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Abstract. We introduce and study the 1-planar packing problem: Given
k graphs with n vertices G, ..., Gk, find a 1-planar graph that contains
the given graphs as edge-disjoint spanning subgraphs. We mainly focus
on the case when each G; is a tree and kK = 3. We prove that a triple
consisting of three caterpillars or of two caterpillars and a path may not
admit a 1-planar packing, while two paths and a special type of caterpil-
lar always have one. We then study 1-planar packings with few crossings
and prove that three paths (resp. cycles) admit a 1-planar packing with
at most seven (resp. fourteen) crossings. We finally show that a quadru-
ple consisting of three paths and a perfect matching with n > 24 vertices
admits a 1-planar packing, while such a packing does not exist if n < 10.

1 Introduction

In the graph packing problem we are given a collection of n-vertex graphs G,
Go, ..., G and we are requested to find a graph G that contains the given
graphs as edge-disjoint spanning subgraphs. Various settings of the problem can
be defined depending on the type of graphs that have to be packed and on the
restrictions put on the packing graph G. The most general case is when G is the
complete graph on n vertices and there is no restriction on the input graphs.
Sauer and Spencer [15] prove that any two graphs with at most n — 2 edges can

* This work started at the Bertinoro Workshop on Graph Drawing 2019 and it is par-

tially supported by MIUR, under Grant 20174LF3T8 “AHeAD: efficient Algorithms
for HArnessing networked Data”.
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be packed into K,; Wozniak and Wojda [17] give sufficient conditions for the
existence of a packing of three graphs.

The setting when G is K,, and each G; is a tree (i = 1,2,...,k) has been
considered in many papers. Hedetniemi et al. [8] show that two non-star trees
can always be packed into K,,. Notice that, the hypothesis that the trees are not
stars is necessary for the existence of the packing because each vertex must have
degree at least one in each tree, which is not possible if a vertex is adjacent to
every other vertex as it is the case for a star. Wang and Sauer [16] give sufficient
conditions for the existence of a packing of three trees into K,,, while Mahéo et
al. [11] characterize the triples of trees that admit such a packing.

Garcia et al. [13] consider the planar packing problem, that is the case when
the graph G is required to be planar. They conjectured that the result of Hedet-
niemi et al. extends to this setting, i.e., that every pair of non-star trees can be
packed into a planar graph. Notice that, when G is required to be planar, two
is the maximum number of trees that we can hope to pack (because three trees
have more than 3n — 6 edges). Garcia et al. proved their conjecture for some
restricted cases, namely when one of the trees is a path and when the two trees
are the same. In a series of subsequent papers the conjecture has been proved
true for other pairs of trees. Oda and Ota [12] proved it when one tree is a cater-
pillar or it is a spider of diameter four. Frati et al. [5] extended the last result
to any spider, while Frati [4] considers the case when both trees have diameter
four. Geyer et al. showed that a planar packing always exists for a pair of binary
trees [6] and for a pair of non-star trees [7], thus finally settling the conjecture.

In the present paper we initiate the study of the I-planar packing problem,
i.e., the problem of packing a set of graphs into a 1-planar graph. A 1-planar
graph is a graph that can be drawn so that each edge has at most one crossing [9].
1-planar graphs have been introduced by Ringel [14] and have received increasing
attention in the last years in the research area called beyond planarity (see,
e.g., [3]). Since any two non-star trees admit a planar packing, a natural question
is whether we can pack more than two trees into a 1-planar graph. On the other
hand, since each 1-planar graph has at most 4n — 8 edges [9], it is not possible
to pack more than three trees into a 1-planar graph. Thus, our main question
is whether any three trees with maximum vertex degree n — 3 admit a 1-planar
packing. The restriction to trees of degree at most n — 3 is necessary because a
vertex of degree larger than n — 3 in one tree cannot have degree at least one in
the other two trees. The results of this paper can be listed as follows.

— We show that there are triples of structurally very simple trees that cannot
be packed into a 1-planar graph (Section 3). These triples consist of three
caterpillars and of two caterpillars and a path.

— Motivated by the above results, we study triples consisting of two paths and
a caterpillar (Section 4). We characterize the triples consisting of two paths
and a 5-legged caterpillar (a caterpillar where each vertex of the spine has
no leaves attached or it has at least five) that admit such a packing. We also
characterize the triples that admit a 1-planar packing and that consist of
two paths and a caterpillar whose spine has exactly two vertices.
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— The packing technique of the bullet above is constructive and it gives rise
to l-plane graphs (i.e., 1-planar embedded graphs) with a linear number
of crossings. This naturally raises the question about the number of edge
crossings required by a 1-planar packing. We show that any three paths
with at least six vertices can be packed into a 1-plane graph with seven edge
crossings in total (Section 5). We also extend this technique to three cycles
obtaining 1-plane graphs with fourteen crossings in total.

— We finally consider the 1-planar packing problem for quadruples of acyclic
graphs (Section 6). Since, as already observed, four paths cannot be packed
into a 1-planar graph, we consider three paths and a perfect matching. We
show that when n > 24 such a quadruple admits a 1-planar packing and
that when n < 10 a 1-planar packing does not exist.

Preliminary definitions are given in Section 2 and open problems are listed in
Section 7. For space reasons, some proofs are sketched or moved to the appendix
and the corresponding statements are marked with an asterisk.

2 Preliminaries

Given a graph G and a vertex v of G, we denote by dege(v) the vertex degree of v
in G. Let G1, (s, ...,Gy be k graphs with n vertices; a packing of G1,Ga, . .., Gy
is an n-vertex graph G that has G1,Gs, ..., Gy as edge-disjoint spanning sub-
graphs. We consider the case when G is a 1-planar graph; in this case we say that
G is a I-planar packing of G1,Ga,...,Gy. If G1,Gs,...,G) admit a (1-planar)
packing G, we also say that G1, G, ..., Gy can be packed into G. We will mainly
concentrate on the case where each G; is a tree (1 < i < k). In this case (and
more generally when each G; is connected), we have restrictions on the values
of k and n for which a packing exists.

Property 1 (*). A 1-planar packing of k& connected n-vertex graphs Gy, ..., Gy
exists only if k£ < 3 and n > 2k. Moreover, degg, (v) < n — k for each vertex v.

A caterpillar T is a tree such that removing all the leaves results in a path
called the spine. A backbone of T is a path vy, v1,vs,..., vk, vkr1 of T where
V1, V2, ...,V is the spine of T" and vy and vi41 are two leaves adjacent in T to
v1 and v, respectively. T is h-legged if every internal vertex of its backbone has
degree either 2 or h+2 in T

3 Trees That Do Not Have a 1-planar Packing

In this section we show that there exist triples of trees that do not admit a
1-planar packing.

Theorem 1. For everyn > 10, there exists a triple of caterpillars that does not
admit a 1-planar packing.
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Proof. The triple consists of three isomorphic caterpillars 71,75, T3 with n > 10
vertices. Each T; has a backbone of length 5 and n — 5 leaves all adjacent to the
middle vertex of the spine, which we call the center of T;. First, notice that each
T; satisfies Property 1, i.e., degr,(v) < n — 3. Namely, the vertex with largest
degree in Tj; is its center, which has degree n — 3. Let G be any packing of 17, T5,
and T3 and let vy, v9, and vz be the three vertices of G where the three centers
of T1,T5, T3, respectively, are mapped. The three vertices v1, vo, and vs must
be distinct because otherwise they would have degree larger than n — 1 in G,
which is impossible. For each v; we have degr, (v;) = n—3 and degr, (v;) > 1, for
J # 4. This implies that degg(v;) =n — 1 for each v;. In other words, each v; is
adjacent to all the other vertices of G. Thus, G contains K3 ,_3 as a subgraph.
Since n > 10 and K3 7 is not 1-planar [2], G is not 1-planar. O

Motivated by Theorem 1, we consider triples where one of the caterpillars is
a path. Also in this case there exist triples that do not have a 1-planar packing.

Theorem 2. There exists a triple consisting of a path and two caterpillars with
n = 7 vertices that does not admit a 1-planar packing.

Proof. Let T; (i = 1,2) be a caterpillar with a backbone of length four whose
internal vertices have degree four and three in 7}, respectively. Let G be a packing
of Ty, Ty and a path P of 7 vertices. Let vy, vs, v3, and v4 be the four vertices of
G where the internal vertices of the backbones of 77 and T5 are mapped to. We
first observe that vy, v9, v3, and v4 must be distinct. Suppose, as a contradiction,
that two of them coincide, say v, and vq; then degr, (v1)+degr, (v1) > 6. On the
other hand degp(v1) > 1, and therefore degg(vi) > 7, which is impossible (since
G has only 7 vertices). Denote by G; 3 the subgraph of G containing only the
edges of T and T,. Two vertices among vy, vs, v3, and vy, say v; and vg, have
degree 5 in (1,2, while the other two have degree 4 in G 2. Consider now the
edges of P. Since the maximum vertex degree in a graph of seven vertices is six,
v1 and vy must be the end-vertices of P, while v3 and v4 are internal vertices.
This means that they all have degree 6 in GG. The vertices distinct from vy, va, vs,
and vy have degree 2 in G 2 and degree 4 in G. Thus in G there are four vertices
of degree 6 and three vertices of degree 4. The only graph of seven vertices with
this degree distribution is K7 — K3, which is known to be non-1-planar [10]. O

4 1-planar Packings of Two Paths and a Caterpillar

In this section we prove that a triple consisting of two paths P; and P, and a
5-legged caterpillar T' with at least six vertices admits a 1-planar packing. Let
P be the backbone of T and let P{ and Py be two paths with the same length
as P. We first show how to construct a 1-planar packing of P, P; and Pj. We
then modify the computed packing to include the leaves of the caterpillar; this
requires to transform some edges of P/ and Pj to sub-paths that pass through
the added leaves. The resulting packing is a 1-planar packing of Py, P and T.
Let I' be a 1-planar drawing, possibly with parallel edges, and let e be an
edge of I'. If e has one crossing ¢, then each of the two parts in which e is divided
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Fig. 1. 5-leaf addition operation.

by ¢ are called sub-edges of e; if e has no crossing, e itself is called a sub-edge of
e. Let v be a vertex of I'; a cutting curve of v is a Jordan arc -y such that: (i)
has v as an end-point; (ii) 7 intersects two edges e; = (u1,v1) and e = (u2, v2)
(possibly u; = ug and/or v; = wg); (iii) v does not intersect any other edge of
I'; (iv) e; and es do not cross each other; (iv) if e; and es are parallel edges
(i.e. u3 = ug and v; = vy), they have no crossings. The stub of e; with respect
to «y is the sub-edge of e; intersected by v (i = 1,2). Given a cutting curve 7
of a vertex v, and an integer k > 5, a k-leaf addition operation adds k vertices
wy, wa, ..., wg and the edges (v, wy), (v,w3),. .., (v,wk) to I" in such a way that:
(i) the added vertices subdivide the stubs of both e; and ey with respect to ~;
(ii) the subgraph induced by wuq,us,v1,ve, w1, ws, ..., w, has no multiple edges
(see Fig. 1 for an example). In other words, a leaf addition adds a set of vertices
adjacent to v and replaces the stubs of e; and es; with two edge-disjoint paths.
This operation will be used to modify the 1-planar packing of P, P| and P} to
include the leaves of the caterpillar. When the value of k is not relevant, a k-leaf
addition will be simply called a leaf addition.

Lemma 1. Let I' be a 1-planar drawing possibly with parallel edges, let v be a
vertex of I' and let v be a cutting curve of v. It is possible to execute a k-leaf
addition for every k > 5 in such a way that the resulting drawing is still 1-planar.

Proof. Denote by e; and e the two edges crossed by ~. If one of them or both
are crossed in I" replace their crossing points with dummy vertices. Let €} be
the stub of e; with respect to v (if e; is not crossed in I, €} coincides with e;).
After the replacement of the crossings with the dummy vertices the two stubs
e} and e}, have no crossing. Since vy does not cross any edge distinct from e; and
es, the drawing I'” obtained by removing e} and e}, has a face f whose boundary
contains the vertex v and all the end-vertices of €] and of e/, (these vertices are
at least two and at most four). The idea now is to insert into the face f, without
creating any crossing, a gadget that realizes the k-leaf addition for the desired
value of k > 5. A gadget has k vertices that will be added to I', a vertex that
will be made coincident with v, and four degree-1 vertices a, b, ¢, and d that will
be made coincident with the end-vertices of €} and ef. The four edges incident
to a, b, ¢, and d, will be called dangling edges. In order to guarantee that the

ot
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leaf addition is valid and that the drawing I'” obtained with the insertion of
the gadget inside f is l-planar, we have to pay attention to two aspects: (i)
if a dangling edge is crossed in the gadget, then its degree-1 vertex cannot be
made coincident with a dummy vertex (otherwise when we remove the dummy
vertex we obtain an edge that is crossed twice); (ii) if two degree-1 vertices of
the gadget have to be made coincident (because two end-vertices of €} and €}
coincide), then the corresponding dangling edges have no vertex in common in
the gadget (otherwise the leaf addition is not valid because it creates multiple
edges). We use different gadgets depending on whether e; and es are parallel
edges or not. If they are parallel edges, we use the gadgets of Figs. 2(a)— 2(c)
and 2(g)— 2(h). Notice that in this case, e; and ey are not crossed by definition of
cutting curve. It follows that f has no dummy vertex and (i) is not a problem. On
the other hand, both end-vertices of e; and e, coincide, thus we must guarantee
that the dangling edges whose degree-1 vertex will coincide do not share any
vertex, which is the case of the gadgets used in this case. If e; and e; are non-
parallel, we use the gadgets of Figs. 2(d)— 2(f) and 2(g)— 2(h). All these gadgets
have only one dangling edge that is crossed (labeled d in the figure), also, vertex
d can be made coincident with vertex ¢ without creating multiple edges. If e;
and ey are non-parallel, at most two end-vertices of €] and €}, are dummy; they
cannot belong to the same stub, and they cannot coincide (because e; and es do
not cross each other). Thus we can make d coincident with a non-dummy vertex
and we can make ¢ and d coincident if needed. ad

We are ready to describe our construction of a 1-planar packing of Py, Ps,
and T'. We use different techniques for different lengths of the backbone of 7.

Lemma 2. Two paths and a 5-legged caterpillar whose backbone contains n’ > 6
vertices admit a 1-planar packing.

Proof. We start with the construction of a 1-planar packing of the three paths
P/, P} and P. Let n’ be the number of vertices of Pj, P; and P, assume first that
n' > 8 and n’ =0 (mod 4). A 1-planar packing of P{, P, and P for this case is
shown in Fig. 3(a) for n’ = 16 and it is easy to see that it can be extended to
any n’ multiple of four. Assume that the backbone P of T is the path shown in
black in Fig. 3(a). To add the leaves of T' to the construction we define a cutting
curve for each vertex v that has some leaves attached; we then execute a leaf
addition operation for each such vertex. By Lemma 1 it is possible to execute
each leaf addition so to guarantee the 1-planarity of the resulting drawing. The
cutting curve for each internal vertex of P is shown in Fig. 3(a)

Suppose now that n’ > 8 and n’ Z 0 (mod 4). In this case we first construct
a 1l-planar packing of three paths with n” = 4k vertices (with k = L%J) with
the same construction as in the previous case and then we add one, two or three
vertices as shown in Figs. 3(b), 3(c), and 3(d), where we also show the cutting
curves for each internal vertex of P. If n’ is equal to 6 or 7, we use the same
approach, the only difference is in the construction of the 1-planar packing of
P{, P} and P. The construction for such a packing and the cutting curves for
the internal vertices of P are shown in Figs. 4(a) and 4(b). O
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Fig. 2. Gadgets for the proof of Lemma 1. (a)—(c) are used for parallel edges; (d)—(f)
are used for non-parallel edges; (g)—(h) are used for parallel and non-parallel edges.

Lemma 3 (*). Two paths and a 5-legged caterpillar T whose backbone contains
n' =5 wvertices admit a 1-planar packing, unless T is a path.

Proof. If T' is a path, then P;, P, and T are all paths of length five, and by
Property 1 a 1-planar packing of P;, P, and T' does not exist. Suppose therefore
that at least one internal vertex of the backbone P of T has some leaves attached.
In this case we use an approach similar to the one described in the proof of
Lemma 2. However, as we have just explained, a 1-planar packing of P;, Pj and
P cannot exist in this case. We start with a 1-planar packing with two pairs of
parallel edges. For each pair, one of the two parallel edges belongs to P and
the other one to Py. We will remove the parallel edges by performing the leaf
addition operations. To this aim we must guarantee that there is a cutting curve
for each pair of parallel edges. The 1-planar packing Pj, P and P and the cutting
curves for the internal vertices of P are shown in Fig. 4(c), for the case when
we have at least two vertices with leaves attached. Indeed, if only two vertices
have leaves attached, they are either consecutive along the backbone or not. In
the first case, the cutting curves of the vertices labeled a and b will remove the
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Fig. 3. 1-planar packings of three paths with n’ vertices, with a cutting curve for each
internal vertex of the black path. (a) n’ =16; (b) n’ = 17; (c) n’ = 18; (d) n’ = 19.

(a) (b)

Fig. 4. 1-planar packings of three paths with n’ vertices; a cutting curve for each
internal vertex of the black path is also shown. (a) n’ = 7. (b) n’ = 6. (c) n’ = 5.

parallel edges; in the second case, the cutting curves of the vertices labeled a
and ¢ will remove the parallel edges.

If only one vertex of P has leaves attached, we have only one cutting curve
and thus it is not possible to intersect both pairs of parallel edges. To handle
this case we use an ad-hoc technique which is described in Appendix B. a

The next theorem gives a complete characterization for the case when the
backbone of T has length four.

Theorem 3. Two paths and a caterpillar T whose backbone contains n' = 4
vertices admit a I-planar packing if and only if n > 6 and degr(v) < n — 3 for
every vertex v.

Proof. Since the length of the backbone is four, we have exactly two non-leaf
vertices v; and ve. Denote by n; the number of leaves adjacent to v; (i = 1,2)
and assume n; < no. We distinguish different cases depending on the values
of ny and ng. If n; = 1, then we have degr(ve) = n — 1 and by Property 1 a
1-planar packing of Py, P, and T does not exist. Assume then that n; > 2.

We start with the case when ny > 5. In this case we construct a 1-planar
packing according to different techniques depending on the parity of n; and no.
Figs. 5(a), 5(b), and 5(c) show the construction for the cases when n; and ng
are both even, when they are both odd, and when they have different parity,
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Fig. 5. Illustration for Theorem 3.

respectively. If ny < 5 we have different ad-hoc constructions that depend on
the values of ny and ny. All cases are shown in Fig. 9 in Appendix B. a

Lemmas 2 and 3, together with Theorem 3 imply the next theorem.

Theorem 4. Two paths and a 5-legged caterpillar T with n vertices admit a
1-planar packing if and only if n > 6 and degr(v) < n — 3 for every vertex v.

5 1-planar Packings with Constant Edge Crossings

The technique described in the previous section constructs 1-planar drawings
that have a linear number of crossings. A natural question is whether it is possible
to compute a l-planar packing with a constant number of crossings. In this
section we prove that seven (resp. fourteen) crossings suffice for three paths
(resp. cycles). It is worth remarking that a 1-planar packing of three paths has
at least three crossings (because it has 3n — 3 edges), while a 1-planar packing
of three cycles has at least six crossings (because it has 3n edges).

Theorem 5. Three paths with n > 6 vertices can be packed into a 1-plane graph
with at most 7 edge crossings.

Proof. We prove the statement by showing how to construct a 1-planar drawing
with at most 7 crossings of a graph that is the union of three paths. Suppose
first that n = 74 3k for k € N. If £k = 0, we draw the union of the three paths
with 7 vertices as shown in Fig. 4(b). The drawing is 1-planar and has three
crossings in total. Suppose now that k£ > 0. We consider three rays rg, r1, ro with
a common origin pairwise forming a 120° angle and we place k vertices on each
line. We denote by w; 1, 42, - . . , u; i, the vertices of line r; (i = 0, 1, 2) in the order
they appear along r; starting from the origin (see Fig. 6(a)). In the following,
when working with the indices of the rays r;, indices will be taken modulo 3.
To draw path P; (i = 0,1,2) we draw the edges (w; 1, wit1.1), (Wi, Wit1,5-1),
and (u; j,u;y1,5) (for j =2,...,k) as straight-line segments. Notice that, these
edges form a zig-zagging path between the vertices of rays r; and r;;1, so P;
passes trough all vertices of r; and r;;1 but not through the vertices of ;2.
To include these missing vertices in P; we draw as edges of P; the straight-line
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Fig. 6. Illustration for Theorem 5.

edges (Uit2,5, Uit2,541) (for 5 =1,2,...,k—1). In this way we draw two disjoint
sub-paths for each path P;, namely a zig-zagging path between r; and r;4; and
a straight-line path along 7;42. Moreover, we only draw 3k edges and therefore
there are still 7 missing vertices (and 8 missing edges) in each path. To add the
missing vertices and edges and to connect the two sub-paths of each path, we
construct a drawing I of three paths Pj, P{, Pj with seven vertices as in the
case when k = 0. Denote with v; and w; the end-vertices of P/ in I'y. We place
I inside the triangle ug 1, u1,1,u2,1 and add the edges (v, u;1) and (w;, uit2.1).
It is easy to see (see also Fig. 6(b)) that these six edges can be added so that
the drawing is still 1-planar and so that the total number of crossings is 6. This
concludes the proof for n = 7+ 3k. If n = 7+ 3k + 1 we start with the same
construction as in the previous case and then add an extra vertex v outside the
triangle w1k, 2k, us,k. Notice that each of these three vertices is the end-vertex
of two of the three paths with 7 + 3k vertices. Thus we can extend each path
to include v by connecting it to each of the three vertices wu; i, u2,us r in a
planar way (see Fig. 6(c) ignoring vertex w). If n = 7 + 3k + 2, then we add
two extra vertices outside the triangle wg x, w1 5, u2 r and connect both of them
to the three vertices wg r,u1k, u2, (recall that each of these three vertices is
the end-vertex of two distinct paths with 7 + 3k vertices). In this case however
the addition of the two extra vertices causes the creation of one crossing. Thus
the final drawing is 1-planar and the total number of crossings is at most 7 (see
Fig. 6(c)). This concludes the proof for n > 7. If n = 6 we construct a 1-planar
packing of three paths with three crossings in total as shown in Fig. 4(a). O

The construction of Theorem 5 can be extended to three cycles.

Theorem 6 (*). Three cycles withn > 20 vertices can be packed into a 1-plane
graph with at most 14 edge crossings.

6 From Triples to Quadruples

In this section we extend the study of 1-planar packings from triples of graphs to
quadruples of graphs. By Property 1 a 1-planar packing of four graphs does not
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exist if all graphs are connected, because the number of edges of the four graphs
is higher than the number of edges allowed in a 1-planar graph. We consider
therefore a quadruple consisting of three paths and a perfect matching. Notice
that, in this case the number of vertices n has to be even.

Theorem 7. Three paths and a perfect matching with n > 24 vertices admit a
1-planar packing. If n < 10, the quadruple does not admit a 1-planar packing.

Proof. Three paths and a perfect matching have a total of 3(n —1)+ § = %” -3
edges. Since a 1-planar graph has at most 4n — 8 edges, a 1-planar packing of
three paths and a perfect matching exists only if 77" —3<4n -8, i.e.,if n > 10.
If n = 10, we have 77" — 3 = 32 and 4n — 8 = 32, which means that any 1-
planar packing of three paths and a perfect matching with n = 10 vertices is an
optimal 1-planar graph. It is known that every optimal 1-planar graph has at
least eight vertices of degree exactly six [1]. On the other hand, in any 1-planar
packing of three paths and a perfect matching all vertices, except the at most six
end-vertices of the three paths, have degree seven, which implies that a 1-planar
packing of three paths and a perfect matching does not exist.

We now prove that a 1-planar packing exists if n > 24. Based on the fact
that in any 1-planar packing of three paths and a perfect matching all vertices
have degree seven except at most six, we construct the desired 1-planar packing
starting from a 1-planar graph G such that all its vertices have degree at least
seven (except possibly at most six); we then partition the edges of G into five
sets; three of these sets form a spanning path each, the fourth one forms a perfect
matching, and the fifth one contains edges that will not be part of the 1-planar
packing. For every n = 8k and k > 3 it is possible to construct a 1-planar
graph with n vertices each having degree at least seven as follows. We start with
k — 1 cycles C1,Cs,...,Ci_1. Each cycle C; (1 <1i < k — 1) has eight vertices
vi; with 0 < j < 7. Cycle Cj, for 1 <4 < k — 2, is embedded inside cycle
Ci+1 and is connected to it with edges (v; j,vit1,;) for each 0 < j < 7. We
have a cycle with four vertices ug, u1, u2, us embedded inside C; and connected
to it with edges (u;,v1,2;) and (u;,v1,2j+1). Finally, we have a cycle with four
vertices wq, w1, ws, w3 embedded outside Ci_; and connected to it with edges
(wj,vp—1,2;) and (wj, vg—1,2541). The graph G’ described so far has n vertices, is
planar, all its vertices have degree four, and each vertex is incident to at most one
face of size three (see Fig. 7(a)). By adding two crossing edges inside each face
of size four, we obtain a 1-planar graph G with n vertices where each vertex has
degree at least seven. The graph GG and the partition of the edges of G in five sets
defining three paths and a matching is shown in Fig. 7(b). If n is not a multiple
of 8, then it will be n = 8k + r with 0 < r < 8 and r even (because n is even).
In this case we construct G’ as explained above and then we extend the paths
UQ, V1,1, -+, Vk—1,1 and U1, V1,2, ...,Vk—1,2 to the left with 1, 2 or 3 vertices each;
we then suitably add some new edges and remove some of the edges of G’. The
graph G is then obtained, as in the previous case, by adding a pair of crossing
edges inside each face of size four. The resulting graph G and a partition of its
edges in five sets defining three paths and a matching is shown in Figs. 7(c),
7(d), and 7(e), for the cases when r = 2, r = 4, and r = 6, respectively. O
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Fig. 7. Illustration for Theorem 7.

w7 Open Problems

s In this paper we initiated the study of the 1-planar packing problem. We find
sz that this is a fertile and still largely unexplored research subject. We conclude
s the paper with a list of open problems.

s — Theorem 2 holds only for n = 7. Do two caterpillars (or more general trees)
380 and a path admit a 1-planar packing if they have more than 7 vertices?

w1 — Can Theorem 4 be extended to general caterpillars? What about two paths
382 and a tree more complex than a caterpillar, for example a binary tree?

s — Is it possible to compute a 1-planar packing of three paths or cycles with the
384 minimum number of crossings (three and six, respectively)? Can we compute
385 1-planar packings with few crossings for triples of other types of trees?

s — Theorem 7 states that a quadruple consisting of three paths and a perfect
387 matching has no 1-planar packing if n < 10, while it admits one when n > 24.
388 What happens for 10 < n < 227

389 We conclude this section by pointing at the more general research direction

w0 of extending the packing problem to other families of beyond planar graphs [3].
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Appendix
A Additional Material for Section 2

Property 1 (*). A 1-planar packing of k connected n-vertex graphs Gy, ..., Gy
exists only if k£ < 3 and n > 2k. Moreover, degg, (v) < n — k for each vertex v.

Proof. If each G; is connected, then it has at least n — 1 edges and therefore
any packing of G1,Ga,..., Gy has at least k(n — 1) edges; since the complete
graph with n vertices has nn-1) edges it must be k(n — 1) < %, that is
n > 2k. On the other hand, a 1-planar graph has at most 4n — 8 edges, and
therefore it must be k(n—1) < 4n—8, which implies k < 3. Moreover, if each G;
is connected degg, (v) > 1 for each v and since Zle degg,(v) < n —1, it must
be degg, (v) <n —k. O

B Additional Material for Section 4

Fig. 8. Illustration for Lemma 3.

Lemma 3 (*). Two paths and a 5-legged caterpillar T whose backbone contains
n' =5 vertices admit a 1-planar packing, unless T is a path.

Proof. If T is a path, then P;, P, and T are all paths of length five, and by
Property 1 a 1-planar packing of Py, P, and T does not exist. Suppose therefore
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Fig. 9. Illustration for Theorem 3. Constructions for the cases when n; < 5. For each
case the values (n1,n2) are indicated; 57 means no > 5 with na odd, while 67 means
ng > 6 with ny even.

that at least one internal vertex of the backbone P of T" has some leaves attached.
In this case we use an approach similar to the one described in the proof of
Lemma 2. However, as we have just explained, a 1-planar packing of Py, Pj and
P cannot exist in this case. We start with a 1-planar packing with two pairs of
parallel edges. For each pair, one of the two parallel edges belongs to P and
the other one to Py. We will remove the parallel edges by performing the leaf
addition operations. To this aim we must guarantee that there is a cutting curve
for each pair of parallel edges. The 1-planar packing Py, P; and P and the cutting
curves for the internal vertices of P are shown in Fig. 4(c), for the case when
we have at least two vertices with leaves attached. Indeed, if only two vertices
have leaves attached, they are either consecutive along the backbone or not. In
the first case, the cutting curves of the vertices labeled a and b will remove the
parallel edges; in the second case, the cutting curves of the vertices labeled a
and ¢ will remove the parallel edges.

If only one vertex of P has leaves attached, we have only one cutting curve
and thus it is not possible to intersect both pairs of parallel edges. To handle
this case we distinguish two cases. If the only vertex with leaves attached is the
middle vertex of the backbone, then we can adapt the technique used above as
follows. Consider the 1-planar packing of P;, Pj and P shown in Fig. 8(a), where
we have two parallel edges (a,b) and two parallel edges (b, ¢). Consider now the
cutting curve y shown in Fig. 8(a). This curve intersects the two parallel edges
(a,b), thus, performing a leaf addition operation using that curve, we obtain a
1-planar packing of Py, P, and T with the two parallel edges (b, ¢) (see Fig. 8(b)).
These two parallel edges can be removed by modifying the drawing as follows (see
also Fig. 8(c) for an illustration). Since the two edges crossed by ~ are parallel
edges, the leaf addition operation used must be one of those shown in Fig. 2.
No matter which of the cases of Fig. 2 applies, one of the two edges incident
to vertex a is non-crossed and can be disconnected from a and connected to ¢
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without introducing any crossing. Call this edge e. The parallel edge (c,b) with
the same color as e can be disconnected from ¢ and connected to a only crossing
e. With this modification we obtain the desired 1-planar packing. If the only
vertex with leaves attached is the second (or fourth) vertex of the backbone, we
compute a 1-planar packing of Py, P, and T with an ad-hoc technique shown in
Figs. 8(d) and 8(e) for an even or an odd number of leaves, respectively. O

C Additional Material for Section 5

Theorem 6 (*). Three cycles with n > 20 vertices can be packed into a 1-plane
graph with at most 14 edge crossings.

Proof. Suppose first that n =2 (mod 3). In this case, we partition the set V' of
the n vertices in two groups Vi and V5 of size 7+ 3k and 7 + 3h, with h, k > 1.
For each group V; we compute a 1-planar packing G; (i = 1,2) as described in
the proof of Theorem 5. Each G; has 6 crossings and it is embedded so that each
path has both end-vertices on the external face (each of the three vertices of
the external face is the end-vertex of two distinct paths). We create a 1-planar
packing of three cycles with n vertices by connecting the two end-vertices of each
path in G; with the two end-vertices of a path in GG. This requires the addition
of six edges that can be embedded so to form two crossings (see Fig. 10(a)).
Thus, the total number of crossings in the final 1-planar packing is 14. If n =0
(mod 3) or n = 1 (mod 3), we proceed in a way similar to the previous case.
We create two 1-planar packings G; and Go with 7 4+ 3k and 7 4 3h vertices
(h,k > 1) leaving out one or two vertices. When G; and G4 are connected to
create the 1-planar packing of three cycles we also add the missing one or two
vertices as shown in Figs. 10(b) and 10(c). Also in this case when connecting Gy
and G5 we have two additional crossings and a total of 14 crossings in the final
1-planar packing. a

(a) (b) (©)

Fig. 10. Illustration for Theorem 6.
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