result back to the solver through the
coupling interface. In this way, the needed value at an arbitrary
desired location (e.g. , fluid–structure interface) can be obtained
through samplers that interpolate values from nearby points.

Although many sampling methods, such as reproducing kernel
particle method [42,94], texture sampling [95], nearest neigh-
bor sampling [96] and moving least-square sampling [97], have
achieved great success, for minimally-intrusive FSI coupling, the
immersed FSI framework can be considered as one of the most
versatile approaches [98,99]. The basic idea for immersed FSI
framework is to ensure the non-slip boundary condition on the
interface between fluid and solid domains. It, on one hand, lets
fluid and structure move with the same velocity, and on the other
hand, makes the force acting on the structure also exert on the
surrounding fluid (Newton’s third law). The IBM is first intro-
duced by Peskin in the 1970s to simulate blood flow around heart
valves [28,41]. The detailed mathematical analysis can be found
in Ref. [41], here we briefly review the mathematical foundations
to explain how to use IBM for coupling fluid flow and immersed
structures. As depicted in Fig. 3(b), there exist two coordinate
systems, Eulerian and Lagrangian coordinates. The Eulerian vari-
ables describe the fluid part and are defined on the fixed Eulerian
mesh x that is adopted to solve LBM. The Lagrangian system
tracks the immersed structures X (membrane or solid) in the
fluid. The Lagrangian quantities are defined in a curvilinear or

unstructured mesh which can move on top of the Eulerian mesh.
The basic assumption requires the structure moves with the same
velocity as the surrounding fluid. However, the Eulerian mesh and
Lagrangian mesh are usually not conformed. This leads to the ne-
cessity of interpolation between these two systems. The velocity
of the structure can be interpolated through surrounding Eulerian
fluid mesh velocities. And conversely, the force obtained from the
deformed structures should be spread to the nearby Eulerian fluid
meshes through interpolation, which will be accepted by LBM as
an external force term. The interpolation stencils for the velocity
interpolation and force spreading can be constructed according
to specific requirements. In the following, we will present the
governing equations of IBM.

The fluid domain is represented by Eulerian coordinates x,
while the solid structure is represented by Lagrangian coordinates
s. Any positions on the structure can be written as X(s, t). To
satisfy the non-slip boundary condition between structure and
fluid domains, the discretized particles should move with the
same velocity as the surrounding fluid. That is
∂X(s, t)

∂t
= u(X(s, t)). (28)

This condition leads to the moving of the immersed structure.
The structure force density F(s, t) is obtained by the potential
functions discussed in above Section 2 due to the motion-induced
deformation, and is distributed to the surrounding fluid mesh by

f′(x, t) =

∫
Ωs

F(Xs, t)δ(x − xs(Xs, t))dΩ, (29)

where δ is a smoothed approximation of the Dirac delta interpola-
tion function. One of the major assumptions for the construction
of the Dirac delta function is that the discretized delta function
can be factorized,

δ(x− xs(Xs, t)) = δ(x− x(Xs, t))δ(y− y(Xs, t))δ(z − z(Xs, t)), (30)

This ansatz makes the computation simpler, though it is not
essential. The assumption lets the interpolation structure become
a cubic lattice, and we can construct a stencil in every direction.
The accuracy of this scheme depends on the construction of the
delta function. In the present study, the so-called 4-points stencil
is used and reads

δ(x) =

⎧⎨⎩
1
8 (3 − 2|x| +

√
1 + 4|x| − 4x2), 0 ≤ |x| ≤ 1,

1
8 (5 − 2|x| +

√
−7 + 12|x| − 4x2), 1 ≤ |x| ≤ 2,

0, 2 ≤ |x|

(31)

This stencil provides a support of 64 lattice points. It has been
proven to be more stable and exhibits fewer lattice artifacts. The

8 H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463

other interpolation stencils can be found in [57,41]. Delta function
interpolation is a symmetrical stencil, and it performs well inside
the domain. However, when the structure is close to a wall, it
will lead to the problem that there are not enough fluid meshes
to interpolate. Under this circumstance, a trilinear stencil can be
introduced, which only needs 8 points to fulfill the interpolation.
One has interests in this is referred to [70].

Then the interpolated FSI force is added back to the LBM
solver as a body force and discretized using the form Eq. (7). The
same approximation function is necessarily used to obtain the
velocities of the Lagrangian structure on the moving boundary.
The mathematical form can be written as follows

us(Xs, t) =

∫
Ω

u(x, t)δ(x − xs(Xs, t))dΩ. (32)

However, the IBM mentioned above is established on the
assumption that the solid has a fiber-like immersed elastic struc-
ture. And it requires that the solid should be quite soft and
massless. A penalty method is proposed by Kim and Peskin [100]
to overcome these defects, which is later further refined by
Tian [34]. The penalty scheme (pIBM) has been extensively used
to simulate FSI problems [32,38,39]. In the pIBM, the motion of
structure is governed by Newton’s second law, and the discretized
formulation is:

mi
dus

i (X
s, t)

dt
= Finti + Fexti . (33)

The internal force Finti comes from the internal structure elasticity,
and the external force Fexti represents the force exerted on the
structure by external stimulus, here it points to the fluid sur-
rounding the structure. To advance Eq. (33), we should know the
external force Fexti first. The penalty scheme to calculate the FSI
force is:

Fexti = β[uf (t) − us(t)], (34)

where uf (t) is the fluid velocity at the position where the struc-
ture locates, and us(t) is the structure velocity at the same po-
sition. β is the penalty parameter. After Fexti is known, it can be
spread to surrounding fluid meshes by the same scheme Eq. (29).
It should be emphasized that the pIBM cannot ensure the non-
slip boundary condition. From Eq. (34), we can see only when
β → ∞, the non-slip boundary condition can be recovered. This
is impractical in the numerical simulation due to the stability.

Intrinsically, IBM and pIBM are the same. They only have a
difference in the implementation in the numerical scheme. If we
let mi → 0, then Eq. (33) becomes

Finti = −Fexti , (35)

which says the FSI force stems from the internal potential of the
structure. Furthermore, if we make β → ∞, then Eq. (34) can be
rewritten as

uf (t) = us(t), (36)

which is the requirement for the non-slip boundary condition in
IBM. Although both of these two schemes essentially reflect the
interaction, they have different applications of FSI problems. The
IBM performs well in the modeling of soft materials such as mem-
branes, capsules and vesicles, because it accurately ensures the
non-slip boundary condition. Whereas pIBM outperforms when
it occurs to the structure with finite mass and high stiffness.
We have implemented both IBM and pIBM in OpenFSI, and can
easily choose an appropriate IB scheme according to the specific
problems.

2.5. Immersed boundary method-based spatial decomposition and
data communication

2.5.1. Spatial decomposition
Both Palabos and LAMMPS adopt spatial decomposition for

parallel computing. In OpenFSI, the spatial decomposition is still
applied to both fluid and structure domains. To ensure the correct
interpolation of velocity and force in IBM, the consistent spatial
decomposition is required that each processor can access both
fluid and solid nodes within the same sub-domain. In the current
framework (cf. Fig. 4), it includes three steps: (1) Initialization
of sub-domains in LAMMPS; (2) Mapping domain decomposition
information to Palabos; and (3) initialization of sub-domains in
Palabos. Next, we will introduce this process in detail.

• Step 1: Initialization of domain in LAMMPS
Two styles of decomposition are provided in the LAMMPS:
brick and tiled. For brick style, the domain decomposition is
fulfilled by partitioning the simulation box into a regular
2d or 3d grid of bricks. One processor masters one brick,
and each processor communicates with its Cartesian neigh-
bors in the grid to extract needed information. In the tiled
style, the simulation box is partitioned into non-overlapping
rectangular-shaped ‘‘tiles’’ with different sizes. In current
work, the brick style is adopted to avoid the complex pat-
tern of neighboring processors by applying the command
comm_style brick in the input file of LAMMPS. For sake of
clarity, only 2d grid is illustrated here. Fig. 4 shows a simple
example that a simulation box is partitioned into 9 bricks
and 9 processors are assigned to manipulate the domain.
Specifically, the green brick i with four vertexes (i1, i2, i3, i4)
is assigned to the processor numbered Pn.

• Step 2: Mapping domain decomposition information to Pal-
abos
To simplify communication of information, the physical
simulation boxes Γ are the same in both LAMMPS and
Palabos with the same coordinate system. Therefore, the
mapping of domain decomposition information Σ can be
implemented by the coordinate mapping {Σ |(i1, i2, i3, i4) →

(j1, j2, j3, j4), ik ∈ Γ , jk ∈ Γ }.
• Step 3: Initialization of domain in Palabos

In the Palabos, the so-called multi-block structure is em-
ployed. The simulation box is divided into regular blocks,
one per processor. To complete the parallelization, it is
necessary to contain a loop which runs over the indices
of the multi-block that each processor can recognize the
domain that it will be responsible for. For instance, from the
coordinate mapping, Palabos obtains the information that
the processor Pn is responsible for the block j characterized
by (j1, j2, j3, j4). And over the loop, the block j is assigned to
the processor Pn.
In summary, the spatial decomposition can be simply de-
scribed by the following pseudo algorithm, as presented in
Fig. 5.

For the individual part, parallel communication is realized
through ghost technology. In LAMMPS, each solid node (particle)
has ghost nodes in its neighboring bricks. The ghost nodes are
replications of solid nodes with attributions: coordinates, veloc-
ity, force, etc. Therefore, when these solid nodes need to interact
with their counterparts in neighboring sub-domains, they can
access the properties directly through ghost nodes. No inter-
processor communication is requested. Similarly, the ghost layer
is adopted in Palabos, as shown in Fig. 4 near the boundaries of
each block with gray color of width ∆e. In OpenFSI, the width
of the ghost layer depends on the IBM interpolation stencil. For

H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463 9

Fig. 4. (a) Spatial decomposition scheme for parallel computing. The numbers represent the rank of processors. The gray regions denote the ghost layers in Palabos.
(b) Declaration of pointer LammpsWrapper to access all the members from LAMMPS, and corresponding wrapper functions to manipulate the members in LAMMPS.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Pseudo algorithm for immersed boundary-based spatial decomposition of LAMMPS and Palabos.

example, for the 4-points stencil, the width of ghost layer ∆e is
larger than 2-points that enough fluid nodes can be accessed in
each individual processor. With ∆e, the coordinate mapping is
realized by, for example, (j1x = i1x − ∆e, j1y = i1y − ∆e) and
(j2x = i2x + ∆e, j2y = i2y − ∆e), where the subscripts x and y
represent the coordinates in x− and y− directions, respectively.
One thing should be noted that if the nodes distributed in the
domain are extremely nonuniform, the efficiency will be signifi-
cantly affected as the current domain decomposition is a regular
grid-based method. For example, if the number of the nodes in
one processor is small, while that in other processor is large, the
processor with a small number of nodes is always waiting for the
processor which has a large number of nodes.

2.5.2. Data communication
Because the structure is updated within the LAMMPS solver,

the data information such as the coordinate, velocity, and force
are analyzed and stored in LAMMPS. While the fluid flow proper-
ties including velocity and body force are obtained in Palabos. To
exchange the data, we provide an interface named IB interface
to collect all the information from both LAMMPS and Palabos,
leaving no intrusion for the individual solver. The data transfer
flow can be described in detail as shown in Algorithm 2, Fig. 6.

There are two parts in the IB interface, one having to do with
the interpolation of velocity, and the other is spreading of the FSI
force, which corresponds to the IBM scheme (cf. Fig. 3(b)).

3. Validation of the numerical method

3.1. Validation of the LM

Although the validation of LM has been shown by Zhang [69],
the implementation of LM in LAMMPS remains to be validated.
The validations of LM are fulfilled by deflections of a 2D and a 3D
beam with rectangular cross-section under uniformly distributed
tractions. The results are compared with the corresponding FEA
results in ABAQUS [101]. In the following examples, the unit
system is: mm for length, mN for force, and kPa for stress. And
in the simulations, the shear modulus is set as µs

= 1 kPa, the
Lame constant is λ = 100µ, which corresponds to Poisson’s ratio
0.495.

First, a 2D beam with length 80 and width 20 is deflected
under traction t = [0, 0.025]T . The left side of the beam is fully
fixed and the traction is applied on the right side (cf. Fig. 7(a)).
The ABAQUS simulations are using a 4-node bilinear element
with reduced integration, hourglass control, and hybrid with con-
stant pressure (CPE4RH). We demonstrate the simulations with

10 H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463

Fig. 6. Pseudo algorithm for data communication between LAMMPS and Palabos solvers.

Fig. 7. (a) Initial and deformed configurations of the 2D beam. (b) Comparison of displacement point A in y-direction between LM and FEA in ABAQUS.

Fig. 8. (a) Schematic of 3D beam with rectangular cross-section. The traction load is applied in y-direction. The deformed state of beam is colored by the displacement
in y-direction. The zoom-out displays the 3D lattice structure. (b) Comparison of displacement of point A in y-direction between LM and FEA under different loads.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

different element resolutions and monitor the displacement of
point A in y-direction uA

2 . As shown in Fig. 7(b), the horizontal
axis denotes the number of nodes used to discretize in length
(x-direction). The LM implemented in LAMMPS adopts the same
mesh as that in ABAQUS, and runs with the potentials we intro-
duced in the above Section 2. We find that when the element
resolution is low, an obvious discrepancy is obtained between LM
and FEA due to the shear locking. However, with the increase of
the resolution, LM can reproduce the same result with that in FEA.

We next adopt the LM to conduct the 3D beam deflection
shown in Fig. 8(a). The left side in y-z plane is fixed, and the right
side is applied with uniformly distributed traction t = [0, t0, 0]T .
The lengths in x, y, z directions are 160, 20, and 40, respectively.

The nodes in the x-direction is 240, which is confirmed to be
mesh-converged in the 2D case. Also, we have the same setup in
FEA model, and the ABAQUS simulations employ 8-node linear
brick element with reduced integration, hourglass control, and
hybrid with constant pressure (C3D8RH). We vary the traction
force magnitude t0 and calculate the deflection of point A in the
y-direction, which locates at the center of the upper edge of the
right side (c.f. Fig. 8(a)). It is found that the comparison of the
results between LM and FEA exhibit excellent agreement. The
2D and 3D benchmarks demonstrate that our LM can reproduce
the same results as those in FEA. The membrane model used in
current simulations has been validated by our previous works
[9,40].

H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463 11

Fig. 9. (a) Schematic of the model for flow induced flapping of 2D beam behind a cylinder. (b) Discretization of the immersed structure (combination of cylinder and
beam). Variation of (c) x- and (d) y-direction positions of the point A in the center of free end of beam. Open symbols represent the results from Turek et al. [102].
(e) Velocity field in four different time points marked in (d).

3.2. Validation of FSI: flow-induced flapping of an elastic 2D beam
behind a cylinder

To validate our 2D FSI model, we adopt the classical bench-
mark problem: flow-induced flapping of a beam behind the cylin-
der, which was proposed by Turek et al. [102]. The schematic is
shown in Fig. 9(a). The lengths in this problem are normalized by
the diameter of the cylinder D = 20 m. The beam with length
3.5D and width 0.2D behind the cylinder is placed in a rectan-
gular domain with length 11D and width 4.1D. The center of the
cylinder is fixed at (2D, 2.05D). The top and bottom sides of the
domain are applied non-slip walls and a parabolic velocity profile
u(y) =

6Uy(Ly−y)
L2y

is applied in the inlet, where U = 0.005 m/s. A
constant pressure boundary condition is set at the outlet. In this
case, the cylinder is fixed and the beam is allowed to move freely.
They are a combination that the beam is clamp-mounted rather
than simply attached to the cylinder (cf. Fig. 9(b)). The beam is
discretized into 762 quadrilateral elements and 866 nodes. The
Reynolds number is set as Re = UD/ν = 100, and density ratio
ρs/ρ f

= 10. The kinematic viscosity of the fluid ν = 10−3 m2/s
and the fluid density is ρ f

= 103 kg/m3. The nondimensional
elasticity is defined to be E∗

= E/(ρ fU2) = 1.4 × 103, and
the Poisson’s ratio νs = 0.4. The discretization of fluid mesh

and averaged solid mesh sizes are ∆x = 0.05D and ∆s ≈ ∆x,
respectively. The time step is set ∆t = ∆x.

The time-varying positions of point A in the center of the
free end are shown in Fig. 9(c) and (d) in x- and y-direction,
respectively. We also present the results from Turek et al. [102]
for comparison. From the figure, we can see that, after reaching a
steady flapping state, both the flapping period and the amplitude
of beam in the current simulation have a good agreement with
those from Turek et al. [102]. This demonstrates that our method
can reproduce the same motion of beam as previous work. Finally,
we present the velocity field in a flapping period. Fig. 9(e) gives
four velocity contours with the time points marked as 1 to 4 in
Fig. 9(d). The position of beam in these four typical time points is
also given. A movie showing the dynamic motion of the beam in
the fluid is provided in Supplementary Material. To further confirm
the accuracy, we calculate the Strouhal number, which is defined
as St = fU/D (f is the flapping frequency), and averaged drag
coefficient CD = f̄x/(0.5ρ fU2D). They are listed in Table 1. In ad-
dition to the work of Turek et al. [102], we present more previous
studies involving the same FSI problem. And from Table 1, we can
find our method has quantitative consistence with those previous
works.

12 H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463

Table 1
Comparison of amplitude of point A, Strouhal number and drag coefficient with
previous works.
Studies Amplitude Strouhal number (St) Drag coefficient CD

Turek et al. [102] 0.83 0.19 4.13
Tian et al. [35] 0.78 0.19 4.11
Lin et al. [103] 0.81 0.19 4.10
Present 0.79 0.19 4.10

3.3. Validation of FSI: deformation of an elastic capsule in bi-shear
flow

To validate the accuracy of modeling a membrane immersed
in fluid flow using OpenFSI, we adopt a capsule as a membrane
model and it is placed in a bi-shear flow. We calibrate the defor-
mation of the capsule. First, the spherical capsule is discretized
using a MATLAB code implemented by Persson [104]. The La-
grangian mesh of the capsule is approximately uniform and the
size is about ∆s ≈ 250 nm. The total nodes of the capsule is 726.
We place the capsule in the center of a channel with dimension
Lx × Ly × Lz = 10Dp ×10Dp ×10Dp. Dp = 2 µm is the diameter of
the capsule. We apply periodic boundary conditions in the x and z
directions. y-direction is bounded by two flat plates. The bi-shear
flow is driven by the moving of flat plates with opposite velocities
of magnitude U0 = 1 µm/s (cf. Fig. 10(b)). The time step is set
∆t = 2 × 10−4Ly/U0, and the time is nondimensionalized t∗ =
2U0
Ly

t . Under the bi-shear flow, the capsule will deform and make
tank-treading motion [105]. We use two parameters to quantify
the deformation and the motion of the capsule. One is the Taylor
parameter Dxy, which is defined as Dxy = (a − b)/(a + b), where
a and b are semi-major and semi-minor axes of the deformed
capsule, respectively. The other one is the inclination angle of
the capsule between the major axis of the capsule and flow
direction (x-direction) as shown in Fig. 10(b). The deformability is
characterized by the Capillary number Ca = µU0Dp/µsLy, where
µs = 1 µN/m is the 2-dimensional shear modulus of the capsule.
We conduct two cases with different deformabilities Ca = 0.0125
and Ca = 0.125 through tuning the fluid density µ. The results
of Taylor parameter and inclination angle are compared with
those in [105]. We find that our simulation results are in good
agreement with the previous computational study in [105]. It
further confirms that the modeling of the membrane is accurate
enough using our proposed method.

3.4. Validation of FSI: uniform flow passing a fixed cylinder

A case of uniform flow passing a fixed cylinder in a 3D rectan-
gular channel is further studied. As shown in Fig. 11(a), a cylinder
with diameter D = 0.5 cm, length L = 2 cm in z-direction is
placed inside a rectangular channel with size Lx × Ly × Lz =

2 × 8 × 2 cm3. The center of the cylinder in x–y plane locates at
(Lx/2, Ly/8). The cylinder is discretized into hexahedron meshes
with total of 30134 nodes and 27660 elements (cf. Fig. 11(a)).
A constant uniform flow with velocity U0 is applied at the inlet
y = 0. The outlet (y = 8) boundary condition is stress-free. No-
penetration boundary condition is adopted at the top (x = 2) and
bottom (x = 0) boundaries of the channel. The front (z = 0)
and back (z = 2) boundaries are non-slip and non-penetration
walls. The Reynolds number is defined as Re = ρ fU0D/µ, where
ρ f

= 103 kg/m3 and µ = 1 kg/(m · s). Two cases Re = 50
and Re = 100 are considered here, which corresponds to no
vortex shedding and vortex shedding flow regimes, respectively.
Fig. 11(b) gives the snapshots of velocity fields in these two
cases. We can find when Re = 50, the flow is steady-state and
there is no vortex forming and shedding from the trail of the

cylinder. While in the case Re = 100, the flow becomes unstable
and the vortexes form and shed from the trail. To quantify the
shedding frequency, we examine the lift and drag coefficients.
They are defined as CL = Fx/(12ρ

fU2
0DL) and CD = Fy/(12ρ

fU2
0DL),

respectively. Fx and Fy are the forces exerted on the cylinder, and
these forces can be calculated directly in LAMMPS. We show the
drag coefficients CD for these two cases Re = 50 and Re = 100 in
Fig. 11(c). We can see that for case Re = 50, the drag coefficient
reaches a plateau C̄D = 1.27 after a short initial transition. It
means that the flow quickly reaches a steady-state. However,
in the case Re = 100, the drag coefficient quickly reaches a
steady oscillatory state with an averaged value about C̄D = 1.18.
The oscillatory is caused by the alternating vortex shedding and
the vortex shedding frequency corresponds to the oscillation
frequency in lift force. The frequencies are estimated using FFT
power spectrum to be f CD = 80.2 Hz and f CL = 39.4 Hz for drag
and lift coefficients, respectively. Based on shedding frequency
calculation, we can obtain the Strouhal number of the vortex
shedding case St = 0.196. All the values, including averaged drag
coefficient and Strouhal number are quite close to the expected
values of corresponding results in [106] with the case of flow
passing a stationary, smooth, and infinitely long cylinder.

4. Results: Application of the OpenFSI for different FSI prob-
lems

4.1. Free-falling of single and multiple rigid spheres

The first application is the free-falling of a single 3D sphere
in quiescent fluid. The fluid domain is Lx × Ly × Lz = 5 ×

15 × 5 cm3, and the fluid density is ρ f
= 10−3 g/cm3. The

density and diameter of the sphere are ρs
= 1 g/cm3 and D =

0.5 cm, respectively. And the Young’s modulus of the sphere is
E = 10000 dyn/cm2. The boundaries in x- and z-directions are
non-slip walls, and a periodic boundary condition is applied in
the y-direction. The sphere is initially placed at (1, 1, 1) and its
movement is driven by gravity of g = 9.80 m/s2. The fluid mesh
size is ∆x = 0.025 cm and the sphere is discretized into 2078
hexahedron elements and 2870 nodes with nearly uniform mesh
size ∆s ≈ ∆x.

The snapshots shown in Fig. 12(a) describe the free-falling pro-
cess of the sphere. There are two vortexes formed on two sides of
the sphere at the initial state, and these vortexes will be stretched
with the falling of sphere. To quantify the motion of the sphere,
the displacement and velocity are calculated and compared with
the theoretical results, which are given in Fig. 12(b). An excellent
agreement is observed between present results and theoretical
predictions. Thanks to the solution of this problem without much
complex phenomena, the purpose of this example is to merely
demonstrate the capability of the OpenFSI that can handle large
displacement of nearly rigid structures. Additionally, to mimic the
deposition of granular particles in the industry, we show that the
current method can also simulate the falling of multiple spheres.
It is presented in Fig. 13. 16 identical spheres are placed in the
center of the channel with Lx × Ly × Lz = 10 × 10 × 5 cm3 in
a crossed pattern. At the initial state, the spheres can fall freely
under gravity. However, then they will interact with each other,
leading to irregular falling cascade.

4.2. Flow passing 3D flexible plate

In this part, we demonstrate the simulation results about a 3D
flexible plate that deforms under a cross-flow. This case is usually
chosen as a model to study the deformation of aquatic plants by
flow of water. The model is shown in Fig. 14(a). A flexible plate
with length L, width b and thickness h is vertically (length in

H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463 13

Fig. 10. (a) Sketch of mesh used to represent the capsule. (b) Schematic of deformation of a single capsule in bi-shear flow. (c) The evolution of Taylor parameter
and inclination angle.

Fig. 11. (a) Schematic of uniform flow passing a fixed cylinder in rectangular channel and mesh of the cylinder. (b) Velocity fields for the slice of the middle-plane
in z-direction for cases Re = 50 and Re = 100. (c) Evolution of drag coefficient for cases Re = 50 and Re = 100.

z-direction) placed in a rectangular channel of size Lx, Ly and Lz .
One end of the plate is clamp-mounted at (Lx/2, Ly/5, 0) and the
other end is free to move. We use the width to normalize the
length: L = 5b, h = 0.2b, Lx = 4b, Ly = 21b and Lz = 8b,
where b = 2 m. The inlet (y = 0) is applied with a parabolic
velocity profile and average value U0 in y-z plane; the outlet
(y = Ly) is set with constant pressure boundary condition. The
flow in the x-direction is periodic. The Reynolds number here
is defined as Re = ρ fU0b/µ, where ρ f

= 103 kg/m3 and
µ = 1 kg/(m · s). There are two cases considered in present
work: (1) Re = 60; and (2) Re = 100 that correspond to U0 =

0.03 m/s and 0.05 m/s, respectively. For the flexible plate, we
have dimensionless elasticity E∗

= E/ρ fU2
0 = 14820.3, Poisson’s

ratio νs = 0.4 and density ratio ρs/ρ f
= 1.5. In the simulation,

the fluid mesh ∆x = 0.25b. The plate is discretized into 2244
nodes and 1500 hexahedron elements.

First, the velocity and vorticity fields for these two cases are
shown in the Fig. 14 (b) and (c), respectively. From these figures,

we can find when Re = 60, the velocity field is regular and there
is small oscillation happening near the free end of the plate. Weak
vortex can be observed, shedding from the free end of the plate.
When it comes to large Re = 100, the velocity field becomes
chaotic, especially for the regions near the plate. Many vortexes
form in the flow field (cf. Supplementary Material). Then we quan-
titatively study the deformation of the plate and drag coefficients.
The drag coefficient has the definition CD = Fy/(0.5ρ fU2

0bL),
where Fy is the hydrodynamic force exerted on the plate in the
flow direction (y-direction). As shown in Fig. 14(d), the drag
coefficients oscillate with an averaged value, but the oscillation is
irregular, which is not the same as that in the flow passing a fixed
cylinder where the oscillation is sinusoidal. Nevertheless, we can
find the averaged value of CD in the case of Re = 100 is smaller
than that in the case of Re = 60. Then we list these averaged
values in the Table 2, along with the deflection of the free end
of plate in y- (Dy) and z-direction (Dz). The drag coefficients give
comparative results with the previous work by Tian et al. [35].

14 H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463

Fig. 12. (a) Snapshots for free-falling process of a single sphere at time t = 10, 15, 20 ms. (b) Comparison of displacement and velocity of the falling sphere between
our simulation results and theoretical results.

Fig. 13. Snapshots for free-falling process of multiple rigid spheres at time t = 0, 2.5, 5.0 and 7.5 ms.

H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463 15

Fig. 14. (a) Schematic of the computational model for bending of plate in the cross-flow. The initial and deformed configurations of plate are shown. Snapshots to
show the (b) velocity and (c) vorticity fields. (d) Evolution of drag coefficient of the plate in cross-flow for different Reynolds number Re = 60 and Re = 100.

Table 2
Bending of plate in cross-flow: deflection of plate in y- and z-directions, and
drag coefficients.
Case Deflection Dy/b Deflection Dz/b Drag coefficient CD

Re = 60 3.12 1.58 1.04
Re = 100 3.53 2.06 0.93

And readers interested in the flow passing plate with higher
Reynolds number are referred to [35].

4.3. Passing of rigid spheres over dam in uniform flow

To demonstrate that we can model different types of solids
simultaneously in the flow, we conduct the study of the rigid
spheres over a fixed dam in the uniform flow with velocity U0. As
shown in Fig. 15(a), a rectangular dam with length
(x-direction) L = 40 cm, width (y-direction) W = 8 cm and
height (z-direction) h is placed in the fluid domain of Lx × Ły ×

Lz = 48 × 240 × 48 cm3. The center of the front bottom
edge for the dam locates at (4, Ly/2, 0). The dam is discretized
into hexahedron elements and there are total 140 rigid spheres
with diameter Ds = 1 cm initial uniformly set in x–z place at
y = 100 cm. The Reynolds number here is defined as Re =

ρ fU0L/µ = 20, where ρ f
= 103 kg/m3, µ = 1 kg/(m · s) and

U0 = 5 cm/s. There are two cases considered here h = 1/3Lz
and h = 2/3Lz . The instantaneous sphere distributions for dams
with different heights at the same time are shown in Fig. 15(b)
and (c), respectively. We find when the dam is short (h = 1/3Lz),
the distribution of spheres in the flow is nearly uniform. While
the spheres accumulate in front of the tall dam with a height
h = 2/3Lz .

4.4. Active motion of a micro-swimmer with filamentous tails

As the last numerical case, we demonstrate the possibility
of modeling the swimming of flagellated microorganisms at low
Reynolds number, which inspires the design and production of
artificial micro-swimmers [107]. A simple model is shown in

Fig. 16(a) and (b), where the micro-swimmer is considered as a
rigid spherical head attached with one (N = 1) or multiple (N =

2) filamentous tails (1D LM). The active motion is driven by the
oscillation of the rigid head in the z-direction with motion X =

A sin(ωt), where X is the center of the bead, A is the oscillation
amplitude and ω is the oscillation frequency. The filamentous
tail is clamp-mounted at the trail of the bead and modeled as
consecutive small beads connected with linear springs and angle
springs. The fluid is water with ρ f

= 103 kg/m3 and viscosity
µ = 1 kg/(m · s). For the microorganism, to have universal
applications, we use the nondimensional values in lattice units,
which can be easily converted to specific units according to the
problem. The diameter of the spherical head is set D = 100, the
length of filament is L = 4D = 400, and the discretized spring
length is 20. For the multiple tails, the distance between them
is d = 20. The oscillation amplitude is A = 50 and the period is
T = 2000. The strength of spring ks = 1000 and bending strength
is set kb = 5000.

The drag coefficients CD = Fx/(0.5ρ f AD2/T) are presented in
Fig. 16(c). We find for the case N = 1, the drag coefficient oscil-
lates with averaged value nearly 0, and the oscillation amplitude
is very small. However, the oscillation of the drag coefficient is
irregular and has a negative averaged value for the case N = 2.
This means the micro-swimmer with one tail has extremely small
propulsion with the active oscillation of the spherical head, while
there is a thrust generated in the case with multiple tails. It is
consistent with the previous study [108] that multiple tails will
enhance the performance of micro-swimmer. The velocity field
for the case N = 2 is also presented in Fig. 16(d). A movie
presents the dynamic motion of micro-swimmer with two tails
and the flow field is given in Supplementary Material.

5. Computational efficiency of OpenFSI

To test the computational efficiency of OpenFSI, we choose
a large system with 2000 red blood cells in the blood flow
(cf. Fig. 17(a)). To exclude the dependency of the distribution of
particles in the space, the RBCs are randomly packed inside the
rectangular channel. The computational domain is 72 × 144 ×

16 H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463

Fig. 15. (a) Schematic of rigid spheres passing a fixed dam in uniform flow. Distribution of spheres in the flow for dams with different heights: (b) h = 1/3Lz ; and
(c) h = 2/3Lz . The contour shows the velocity field in the slice of middle-plane in x-direction.

Fig. 16. Models of micro-swimmer with (a) one and (b) two tails that oscillate in the quiescent fluid flow. (c) The drag coefficients of micro-swimmer in x-direction
for cases N = 1 and N = 2. (d) The velocity field of vx and vz around the micro-swimmer for case N = 2.

72 µm3, and the fluid mesh is ∆x = 250 nm, which corresponds
to the total fluid mesh grids 288×576×288 = 47, 775, 744. The
fluid is water with ρ f

= 103 kg/m3 and viscosity µ = 1 kg/(m·s).
The diameter of red blood cells is 7.82 µm and it is numerically
discretized into the membrane model using the same method for
the capsule. 2000 red blood cells are discretized into 6, 572, 000
nodes, 19, 704, 000 bonds, 13, 136, 000 angles and 19, 704, 000
dihedrals. The flow is a simple shear flow that is driven by the
moving of upper plate in the z-direction with velocity U0 =

0.1 µm/µs. We test two LBM solvers: (1) Palabos; and (2) fix
lb package in LAMMPS. fix lb package is a fluid dynamics solver
based on LBM, which is embedded within LAMMPS [109] by
Mackay et al. [70]. The case is running in two different computer
architectures: (1) Intel Xeon Knights Landing (KNL) (CPU model:
Intel Xeon Phi 7250) and (2) Skylake (CPU model: Intel Xeon Plat-
inum 8160). We run each case for 4000 time steps, corresponding
to 0.0164 s, and collect the simulation times together. To sepa-
rately examine the scalabilities of each component of OpenFSI, we
consider the simulation times of fluid part, structure part, and IB
interface part in Fig. 17(b), (c), and (d), respectively.

Comparing the simulation times of these three parts running
in the same computer architecture, we find that the time for
fluid part occupies the most portion of the total computational
cost. For example, for Palabos package running in Skylake, the
time of the fluid part is up to 68%, while the times used by the
structure and IB interface are as low as 13% and 17%, respectively.
Others should be taken by the input and output of data files.
The distribution of the consumption of simulation time demon-
strates that the fluid part is dominant in the whole simulation.
Specifically, we take two fluid solvers, e.g., fix lb and Palabos, into
consideration to compare the efficiency as shown in Fig. 17(b). It
is found that the Palabos is nearly 1.5 times faster than the fix lb
package for the same computer architecture, which reflects that
the LBM solver in Palabos is more efficient than that implemented
in LAMMPS. This may be caused by the different methods adopted
to solve the streaming process as we discussed in Section 2.
Furthermore, for different computer architectures, the Skylake
system outperforms the KNL system in terms of the computation
speed due to the higher CPU clock frequency. Also, the scalability
in Skylake system is better than that in KNL system, which is

H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463 17

Fig. 17. (a) Model of large scale blood flow simulations with 2000 red blood cells. Separate simulation times of (b) fluid part, (c) structure part, and (d) IB interface
part for running 2000 time steps in different systems with different solvers.

attributed to the worse communication between nodes in KNL
system. Therefore, it is highly recommended to use the Palabos
as the fluid solver in Skylake system for better efficiency. The fix
lb package can be an alternative option regarding the simplicity,
since it is embedded within the LAMMPS framework already.
From Fig. 17(c), we find that there is no significant difference
of the simulation times comparing different fluid solvers, while
the Skylake system still outperforms the KNL system in terms of
solving the structure part in both simulation time and scalability,
similar to that in fluid part. The simulation time of IB interface
demonstrated in Fig. 17(d) also displays irrelevance to the fluid
solver. While the scalability should be noted that it is nearly
linear up to 8192 cores in the Skylake system, despite the poor
performance in KNL system. It confirms that our IB interface is
very efficient in terms of the implementation in both fix lb and
Palabos packages. All these results demonstrate that OpenFSI is
a highly efficient and well-parallelized simulation package for
solving large-scale FSI problems.

6. Conclusion

Present study offers a continuum-informed and particle-based
FSI simulation package, OpenFSI. Within OpenFSI, the LBM and
LM are used to solve fluid dynamics and structure motions, re-
spectively. And they are coupled together through IBM to satisfy
the non-slip boundary condition on fluid–structure interface. To
validate the accuracy of OpenFSI, several different cases are con-
sidered. First, the LM is confirmed to have the same accuracy
with FEA for the benchmark problems of 2D and 3D deflec-
tions of a cantilever beam under traction. Then, two classical
FSI problems are considered: (1) flow-induced flapping of 2D
flexible beam behind the fixed cylinder; and (2) flow passing a

3D fixed cylinder. The simulation results given by OpenFSI are
found in excellent agreement with previous studies. After these
validations, the OpenFSI is adopted to study free-falling of rigid
spheres and flapping of flexible plate in cross-flow. Furthermore,
it also demonstrates the possibility to model complex systems
such as rigid spheres over a dam under uniform flow, and swim-
ming of micro-swimmers. Lastly, we consider a large system with
thousands of red blood cells in blood flow under two different
HPC systems to test the scalability of OpenFSI. We find that our
method owns high efficiency, and the speedup is almost linearly
increasing with the logarithmic value of the total number of CPUs
up to 8192 cores for simulating large FSI problems. Therefore,
the OpenFSI provides an alternative option to study large-scale
and complex FSI problems, hence to facilitate the unveiling of
underlying physical mechanisms. We have released the OpenFSI
in Github (https://github.com/huilinye/OpenFSI), and more struc-
ture potentials and complex geometries are expected to be added
in the near future.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

H.Y., Z.S., W.X. and Y.L. would like to thank the support by the
National Science Foundation under the grant no. OAC-1755779.
T.Z. acknowledged the support of the National Science Founda-
tion under grant no. CMMI-1847149. H.Y., Z.S., W.X. and Y.L. are
all grateful for the support from the Department of Mechanical

https://github.com/huilinye/OpenFSI

18 H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463

Engineering at the University of Connecticut. H.Y. and Z.S. were
partially supported by a fellowship grant from GE’s Industrial
Solutions Business Unit under a GE–UConn partnership agree-
ment. The views and conclusions contained in this document are
those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
Industrial Solutions or UConn. This research also benefited in
part from the computational resources and staff contributions
provided by the Booth Engineering Center for Advanced Tech-
nology (BECAT) at the University of Connecticut. Part of this
work used the Extreme Science and Engineering Discovery En-
vironment (XSEDE), which is supported by the National Science
Foundation grant no. ACI–1053575. The authors also acknowledge
the Texas Advanced Computing Center (TACC) at The University
of Texas at Austin for providing HPC resources (Frontera project
and the National Science Foundation award 1818253) that have
contributed to the research results reported within this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cpc.2020.107463.

References

[1] D.E. Keyes, L.C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Pernice,
J. Bell, J. Brown, A. Clo, J. Connors, et al., Int. J. High Perform. Comput.
Appl. 27 (1) (2013) 4–83.

[2] E. Wei, in: 2017 IEEE International Conference on Computational
Electromagnetics, ICCEM, IEEE, pp. 338–340, 2017.

[3] B. Uekermann, H.-J. Bungartz, B. Gatzhammer, M. Mehl, A parallel, black-
box coupling algorithm for fluid-structure interaction, in: Proceedings
of 5th International Conference on Computational Methods for Coupled
Problems in Science and Engineering, 2013, pp. 1–12.

[4] Ö. Babur, V. Smilauer, T. Verhoeff, M. van den Brand, Procedia Comput.
Sci. 51 (2015) 1088–1097.

[5] T.-R. Teschner, L. Könözsy, K.W. Jenkins, Microfluid. Nanofluid. 20 (4)
(2016) 68.

[6] L. Fan, J. Yao, C. Yang, D. Xu, D. Tang, Comput. Model. Eng. Sci. 114 (2)
(2018) 221–237.

[7] J. Yan, W. Yan, S. Lin, G.J. Wagner, Comput. Methods Appl. Mech. Engrg.
336 (2018) 444–470.

[8] W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, G.J. Wagner, Acta
Mater. 134 (2017) 324–333.

[9] H. Ye, Z. Shen, Y. Li, Comput. Mech. 62 (3) (2018) 457–476.
[10] H. Ye, Z. Shen, Y. Li, IEEE Trans. Nanotechnol. 17 (3) (2018) 407–411.
[11] P. Balogh, P. Bagchi, Biophys. J. 113 (12) (2017) 2815–2826.
[12] H.-B. Deng, Y.-Q. Xu, D.-D. Chen, H. Dai, J. Wu, F.-B. Tian, Comput. Mech.

52 (6) (2013) 1221–1242.
[13] B.S. Connell, D.K. Yue, J. Fluid Mech. 581 (2007) 33–67.
[14] M.J. Shelley, J. Zhang, Annu. Rev. Fluid Mech. 43 (2011) 449–465.
[15] F. Boano, J.W. Harvey, A. Marion, A.I. Packman, R. Revelli, L. Ridolfi, A.

Wörman, Rev. Geophys. 52 (4) (2014) 603–679.
[16] M.T. Odman, A.G. Russell, J. Geophys. Res. Atmos. 96 (D4) (1991)

7363–7370.
[17] N. Geneva, C. Peng, X. Li, L.-P. Wang, Parallel Comput. 67 (2017) 20–37.
[18] L.-P. Wang, C. Peng, Z. Guo, Z. Yu, Comput. Fluids 124 (2016) 226–236.
[19] C.W. Hirt, A.A. Amsden, J. Cook, J. Comput. Phys. 14 (3) (1974) 227–253.
[20] T.J. Hughes, W.K. Liu, T.K. Zimmermann, Comput. Methods Appl. Mech.

Engrg. 29 (3) (1981) 329–349.
[21] W.K. Liu, D.C. Ma, Comput. Methods Appl. Mech. Engrg. 31 (2) (1982)

129–148.
[22] J. Fan, H. Liao, R. Ke, E. Kucukal, U.A. Gurkan, X. Shen, J. Lu, B. Li, Comput.

Methods Appl. Mech. Engrg. 337 (2018) 198–219.
[23] T.E. Tezduyar, M. Behr, S. Mittal, J. Liou, Comput. Methods Appl. Mech.

Engrg. 94 (3) (1992) 353–371.
[24] T.E. Tezduyar, S. Sathe, R. Keedy, K. Stein, Comput. Methods Appl. Mech.

Engrg. 195 (17–18) (2006) 2002–2027.
[25] K. Takizawa, T.E. Tezduyar, Comput. Mech. 48 (3) (2011) 247–267.
[26] Y. Bazilevs, V.M. Calo, Y. Zhang, T.J. Hughes, Comput. Mech. 38 (4–5)

(2006) 310–322.

[27] Y. Bazilevs, V.M. Calo, T.J. Hughes, Y. Zhang, Comput. Mech. 43 (1) (2008)
3–37.

[28] C.S. Peskin, J. Comput. Phys. 25 (3) (1977) 220–252.
[29] R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, A. Von Loebbecke,

J. Comput. Phys. 227 (10) (2008) 4825–4852.
[30] L. Zhang, A. Gerstenberger, X. Wang, W.K. Liu, Comput. Methods Appl.

Mech. Engrg. 193 (21–22) (2004) 2051–2067.
[31] L. Zhang, M. Gay, J. Fluids Struct. 23 (6) (2007) 839–857.
[32] W.-X. Huang, S.J. Shin, H.J. Sung, J. Comput. Phys. 226 (2) (2007)

2206–2228.
[33] W.-X. Huang, H.J. Sung, J. Fluid Mech. 653 (2010) 301–336.
[34] F.-B. Tian, H. Luo, L. Zhu, J.C. Liao, X.-Y. Lu, J. Comput. Phys. 230 (19)

(2011) 7266–7283.
[35] F.-B. Tian, H. Dai, H. Luo, J.F. Doyle, B. Rousseau, J. Comput. Phys. 258

(2014) 451–469.
[36] H. Luo, R. Mittal, X. Zheng, S.A. Bielamowicz, R.J. Walsh, J.K. Hahn, J.

Comput. Phys. 227 (22) (2008) 9303–9332.
[37] W.K. Liu, Y. Liu, D. Farrell, L. Zhang, X.S. Wang, Y. Fukui, N. Patankar, Y.

Zhang, C. Bajaj, J. Lee, et al., Comput. Methods Appl. Mech. Engrg. 195
(13–16) (2006) 1722–1749.

[38] R.-N. Hua, L. Zhu, X.-Y. Lu, J. Fluid Mech. 759 (2014) 56–72.
[39] H. Ye, H. Wei, H. Huang, X.-y. Lu, Phys. Fluids 29 (2) (2017) 021902.
[40] H. Ye, Z. Shen, Y. Li, J. Fluid Mech. 861 (2019) 55–87.
[41] C.S. Peskin, Acta Numer. 11 (2002) 479–517.
[42] W.K. Liu, S. Jun, Y.F. Zhang, Internat. J. Numer. Methods Fluids 20 (8–9)

(1995) 1081–1106.
[43] J.-S. Chen, C. Pan, C.-T. Wu, W.K. Liu, Comput. Methods Appl. Mech. Engrg.

139 (1–4) (1996) 195–227.
[44] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stover, Proceedings of the 2004

ACM/IEEE Conference on Supercomputing, IEEE Computer Society, 2004,
p. 47.

[45] M. Schulz, M. Krafczyk, J. Tölke, E. Rank, High Performance Scientific and
Engineering Computing, Springer, 2002, pp. 115–122.

[46] M.D. Lindemer, S.G. Advani, A.K. Prasad, Comput. Model. Eng. Sci. 117 (3)
(2018) 527–553.

[47] S. Succi, The Lattice Boltzmann Equation: For Fluid Dynamics and beyond,
Oxford university press, 2001.

[48] Z.-G. Feng, E.E. Michaelides, J. Comput. Phys. 195 (2) (2004) 602–628.
[49] S. Chen, G.D. Doolen, Annu. Rev. Fluid Mech. 30 (1) (1998) 329–364.
[50] Y. Qian, D. d’Humières, P. Lallemand, Europhys. Lett. 17 (6) (1992) 479.
[51] C.K. Aidun, J.R. Clausen, Annu. Rev. Fluid Mech. 42 (2010) 439–472.
[52] J. Latt, Palabos, Parallel Lattice Boltzmann Solver, FlowKit, Lausanne,

Switzerland, 2009.
[53] Z. Liu, H. Wu, Appl. Therm. Eng. 93 (2016) 1394–1402.
[54] Y. Jin, M. Uth, H. Herwig, Comput. Fluids 107 (2015) 77–88.
[55] J. Tan, T.R. Sinno, S.L. Diamond, J. Comput. Sci. 25 (2018) 89–100.
[56] X. Wang, L.T. Zhang, Comput. Methods Appl. Mech. Engrg. 267 (2013)

150–169.
[57] H. Krüger, Computer Simulation Study of Collective Phenomena in Dense

Suspensions of Red Blood Cells under Shear, Springer Science & Business
Media, 2012.

[58] Y. Sui, Y.-T. Chew, P. Roy, H.-T. Low, J. Comput. Phys. 227 (12) (2008)
6351–6371.

[59] R. Macmeccan, J. Clausen, G. Neitzel, C. Aidun, J. Fluid Mech. 618 (2009)
13.

[60] L.T. Zhang, Int. J. Comput. Methods 14 (06) (2017) 1750068.
[61] M. Ostoja-Starzewski, Appl. Mech. Rev. 55 (1) (2002) 35–60.
[62] A.A. Gusev, Phys. Rev. Lett. 93 (3) (2004) 034302.
[63] H. Laubie, F. Radjaï, R. Pellenq, F.-J. Ulm, J. Mech. Phys. Solids 105 (2017)

116–130.
[64] G.-F. Zhao, J. Fang, J. Zhao, Int. J. Numer. Anal. Methods Geomech. 35 (8)

(2011) 859–885.
[65] E. Schlangen, E. Garboczi, Eng. Fract. Mech. 57 (2–3) (1997) 319–332.
[66] Z.P. Bažant, M.R. Tabbara, M.T. Kazemi, G. Pijaudier-Cabot, J. Eng. Mech.

116 (8) (1990) 1686–1705.
[67] V.V. Yashin, A.C. Balazs, Science 314 (5800) (2006) 798–801.
[68] V.V. Yashin, A.C. Balazs, J. Chem. Phys. 126 (12) (2007) 124707.
[69] T. Zhang, Extreme Mech. Lett. 26 (2019) 40–45.
[70] F. Mackay, S.T. Ollila, C. Denniston, Comput. Phys. Comm. 184 (8) (2013)

2021–2031.
[71] Z. Guo, C. Zheng, B. Shi, Phys. Rev. E 65 (4) (2002) 046308.
[72] Q. Zou, X. He, Phys. Fluids 9 (6) (1997) 1591–1598.

https://doi.org/10.1016/j.cpc.2020.107463
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb1
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb1
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb1
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb1
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb1
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb4
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb4
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb4
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb5
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb5
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb5
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb6
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb6
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb6
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb7
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb7
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb7
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb8
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb8
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb8
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb9
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb10
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb11
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb12
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb12
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb12
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb13
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb14
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb15
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb15
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb15
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb16
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb16
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb16
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb17
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb18
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb19
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb20
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb20
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb20
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb21
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb21
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb21
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb22
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb22
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb22
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb23
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb23
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb23
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb24
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb25
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb26
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb26
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb26
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb27
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb27
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb27
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb28
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb29
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb29
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb29
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb30
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb30
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb30
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb31
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb32
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb32
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb32
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb33
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb34
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb34
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb34
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb35
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb35
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb35
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb36
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb36
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb36
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb37
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb37
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb37
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb37
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb37
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb38
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb39
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb40
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb41
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb42
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb42
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb42
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb43
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb43
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb43
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb44
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb44
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb44
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb44
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb44
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb45
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb45
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb45
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb46
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb46
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb46
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb47
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb47
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb47
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb48
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb49
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb50
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb51
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb52
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb52
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb52
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb53
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb54
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb55
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb56
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb56
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb56
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb57
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb57
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb57
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb57
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb57
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb58
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb58
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb58
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb59
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb59
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb59
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb60
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb61
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb62
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb63
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb63
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb63
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb64
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb64
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb64
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb65
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb66
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb66
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb66
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb67
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb68
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb69
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb70
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb70
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb70
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb71
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb72

H. Ye, Z. Shen, W. Xian et al. / Computer Physics Communications 256 (2020) 107463 19

[73] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E. Viggen,
The Lattice Boltzmann Method: Principles and Practice, Springer, Berlin,
2016.

[74] Y. Li, M. Kröger, Carbon 50 (5) (2012) 1793–1806.
[75] C. Li, T.-W. Chou, Int. J. Solids Struct. 40 (10) (2003) 2487–2499.
[76] J. Zhao, J.-W. Jiang, L. Wang, W. Guo, T. Rabczuk, J. Mech. Phys. Solids 71

(2014) 197–218.
[77] R.W. Ogden, Non-Linear Elastic Deformations, Courier Corporation, 1997.
[78] T. Belytschko, W.K. Liu, B. Moran, K. Elkhodary, Nonlinear Finite Elements

for Continua and Structures, John wiley & sons, 2013.
[79] E. de Souza Neto, D. Perić, M. Dutko, D. Owen, Int. J. Solids Struct. 33

(20–22) (1996) 3277–3296.
[80] A. Gent, Rubber Chem. Technol. 69 (1) (1996) 59–61.
[81] E.M. Arruda, M.C. Boyce, J. Mech. Phys. Solids 41 (2) (1993) 389–412.
[82] D.A. Fedosov, B. Caswell, G.E. Karniadakis, Biophys. J. 98 (10) (2010)

2215–2225.
[83] A. Yazdani, P. Bagchi, J. Fluid Mech. 718 (2013) 569–595.
[84] T. Krüger, F. Varnik, D. Raabe, Comput. Math. Appl. 61 (12) (2011)

3485–3505.
[85] D. Barthès-Biesel, C. R. Phys. 10 (8) (2009) 764–774.
[86] A. Farutin, T. Biben, C. Misbah, J. Comput. Phys. 275 (2014) 539–568.
[87] I.V. Pivkin, G.E. Karniadakis, Phys. Rev. Lett. 101 (11) (2008) 118105.
[88] J. Tan, A. Thomas, Y. Liu, Soft Matter 8 (6) (2012) 1934–1946.
[89] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford

university press, 1989.
[90] M. Dao, J. Li, S. Suresh, Mater. Sci. Eng. C 26 (8) (2006) 1232–1244.
[91] Y.-H. Tang, S. Kudo, X. Bian, Z. Li, G.E. Karniadakis, J. Comput. Phys. 297

(2015) 13–31.
[92] Y. Wang, Z. Li, J. Xu, C. Yang, G.E. Karniadakis, Soft Matter 15 (8) (2019)

1747–1757.

[93] L. Zhang, X. Wu, IEEE Trans. Image Process. 15 (8) (2006) 2226–2238.
[94] W.K. Liu, Y. Chen, S. Jun, J. Chen, T. Belytschko, C. Pan, R. Uras, C. Chang,

Arch. Comput. Methods Eng. 3 (1) (1996) 3–80.
[95] J.F. Hughes, A. Van Dam, J.D. Foley, M. McGuire, S.K. Feiner, D.F. Sklar,

Computer Graphics: Principles and Practice, Pearson Education, 2014.
[96] M. Lindenbaum, S. Markovitch, D. Rusakov, Mach. Learn. 54 (2) (2004)

125–152.
[97] W.-K. Liu, S. Li, T. Belytschko, Comput. Methods Appl. Mech. Engrg. 143

(1–2) (1997) 113–154.
[98] E.H. Dowell, K.C. Hall, Annu. Rev. Fluid Mech. 33 (1) (2001) 445–490.
[99] Y. Bazilevs, K. Takizawa, T.E. Tezduyar, Computational Fluid-Structure

Interaction: Methods and Applications, John Wiley & Sons, 2013.
[100] Y. Kim, C.S. Peskin, Phys. Fluids 19 (5) (2007) 053103.
[101] Hibbett, Karlsson, Sorensen, ABAQUS/Standard: User’s Manual, Vol. 1,

Hibbitt, Karlsson & Sorensen, 1998.
[102] S. Turek, J. Hron, M. Razzaq, H. Wobker, M. Schäfer, Fluid Structure

Interaction II, Springer, 2011, pp. 413–424.
[103] Z. Lin, A. Hess, Z. Yu, S. Cai, T. Gao, J. Comput. Phys. 376 (2019)

1138–1155.
[104] P.-O. Persson, Mesh Generation for Implicit Geometries (Ph.D. thesis),

Massachusetts Institute of Technology, 2005.
[105] E. Lac, D. Barthes-Biesel, N. Pelekasis, J. Tsamopoulos, J. Fluid Mech. 516

(2004) 303–334.
[106] J.D. Anderson Jr., Fundamentals of Aerodynamics, Tata McGraw-Hill

Education, 2010.
[107] C. Duprat, H.A. Shore, Fluid-Structure Interactions in Low-Reynolds-

Number Flows, Royal Society of Chemistry, 2015.
[108] E. Lauga, Phys. Rev. E 75 (4) (2007) 041916.
[109] S. Plimpton, J. Comput. Phys. 117 (1) (1995) 1–19.

http://refhub.elsevier.com/S0010-4655(20)30216-2/sb73
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb73
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb73
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb73
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb73
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb74
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb75
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb76
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb76
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb76
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb77
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb78
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb78
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb78
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb79
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb79
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb79
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb80
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb81
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb82
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb82
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb82
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb83
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb84
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb84
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb84
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb85
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb86
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb87
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb88
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb89
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb89
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb89
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb90
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb91
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb91
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb91
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb92
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb92
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb92
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb93
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb94
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb94
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb94
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb95
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb95
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb95
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb96
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb96
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb96
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb97
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb97
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb97
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb98
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb99
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb99
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb99
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb100
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb101
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb101
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb101
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb102
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb102
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb102
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb103
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb103
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb103
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb104
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb104
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb104
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb105
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb105
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb105
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb106
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb106
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb106
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb107
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb107
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb107
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb108
http://refhub.elsevier.com/S0010-4655(20)30216-2/sb109

	OpenFSI: A highly efficient and portable fluid–structure simulation package based on immersed-boundary method
	Introduction
	Computational method
	Overview of the computational framework for OpenFSI
	Fluid solver: Lattice Boltzmann method (LBM)
	Lattice model (LM) for immersed structures
	1D lattice beam model
	2D and 3D solid lattice model
	Shell and membrane lattice model

	Fluid–structure coupling: Immersed boundary method
	Immersed boundary method-based spatial decomposition and data communication
	Spatial decomposition
	Data communication

	Validation of the numerical method
	Validation of the LM
	Validation of FSI: flow-induced flapping of an elastic 2D beam behind a cylinder
	Validation of FSI: deformation of an elastic capsule in bi-shear flow
	Validation of FSI: uniform flow passing a fixed cylinder

	Results: Application of the OpenFSI for different FSI problems
	Free-falling of single and multiple rigid spheres
	Flow passing 3D flexible plate
	Passing of rigid spheres over dam in uniform flow
	Active motion of a micro-swimmer with filamentous tails

	Computational efficiency of OpenFSI
	Conclusion
	Declaration of competing interest
	Acknowledgment
	Appendix A. Supplementary data
	References

