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LOMBARDI DRAWINGS OF KNOTS AND LINKS

Philipp Kindermann∗, Stephen Kobourov†, Maarten Lö�er‡, Martin Nöllenburg�,

André Schulz¶, and Birgit Vogtenhuber‖

Abstract. Knot and link diagrams are projections of one or more 3-dimensional simple
closed curves into lR

2, such that no more than two points project to the same point in lR
2.

These diagrams are drawings of 4-regular plane multigraphs. Knots are typically smooth
curves in lR

3, so their projections should be smooth curves in lR
2 with good continuity

and large crossing angles: exactly the properties of Lombardi graph drawings (de�ned by
circular-arc edges and perfect angular resolution).

We show that several knots do not allow crossing-minimal plane Lombardi drawings.
On the other hand, we identify a large class of 4-regular plane multigraphs that do have plane
Lombardi drawings. We then study two relaxations of Lombardi drawings and show that
every knot admits a crossing-minimal plane 2-Lombardi drawing (where edges are composed
of two circular arcs). Further, every knot is near-Lombardi, that is, it can be drawn as a
plane Lombardi drawing when relaxing the angular resolution requirement by an arbitrary
small angular o�set ε, while maintaining a 180◦ angle between opposite edges.

(a) (b) (c)

Figure 1: Hand-made drawings of knots from the books of (a) Rolfsen [19], (b) Liv-
ingston [18], and (c) Kau�man [16].

1 Introduction

A knot is an embedding of a simple closed curve in 3-dimensional Euclidean space lR
3.

Similarly, a link is an embedding of a collection of simple closed curves in lR
3. A drawing of
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a knot (link) (also known as knot diagram) is a projection of the knot (link) to the Euclidean
plane lR

2 such that for any point p of lR2, at most two points of the curve(s) are mapped to
it [8, 19, 20]; if two points are mapped to p, then p is a crossing. A knot diagram of a knot
(link) is crossing-minimal if there is no projection of the knot (link) with fewer crossings.

Graph drawing perspective. An embedding of a planar (multi-)graph is a combinatorial
description of a planar drawing by listing the cyclic order of the edges on the boundaries of
the faces. An embedding uniquely de�nes a cyclic order of edges around each vertex. A plane

(multi-)graph is a planar (multi-)graph together with a combinatorial embedding. Given a
knot diagram, we can obtain a plane multigraph by placing a vertex on each crossing. Two
vertices are connected if there is a curve in the knot diagram between these two vertices
that does not contain any other vertex. Since every vertex corresponds to a crossing, this
multigraph is 4-regular. Hence, drawings of knots and links are drawings of 4-regular plane
multigraphs. Likewise, every 4-regular plane multigraph can be interpreted as a link. To
keep the notation simple, when we talk about a (combinatorial) embedding of a knot, we
refer to the (combinatorial) embedding speci�ed by one of its knot diagrams, and not to its
embedding in lR

3. A vertex-minimal embedding of a knot is a (combinatorial) embedding
speci�ed by a crossing-minimal knot diagram.

Problem statement. In this paper, we address a question that was recently posed by
Benjamin Burton: �Given a drawing of a knot, how can it be redrawn nicely without changing
the given topology of the drawing?� We do know what a drawing of a knot is, but what is
meant by a nice drawing? Several graphical annotations of knots and links as graphs have
been proposed in the knot theory literature, but most of the illustrations are hand-drawn;
see Figure 1. When studying these drawings, a few desirable features become apparent:
(i) edges are typically drawn as smooth curves, (ii) the angular resolution of the underlying
4-regular graph is close to 90◦, and (iii) the drawing preserves the continuity of the knot,
that is, in every vertex of the underlying graph, opposite edges have a common tangent.
There are many more features one could wish from a drawing of a knot or link, see, e.g.,
the energy models discussed in the PhD thesis of Scharein [20]. But our task is to redraw a
given drawing of a knot with a particular topology, so other typical quality metrics, such as
the number of crossings, that vary with the choice of the embedding or topology of a knot
diagram do not apply here.

There already exists a graph drawing style that ful�lls the three requirements above:
a Lombardi drawing of a (multi-)graph G = (V,E) is a drawing of G in the Euclidean plane
with the following properties:

1. The vertices are represented as distinct points in the plane
2. The edges are represented as circular arcs connecting the representations of their

end vertices (and not containing the representation of any other vertex); note that
a straight-line segment is a circular arc with radius in�nity.

3. Every vertex has perfect angular resolution, i.e., its incident edges are equiangularly
spaced. For knots and links this means that the angle between any two consecutive
edges is 90◦.
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methods for drawing general knots in 2D based on the embedding of the underlying plane
multigraph, represented by the Dowker-Thistlethwaite code. By replacing every vertex by
a 4-cycle, the multigraph becomes a simple planar 3-connected graph, which is then drawn
using Tutte's barycentric method [23]. In the end, the modi�cations are reversed and a
drawing of the knot is obtained with edges drawn as polygonal arcs. The author noticed
that this method �... does not yield `pleasing' graphs or knot diagrams.� In particular, he
noticed issues with vertex and angular resolution [20, pg. 102].

Another approach was used by Emily Redelmeier [1] in the Mathematica package
KnotTheory. Here, every arc, crossing, and face of the knot diagram is associated with
a disk. The drawing is then generated from the implied circle packing as a circular arc
drawing. As a result of the construction, every edge in the diagram is made of three circular
arcs with common tangents at opposite edges. Since no further details are given, it is hard
to evaluate the e�ectiveness of this approach, although as we show in this paper, three
circular arcs per edge are never needed. A related drawing style for knots are the so-called
arc presentations [7]. An arc presentation is an orthogonal drawing, that is, all edges are
sequences of horizontal and vertical segments, with the additional properties that at each
vertex the vertical segments are above the horizontal segments in the corresponding knot and
that each row and column contains exactly one horizontal and vertical segment, respectively.
However, these drawings might require a large number of bends per edge.

Lombardi drawings. Lombardi drawings were introduced by Duncan et al. [12]. They
showed that 2-degenerate graphs have Lombardi drawings and that all d-regular graphs,
with d 6≡ 2 (mod 4), have Lombardi drawings with all vertices placed along a common
circle. Neither of these results, however, is guaranteed to result in plane drawings. Duncan et
al. [12] also showed that there exist planar graphs that do not have plane Lombardi drawings,
but restricted graph classes (e.g., Halin graphs) do. In subsequent work, Eppstein [13, 14]
showed that every (simple) planar graph with maximum degree three has a plane Lombardi
drawing. Further, he showed that a certain class of 4-regular planar graphs (the medial
graphs of polyhedral graphs) also admit plane Lombardi drawings and he presented an
example of a 4-regular planar graph that does not have a plane Lombardi drawing. A
generalization of Lombardi drawings are k-Lombardi drawings. Here, every edge is a sequence
of at most k circular arcs that meet at a common tangent. Duncan et al. [11] showed that
every planar graph has a plane 3-Lombardi drawing. Related to k-Lombardi-drawings are
smooth-orthogonal drawings of complexity k [5]. These are plane drawings where every edge
consists of a sequence of at most k quarter-circles and axis-aligned segments that meet
smoothly, edges are axis-aligned (emanate from a vertex either horizontally or vertically),
and no two edges emanate in the same direction. Note that in the special case of 4-regular
graphs, smooth-orthogonal drawings of complexity k are also plane k-Lombardi drawings.

Our Contributions. The main question we study here is motivated by the application of
the Lombardi drawing style to knot and link drawings: Given a 4-regular plane multigraph G
without loops, does G admit a plane Lombardi drawing with the same combinatorial em-
bedding? In Section 2 we start with some positive results on extending a plane Lombardi
drawing, as well as composing two plane Lombardi drawings. In Section 3, by extending the
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results of Eppstein [13, 14], we show that a large class of multigraphs, including 4-regular
polyhedral graphs, does have plane Lombardi drawings. Unfortunately, there exist several
small knots that do not have a vertex-minimal plane Lombardi drawing. Section 4 discusses
these cases but also lists a few positive results for small examples. In Section 5, we show
that every 4-regular plane multigraph has a plane 2-Lombardi drawing. In Section 6, we
show that every 4-regular plane multigraph can be drawn with non-crossing circular arcs, so
that the perfect angular resolution criterion is violated only by an arbitrarily small value ε,
while maintaining that opposite edges have common tangents.

2 General Observations

A plane Lombardi drawing of a knot is a plane Lombardi drawing of one of its (combinatorial)
embeddings. A (combinatorial) embedding of a knot is a Lombardi embedding if it admits
a plane Lombardi drawing, and a non-Lombardi embedding otherwise. We call the property
of admitting a plane Lombardi drawing plane Lombardiness. If two vertices in a plane
Lombardi drawing of a knot are connected by a pair of multi-edges that are consecutive in
the cyclic order around both vertices speci�ed by the embedding, then we denote the face
enclosed by these two edges as a lens. A knot (link) embedding is called reduced if it has no
loop or cutvertices. We observe that a vertex-minimal embedding of a knot (link) must be
reduced, as otherwise we can �ip the order of two edges at such a vertex to remove it and
obtain an embedding of the knot (link) with one fewer vertex. In fact, Kau�man, Murasugi,
and Thistlethwaite have independently shown that alternating knot (link) diagrams (where
�over� and �under� crossings alternate along the curve) are vertex-minimal if and only if they
are reduced [2, Chapter 3.3]. Hence, to determine the plane Lombardiness of knots (links),
it su�ces to consider biconnected multigraphs without loops.

There exist a number of operations that maintain the plane Lombardiness of a 4-
regular plane multigraph. Two knots A and B can be combined by connecting A and B
along edges a of A and b of B, that is, cutting an edge a of A and an edge b of B open
and gluing pairwise the loose ends of of a with the loose ends of b. This operation is known
as a knot sum A + B. Knots that cannot be decomposed into a sum of two smaller knots
are known as prime knots. By Schubert's theorem, every knot can be uniquely decomposed
into prime knots [21]. The smallest prime knot is the trefoil knot with three crossings or
vertices; see Figure 1c. Rolfsen's knot table1 lists all prime knots with up to ten vertices.

Lemma 1. Let A and B be two 4-regular plane multigraphs with plane Lombardi drawings.

Let a be an edge of A and b an edge of B. Then the knot sum A+B, obtained by connecting

A and B along edges a and b, admits a plane Lombardi drawing.

Proof. We �rst apply a Möbius transformation to the plane Lombardi drawings of A and B
so that in the resulting drawings the given edges a and b are drawn as straight edges passing
through the point at in�nity, i.e., they are complements of line segments on an in�nite-radius
circle; see Figure 3. Next, we rotate and align both of these drawings so that edges a and b
are collinear and the subdrawings obtained by removing edges a and b do not intersect. In

1http://katlas.org/wiki/The_Rolfsen_Knot_Table
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vertex b, then the new edges use the same tangents at u and v as e1 and e2 which are
symmetric with respect to the line through u and v, and the angle θ is 90◦. Hence, following
Duncan et al. [11], the placement circle of p bisects the right angle between e1 and e2 at u
and v. We denote by b the part of the placement circle that lies inside f ; see Figure 4

Let p be the midpoint of b. By Lemma 3, if we draw circular arcs from both u and v
to p that have the same tangents as e1 and e2 in u and v, then these four arcs meet at p
forming angles of 90◦. Furthermore, each such arc lies inside lens f and hence does not cross
any other arc of Γ. The resulting drawing is thus a plane Lombardi drawing of a 4-regular
multigraph that is derived from G by subdividing the lens f with a new degree-4 vertex.

By repeating this construction inside the new lenses, we can create plane Lombardi
drawings that replace lenses by chains of smaller lenses.

3 Plane Lombardi Drawings via Circle Packing

Recall that polyhedral graphs are simple planar 3-connected graphs, and that those graphs
have a unique (plane) combinatorial embedding. The (plane) dual graph M ′ of a plane
graph M has a vertex for every face of M and an edge between two vertices for every edge
shared by the corresponding faces in M . In the �classic� drawing D(M,M ′) of a primal-dual
graph pair (M,M ′), every vertex of M ′ lies in its corresponding face of M and vice versa,
and every edge of M ′ intersects exactly its corresponding edge of M . Hence, every cell of
D(M,M ′) has exactly two such edge crossings and exactly one vertex of each of M and M ′

on its boundary. The medial graph of a primal-dual graph pair (M,M ′) has a vertex for
every crossing edge pair in D(M,M ′) and an edge between two vertices whenever they share
a cell in D(M,M ′); see Figure 6a. Every cell of the medial graph contains either a vertex
of M or a vertex of M ′ and every edge in the medial graph is incident to exactly one cell in
D(M,M ′).

Every 4-regular plane multigraph G can be interpreted as the medial graph of some
plane graph M and its dual M ′, where both graphs possibly contain multi-edges. In fact,
medial graphs have already been used in the context of knot diagrams by Tait in 1879 [22].
If G contains no loops and cutvertices, then neither M nor M ′ contains loops. Eppstein [13]
showed that if M (and hence also M ′) is polyhedral, then G admits a plane Lombardi
drawing.

We �rst give a high-level overview for Eppstein's algorithm, which uses a primal-dual

circle packing. For a plane graph M and its dual M ′, a primal-dual circle packing C(M,M ′)
consists of two families C(M) and C(M ′) of circles, such that there is a bijection between
the set of vertices of M and circles of C(M) and a bijection between the set of vertices of M ′

and circles of C(M ′). Moreover, the following properties hold:

(1) The circles in the family C(M) are interiorly disjoint and their contact graph is M ,
i.e., two circles touch if and only if there is an edge in M between their corresponding
vertices.

(2) If c(o) ∈ C(M ′) is the circle of the outer face o, then the circles of C(M ′) \ {c(o)} are
interiorly disjoint while c(o) contains all of them. The contact graph of C(M ′) is M ′.
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(3) The circle packings C(M) and C(M ′) are orthogonal, i.e., if e = (u, v) and the dual
of e is e∗ = (f, g), and c(u), c(v), c(f), c(g) are their respective circles in C(M) and
C(M ′), then there is a point p = c(u) ∩ c(v) = c(f) ∩ c(g); moreover, the common
tangents t of c(u), c(v) and t∗ of c(f), c(g) cross perpendicularly in pe.

If M and M ′ are polyhedral, then a primal-dual circle packing C(M,M ′) always
exists due to Brightwell and Schreinerman [6]. As the combinatorial embedding ofM andM ′

is unique up to homeomorphism on the sphere, there exists a Möbius transformation τ such
that the circle packing τ(C(M,M ′)) has the same unbounded face as D(M,M ′). Recall
that every edge of the medial graph G is incident to exactly one cell in D(M,M ′). The
corresponding cell in τ(C(M,M ′)) is the intersection of a primal circle and a dual circle.
Eppstein obtains a plane Lombardi drawing of G by placing the vertices on the crossings
between the primal and dual circles, and drawing the edges as bisectors of their corresponding
cells.

We show next how to extend this result to a larger graph class. In particular, we
show that if one of M and M ′ is simple, then D(G) admits a plane Lombardi-drawing. A
full construction example of the algorithm can be found in Appendix A.

Theorem 5. Let G = (V,E) be a biconnected 4-regular plane multigraph and let M and M ′

be the primal-dual multigraph pair for which G is the medial graph. If one of M and M ′ is

simple, then G admits a plane Lombardi drawing preserving its embedding.

Proof. Assume without loss of generality that M is simple. If M (and hence also M ′) is
polyhedral, then G admits a plane Lombardi drawing Γ by Eppstein [13] as described above.

Now assume that M is not 3-connected. As a �rst step, we iteratively extend
M = M0 by adding p edges until we obtain a polyhedral graph Mp. Since every maxi-
mal plane simple graph is polyhedral, this edge addition process does eventually reach a
polyhedral graph. During this process, we also iteratively adapt the dual graph and the
medial graph; see Figures 6a�b for an illustration. Let Mi+1 be the graph obtained from Mi

by adding edge e to Mi. The edge e splits a face f of Mi with at least four incident vertices
into two faces f1 and f2 with at least three incident vertices each. In M ′

i , the according
vertex f ′ is split into two vertices f ′

1 and f ′
2. The edges incident to f ′ are partitioned into

edges incident to f ′
1 and f ′

2 and an additional edge between f ′
1 and f ′

2 is added. In Gi, the
edges inside the face f of Mi form a cycle that connects every pair of edges in Mi that
is incident along the boundary of f . When e is added, exactly two edges g1, g2 of Gi are
intersected by e. To obtain Gi+1, the edges g1 and g2 are replaced by four new edges, where
each new edge has the new crossing between e and (f ′

1, f
′
2) as one endpoint and one of the

four endpoints of g1 and g2, respectively, as the other endpoint.

In the second step, we apply the result of Eppstein [13] to obtain a plane Lombardi
drawing Γp of Gp together with a primal-dual circle packing C(Mp,M

′
p). Before going into

the third step, the iterative removal of the edges that were added in the �rst step, let us
consider the structure obtained from the second step in more detail; see Figures 6c�6d.
For an edge g of Gp, consider the unique vertex m(g) ∈ Mp that lies in a cell of Gp

incident to g. Note that g has its endpoints on two edges incident to m(g) and adjacent in
their order around m(g). Let these edges be (m(g),m1(g)) and (m(g),m2(g)), respectively.
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Let d(g), d1(g), and d2(g) be the disks in C(Mp) corresponding to m(g), m1(g), and m2(g),
respectively, and let c(g) be the circular arc in Γi corresponding to g. We keep the following
invariants for all edges g of the drawing Γi:

(i) c(g) lies in the disk d(g) and has its endpoints on the touching points of d(g) with
d1(g) and d2(g), respectively.

(ii) There is a disk d′(g) whose boundary intersects the boundary of d(g) exactly in d(g)∩
d1(g) and d(g) ∩ d2(g), such that c(g) bisects one of the two regions d(g) ∩ d′(g) and
d(g) ∩ R

2 \ d′(g), which we call its lens region `(g).
(iii) For any two edges g1 and g2 of Gi, the lens regions `(g1) and `(g2) are interior-disjoint.
(iv) The lens regions of the edges incident to the face in D(Gi) corresponding to m(g)

cover the whole boundary of d(g) and the endpoints of those regions appear in the
same cyclic order as the according edges in D(Mi).

Obviously, those invariants are ful�lled by Γp. Hence, assume that they are also
ful�lled for Γi+1, and consider the removal of the edge e = (v1, v2) from Mi+1 to obtain Mi.
In the medial graph Gi+1, the edge e corresponds to four edges sharing the vertex corre-
sponding to e, and there are two unique faces corresponding to v1 and v2, respectively. Each
of those has two of the edges of Gi+1 corresponding to e as consecutive edges along the
face. Let g1 and g2 be those consecutive incident edges on the face of Gi+1 corresponding
to v1. Note that their non-shared endpoints lie on the edges (v1, v3) and (v1, v4), respec-
tively, where v3 and v4 are consecutive in the cyclic order around v1 in Mi. Further, note
that, when removing e from Mi+1, we have to replace g1 and g2 by an edge g connecting
their non-shared endpoints. For every j ∈ {1, 2, 3, 4}, let d(vj) be the disk of C(Mp) that
corresponds to the vertex vj of Mi ⊂ Mp (note that with the notation from the invari-
ants, d(v1) = d(g1) = d(g2)). Next, consider c(g1) and c(g2) in the drawing Γi+1. By our
invariants, c(g1) and c(g2) lie in their lens regions `(g1) and `(g2), which are consecutive
along the boundary of d(v1). The only common point of `(g1) and `(g2) is the touching
point of d(v1) and d(v2). The other endpoints of c(g1) and c(g2) are the touching points
d(v1) ∩ d(v3) and d(v1) ∩ d(v4), respectively. Further, the boundary of d(v1) is completely
covered by lens regions which are all pairwise non-intersecting and bounded by circles inter-
secting ∂d(v1) in right angles. We replace c(g1) and c(g2) by the circular arc c(g) that has
as its endpoints at the touching points d(v1)∩d(v3) and d(v1)∩d(v4) and is tangent to c(g1)
and c(g2), respectively, in its endpoints. We de�ne the lens region `(g) as the unique region
that contains `(g1) and `(g2) and is the intersection of d(v1) with the (according side of the)
unique disk d′(g) for which ∂d′(g) intersects ∂d(v1) at a right angle in the endpoints of c(g);
see Figure 7.

Note that `(g) does not intersect the interior of any other lens region: for the lens
regions outside d(v1), this is trivial. For the ones inside d(v1), it follows from continuous
transformation of the bounding circle ∂d′(g) to the bounding circle of the other lens. Hence,
after repeating the analogous construction for the two other edges in Gi+1 needed to be
replaced when removing e from Mi+1, namely the ones that are incident to the face corre-
sponding to v2 in D(Gi+1), we obtain a plane Lombardi drawing Γi that again ful�lls our
four invariants, which completes the proof.

We remark that this result is not tight: there exist 4-regular plane multigraphs whose
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consecutive around u and v, there can be no edge between them that uses a left port and
a right port. Otherwise, assume that e2 is the successor of e1 in counter-clockwise order
around u (and hence the predecessor of e1 in counter-clockwise order around v). If e1 uses
the right port at u and the left port at v, then e2 has to use the top port at v, which
cannot occur by the port assignment. If e1 uses the left port at u and the right port at v,
then e2 has to use the bottom port at u, which also cannot occur by the port assignment.
Thus, neither e1 nor e2 is drawn as an S-shape and every sequence of S-shapes consists only
of simple edges. Hence, we can use the algorithm of Liu et al. to produce an orthogonal
drawing with the desired property for every 4-regular plane multigraph and then use the
algorithm of Alam et al. to transform it into a smooth complexity drawing of complexity 2
which is also a plane 2-Lombardi drawing.

Corollary 15. Every vertex-minimal embedding of a knot or link admits a plane 2-Lombardi

drawing.

6 Plane Near-Lombardi Drawings

Since not all knots admit a vertex-minimal plane Lombardi drawing, in this section we relax
the perfect angular resolution constraint. We say that an embedding of a knot (or a link) is
near-Lombardi if it admits a drawing for every ε > 0 such that

1. All edges are circular arcs,
2. Opposite edges at a vertex are tangent;
3. The angle between crossing pairs at each vertex is at least 90◦ − ε.

We call such a drawing a ε-angle Lombardi drawing. Note that a Lombardi drawing is
equivalent to a 0-angle Lombardi drawing. For example, the knot 41 does not admit a vertex-
minimal plane Lombardi drawing, but it admits a vertex-minimal plane ε-angle Lombardi
drawing, as depicted in Figure 14c.

Let Γ be an ε-angle Lombardi drawing of a 4-regular graph. If each angle described
by the tangents of adjacent circular arcs at a vertex in Γ is exactly 90◦ + ε or 90◦ − ε, then
we call Γ an ε-regular Lombardi drawing. Note that any Lombardi drawing is a 0-regular
Lombardi drawing.

We �rst extend some of our results for plane Lombardi drawings to plane ε-angle
Lombardi drawings. The following Lemma is a stronger version of Theorem 5.

Lemma 16. Let G = (V,E) be a biconnected 4-regular plane multigraph and let M and M ′

be the primal-dual multigraph pair for which G is the medial graph. If one of M and M ′

is simple, then G admits a plane ε-regular Lombardi drawing preserving its embedding for

every 0◦ ≤ ε < 90◦.

Proof. We use the same algorithm as for the proof of Theorem 5 with a slight modi�cation.
We �rst seek to direct the edges such that every vertex has two incoming opposite edges
and two outgoing opposite edges. Let M and M ′ be the primal-dual pair corresponding to
the medial graph G. Every face in G corresponds to a vertex either in M or in M ′; we
say that the face belongs to M or M ′. We orient the edges around each face that belongs
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and d′(e2). Hence, u and w lie on a common circle d(e1) of the primal-dual circle packing.
Assume that the 90◦ angle inside l(e1) is between d′(e1) and d(e1) in counter-clockwise order
around u; the other case is symmetric. By the direction of the edges e1 and e2, the angle
between e1 and d(e1) is 45

◦−ε/2 in counter-clockwise around u and the angle between d(e1)
and e2 is also 45◦ − ε/2 in counter-clockwise direction around w. Hence, we can draw the
edge e as a circular arc inside d(e1) with angle 45◦− ε/2 to d(e1) at both u and w. We keep
the ports at both vertices and by directing the edge from u to w we also keep a direction
of the edges that satis�es the above property. Thus, we obtain a plane ε-regular Lombardi
drawing of G.

The following Lemmas are stronger versions of Lemma 4 and Lemma 1, respectively.
Since the proofs of the latter results do not rely on 90◦ angles, they can also applied to the
stronger versions. For the sake of completeness, a formal proof of Lemma 17 is still given.

Lemma 17. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle Lombardi

drawing Γ. Then, any lens multiplication G′ of G also admits a plane ε-angle Lombardi

drawing.

Proof. Let f be a lens in Γ spanned by two vertices u and v. We denote the two edges
bounding the lens as e1 and e2. Let α ∈ [90◦ − ε, 90◦ + ε] be the angle between e1 and e2
in both end-vertices. We de�ne the bisecting circular arc b of f as the unique circular arc
connecting u and v with an angle of α/2 to both e1 and e2. See Figure 4 for an example.

Let p be the midpoint of b. If we draw circular arcs a1 and a2 from both u to p and
circular arcs a3 and a4 from v to p that have the same tangents as e1 and e2 in u and v,
then these four arcs meet at p such that the angle between a1 and a2 as well as the angle
between a3 and a4 is α, whereas the angle between a1 and a4 and the angle between a2
and a3 is 180◦ − α ∈ [90◦ − ε, 90◦ + ε]. Further, each such arc lies inside lens f and hence
does not cross any other arc of Γ. The resulting drawing is thus a plane ε-angle Lombardi
drawing of a 4-regular multigraph that is derived from G by subdividing the lens f with a
new degree-4 vertex.

By repeating this construction inside the new lenses we can create plane ε-angle
Lombardi drawings that replace lenses by chains of smaller lenses.

Lemma 18. Let A and B be two 4-regular plane multigraphs with plane ε-angle Lombardi

drawings. Let a be an edge of A and b an edge of B. Then the composition A+B obtained

by connecting A and B along edges a and b admits a plane ε-angle Lombardi drawing.

Let G = (V,E) be a 4-regular plane multigraph and let x ∈ V with edges (x, a),
(x, b), (x, c), and (x, d) in counter-clockwise order. A lens extension of G is a 4-regular plane
multigraph that is obtained by removing x and its incident edges from G, and adding two
vertices u and v to G with two edges between u and v and the edges (u, a), (u, b), (v, c), (v, d).
Informally, that means that a vertex is substituted by a lens.

Lemma 19. Let G = (V,E) be a 4-regular plane multigraph with a plane ε-angle Lombardi

drawing Γ. Then, any lens extension of G admits a plane (ε + ε′)-angle Lombardi drawing

for every ε′ > 0.
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Question 1. Can we give a complete characterization of 4-regular plane multigraphs that
admit a plane Lombardi drawing?

Question 2. What is the complexity of deciding whether a given 4-regular plane multigraph
admits a plane Lombardi drawing?

Question 3. Given a 4-regular plane multigraph, what is the minimum number of edges
consisting of two circular arcs in any plane 2-Lombardi drawing?
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