

1 **Packing Trees into 1-planar Graphs^{*}**

2 Felice De Luca¹, Emilio Di Giacomo², Seok-Hee Hong³,
3 Stephen Kobourov¹, William Lenhart⁴, Giuseppe Liotta²,
4 Henk Meijer⁵, Alessandra Tappini², Stephen Wismath⁶

5 ¹ Department of Computer Science, University of Arizona, US
6 felicedeluca@email.arizona.edu, kobourov@cs.arizona.edu

7 ² Dipartimento di Ingegneria, Università degli Studi di Perugia, Italy
8 emilio.digiacomo@unipg.it, giuseppe.liotta@unipg.it,
9 alessandra.tappini@studenti.unipg.it

10 ³ School of Computer Science, University of Sydney, Australia
11 seokhee.hong@sydney.edu.au

12 ⁴ Department of Computer Science, Williams College, US
13 wlenhart@williams.edu

14 ⁵ Department of Computer Science, University College Roosevelt, The Netherlands
15 h.meijer@ucr.nl

16 ⁶ Department of Computer Science, University of Lethbridge, Canada
17 wismath@uleth.ca

18 **Abstract.** We introduce and study the *1-planar packing problem*: Given
19 k graphs with n vertices G_1, \dots, G_k , find a 1-planar graph that contains
20 the given graphs as edge-disjoint spanning subgraphs. We mainly focus
21 on the case when each G_i is a tree and $k = 3$. We prove that a triple
22 consisting of three caterpillars or of two caterpillars and a path may not
23 admit a 1-planar packing, while two paths and a special type of caterpil-
24 lar always have one. We then study 1-planar packings with few crossings
25 and prove that three paths (resp. cycles) admit a 1-planar packing with
26 at most seven (resp. fourteen) crossings. We finally show that a quadru-
27 ple consisting of three paths and a perfect matching with $n \geq 24$ vertices
28 admits a 1-planar packing, while such a packing does not exist if $n \leq 10$.

29 **1 Introduction**

30 In the *graph packing problem* we are given a collection of n -vertex graphs $G_1,$
31 G_2, \dots, G_k and we are requested to find a graph G that contains the given
32 graphs as edge-disjoint spanning subgraphs. Various settings of the problem can
33 be defined depending on the type of graphs that have to be packed and on the
34 restrictions put on the packing graph G . The most general case is when G is the
35 complete graph on n vertices and there is no restriction on the input graphs.
36 Sauer and Spencer [15] prove that any two graphs with at most $n - 2$ edges can

* This work started at the Bertinoro Workshop on Graph Drawing 2019 and it is partially supported by MIUR, under Grant 20174LF3T8 “AHeAD: efficient Algorithms for HARnassing networked Data”.

37 be packed into K_n ; Woźniak and Wojda [17] give sufficient conditions for the
38 existence of a packing of three graphs.

39 The setting when G is K_n and each G_i is a tree ($i = 1, 2, \dots, k$) has been
40 considered in many papers. Hedetniemi et al. [8] show that two non-star trees
41 can always be packed into K_n . Notice that, the hypothesis that the trees are not
42 stars is necessary for the existence of the packing because each vertex must have
43 degree at least one in each tree, which is not possible if a vertex is adjacent to
44 every other vertex as it is the case for a star. Wang and Sauer [16] give sufficient
45 conditions for the existence of a packing of three trees into K_n , while Mahéo et
46 al. [11] characterize the triples of trees that admit such a packing.

47 García et al. [13] consider the *planar packing problem*, that is the case when
48 the graph G is required to be planar. They conjectured that the result of Hedet-
49 niemi et al. extends to this setting, i.e., that every pair of non-star trees can be
50 packed into a planar graph. Notice that, when G is required to be planar, two
51 is the maximum number of trees that we can hope to pack (because three trees
52 have more than $3n - 6$ edges). García et al. proved their conjecture for some
53 restricted cases, namely when one of the trees is a path and when the two trees
54 are the same. In a series of subsequent papers the conjecture has been proved
55 true for other pairs of trees. Oda and Ota [12] proved it when one tree is a cater-
56 pillar or it is a spider of diameter four. Frati et al. [5] extended the last result
57 to any spider, while Frati [4] considers the case when both trees have diameter
58 four. Geyer et al. showed that a planar packing always exists for a pair of binary
59 trees [6] and for a pair of non-star trees [7], thus finally settling the conjecture.

60 In the present paper we initiate the study of the *1-planar packing problem*,
61 i.e., the problem of packing a set of graphs into a 1-planar graph. A 1-planar
62 graph is a graph that can be drawn so that each edge has at most one crossing [9].
63 1-planar graphs have been introduced by Ringel [14] and have received increasing
64 attention in the last years in the research area called *beyond planarity* (see,
65 e.g., [3]). Since any two non-star trees admit a planar packing, a natural question
66 is whether we can pack more than two trees into a 1-planar graph. On the other
67 hand, since each 1-planar graph has at most $4n - 8$ edges [9], it is not possible
68 to pack more than three trees into a 1-planar graph. Thus, our main question
69 is whether any three trees with maximum vertex degree $n - 3$ admit a 1-planar
70 packing. The restriction to trees of degree at most $n - 3$ is necessary because a
71 vertex of degree larger than $n - 3$ in one tree cannot have degree at least one in
72 the other two trees. The results of this paper can be listed as follows.

73 – We show that there are triples of structurally very simple trees that cannot
74 be packed into a 1-planar graph (Section 3). These triples consist of three
75 caterpillars and of two caterpillars and a path.
76 – Motivated by the above results, we study triples consisting of two paths and
77 a caterpillar (Section 4). We characterize the triples consisting of two paths
78 and a 5-legged caterpillar (a caterpillar where each vertex of the spine has
79 no leaves attached or it has at least five) that admit such a packing. We also
80 characterize the triples that admit a 1-planar packing and that consist of
81 two paths and a caterpillar whose spine has exactly two vertices.

- The packing technique of the bullet above is constructive and it gives rise to 1-plane graphs (i.e., 1-planar embedded graphs) with a linear number of crossings. This naturally raises the question about the number of edge crossings required by a 1-planar packing. We show that any three paths with at least six vertices can be packed into a 1-plane graph with seven edge crossings in total (Section 5). We also extend this technique to three cycles obtaining 1-plane graphs with fourteen crossings in total.
- We finally consider the 1-planar packing problem for quadruples of acyclic graphs (Section 6). Since, as already observed, four paths cannot be packed into a 1-planar graph, we consider three paths and a perfect matching. We show that when $n \geq 24$ such a quadruple admits a 1-planar packing and that when $n \leq 10$ a 1-planar packing does not exist.

Preliminary definitions are given in Section 2 and open problems are listed in Section 7. For space reasons, some proofs are sketched or moved to the appendix and the corresponding statements are marked with an asterisk.

2 Preliminaries

Given a graph G and a vertex v of G , we denote by $\deg_G(v)$ the vertex degree of v in G . Let G_1, G_2, \dots, G_k be k graphs with n vertices; a *packing* of G_1, G_2, \dots, G_k is an n -vertex graph G that has G_1, G_2, \dots, G_k as edge-disjoint spanning subgraphs. We consider the case when G is a 1-planar graph; in this case we say that G is a *1-planar packing* of G_1, G_2, \dots, G_k . If G_1, G_2, \dots, G_k admit a (1-planar) packing G , we also say that G_1, G_2, \dots, G_k *can be packed into* G . We will mainly concentrate on the case where each G_i is a tree ($1 \leq i \leq k$). In this case (and more generally when each G_i is connected), we have restrictions on the values of k and n for which a packing exists.

Property 1 ().* A 1-planar packing of k connected n -vertex graphs G_1, \dots, G_k exists only if $k \leq 3$ and $n \geq 2k$. Moreover, $\deg_{G_i}(v) \leq n - k$ for each vertex v .

A *caterpillar* T is a tree such that removing all the leaves results in a path called the *spine*. A *backbone* of T is a path $v_0, v_1, v_2, \dots, v_k, v_{k+1}$ of T where v_1, v_2, \dots, v_k is the spine of T and v_0 and v_{k+1} are two leaves adjacent in T to v_1 and v_k , respectively. T is *h-legged* if every internal vertex of its backbone has degree either 2 or $h + 2$ in T .

3 Trees That Do Not Have a 1-planar Packing

In this section we show that there exist triples of trees that do not admit a 1-planar packing.

Theorem 1. *For every $n \geq 10$, there exists a triple of caterpillars that does not admit a 1-planar packing.*

119 *Proof.* The triple consists of three isomorphic caterpillars T_1, T_2, T_3 with $n \geq 10$
120 vertices. Each T_i has a backbone of length 5 and $n - 5$ leaves all adjacent to the
121 middle vertex of the spine, which we call the *center* of T_i . First, notice that each
122 T_i satisfies Property 1, i.e., $\deg_{T_i}(v) \leq n - 3$. Namely, the vertex with largest
123 degree in T_i is its center, which has degree $n - 3$. Let G be any packing of T_1, T_2 ,
124 and T_3 and let v_1, v_2 , and v_3 be the three vertices of G where the three centers
125 of T_1, T_2, T_3 , respectively, are mapped. The three vertices v_1, v_2 , and v_3 must
126 be distinct because otherwise they would have degree larger than $n - 1$ in G ,
127 which is impossible. For each v_i we have $\deg_{T_i}(v_i) = n - 3$ and $\deg_{T_j}(v_i) \geq 1$, for
128 $j \neq i$. This implies that $\deg_G(v_i) = n - 1$ for each v_i . In other words, each v_i is
129 adjacent to all the other vertices of G . Thus, G contains $K_{3,n-3}$ as a subgraph.
130 Since $n \geq 10$ and $K_{3,7}$ is not 1-planar [2], G is not 1-planar. \square

131 Motivated by Theorem 1, we consider triples where one of the caterpillars is
132 a path. Also in this case there exist triples that do not have a 1-planar packing.

133 **Theorem 2.** *There exists a triple consisting of a path and two caterpillars with
134 $n = 7$ vertices that does not admit a 1-planar packing.*

135 *Proof.* Let T_i ($i = 1, 2$) be a caterpillar with a backbone of length four whose
136 internal vertices have degree four and three in T_i , respectively. Let G be a packing
137 of T_1, T_2 and a path P of 7 vertices. Let v_1, v_2, v_3 , and v_4 be the four vertices of
138 G where the internal vertices of the backbones of T_1 and T_2 are mapped to. We
139 first observe that v_1, v_2, v_3 , and v_4 must be distinct. Suppose, as a contradiction,
140 that two of them coincide, say v_1 and v_2 ; then $\deg_{T_1}(v_1) + \deg_{T_2}(v_1) \geq 6$. On the
141 other hand $\deg_P(v_1) \geq 1$, and therefore $\deg_G(v_1) \geq 7$, which is impossible (since
142 G has only 7 vertices). Denote by $G_{1,2}$ the subgraph of G containing only the
143 edges of T_1 and T_2 . Two vertices among v_1, v_2, v_3 , and v_4 , say v_1 and v_2 , have
144 degree 5 in $G_{1,2}$, while the other two have degree 4 in $G_{1,2}$. Consider now the
145 edges of P . Since the maximum vertex degree in a graph of seven vertices is six,
146 v_1 and v_2 must be the end-vertices of P , while v_3 and v_4 are internal vertices.
147 This means that they all have degree 6 in G . The vertices distinct from v_1, v_2, v_3 ,
148 and v_4 have degree 2 in $G_{1,2}$ and degree 4 in G . Thus in G there are four vertices
149 of degree 6 and three vertices of degree 4. The only graph of seven vertices with
150 this degree distribution is $K_7 - K_3$, which is known to be non-1-planar [10]. \square

151 4 1-planar Packings of Two Paths and a Caterpillar

152 In this section we prove that a triple consisting of two paths P_1 and P_2 and a
153 5-legged caterpillar T with at least six vertices admits a 1-planar packing. Let
154 P be the backbone of T and let P'_1 and P'_2 be two paths with the same length
155 as P . We first show how to construct a 1-planar packing of P, P'_1 and P'_2 . We
156 then modify the computed packing to include the leaves of the caterpillar; this
157 requires to transform some edges of P'_1 and P'_2 to sub-paths that pass through
158 the added leaves. The resulting packing is a 1-planar packing of P_1, P_2 and T .

159 Let Γ be a 1-planar drawing, possibly with parallel edges, and let e be an
160 edge of Γ . If e has one crossing c , then each of the two parts in which e is divided

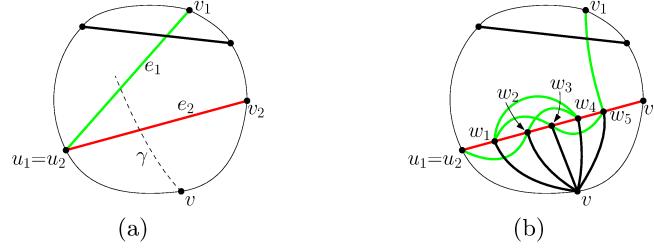


Fig. 1. 5-leaf addition operation.

by c are called *sub-edges* of e ; if e has no crossing, e itself is called a *sub-edge* of e . Let v be a vertex of Γ ; a *cutting curve* of v is a Jordan arc γ such that: (i) γ has v as an end-point; (ii) γ intersects two edges $e_1 = (u_1, v_1)$ and $e_2 = (u_2, v_2)$ (possibly $u_1 = u_2$ and/or $v_1 = v_2$); (iii) γ does not intersect any other edge of Γ ; (iv) e_1 and e_2 do not cross each other; (iv) if e_1 and e_2 are parallel edges (i.e. $u_1 = u_2$ and $v_1 = v_2$), they have no crossings. The *stub* of e_i with respect to γ is the sub-edge of e_i intersected by γ ($i = 1, 2$). Given a cutting curve γ of a vertex v , and an integer $k \geq 5$, a k -leaf addition operation adds k vertices w_1, w_2, \dots, w_k and the edges $(v, w_1), (v, w_2), \dots, (v, w_k)$ to Γ in such a way that: (i) the added vertices subdivide the stubs of both e_1 and e_2 with respect to γ ; (ii) the subgraph induced by $u_1, u_2, v_1, v_2, w_1, w_2, \dots, w_k$ has no multiple edges (see Fig. 1 for an example). In other words, a leaf addition adds a set of vertices adjacent to v and replaces the stubs of e_1 and e_2 with two edge-disjoint paths. This operation will be used to modify the 1-planar packing of P , P'_1 and P'_2 to include the leaves of the caterpillar. When the value of k is not relevant, a k -leaf addition will be simply called a *leaf addition*.

Lemma 1. Let Γ be a 1-planar drawing possibly with parallel edges, let v be a vertex of Γ and let γ be a cutting curve of v . It is possible to execute a k -leaf addition for every $k \geq 5$ in such a way that the resulting drawing is still 1-planar.

Proof. Denote by e_1 and e_2 the two edges crossed by γ . If one of them or both are crossed in Γ replace their crossing points with dummy vertices. Let e'_i be the stub of e_i with respect to γ (if e_i is not crossed in Γ , e'_i coincides with e_i). After the replacement of the crossings with the dummy vertices the two stubs e'_1 and e'_2 have no crossing. Since γ does not cross any edge distinct from e_1 and e_2 , the drawing Γ' obtained by removing e'_1 and e'_2 has a face f whose boundary contains the vertex v and all the end-vertices of e'_1 and of e'_2 (these vertices are at least two and at most four). The idea now is to insert into the face f , without creating any crossing, a gadget that realizes the k -leaf addition for the desired value of $k \geq 5$. A gadget has k vertices that will be added to Γ , a vertex that will be made coincident with v , and four degree-1 vertices a, b, c , and d that will be made coincident with the end-vertices of e'_1 and e'_2 . The four edges incident to a, b, c , and d , will be called *dangling edges*. In order to guarantee that the

193 leaf addition is valid and that the drawing Γ'' obtained with the insertion of
 194 the gadget inside f is 1-planar, we have to pay attention to two aspects: (i)
 195 if a dangling edge is crossed in the gadget, then its degree-1 vertex cannot be
 196 made coincident with a dummy vertex (otherwise when we remove the dummy
 197 vertex we obtain an edge that is crossed twice); (ii) if two degree-1 vertices of
 198 the gadget have to be made coincident (because two end-vertices of e'_1 and e'_2
 199 coincide), then the corresponding dangling edges have no vertex in common in
 200 the gadget (otherwise the leaf addition is not valid because it creates multiple
 201 edges). We use different gadgets depending on whether e_1 and e_2 are parallel
 202 edges or not. If they are parallel edges, we use the gadgets of Figs. 2(a)– 2(c)
 203 and 2(g)– 2(h). Notice that in this case, e_1 and e_2 are not crossed by definition of
 204 cutting curve. It follows that f has no dummy vertex and (i) is not a problem. On
 205 the other hand, both end-vertices of e_1 and e_2 coincide, thus we must guarantee
 206 that the dangling edges whose degree-1 vertex will coincide do not share any
 207 vertex, which is the case of the gadgets used in this case. If e_1 and e_2 are non-
 208 parallel, we use the gadgets of Figs. 2(d)– 2(f) and 2(g)– 2(h). All these gadgets
 209 have only one dangling edge that is crossed (labeled d in the figure), also, vertex
 210 d can be made coincident with vertex c without creating multiple edges. If e_1
 211 and e_2 are non-parallel, at most two end-vertices of e'_1 and e'_2 are dummy; they
 212 cannot belong to the same stub, and they cannot coincide (because e_1 and e_2 do
 213 not cross each other). Thus we can make d coincident with a non-dummy vertex
 214 and we can make c and d coincident if needed. \square

215 We are ready to describe our construction of a 1-planar packing of P_1 , P_2 ,
 216 and T . We use different techniques for different lengths of the backbone of T .

217 **Lemma 2.** *Two paths and a 5-legged caterpillar whose backbone contains $n' \geq 6$ vertices admit a 1-planar packing.*

218 *Proof.* We start with the construction of a 1-planar packing of the three paths
 219 P'_1 , P'_2 and P . Let n' be the number of vertices of P'_1 , P'_2 and P , assume first that
 220 $n' \geq 8$ and $n' \equiv 0 \pmod{4}$. A 1-planar packing of P'_1 , P'_2 and P for this case is
 221 shown in Fig. 3(a) for $n' = 16$ and it is easy to see that it can be extended to
 222 any n' multiple of four. Assume that the backbone P of T is the path shown in
 223 black in Fig. 3(a). To add the leaves of T to the construction we define a cutting
 224 curve for each vertex v that has some leaves attached; we then execute a leaf
 225 addition operation for each such vertex. By Lemma 1 it is possible to execute
 226 each leaf addition so to guarantee the 1-planarity of the resulting drawing. The
 227 cutting curve for each internal vertex of P is shown in Fig. 3(a)

228 Suppose now that $n' \geq 8$ and $n' \not\equiv 0 \pmod{4}$. In this case we first construct
 229 a 1-planar packing of three paths with $n'' = 4k$ vertices (with $k = \lfloor \frac{n'}{4} \rfloor$) with
 230 the same construction as in the previous case and then we add one, two or three
 231 vertices as shown in Figs. 3(b), 3(c), and 3(d), where we also show the cutting
 232 curves for each internal vertex of P . If n' is equal to 6 or 7, we use the same
 233 approach, the only difference is in the construction of the 1-planar packing of
 234 P'_1 , P'_2 and P . The construction for such a packing and the cutting curves for
 235 the internal vertices of P are shown in Figs. 4(a) and 4(b). \square

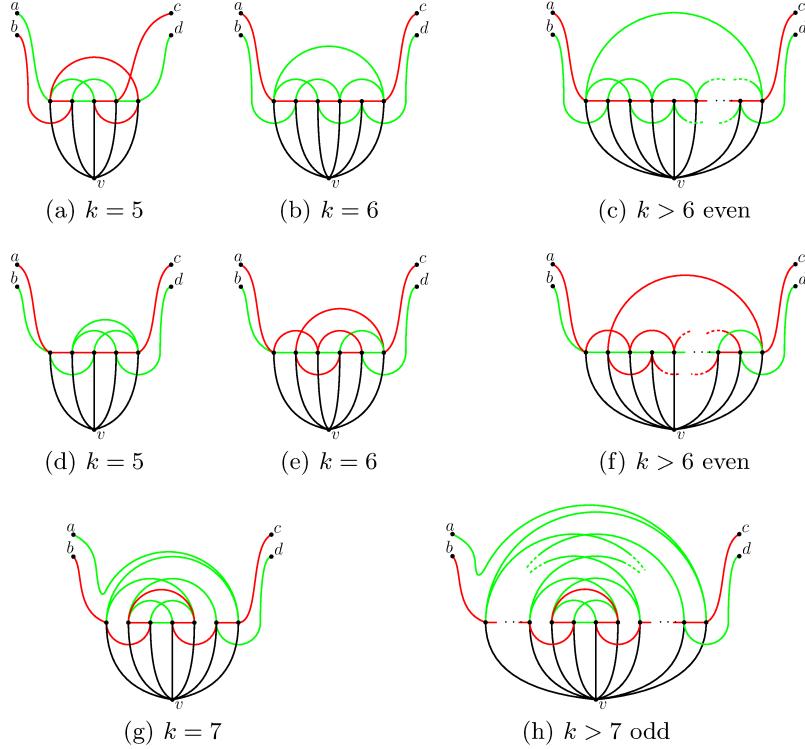


Fig. 2. Gadgets for the proof of Lemma 1. (a)–(c) are used for parallel edges; (d)–(f) are used for non-parallel edges; (g)–(h) are used for parallel and non-parallel edges.

237 **Lemma 3 (*).** *Two paths and a 5-legged caterpillar T whose backbone contains
 238 $n' = 5$ vertices admit a 1-planar packing, unless T is a path.*

239 *Proof.* If T is a path, then P_1 , P_2 and T are all paths of length five, and by
 240 Property 1 a 1-planar packing of P_1 , P_2 and T does not exist. Suppose therefore
 241 that at least one internal vertex of the backbone P of T has some leaves attached.
 242 In this case we use an approach similar to the one described in the proof of
 243 Lemma 2. However, as we have just explained, a 1-planar packing of P'_1 , P'_2 and
 244 P cannot exist in this case. We start with a 1-planar packing with two pairs of
 245 parallel edges. For each pair, one of the two parallel edges belongs to P'_1 and
 246 the other one to P'_2 . We will remove the parallel edges by performing the leaf
 247 addition operations. To this aim we must guarantee that there is a cutting curve
 248 for each pair of parallel edges. The 1-planar packing P'_1 , P'_2 and P and the cutting
 249 curves for the internal vertices of P are shown in Fig. 4(c), for the case when
 250 we have at least two vertices with leaves attached. Indeed, if only two vertices
 251 have leaves attached, they are either consecutive along the backbone or not. In
 252 the first case, the cutting curves of the vertices labeled a and b will remove the

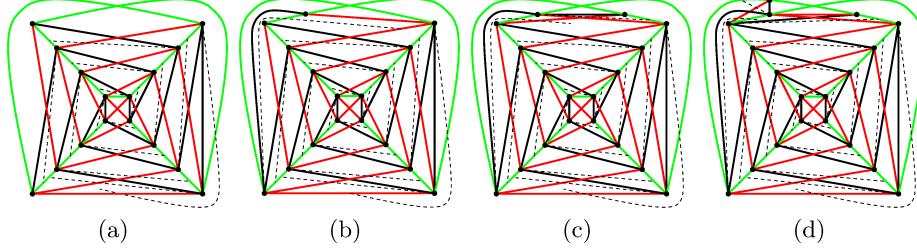


Fig. 3. 1-planar packings of three paths with n' vertices, with a cutting curve for each internal vertex of the black path. (a) $n' = 16$; (b) $n' = 17$; (c) $n' = 18$; (d) $n' = 19$.

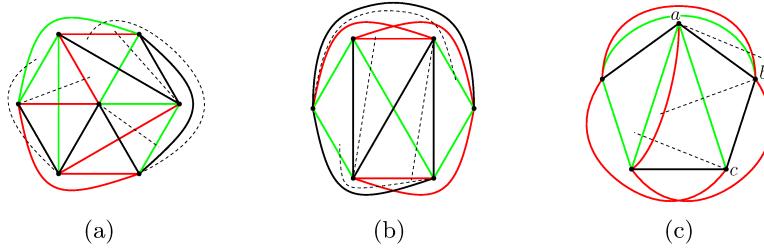


Fig. 4. 1-planar packings of three paths with n' vertices; a cutting curve for each internal vertex of the black path is also shown. (a) $n' = 7$. (b) $n' = 6$. (c) $n' = 5$.

253 parallel edges; in the second case, the cutting curves of the vertices labeled a
254 and c will remove the parallel edges.

255 If only one vertex of P has leaves attached, we have only one cutting curve
256 and thus it is not possible to intersect both pairs of parallel edges. To handle
257 this case we use an ad-hoc technique which is described in Appendix B. \square

258 The next theorem gives a complete characterization for the case when the
259 backbone of T has length four.

260 **Theorem 3.** *Two paths and a caterpillar T whose backbone contains $n' = 4$
261 vertices admit a 1-planar packing if and only if $n \geq 6$ and $\deg_T(v) \leq n - 3$ for
262 every vertex v .*

263 *Proof.* Since the length of the backbone is four, we have exactly two non-leaf
264 vertices v_1 and v_2 . Denote by n_i the number of leaves adjacent to v_i ($i = 1, 2$)
265 and assume $n_1 \leq n_2$. We distinguish different cases depending on the values
266 of n_1 and n_2 . If $n_1 = 1$, then we have $\deg_T(v_2) = n - 1$ and by Property 1 a
267 1-planar packing of P_1 , P_2 and T does not exist. Assume then that $n_1 \geq 2$.

268 We start with the case when $n_1 \geq 5$. In this case we construct a 1-planar
269 packing according to different techniques depending on the parity of n_1 and n_2 .
270 Figs. 5(a), 5(b), and 5(c) show the construction for the cases when n_1 and n_2
271 are both even, when they are both odd, and when they have different parity,

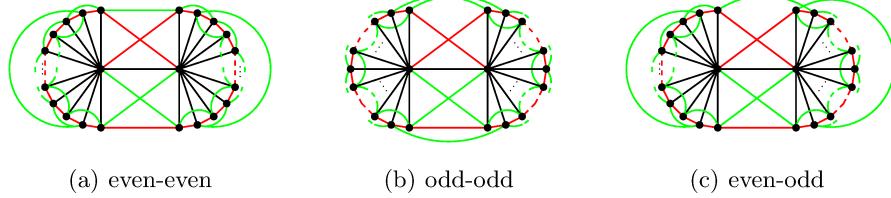


Fig. 5. Illustration for Theorem 3.

272 respectively. If $n_1 < 5$ we have different ad-hoc constructions that depend on
273 the values of n_1 and n_2 . All cases are shown in Fig. 9 in Appendix B. \square

274 Lemmas 2 and 3, together with Theorem 3 imply the next theorem.

275 **Theorem 4.** *Two paths and a 5-legged caterpillar T with n vertices admit a
276 1-planar packing if and only if $n \geq 6$ and $\deg_T(v) \leq n - 3$ for every vertex v .*

277 5 1-planar Packings with Constant Edge Crossings

278 The technique described in the previous section constructs 1-planar drawings
279 that have a linear number of crossings. A natural question is whether it is possible
280 to compute a 1-planar packing with a constant number of crossings. In this
281 section we prove that seven (resp. fourteen) crossings suffice for three paths
282 (resp. cycles). It is worth remarking that a 1-planar packing of three paths has
283 at least three crossings (because it has $3n - 3$ edges), while a 1-planar packing
284 of three cycles has at least six crossings (because it has $3n$ edges).

285 **Theorem 5.** *Three paths with $n \geq 6$ vertices can be packed into a 1-plane graph
286 with at most 7 edge crossings.*

287 *Proof.* We prove the statement by showing how to construct a 1-planar drawing
288 with at most 7 crossings of a graph that is the union of three paths. Suppose
289 first that $n = 7 + 3k$ for $k \in \mathbb{N}$. If $k = 0$, we draw the union of the three paths
290 with 7 vertices as shown in Fig. 4(b). The drawing is 1-planar and has three
291 crossings in total. Suppose now that $k > 0$. We consider three rays r_0, r_1, r_2 with
292 a common origin pairwise forming a 120° angle and we place k vertices on each
293 line. We denote by $u_{i,1}, u_{i,2}, \dots, u_{i,k}$ the vertices of line r_i ($i = 0, 1, 2$) in the order
294 they appear along r_i starting from the origin (see Fig. 6(a)). In the following,
295 when working with the indices of the rays r_i , indices will be taken modulo 3.
296 To draw path P_i ($i = 0, 1, 2$) we draw the edges $(u_{i,1}, u_{i+1,1})$, $(u_{i,j}, u_{i+1,j-1})$,
297 and $(u_{i,j}, u_{i+1,j})$ (for $j = 2, \dots, k$) as straight-line segments. Notice that, these
298 edges form a zig-zagging path between the vertices of rays r_i and r_{i+1} , so P_i
299 passes through all vertices of r_i and r_{i+1} but not through the vertices of r_{i+2} .
300 To include these missing vertices in P_i we draw as edges of P_i the straight-line

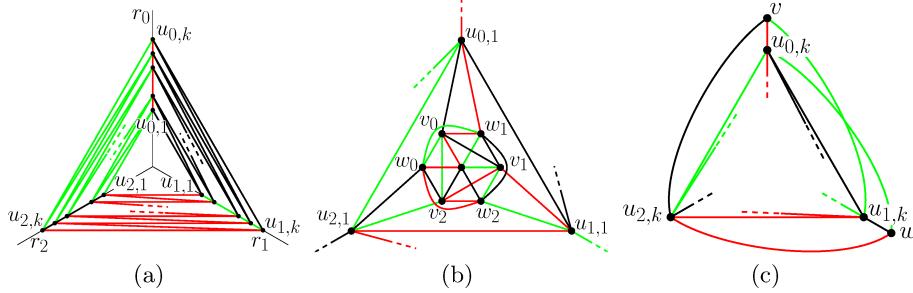


Fig. 6. Illustration for Theorem 5.

301 edges $(u_{i+2,j}, u_{i+2,j+1})$ (for $j = 1, 2, \dots, k-1$). In this way we draw two disjoint
 302 sub-paths for each path P_i , namely a zig-zagging path between r_i and r_{i+1} and
 303 a straight-line path along r_{i+2} . Moreover, we only draw $3k$ edges and therefore
 304 there are still 7 missing vertices (and 8 missing edges) in each path. To add the
 305 missing vertices and edges and to connect the two sub-paths of each path, we
 306 construct a drawing Γ_0 of three paths P'_0, P'_1, P'_2 with seven vertices as in the
 307 case when $k=0$. Denote with v_i and w_i the end-vertices of P'_i in Γ_0 . We place
 308 Γ_0 inside the triangle $u_{0,1}, u_{1,1}, u_{2,1}$ and add the edges $(v_i, u_{i,1})$ and $(w_i, u_{i+2,1})$.
 309 It is easy to see (see also Fig. 6(b)) that these six edges can be added so that
 310 the drawing is still 1-planar and so that the total number of crossings is 6. This
 311 concludes the proof for $n = 7 + 3k$. If $n = 7 + 3k + 1$ we start with the same
 312 construction as in the previous case and then add an extra vertex v outside the
 313 triangle $u_{1,k}, u_{2,k}, u_{3,k}$. Notice that each of these three vertices is the end-vertex
 314 of two of the three paths with $7 + 3k$ vertices. Thus we can extend each path
 315 to include v by connecting it to each of the three vertices $u_{1,k}, u_{2,k}, u_{3,k}$ in a
 316 planar way (see Fig. 6(c) ignoring vertex w). If $n = 7 + 3k + 2$, then we add
 317 two extra vertices outside the triangle $u_{0,k}, u_{1,k}, u_{2,k}$ and connect both of them
 318 to the three vertices $u_{0,k}, u_{1,k}, u_{2,k}$ (recall that each of these three vertices is
 319 the end-vertex of two distinct paths with $7 + 3k$ vertices). In this case however
 320 the addition of the two extra vertices causes the creation of one crossing. Thus
 321 the final drawing is 1-planar and the total number of crossings is at most 7 (see
 322 Fig. 6(c)). This concludes the proof for $n \geq 7$. If $n = 6$ we construct a 1-planar
 323 packing of three paths with three crossings in total as shown in Fig. 4(a). \square

324 The construction of Theorem 5 can be extended to three cycles.

325 **Theorem 6 (*).** *Three cycles with $n \geq 20$ vertices can be packed into a 1-plane
 326 graph with at most 14 edge crossings.*

327 6 From Triples to Quadruples

328 In this section we extend the study of 1-planar packings from triples of graphs to
 329 quadruples of graphs. By Property 1 a 1-planar packing of four graphs does not

330 exist if all graphs are connected, because the number of edges of the four graphs
 331 is higher than the number of edges allowed in a 1-planar graph. We consider
 332 therefore a quadruple consisting of three paths and a perfect matching. Notice
 333 that, in this case the number of vertices n has to be even.

334 **Theorem 7.** *Three paths and a perfect matching with $n \geq 24$ vertices admit a
 335 1-planar packing. If $n \leq 10$, the quadruple does not admit a 1-planar packing.*

336 *Proof.* Three paths and a perfect matching have a total of $3(n-1) + \frac{n}{2} = \frac{7n}{2} - 3$
 337 edges. Since a 1-planar graph has at most $4n - 8$ edges, a 1-planar packing of
 338 three paths and a perfect matching exists only if $\frac{7n}{2} - 3 \leq 4n - 8$, i.e., if $n \geq 10$.
 339 If $n = 10$, we have $\frac{7n}{2} - 3 = 32$ and $4n - 8 = 32$, which means that any 1-
 340 planar packing of three paths and a perfect matching with $n = 10$ vertices is an
 341 optimal 1-planar graph. It is known that every optimal 1-planar graph has at
 342 least eight vertices of degree exactly six [1]. On the other hand, in any 1-planar
 343 packing of three paths and a perfect matching all vertices, except the at most six
 344 end-vertices of the three paths, have degree seven, which implies that a 1-planar
 345 packing of three paths and a perfect matching does not exist.

346 We now prove that a 1-planar packing exists if $n \geq 24$. Based on the fact
 347 that in any 1-planar packing of three paths and a perfect matching all vertices
 348 have degree seven except at most six, we construct the desired 1-planar packing
 349 starting from a 1-planar graph G such that all its vertices have degree at least
 350 seven (except possibly at most six); we then partition the edges of G into five
 351 sets; three of these sets form a spanning path each, the fourth one forms a perfect
 352 matching, and the fifth one contains edges that will not be part of the 1-planar
 353 packing. For every $n = 8k$ and $k \geq 3$ it is possible to construct a 1-planar
 354 graph with n vertices each having degree at least seven as follows. We start with
 355 $k-1$ cycles C_1, C_2, \dots, C_{k-1} . Each cycle C_i ($1 \leq i \leq k-1$) has eight vertices
 356 $v_{i,j}$ with $0 \leq j \leq 7$. Cycle C_i , for $1 \leq i \leq k-2$, is embedded inside cycle
 357 C_{i+1} and is connected to it with edges $(v_{i,j}, v_{i+1,j})$ for each $0 \leq j \leq 7$. We
 358 have a cycle with four vertices u_0, u_1, u_2, u_3 embedded inside C_1 and connected
 359 to it with edges $(u_j, v_{1,2j})$ and $(u_j, v_{1,2j+1})$. Finally, we have a cycle with four
 360 vertices w_0, w_1, w_2, w_3 embedded outside C_{k-1} and connected to it with edges
 361 $(w_j, v_{k-1,2j})$ and $(w_j, v_{k-1,2j+1})$. The graph G' described so far has n vertices, is
 362 planar, all its vertices have degree four, and each vertex is incident to at most one
 363 face of size three (see Fig. 7(a)). By adding two crossing edges inside each face
 364 of size four, we obtain a 1-planar graph G with n vertices where each vertex has
 365 degree at least seven. The graph G and the partition of the edges of G in five sets
 366 defining three paths and a matching is shown in Fig. 7(b). If n is not a multiple
 367 of 8, then it will be $n = 8k + r$ with $0 < r < 8$ and r even (because n is even).
 368 In this case we construct G' as explained above and then we extend the paths
 369 $u_0, v_{1,1}, \dots, v_{k-1,1}$ and $u_1, v_{1,2}, \dots, v_{k-1,2}$ to the left with 1, 2 or 3 vertices each;
 370 we then suitably add some new edges and remove some of the edges of G' . The
 371 graph G is then obtained, as in the previous case, by adding a pair of crossing
 372 edges inside each face of size four. The resulting graph G and a partition of its
 373 edges in five sets defining three paths and a matching is shown in Figs. 7(c),
 374 7(d), and 7(e), for the cases when $r = 2$, $r = 4$, and $r = 6$, respectively. \square

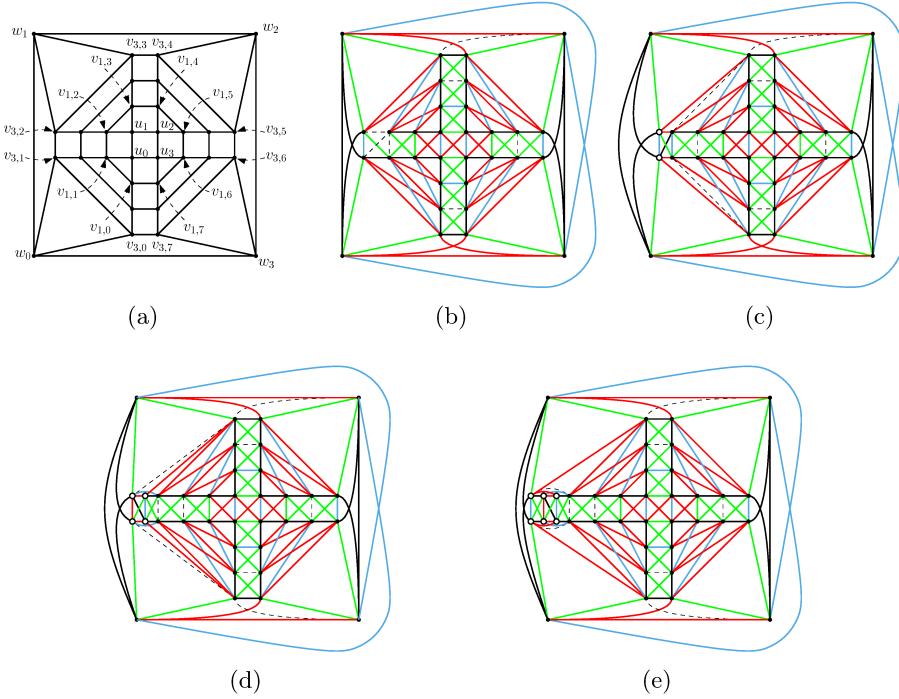


Fig. 7. Illustration for Theorem 7.

375 7 Open Problems

376 In this paper we initiated the study of the 1-planar packing problem. We find
377 that this is a fertile and still largely unexplored research subject. We conclude
378 the paper with a list of open problems.

- 379 – Theorem 2 holds only for $n = 7$. Do two caterpillars (or more general trees)
380 and a path admit a 1-planar packing if they have more than 7 vertices?
- 381 – Can Theorem 4 be extended to general caterpillars? What about two paths
382 and a tree more complex than a caterpillar, for example a binary tree?
- 383 – Is it possible to compute a 1-planar packing of three paths or cycles with the
384 minimum number of crossings (three and six, respectively)? Can we compute
385 1-planar packings with few crossings for triples of other types of trees?
- 386 – Theorem 7 states that a quadruple consisting of three paths and a perfect
387 matching has no 1-planar packing if $n \leq 10$, while it admits one when $n \geq 24$.
388 What happens for $10 < n \leq 22$?

389 We conclude this section by pointing at the more general research direction
 390 of extending the packing problem to other families of beyond planar graphs [3].

391 **References**

- 392 1. Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. *Algorithmica* **80**(1), 1–28 (2018). <https://doi.org/10.1007/s00453-016-0226-8>
- 393 2. Czap, J., Hudák, D.: 1-planarity of complete multipartite graphs. *Discrete Applied Mathematics* **160**(4), 505 – 512 (2012). <https://doi.org/10.1016/j.dam.2011.11.014>
- 394 3. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond planarity. *ACM Comput. Surv.* **52**(1), 4:1–4:37 (2019). <https://doi.org/10.1145/3301281>
- 395 4. Frati, F.: Planar packing of diameter-four trees. In: Proceedings of the 21st Annual Canadian Conference on Computational Geometry. pp. 95–98 (2009), http://cccg.ca/proceedings/2009/cccg09_25.pdf
- 396 5. Frati, F., Geyer, M., Kaufmann, M.: Planar packing of trees and spider trees. *Inf. Process. Lett.* **109**(6), 301–307 (2009). <https://doi.org/10.1016/j.ipl.2008.11.002>
- 397 6. Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D.: Planar packing of binary trees. In: WADS 2013. LNCS, vol. 8037, pp. 353–364. Springer (2013). https://doi.org/10.1007/978-3-642-40104-6_31
- 398 7. Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D.: The planar tree packing theorem. *JoCG* **8**(2), 109–177 (2017). <https://doi.org/10.20382/jocg.v8i2a6>
- 399 8. Hedetniemi, S., Hedetniemi, S., Slater, P.: A note on packing two trees into k_n . *Ars Combinatoria* **11** (01 1981)
- 400 9. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. *Computer Science Review* **25**, 49 – 67 (2017). <https://doi.org/10.1016/j.cosrev.2017.06.002>
- 401 10. Korzhik, V.P.: Minimal non-1-planar graphs. *Discrete Mathematics* **308**(7), 1319 – 1327 (2008). <https://doi.org/10.1016/j.disc.2007.04.009>
- 402 11. Mahéo, M., Saclé, J., Wozniak, M.: Edge-disjoint placement of three trees. *Eur. J. Comb.* **17**(6), 543–563 (1996). <https://doi.org/10.1006/eujc.1996.0047>
- 403 12. Oda, Y., Ota, K.: Tight planar packings of two trees. In: 22nd European Workshop on Computational Geometry
- 404 13. Olaverri, A.G., Hernando, M.C., Hurtado, F., Noy, M., Tejel, J.: Packing trees into planar graphs. *Journal of Graph Theory* **40**(3), 172–181 (2002). <https://doi.org/10.1002/jgt.10042>
- 405 14. Ringel, G.: Ein sechsfarbenproblem auf der kugel. *Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg* **29**(1-2), 107–117 (1965). <https://doi.org/10.1007/BF02996313>
- 406 15. Sauer, N., Spencer, J.: Edge disjoint placement of graphs. *J. Comb. Theory, Ser. B* **25**(3), 295–302 (1978). [https://doi.org/10.1016/0095-8956\(78\)90005-9](https://doi.org/10.1016/0095-8956(78)90005-9)
- 407 16. Wang, H., Sauer, N.: Packing three copies of a tree into a complete graph. *European Journal of Combinatorics* **14**(2), 137 – 142 (1993). <https://doi.org/10.1006/eujc.1993.1018>
- 408 17. Wozniak, M., Wojda, A.P.: Triple placement of graphs. *Graphs and Combinatorics* **9**(1), 85–91 (1993). <https://doi.org/10.1007/BF01195330>

434 **Appendix**

435 **A Additional Material for Section 2**

436 *Property 1 (*).* A 1-planar packing of k connected n -vertex graphs G_1, \dots, G_k
437 exists only if $k \leq 3$ and $n \geq 2k$. Moreover, $\deg_{G_i}(v) \leq n - k$ for each vertex v .

438 *Proof.* If each G_i is connected, then it has at least $n - 1$ edges and therefore
439 any packing of G_1, G_2, \dots, G_k has at least $k(n - 1)$ edges; since the complete
440 graph with n vertices has $\frac{n(n-1)}{2}$ edges it must be $k(n - 1) \leq \frac{n(n-1)}{2}$, that is
441 $n \geq 2k$. On the other hand, a 1-planar graph has at most $4n - 8$ edges, and
442 therefore it must be $k(n - 1) \leq 4n - 8$, which implies $k \leq 3$. Moreover, if each G_i
443 is connected $\deg_{G_i}(v) \geq 1$ for each v and since $\sum_{i=1}^k \deg_{G_i}(v) \leq n - 1$, it must
444 be $\deg_{G_i}(v) \leq n - k$. \square

445 **B Additional Material for Section 4**

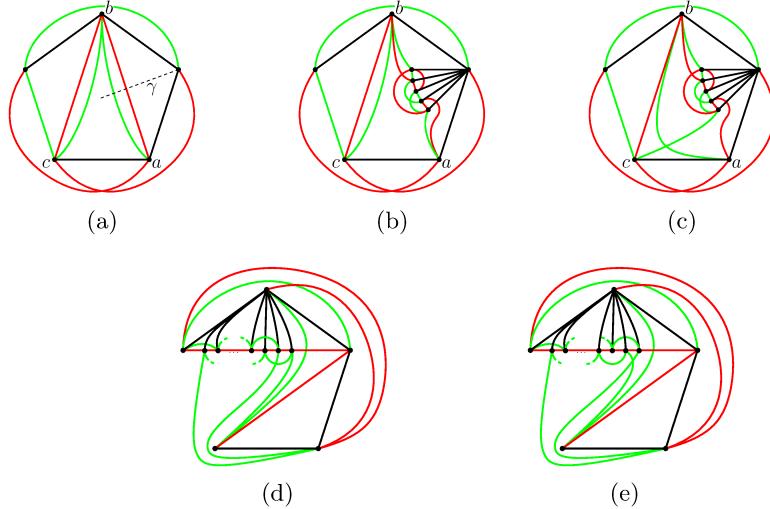


Fig. 8. Illustration for Lemma 3.

446 **Lemma 3 (*).** Two paths and a 5-legged caterpillar T whose backbone contains
447 $n' = 5$ vertices admit a 1-planar packing, unless T is a path.

448 *Proof.* If T is a path, then P_1 , P_2 and T are all paths of length five, and by
449 Property 1 a 1-planar packing of P_1 , P_2 and T does not exist. Suppose therefore

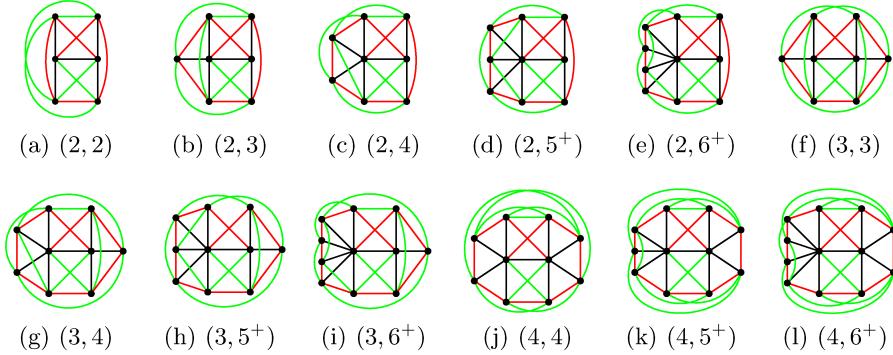


Fig. 9. Illustration for Theorem 3. Constructions for the cases when $n_1 < 5$. For each case the values (n_1, n_2) are indicated; 5^+ means $n_2 \geq 5$ with n_2 odd, while 6^+ means $n_2 \geq 6$ with n_2 even.

450 that at least one internal vertex of the backbone P of T has some leaves attached.
 451 In this case we use an approach similar to the one described in the proof of
 452 Lemma 2. However, as we have just explained, a 1-planar packing of P'_1 , P'_2 and
 453 P cannot exist in this case. We start with a 1-planar packing with two pairs of
 454 parallel edges. For each pair, one of the two parallel edges belongs to P'_1 and
 455 the other one to P'_2 . We will remove the parallel edges by performing the leaf
 456 addition operations. To this aim we must guarantee that there is a cutting curve
 457 for each pair of parallel edges. The 1-planar packing P'_1 , P'_2 and P and the cutting
 458 curves for the internal vertices of P are shown in Fig. 4(c), for the case when
 459 we have at least two vertices with leaves attached. Indeed, if only two vertices
 460 have leaves attached, they are either consecutive along the backbone or not. In
 461 the first case, the cutting curves of the vertices labeled a and b will remove the
 462 parallel edges; in the second case, the cutting curves of the vertices labeled a
 463 and c will remove the parallel edges.

464 If only one vertex of P has leaves attached, we have only one cutting curve
 465 and thus it is not possible to intersect both pairs of parallel edges. To handle
 466 this case we distinguish two cases. If the only vertex with leaves attached is the
 467 middle vertex of the backbone, then we can adapt the technique used above as
 468 follows. Consider the 1-planar packing of P'_1 , P'_2 and P shown in Fig. 8(a), where
 469 we have two parallel edges (a, b) and two parallel edges (b, c) . Consider now the
 470 cutting curve γ shown in Fig. 8(a). This curve intersects the two parallel edges
 471 (a, b) , thus, performing a leaf addition operation using that curve, we obtain a
 472 1-planar packing of P_1 , P_2 and T with the two parallel edges (b, c) (see Fig. 8(b)).
 473 These two parallel edges can be removed by modifying the drawing as follows (see
 474 also Fig. 8(c) for an illustration). Since the two edges crossed by γ are parallel
 475 edges, the leaf addition operation used must be one of those shown in Fig. 2.
 476 No matter which of the cases of Fig. 2 applies, one of the two edges incident
 477 to vertex a is non-crossed and can be disconnected from a and connected to c

478 without introducing any crossing. Call this edge e . The parallel edge (c, b) with
479 the same color as e can be disconnected from c and connected to a only crossing
480 e . With this modification we obtain the desired 1-planar packing. If the only
481 vertex with leaves attached is the second (or fourth) vertex of the backbone, we
482 compute a 1-planar packing of P_1 , P_2 and T with an ad-hoc technique shown in
483 Figs. 8(d) and 8(e) for an even or an odd number of leaves, respectively. \square

484 C Additional Material for Section 5

485 **Theorem 6 (*).** *Three cycles with $n \geq 20$ vertices can be packed into a 1-plane
486 graph with at most 14 edge crossings.*

487 *Proof.* Suppose first that $n \equiv 2 \pmod{3}$. In this case, we partition the set V of
488 the n vertices in two groups V_1 and V_2 of size $7 + 3k$ and $7 + 3h$, with $h, k \geq 1$.
489 For each group V_i we compute a 1-planar packing G_i ($i = 1, 2$) as described in
490 the proof of Theorem 5. Each G_i has 6 crossings and it is embedded so that each
491 path has both end-vertices on the external face (each of the three vertices of
492 the external face is the end-vertex of two distinct paths). We create a 1-planar
493 packing of three cycles with n vertices by connecting the two end-vertices of each
494 path in G_1 with the two end-vertices of a path in G_2 . This requires the addition
495 of six edges that can be embedded so to form two crossings (see Fig. 10(a)).
496 Thus, the total number of crossings in the final 1-planar packing is 14. If $n \equiv 0$
497 ($\pmod{3}$) or $n \equiv 1 \pmod{3}$, we proceed in a way similar to the previous case.
498 We create two 1-planar packings G_1 and G_2 with $7 + 3k$ and $7 + 3h$ vertices
499 ($h, k \geq 1$) leaving out one or two vertices. When G_1 and G_2 are connected to
500 create the 1-planar packing of three cycles we also add the missing one or two
501 vertices as shown in Figs. 10(b) and 10(c). Also in this case when connecting G_1
502 and G_2 we have two additional crossings and a total of 14 crossings in the final
503 1-planar packing. \square

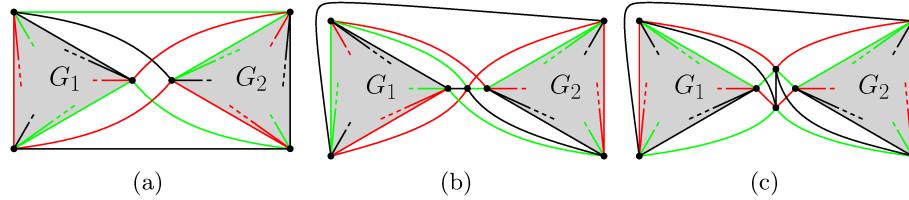


Fig. 10. Illustration for Theorem 6.