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Abstract. We introduce and study the 1-planar packing problem: Given18

k graphs with n vertices G1, . . . , Gk, find a 1-planar graph that contains19

the given graphs as edge-disjoint spanning subgraphs. We mainly focus20

on the case when each Gi is a tree and k = 3. We prove that a triple21

consisting of three caterpillars or of two caterpillars and a path may not22

admit a 1-planar packing, while two paths and a special type of caterpil-23

lar always have one. We then study 1-planar packings with few crossings24

and prove that three paths (resp. cycles) admit a 1-planar packing with25

at most seven (resp. fourteen) crossings. We finally show that a quadru-26

ple consisting of three paths and a perfect matching with n ≥ 24 vertices27

admits a 1-planar packing, while such a packing does not exist if n ≤ 10.28

1 Introduction29

In the graph packing problem we are given a collection of n-vertex graphs G1,30

G2, . . . , Gk and we are requested to find a graph G that contains the given31

graphs as edge-disjoint spanning subgraphs. Various settings of the problem can32

be defined depending on the type of graphs that have to be packed and on the33

restrictions put on the packing graph G. The most general case is when G is the34

complete graph on n vertices and there is no restriction on the input graphs.35

Sauer and Spencer [15] prove that any two graphs with at most n− 2 edges can36
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be packed into Kn; Woźniak and Wojda [17] give sufficient conditions for the37

existence of a packing of three graphs.38

The setting when G is Kn and each Gi is a tree (i = 1, 2, . . . , k) has been39

considered in many papers. Hedetniemi et al. [8] show that two non-star trees40

can always be packed into Kn. Notice that, the hypothesis that the trees are not41

stars is necessary for the existence of the packing because each vertex must have42

degree at least one in each tree, which is not possible if a vertex is adjacent to43

every other vertex as it is the case for a star. Wang and Sauer [16] give sufficient44

conditions for the existence of a packing of three trees into Kn, while Mahéo et45

al. [11] characterize the triples of trees that admit such a packing.46

Garćıa et al. [13] consider the planar packing problem, that is the case when47

the graph G is required to be planar. They conjectured that the result of Hedet-48

niemi et al. extends to this setting, i.e., that every pair of non-star trees can be49

packed into a planar graph. Notice that, when G is required to be planar, two50

is the maximum number of trees that we can hope to pack (because three trees51

have more than 3n − 6 edges). Garćıa et al. proved their conjecture for some52

restricted cases, namely when one of the trees is a path and when the two trees53

are the same. In a series of subsequent papers the conjecture has been proved54

true for other pairs of trees. Oda and Ota [12] proved it when one tree is a cater-55

pillar or it is a spider of diameter four. Frati et al. [5] extended the last result56

to any spider, while Frati [4] considers the case when both trees have diameter57

four. Geyer et al. showed that a planar packing always exists for a pair of binary58

trees [6] and for a pair of non-star trees [7], thus finally settling the conjecture.59

In the present paper we initiate the study of the 1-planar packing problem,60

i.e., the problem of packing a set of graphs into a 1-planar graph. A 1-planar61

graph is a graph that can be drawn so that each edge has at most one crossing [9].62

1-planar graphs have been introduced by Ringel [14] and have received increasing63

attention in the last years in the research area called beyond planarity (see,64

e.g., [3]). Since any two non-star trees admit a planar packing, a natural question65

is whether we can pack more than two trees into a 1-planar graph. On the other66

hand, since each 1-planar graph has at most 4n − 8 edges [9], it is not possible67

to pack more than three trees into a 1-planar graph. Thus, our main question68

is whether any three trees with maximum vertex degree n− 3 admit a 1-planar69

packing. The restriction to trees of degree at most n− 3 is necessary because a70

vertex of degree larger than n− 3 in one tree cannot have degree at least one in71

the other two trees. The results of this paper can be listed as follows.72

– We show that there are triples of structurally very simple trees that cannot73

be packed into a 1-planar graph (Section 3). These triples consist of three74

caterpillars and of two caterpillars and a path.75

– Motivated by the above results, we study triples consisting of two paths and76

a caterpillar (Section 4). We characterize the triples consisting of two paths77

and a 5-legged caterpillar (a caterpillar where each vertex of the spine has78

no leaves attached or it has at least five) that admit such a packing. We also79

characterize the triples that admit a 1-planar packing and that consist of80

two paths and a caterpillar whose spine has exactly two vertices.81
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– The packing technique of the bullet above is constructive and it gives rise82

to 1-plane graphs (i.e., 1-planar embedded graphs) with a linear number83

of crossings. This naturally raises the question about the number of edge84

crossings required by a 1-planar packing. We show that any three paths85

with at least six vertices can be packed into a 1-plane graph with seven edge86

crossings in total (Section 5). We also extend this technique to three cycles87

obtaining 1-plane graphs with fourteen crossings in total.88

– We finally consider the 1-planar packing problem for quadruples of acyclic89

graphs (Section 6). Since, as already observed, four paths cannot be packed90

into a 1-planar graph, we consider three paths and a perfect matching. We91

show that when n ≥ 24 such a quadruple admits a 1-planar packing and92

that when n ≤ 10 a 1-planar packing does not exist.93

Preliminary definitions are given in Section 2 and open problems are listed in94

Section 7. For space reasons, some proofs are sketched or moved to the appendix95

and the corresponding statements are marked with an asterisk.96

2 Preliminaries97

Given a graph G and a vertex v of G, we denote by degG(v) the vertex degree of v98

in G. Let G1, G2, . . . , Gk be k graphs with n vertices; a packing of G1, G2, . . . , Gk99

is an n-vertex graph G that has G1, G2, . . . , Gk as edge-disjoint spanning sub-100

graphs. We consider the case when G is a 1-planar graph; in this case we say that101

G is a 1-planar packing of G1, G2, . . . , Gk. If G1, G2, . . . , Gk admit a (1-planar)102

packing G, we also say that G1, G2, . . . , Gk can be packed into G. We will mainly103

concentrate on the case where each Gi is a tree (1 ≤ i ≤ k). In this case (and104

more generally when each Gi is connected), we have restrictions on the values105

of k and n for which a packing exists.106

Property 1 (*). A 1-planar packing of k connected n-vertex graphs G1, . . . , Gk107

exists only if k ≤ 3 and n ≥ 2k. Moreover, degGi
(v) ≤ n− k for each vertex v.108

A caterpillar T is a tree such that removing all the leaves results in a path109

called the spine. A backbone of T is a path v0, v1, v2, . . . , vk, vk+1 of T where110

v1, v2, . . . , vk is the spine of T and v0 and vk+1 are two leaves adjacent in T to111

v1 and vk, respectively. T is h-legged if every internal vertex of its backbone has112

degree either 2 or h+ 2 in T .113

3 Trees That Do Not Have a 1-planar Packing114

In this section we show that there exist triples of trees that do not admit a115

1-planar packing.116

Theorem 1. For every n ≥ 10, there exists a triple of caterpillars that does not117

admit a 1-planar packing.118

3



Proof. The triple consists of three isomorphic caterpillars T1, T2, T3 with n ≥ 10119

vertices. Each Ti has a backbone of length 5 and n− 5 leaves all adjacent to the120

middle vertex of the spine, which we call the center of Ti. First, notice that each121

Ti satisfies Property 1, i.e., degTi
(v) ≤ n − 3. Namely, the vertex with largest122

degree in Ti is its center, which has degree n−3. Let G be any packing of T1, T2,123

and T3 and let v1, v2, and v3 be the three vertices of G where the three centers124

of T1, T2, T3, respectively, are mapped. The three vertices v1, v2, and v3 must125

be distinct because otherwise they would have degree larger than n − 1 in G,126

which is impossible. For each vi we have degTi
(vi) = n−3 and degTj

(vi) ≥ 1, for127

j 6= i. This implies that degG(vi) = n− 1 for each vi. In other words, each vi is128

adjacent to all the other vertices of G. Thus, G contains K3,n−3 as a subgraph.129

Since n ≥ 10 and K3,7 is not 1-planar [2], G is not 1-planar. ut130

Motivated by Theorem 1, we consider triples where one of the caterpillars is131

a path. Also in this case there exist triples that do not have a 1-planar packing.132

Theorem 2. There exists a triple consisting of a path and two caterpillars with133

n = 7 vertices that does not admit a 1-planar packing.134

Proof. Let Ti (i = 1, 2) be a caterpillar with a backbone of length four whose135

internal vertices have degree four and three in Ti, respectively. LetG be a packing136

of T1, T2 and a path P of 7 vertices. Let v1, v2, v3, and v4 be the four vertices of137

G where the internal vertices of the backbones of T1 and T2 are mapped to. We138

first observe that v1, v2, v3, and v4 must be distinct. Suppose, as a contradiction,139

that two of them coincide, say v1 and v2; then degT1
(v1)+degT2

(v1) ≥ 6. On the140

other hand degP (v1) ≥ 1, and therefore degG(v1) ≥ 7, which is impossible (since141

G has only 7 vertices). Denote by G1,2 the subgraph of G containing only the142

edges of T1 and T2. Two vertices among v1, v2, v3, and v4, say v1 and v2, have143

degree 5 in G1,2, while the other two have degree 4 in G1,2. Consider now the144

edges of P . Since the maximum vertex degree in a graph of seven vertices is six,145

v1 and v2 must be the end-vertices of P , while v3 and v4 are internal vertices.146

This means that they all have degree 6 in G. The vertices distinct from v1, v2, v3,147

and v4 have degree 2 in G1,2 and degree 4 in G. Thus in G there are four vertices148

of degree 6 and three vertices of degree 4. The only graph of seven vertices with149

this degree distribution is K7 −K3, which is known to be non-1-planar [10]. ut150

4 1-planar Packings of Two Paths and a Caterpillar151

In this section we prove that a triple consisting of two paths P1 and P2 and a152

5-legged caterpillar T with at least six vertices admits a 1-planar packing. Let153

P be the backbone of T and let P ′

1 and P ′

2 be two paths with the same length154

as P . We first show how to construct a 1-planar packing of P , P ′

1 and P ′

2. We155

then modify the computed packing to include the leaves of the caterpillar; this156

requires to transform some edges of P ′

1 and P ′

2 to sub-paths that pass through157

the added leaves. The resulting packing is a 1-planar packing of P1, P2 and T .158

Let Γ be a 1-planar drawing, possibly with parallel edges, and let e be an159

edge of Γ . If e has one crossing c, then each of the two parts in which e is divided160
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leaf addition is valid and that the drawing Γ ′′ obtained with the insertion of193

the gadget inside f is 1-planar, we have to pay attention to two aspects: (i)194

if a dangling edge is crossed in the gadget, then its degree-1 vertex cannot be195

made coincident with a dummy vertex (otherwise when we remove the dummy196

vertex we obtain an edge that is crossed twice); (ii) if two degree-1 vertices of197

the gadget have to be made coincident (because two end-vertices of e′1 and e′2198

coincide), then the corresponding dangling edges have no vertex in common in199

the gadget (otherwise the leaf addition is not valid because it creates multiple200

edges). We use different gadgets depending on whether e1 and e2 are parallel201

edges or not. If they are parallel edges, we use the gadgets of Figs. 2(a)– 2(c)202

and 2(g)– 2(h). Notice that in this case, e1 and e2 are not crossed by definition of203

cutting curve. It follows that f has no dummy vertex and (i) is not a problem. On204

the other hand, both end-vertices of e1 and e2 coincide, thus we must guarantee205

that the dangling edges whose degree-1 vertex will coincide do not share any206

vertex, which is the case of the gadgets used in this case. If e1 and e2 are non-207

parallel, we use the gadgets of Figs. 2(d)– 2(f) and 2(g)– 2(h). All these gadgets208

have only one dangling edge that is crossed (labeled d in the figure), also, vertex209

d can be made coincident with vertex c without creating multiple edges. If e1210

and e2 are non-parallel, at most two end-vertices of e′1 and e′2 are dummy; they211

cannot belong to the same stub, and they cannot coincide (because e1 and e2 do212

not cross each other). Thus we can make d coincident with a non-dummy vertex213

and we can make c and d coincident if needed. ut214

We are ready to describe our construction of a 1-planar packing of P1, P2,215

and T . We use different techniques for different lengths of the backbone of T .216

Lemma 2. Two paths and a 5-legged caterpillar whose backbone contains n′ ≥ 6217

vertices admit a 1-planar packing.218

Proof. We start with the construction of a 1-planar packing of the three paths219

P ′

1, P
′

2 and P . Let n′ be the number of vertices of P ′

1, P
′

2 and P , assume first that220

n′ ≥ 8 and n′ ≡ 0 (mod 4). A 1-planar packing of P ′

1, P
′

2 and P for this case is221

shown in Fig. 3(a) for n′ = 16 and it is easy to see that it can be extended to222

any n′ multiple of four. Assume that the backbone P of T is the path shown in223

black in Fig. 3(a). To add the leaves of T to the construction we define a cutting224

curve for each vertex v that has some leaves attached; we then execute a leaf225

addition operation for each such vertex. By Lemma 1 it is possible to execute226

each leaf addition so to guarantee the 1-planarity of the resulting drawing. The227

cutting curve for each internal vertex of P is shown in Fig. 3(a)228

Suppose now that n′ ≥ 8 and n′ 6≡ 0 (mod 4). In this case we first construct229

a 1-planar packing of three paths with n′′ = 4k vertices (with k = bn′

4
c) with230

the same construction as in the previous case and then we add one, two or three231

vertices as shown in Figs. 3(b), 3(c), and 3(d), where we also show the cutting232

curves for each internal vertex of P . If n′ is equal to 6 or 7, we use the same233

approach, the only difference is in the construction of the 1-planar packing of234

P ′

1, P
′

2 and P . The construction for such a packing and the cutting curves for235

the internal vertices of P are shown in Figs. 4(a) and 4(b). ut236

6











exist if all graphs are connected, because the number of edges of the four graphs330

is higher than the number of edges allowed in a 1-planar graph. We consider331

therefore a quadruple consisting of three paths and a perfect matching. Notice332

that, in this case the number of vertices n has to be even.333

Theorem 7. Three paths and a perfect matching with n ≥ 24 vertices admit a334

1-planar packing. If n ≤ 10, the quadruple does not admit a 1-planar packing.335

Proof. Three paths and a perfect matching have a total of 3(n−1)+ n
2
= 7n

2
−3336

edges. Since a 1-planar graph has at most 4n − 8 edges, a 1-planar packing of337

three paths and a perfect matching exists only if 7n
2
− 3 ≤ 4n− 8, i.e., if n ≥ 10.338

If n = 10, we have 7n
2

− 3 = 32 and 4n − 8 = 32, which means that any 1-339

planar packing of three paths and a perfect matching with n = 10 vertices is an340

optimal 1-planar graph. It is known that every optimal 1-planar graph has at341

least eight vertices of degree exactly six [1]. On the other hand, in any 1-planar342

packing of three paths and a perfect matching all vertices, except the at most six343

end-vertices of the three paths, have degree seven, which implies that a 1-planar344

packing of three paths and a perfect matching does not exist.345

We now prove that a 1-planar packing exists if n ≥ 24. Based on the fact346

that in any 1-planar packing of three paths and a perfect matching all vertices347

have degree seven except at most six, we construct the desired 1-planar packing348

starting from a 1-planar graph G such that all its vertices have degree at least349

seven (except possibly at most six); we then partition the edges of G into five350

sets; three of these sets form a spanning path each, the fourth one forms a perfect351

matching, and the fifth one contains edges that will not be part of the 1-planar352

packing. For every n = 8k and k ≥ 3 it is possible to construct a 1-planar353

graph with n vertices each having degree at least seven as follows. We start with354

k − 1 cycles C1, C2, . . . , Ck−1. Each cycle Ci (1 ≤ i ≤ k − 1) has eight vertices355

vi,j with 0 ≤ j ≤ 7. Cycle Ci, for 1 ≤ i ≤ k − 2, is embedded inside cycle356

Ci+1 and is connected to it with edges (vi,j , vi+1,j) for each 0 ≤ j ≤ 7. We357

have a cycle with four vertices u0, u1, u2, u3 embedded inside C1 and connected358

to it with edges (uj , v1,2j) and (uj , v1,2j+1). Finally, we have a cycle with four359

vertices w0, w1, w2, w3 embedded outside Ck−1 and connected to it with edges360

(wj , vk−1,2j) and (wj , vk−1,2j+1). The graph G′ described so far has n vertices, is361

planar, all its vertices have degree four, and each vertex is incident to at most one362

face of size three (see Fig. 7(a)). By adding two crossing edges inside each face363

of size four, we obtain a 1-planar graph G with n vertices where each vertex has364

degree at least seven. The graph G and the partition of the edges of G in five sets365

defining three paths and a matching is shown in Fig. 7(b). If n is not a multiple366

of 8, then it will be n = 8k + r with 0 < r < 8 and r even (because n is even).367

In this case we construct G′ as explained above and then we extend the paths368

u0, v1,1, . . . , vk−1,1 and u1, v1,2, . . . , vk−1,2 to the left with 1, 2 or 3 vertices each;369

we then suitably add some new edges and remove some of the edges of G′. The370

graph G is then obtained, as in the previous case, by adding a pair of crossing371

edges inside each face of size four. The resulting graph G and a partition of its372

edges in five sets defining three paths and a matching is shown in Figs. 7(c),373

7(d), and 7(e), for the cases when r = 2, r = 4, and r = 6, respectively. ut374
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11. Mahéo, M., Saclé, J., Wozniak, M.: Edge-disjoint placement of three trees. Eur. J.417

Comb. 17(6), 543–563 (1996). https://doi.org/10.1006/eujc.1996.0047418

12. Oda, Y., Ota, K.: Tight planar packings of two trees. In: 22nd European Workshop419

on Computational Geometry420

13. Olaverri, A.G., Hernando, M.C., Hurtado, F., Noy, M., Tejel, J.: Packing421

trees into planar graphs. Journal of Graph Theory 40(3), 172–181 (2002).422

https://doi.org/10.1002/jgt.10042423

14. Ringel, G.: Ein sechsfarbenproblem auf der kugel. Abhandlungen aus dem424

Mathematischen Seminar der Universität Hamburg 29(1-2), 107–117 (1965).425

https://doi.org/10.1007/BF02996313426

15. Sauer, N., Spencer, J.: Edge disjoint placement of graphs. J. Comb. Theory, Ser.427

B 25(3), 295–302 (1978). https://doi.org/10.1016/0095-8956(78)90005-9428

16. Wang, H., Sauer, N.: Packing three copies of a tree into a com-429

plete graph. European Journal of Combinatorics 14(2), 137 – 142 (1993).430

https://doi.org/10.1006/eujc.1993.1018431

17. Wozniak, M., Wojda, A.P.: Triple placement of graphs. Graphs and Combinatorics432

9(1), 85–91 (1993). https://doi.org/10.1007/BF01195330433

13








