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Abstract
Scattering of a Rydberg electron by ground-state atoms (scatterers) located in its classically
forbidden region can be viewed as electron-atom scattering with negative incident energy. We
propose a treatment of this unusual case of scattering in the context of long-range molecular
potentials arising from the interaction of a Rydberg electron with ground state atoms. We
describe a treatment leading to proper equivalents of scattering lengths and phase shifts for
negative incident energies, which becomes advantageous when a Rydberg atom is penetrated by
more than one scatterer and the Rydberg electron scatters back and forth between the atoms in
the classically allowed and forbidden regions. We apply this approach to Cs and Rb samples, and
find evidence for a resonance-like feature for their 3S1 states.
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(Some figures may appear in colour only in the online journal)

1. Introduction

In long-range molecular ‘trilobite’ [1–6] and ‘butterfly’ [7–9]
states, the binding of the molecule arises from the scattering of
the Rydberg electron with ground-state atoms. Common
approaches [1, 4, 5, 10] to describe these bound molecular
states rely on the phase shifts of the lowest scattering partial
waves. However, these phase shifts are only defined for positive
incident energies, and therefore cannot be used for scatterers
located in the classically forbidden region corresponding to
negative kinetic energies. Though extrapolating the molecular
potentials into the forbidden zone is straightforward in the case
of a single scatterer penetrating a Rydberg atom, the case of
multiple scatterers is more complicated. In addition to the more
challenging problem of extrapolating a multi-variable function,
multiple scattering events render the physics more complex,
with scattered waves spreading out from one scatterer being
influenced by all other scattered waves. Each scattering ampl-
itude originating from any scatterer depends on all other scat-
tering amplitudes, including those associated with the scatterers
in the classically forbidden region.

We set the problem of electron-atom scattering for
negative incident energies in the context of evaluating
molecular potentials in the forbidden region. This context is
important as it serves to guide mathematical challenging steps
with physically meaningful behaviors; we only need to find
proper substitutions for scattering lengths and phase shifts for
negative incident energies for this problem. Common usage
of zero-range pseudo-potentials (ZRPPs) rather than the
actual potentials greatly simplifies technical aspects of the
problem [1–10], and we use them here as well.

We note that it is also possible to calculate molecular
potentials using only short-range potentials to describe elec-
tron-atom scattering [11], making the notions of pseudo-
potentials and phase shifts unnecessary. In that approach, the
wave function is expanded in partial waves in the vicinity of a
scatter and the partial waves are evaluated using the
corresponding short-range potentials. This expanded wave
function is then matched with a pure Coulomb wave function
sufficiently far from the scatterer, which is only possible for
specific scattering energies which can be found in a Greenʼs
function approach. The molecular potentials at the position of
the scatterer directly follow from the matching energies,
including the forbidden region as well. Although this
approach has been implemented for a single scatterer [11], its

Journal of Physics B: Atomic, Molecular and Optical Physics

J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 114002 (11pp) https://doi.org/10.1088/1361-6455/ab7526

3 Author to whom any correspondence should be addressed.

0953-4075/20/114002+11$33.00 © 2020 IOP Publishing Ltd Printed in the UK1

https://orcid.org/0000-0002-0943-6674
https://orcid.org/0000-0002-0943-6674
mailto:jovica.stanojevic@uconn.edu
https://doi.org/10.1088/1361-6455/ab7526
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/ab7526&domain=pdf&date_stamp=2020-05-13
https://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/ab7526&domain=pdf&date_stamp=2020-05-13


extension to several scatterers would lead to prohibitive
technical difficulties.

This article is organized as follows. Section 2 gives the
theoretical framework for pseudo-potentials that can be used to
replace actual electron-scatterer interactions regardless of where
the scatterer is located. This is followed in section 3 by the
description of the wave functionʼs representation by amplitudes
of asymptotic solutions. Applications to Rb and Cs Rydberg
atoms are discussed in section 4, followed by concluding
remarks in section 5. Finally, details of the derivations for the
pseudo-potentials and of the amplitude representation of the
wave function are given in appendices A and B, respectively.

2. Electron-atom scattering with negative incident
energy

In this section, we summarize the results for the scattering of a
Rydberg electron and a ground state atom located in the classi-
cally forbidden region corresponding to a negative scattering
energy. We first describe how the pseudo-potentials are obtained,
followed by the phase shifts for negative incident energies. Some
of the derivation details can be found in appendix A.

2.1. Pseudo-potentials for electron-atom scattering

We are interested in the form of the pseudo-potentials in the
classically forbidden scattering region. Since ZRPPs contain
scattering lengths, finding the proper form of these potentials in
the forbidden region can inform us on how to extend the con-
cepts of phase-shifts and scattering lengths for negative energies.
The details of the derivations are given in appendix A, including
the notation used here and illustrated in figure A1. Unless
otherwise specified, atomic units are employed.

For positive scattering energies Einc, the asymptotic wave
function ψ of a particle located outside of a short-range
potential takes the usual scattering form

åy y ¥ = Wr Yr 1
ℓm

ℓm ℓm( ) ( ) ( ) ( )

with

y h= -r A j kr k y krtan , 2ℓm ℓm ℓ ℓ ℓ( ) [ ( ) ( ) ( )] ( )

where k is the wavenumber (Einc=k2/2), ηℓ(k) are the scattering
phase shifts, and Aℓm are the scattering amplitudes. The functions
jℓ and yℓ are respectively the regular and irregular spherical
Bessel function [12]. If we are allowed to set the range r0 of
interactions to zero, then ψℓm has the form (2) for all r>0. In
this limit, the interactions are only characterized by the phase
shifts (see figure A1). In short, we obtain the ZRPPs by setting

r 00 but keeping the phase shifts of the actual potentials.
In the calculation of ‘trilobite’ and ‘butterfly’ molecular

potentials, the range of electron-atom interactions is usually
set to zero. Consequently, the Rydberg wave function has to
take the form (2) in the vicinity of any scatterer in the clas-
sically allowed region

åy y = Wr Yr R , 3i
ℓm

ℓm i ℓm i( ) ( ) ( ) ( )

with

y h= -r A j k r k y k rtan , 4ℓm i ℓm ℓ i i ℓ ℓ i i( ) [ ( ) ( ) ( )] ( )

where Ri is the position of the scatterer, the electron position
in a local frame is ri=r−Ri, the local wavenumber

=k Ei
i
inc , = + -E E Ri

iinc ryd
1 and Eryd is the Rydberg

electron eigen-energy. In this case, ψℓm(ri) are the local
spherical components in a local frame centered to a scatterer
located at Ri

òy y= W Wr d Y r R, , 5ℓm i i ℓm i i i*( ) ( ) ( ) ( )

where Ωi is the local solid angle.
For negative k= + = --E E R 2i

i iinc
1 2 , with Ri located

in the classically forbidden region, a convenient choice as
proper solutions in the vicinity of a scatterer consists of the
regular and irregular modified spherical Bessel functions

k rℓ i i( ) and k rℓ i i( ), respectively. Apart from notation dif-
ferences, the modified spherical Bessel functions are defined
as in [12]

= - z i j iz1 , 6ℓ
ℓ ℓ

ℓ( ) ( ) ( ) ( )

= - + + z i y iz1 , 7ℓ
ℓ ℓ

ℓ
1 1( ) ( ) ( ) ( )

for positive z. For negative E i
inc, the Rydberg wave function

ψℓm(ri) in the vicinity of any scatterer in the classically for-
bidden region can be written as follows

y k s k k= - - + r A r r1 tan , 8ℓm i ℓm ℓ i i
ℓ

ℓ i ℓ i i
1( ) [ ( ) ( ) ( ) ( )] ( )

where σℓ(κi) denotes the extended phase shift for negative
scattering energies. Physically, this σℓ is not a phase shift, but
it will serve the same role. The factor (−1)ℓ+1 in equation (8)
is introduced, essentially by convention, to preserve the form
of the action Uiψ of a pseudo-potential Ui on the wave
function after crossing the boundary of the classically allowed
region. It basically compensates the same factor in the defi-
nition (7). Consequently, the extended scattering lengths and
phase shifts have the same form given by equation (9) in the
classically allowed and forbidden zones. This justifies con-
sidering them, at least operationally, as single quantities
defined in the whole spatial region.

As shown in appendix A, the general form of the ZRPPs
that can be used for any E i

inc is

y b
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with δ(ri) a Dirac delta function, = + -k E Ri iryd
1∣ ∣ and fℓ is

either ηℓ for positive E
i
inc or σℓ for negative E

i
inc. In the usual

case of positive E i
inc, the same form of pseudo-potentials was

obtained in [13] using a different analysis. This potential is a
revised Huang-Yang multipolar pseudopotential [14]. The
quantity f +k ktan ℓ

ℓ2 1( ) is what we call the scattering length
(volume).
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2.2. Phase shifts for negative incident energies

For negative Einc we have defined functions that are analogs
of the phase shifts and scattering lengths (or scattering
volumes for ℓ=1) for positive Einc. For simplicity we also
call these new functions phase shifts and scattering lengths
even though their mathematical and physical nature is
somewhat different. Both functions h E2ℓ inc( ) and
s E2ℓ inc( ∣ ∣ ) are essentially determined by the requirement
that ψℓm in equations (4) and (8) are regular solutions of the
scattering problem as r 0; equations (4) and (8) are just
general forms of such solutions in the outer region. For
physical reasons, we want that the extended phase shifts σℓ
and corresponding scattering lengths lead to a smooth trans-
ition of the molecular potential curves through the boundary
of the classically forbidden region; e.g. such a smooth
transition is achieved in the method described in [11].

To extract ηℓ and σℓ, we need to propagate ψℓm to very
large separations, which is problematic for negative energies
as ψℓm diverges exponentially for  ¥r . The technical
aspect of extracting both ηℓ and σℓ relies on the analytical
solutions in the asymptotic region, with σℓ requiring a few
additional steps for which the analytical solutions are of
fundamental importance.

In the context of calculating the Rydberg molecular
potentials, the physically meaningful and useful information
is contained in σℓ, which is extracted from the asymptotically
divergent y  ¥rℓm ( ). On the other hand, in the calculation
of molecular potentials based on ZRPPs, the scattering wave
function ψℓm is only imposed in the infinitesimally small
vicinity of a scatterer. Therefore, the asymptotically divergent
function y  ¥rℓm ( ) never enters the calculation of mole-
cular potentials and so it may be considered just as a device to
obtain σℓ. Our analysis will show that σℓ or ηℓ are basically of
the same mathematical origin. The additional steps required
for negative Einc only reflect the fact that it is more difficult to
extract a finite value from a quantity that also has a divergent
component. This assertion will become clearer as we describe
our analytical solutions. This result is important because if σℓ
and ηℓ were related to different mathematical objects, a
smooth transition of the molecular potentials from the clas-
sically allowed to the forbidden regions would be challenging
to achieve.

3. Wave function representation

In this section, we describe how to represent the wave func-
tion ψ using the amplitudes of the asymptotic solutions.

3.1. Amplitude representation of ψ

The solutions of the radial Schrödinger equation for a
potential ∼−1/r4 and positive scattering energies are given in
terms of the Mathieu functions [15]; for negative energies one
would get a similar but different differential equation. Here,
we adopt an alternative approach. We first express the wave
function in terms of the amplitudes of the asymptotic

(  ¥r ) solutions. The limit  ¥r of these amplitudes
gives directly htan ℓ ( stan ℓ) for positive (negative) incident
energy Einc. We first introduce and then solve the differential
equation for the amplitudes. The solutions, obtained follow-
ing a standard approach, are easy to generate and use for all
incident energies.

The behavior of the amplitude solutions for Einc>0 in
the asymptotic region is evidently simple, namely they
become constant functions. This simple behavior of ampli-
tudes would make them a convenient representation for the
wave functions at negative Einc<0, where we have a
superposition of an exponentially vanishing and a growing
solutions of the Schrödinger equation with both components
virtually impossible to numerically distinguish from each
other as  ¥r . Instead, we can represent ψ(r) in terms of
quantities varying slowly in the asymptotic region, such as the
amplitudes of the solutions. As discussed in the following
section, finding an asymptotically constant amplitude repre-
sentation for Einc<0 is not as straightforward as it is for
Einc>0. Fortunately, for Einc<0, we have analytical solu-
tions that are practically exact in the asymptotic region. As we
will show, the asymptotic form of these amplitudes for
negative Einc share similarities with positive Einc, allowing a
smooth transition of the potential curves into the forbidden
zone. This smooth transition is a physical requirement pro-
vided by our extension of phase shifts and scattering lengths.

We denote the basis functions Fℓ , solutions of the radial
Schrödinger equation corresponding to the modified Hamil-
tonian H′=H−U(r), where H is the original Hamiltonian.
In principle, U(r) may not include the full potential term of H,
but it does in the current problem, so that in our case rFℓ ( )
are some combination of the (modified) spherical Bessel
functions. Here r = E r2 inc∣ ∣ , and for each sign of Einc we
choose Fℓ that simplify the derivation of analytical expres-
sions for the amplitudes. The basis solutions for Einc>0 are

r r r=  ~ r h j iy e , 10ℓ ℓ ℓ
i( ) ( ) ( ) ( )

and similarly for Einc<0, they are

r r= ~ r u i h i e . 11ℓ
ℓ
ℓ( ) ( ) ( ) ( ) 

The Wronskian r r+ -W F F,ℓ ℓ[ ( ) ( )] of the basis solutions
hℓ and uℓ plays an important role in the derivation of the

propagation equations for the amplitudes, with

r r r
r

r
r

r
r

r

= -

=

+ - +
-

-
+

W F F F
dF

d
F

dF

d

w

,

,

ℓ ℓ ℓ
ℓ

ℓ
ℓ

F
2

[ ( ) ( )] ( ) ( ) ( ) ( )

where wF is a constant. The Wronskian constants are made
independent on ℓby the choice of basis solutions hℓ and uℓ .
The constants corresponding to Wronskians + -W h h,ℓ ℓ[ ] and

+ -W u u,ℓ ℓ[ ] are respectively = -w i2h and wu=2.
The radial wave function ψℓm(r) can be written as

y r r= ++ + - -r C r F C r F 12ℓm ℓm ℓ ℓm ℓ( ) ( ) ( ) ( ) ( ) ( )

for any r. Strictly speaking, equation (12) alone does not
defines the functions Cℓm. Another relation is required, and a
simple propagation equation for C rℓm( ) can be obtained by
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imposing

y r r
= ++

+
-

-d r

dr
C r

dF

dr
C r

dF

dr
. 13ℓm

ℓm
ℓ

ℓm
ℓ( ) ( ) ( ) ( ) ( ) ( )

Relations (12) and (13) consistently define the functions
C rℓm( ) because the map y y « + -d dr C C, ,ℓm ℓm ℓm ℓm{ } { } is

clearly defined for all r>0 since the Wronskian
r r+ -W F F,ℓ ℓ[ ( ) ( )] never vanishes.

Since the propagation equations have the same structure
for any ℓ and m and sign of Einc, we drop the labels ℓ and m
and change notation to + -X Xℓm 1 2

( )
( ), where X stands for C,

F, h, or u, wherever this notation does not lead to confusion.
The propagation equations for C1(2) can be derived from
equations (12), (13), and the radial Schrödinger equation for
ψℓm(r). For U(r)=−α/(2r4), where α is the atom polariz-
ability, the propagation equations are

c
= - +

dC

dy w
F F C F C , 14

F

1
1 2 1 2

2
2[ ] ( )

c
= +

dC

dy w
F C F F C , 15

F

2
1
2

1 1 2 2[ ] ( )

where c a= E2 inc∣ ∣ and y=1/ρ. The exponential factors in
F1,2 cancel each other in the product F1F2, so we can rewrite
equations (14) and (15) by factoring out the exponential factor

re q2 in Fi
2

c
w w= - + r-dC

dy w
y C y e C , 16

F

q1
12 1 22

2
2[ ( ) ( ) ] ( )

c
w w= +rdC

dy w
y e C y C , 17

F

q2
11

2
1 12 2[ ( ) ( ) ] ( )

where q=i (1) for Einc>0 (Einc<0) and ω12(y) are poly-
nomials in y, which are rather simple for ℓ=0, 1. Note that U
(r) differs from −α/(2r4) at shorter separations. In this region
we can either propagate C1,2 with the correct U(r) or prop-
agate the wave function.

For a sufficiently large ρ0 with ρ>ρ0, we can use only
analytical solutions to equations (16) and (17). As shown in
appendix B, these solutions are obtained in two steps, by
eliminating one of the amplitudes Ci and solving the resulting
second-order differential equation (SODE) for the other
amplitude. First, we find almost exact solutions in the
asymptotic region and then each of them is ‘improved’ by
adding an additional factor to get a desired precision for all
ρ>ρ0. The additional factors are actually asymptotic
expansions so it leads to a maximal precision. Although not
an issue in practice, the greater ρ0 and ρ, the greater the
maximal precision. Since the exponential factors are not
present, SODEs are easier to solve, though the number of
solutions is doubled; however, the solutions for C1 and C2 are
not independent as they have to satisfy equations (16) and
(17). Taking these constrains into account leads to two line-
arly independent solutions for the amplitudes Ci.

3.2. Asymptotic properties of the amplitude representation of ψ

One would expect that the Ciʼs are essentially constant in the
asymptotic region where U(r) is becoming negligible, and thus,

in this region, they would become slowly varying amplitudes
(SVAs). They are indeed SVAs for Einc>0, but their behavior is
more complicated for Einc<0. The difference can be understood
in general terms; the propagations of the Ciʼs are not independent
from each other because the Fiʼs are not exact solutions since the
potential U(r) couples them. The propagator of each amplitude
has terms like ∼U(r)F1,2. For positive Einc>0, functions hi are
finite in the asymptotic region so both terms U(r)h1,2 asympto-
tically vanish with the decreasing potential U(r), and the ampli-
tudes remain finite. On the other hand, for Einc<0, the function
u+ grows exponentially so that the amplitude C2=C

−is pro-
pelled by the sub-exponentially growing term U(r)u+. Therefore,
it seems that the amplitude C2 of the vanishing solution u−

inevitably becomes divergent. The propagation of equations (16)
and (17) would also produce a divergent C2. It is also obvious
from equations (16) and (17) that if C1∼1, then C2∼e

2ρ and if
C2∼1, then C1∼e

−2ρ. As previously concluded, C2=C
−is

indeed divergent. On the other hand, the representation (12) of
the asymptotic wave function with finite coefficients C± is
always possible because any (exact) solution can be written as a
superposition of exact linearly-independent solutions with finite
coefficients. This exact solution takes the form (12) in the
asymptotic region and thus a finite amplitude representation of
ψℓm must exist. Moreover, the coefficients are unique up to an
overall scaling factor (for regular solution at r 0).

The reason for the said apparent contradiction is that the
propagating equations for Ci are not define by equation (12)
alone so we need another relation. The second relation (13)
together with equation (12) provides consistent and rather
simple propagation equations for C±=C1,2. Even though
equations (12) and (13) do not produce finite C1,2 for negative
energies, the amplitude representation they yield is still exact.
In principle, to get the finite C1,2 we only need to collect terms
in ψℓm with the same leading exponential factors =r e e y1 ,
which are also the leading factors of the asymptotic linearly
independent solutions uℓ . Collecting these terms is straight-
forward after expressing C1,2 in terms of SODE solutions
presented in appendix B because each SODE solution is
associated with a single exponential factor e p/ y, p=−2, 0, 2.

For Einc<0, each amplitude C1,2 has an asymptotically
constant SODE solution (p=0). The asymptotically non-
constant solutions behave as r~ re 2 4, so one of them
becomes divergent while the other vanishes in the asymptotic
region. According to equations (B13) and (B14), we can write

= + r-C a e aa b1 1
2

1 and = + rC a e aa b2 2
2

2 , where a1(2)a
are asymptotically constant and a1(2)b are asymptotically
vanishing functions. The regrouping of terms in ψ imple-
ments the following relations: r r~ ~r r- + +e u e u2 ( ) ( ) and

r r~ ~r r- + - -e u e u2 ( ) ( ). Hence we have

+ = + + +

= +  +
r

+ -
-

+
+

-

+ - ¥ + -

C u C u a a b u a a b u

C u C u c u c u ,

18

a b a b

a a

1 2 1 2 2 1

1 2 1 2

( ) ( )
˜ ˜

( )

with r  ¥ =b 1∣ ( )∣ .
After performing these transformations and collecting

terms with the same u±(ρ), we get the new asymptotically
constant amplitudesC1,2˜ . In this procedure, the asymptotically
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non-constant components of C1,2, are transformed into the
asymptotically vanishing components of C1,2˜ . For Einc>0,
each amplitude C1,2 has an asymptotically constant and an
asymptotically vanishing solution. Therefore, only the
asymptotically constant components of C1,2 remain in the
limit  ¥r , which then uniquely define tan ηℓ. In summary,
only the asymptotically constant SODE solutions are relevant
in the asymptotic region for both positive and negative Einc.
This similarity is encouraging because we may then expect
that our extension of phase shifts and scattering lengths based
on C1,2˜ will not yield any numerical discontinuity at the
boundary of the classically allowed region. The procedure to
evaluate C1,2˜ is well defined and unique. Although one could
introduce C1,2˜ for positive Einc as well, it would not affect the
phase shifts.

4. Applications

We apply our method to the case of Rb and Cs Rydberg atoms.
In terms of the four SODE solutions, the procedures for finding
phase shifts for positive and negative energies are in principle
the same. Namely, we look for the coefficients c1a and c2a of
the asymptotically constant solutions (see equations (B13) and
(B14)). The phase shift σℓ, where ℓ is the angular momentum
quantum number, is related to c1a and c2a as follows

s =
- -

+ -
c c

c c
tan

1

1
. 19ℓ

ℓ
a a

a
ℓ

a

1 2

1 2

( )
( )

( )

To get c1a and c2a we can choose to propagate ψ (or
equivalently Ci) in either direction. For the inward propagation
we can use the analytical asymptotic solutions to initialize ψ (or
Ci). In fact we have done all these different propagations for
consistency checks. However, the numerical part of extracting
c1a and c2a is significantly more challenging for negative
energies because of the exponentially growing and exponen-
tially vanishing solution corresponding to the c1b and c2b
coefficients in equations (B13) and (B14), In this case, the
extraction of c1a and c2a is facilitated by knowing the analytical
asymptotic solutions so we do not have to propagate ψ too far,
and by using highly accurate propagation schemes based
on Chebyshev polynomials. Assuming that we have propagated
a regular ( r 0) wave function ψℓm outward, at the furthest
propagation point r = krmax max we use the map y yd,ℓm ℓm{

«dr C C,1 2} { } to get C1,2. Substituting C1,2, in the propaga-
tion equations (16) and (17), we obtain the derivatives
dC1,2/dy. From known Ci and dCi/dy we can find how the
SODE solutions are mixed in each amplitude Ci and therefore
we get all the coefficient c1a(b) and c2a(b). The coefficient c1a
and c2a do not depend of rmax, which can be used as an
additional test of the numerical propagation.

Apart from the extraction of c1a and c2a and some
numerical details, the propagation of ψ and Ci is the same for
both positive and negative energies. Therefore, any method
that has been used for positive energies can be adapted for
negative energies as well. The phase shifts for Rb and Cs
display a significant fine-structure dependence so that relati-
vistic effects have to be taken into account.

Our goal is to demonstrate how our theory works and, to
that effect, we implement a simplified approach in which rela-
tivistic calculations can be avoided. Since relativistic effects take
place at very short separations r, we cannot propagate ψ very
close to the origin. Because of these constrains, we use a dif-
ferent procedure to obtain extended phase shifts σLSJ, where L,
S, and J are quantum numbers of the orbital angular momentum,
spin, and total angular momentum of two electrons relative to
the neutral atom. The labels L and ℓ refer to the same orbital
angular momentum. We use the label L when the fine-structure
dependence of phase shifts is discussed. We utilize the fact that
the zeros of the wave function very close to the origin are almost
at fixed positions for some range of low energies Einc∣ ∣. The
positions of these stable zeros are found by propagating the
wave function ψ inwards for positive energies Einc. The propa-
gation is initialized using the corresponding phase shifts ηLSJ.
The analytical solutions for positive energies (B11) and (B12)
are used to shorten the propagation range. A very good mutual
consistency between the scattering potentials and the corresp-
onding phase shifts is required for our simplified approach
to work.

For a given choice of quantum numbers L, S, and J, we
select a zero of the wave function located near the origin with
the most stable position and set its position rmin at k=0 as an
imposed zero of all wave functions for negative Einc. This
position rmin is the smallest r for which we propagate ψ (or Ci)
for negative energies. The fastest way to get phase shifts σℓ for
negative Einc, is to propagate ψ in the outward direction from a
stable zero, and then extract σℓ from the asymptotic ψ. Since the
propagation of ψ remains in the region where the fine-structure
interaction is negligible, we can omit relativistic corrections.

Clearly, the stability of zeros of the wave function near the
origin for low k is very important for our numerical calculation.
Normally, this is a robust feature easily established in an out-
ward propagation of the wave function ψ from the origin.
However, this cannot be accomplished in nonrelativistic calcu-
lations so we have to rely on the inward propagation of ψ. In
principle this is not a problem as long as the phase shifts ηLSJ we
use to initialize ψ are obtained using the same scattering
potentials we employ in the propagation of ψ. This condition is
especially critical at small k. This consistency can be broken for
various reasons. For example, the low-k portion of the phase-
shift dependence in [11] was modified in [10] in order to get a
better agreement with spectroscopic data. This modification
effectively changes the long-range part −α/(2r4) of the scat-
tering potential U(r) in [11]. Consequently, the phase shifts [10]
and the scattering potentials [11]U(r) are inconsistent. Not
having numerically accurate phase shifts at low energies would,
in practice, yield the same inconsistency. These issues can have
drastic effects on the stability of the zeros near the origin as
shown in panel figure 1(b).

The extrapolation of Fabrikant [16] can be used to get
reliable phase shifts at low energies in the absence of
experimental data. It can be also applied to theoretical data to
fit eigenphases obtained using the Dirac R-matrix method
[17]. The actual extrapolation includes finding two fitting
parameters. The connection between the low-k dependence of
the shifts and the asymptotic form −α/(2r4) of scattering
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potentials U(r) is practically built into this extrapolation. This
is exactly what is needed since we do not have numerically
accurate phase shifts at low energies. In addition, we have
also used the extrapolation of Fabrikant to test phase-shifts by
comparing the fitted and extrapolated phase-shifts with the
calculated ones. Obviously, we cannot apply this test to the
phase shift in [10] because they are not consistent with
the long-range behavior a -U r r2 4( ) ( ). Also, we could
not find good fits of the shifts in [18]. We have finally used
the phase shifts of [11], for which the fitting works very well.
The positions of zeros obtained by propagating the wave
function inwards are very stable for these phase shifts, as
illustrated in figure 1(a).

The fitting range for the s-scattering phase-shifts is sig-
nificantly smaller than that of the 3PJ states. For these states, we
combine already published fitting parameters and extrapolated
scattering lengths [17] together with the phase shifts [11] to get
our phase-shift data of 1,3S states for all k of interest. The
mutual consistency of these sources is great, which is not
surprising considering that they share some authors.

In figure 1, we test the stability of the positions of the
zeros of the radial part j(r) of the wave function ψ near the
origin. We demonstrate that the consistency between the low
energy phase shifts and the long-range dependence of the
potential is essential to get stable zeros. In figure 1(a) we
show the scaled radial wave functions k−2j (r) for phase
shifts obtained by the Fabrikant extrapolation of the 3P0 phase
shifts [11]. To propagate ψ we use the model potentials in
[11] without the fine-structure term which is negligible in our
region of propagation. The stability of zeros near the origin is
clearly established. Asymptotically, all radial wave functions
behave as

j h h ¥ = -

= +h h+ - -

r j kr y kr

e h kr e h kr

cos sin ,

1

2
. 20

LSJ L LSJ L

i
L

i
LLSJ LSJ

( ) ( ) ( )

[ ( ) ( )] ( )

We use our analytical asymptotic solutions to avoid lengthy
propagations of ψ in the asymptotic region. For small r, the

amplitude of j vanishes as ∼k2. As depicted in figure 1(a), the
scaled wave functions k−2j(r) converge towards the curve with
the smallest k (the most red curve) in the plot. To study the
sensitivity of the positions of zeros, we modified the shifts used
in panel (a) by forcing the leading term of the phase-shift
dependence to be ∼k3. The modified dependence smoothly
joins the original one at k0=0.04; both the modified and
original shifts are shown i n the inset. Note that this
change implies that the low energy portion k�k0 of the shifts
is no longer consistent with the long-range behavior

a -U r r2 4( ) ( ) of the potential. Curves for k>k0 are not
shown since they are the same as in panel (a). This modification
is essentially equivalent to truncating U(r) at some large r. It
turns out that this modification completely changes the scaling
of j(r) near the origin. For better visibility of the curves, we
plot k−1j(r) functions in panel (b). We see that there is some
range of k for which the zeros are fairly delocalized. Also, for k
approaching k0, the zeros of corresponding wave functions
become closer to each other and the wave functions become
more similar to those in panel (a). In both panels there exist
focal-like points of the radial wave functions. The focal points
are actually not points but very small regions in which the wave
functions converge to each other, as shown in the inset in panel
figure 1(a). The positions of these focal points are very similar
in both panels.

The extended shifts σLSJ for Rb and Cs are presented in
figure 2. Interestingly, for negative Einc, the phase-shifts of

3S1
states seem to have resonance-like behavior in the sense that

s ktan becomes divergent. The positions of these resonance
features for Rb and Cs correspond to κ≈0.054 and
κ≈0.043, respectively. Because our approximation is less
accurate for larger Einc∣ ∣, a relativistic calculation should be
performed to confirm and improve these values. The condi-
tion for such resonances, according to equation (19), is

= - +c c1a
L

a1
1

2( ) . The existence of bound states (of the
negative ion) should be indicated by the absence of the
exponentially growing term i.e. by the condition c1a=0,
which implies s = - +tan 1 ℓ 1( ) . It has been established that

Figure 1. Scaled radial wave functions of 3P0 state of Rb near the origin plotted for various wave numbers k�kmax=1/21. In panel (a), the
wave functions correspond to the phase shifts η obtained by the extrapolation of Fabrikant. The stability of the zeros of j(r) is clearly
established. In panel (b), we show the wave functions for modified phase shifts. The phase shifts used in panel (a) are modified for k�0.4 in
order to get h ~ ktan 3 for small k. As shown, this modification of phase shifts has drastic effect on the scaling and positions of zeros of the
wave functions near the origin.
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there are no bound states in the triplet S=1 state of Rb and
Cs. The relativistic J-dependence of phase shifts in our
calculation is included indirectly via the fixed positions of the
zeros near the origin. This relativistic effect has to be eval-
uated in a genuine relativistic calculation as in [11]. Our
numerical approximation becomes less accurate for larger
Einc∣ ∣ due to the neglected energy-dependence of the position
of the chosen zero. This matters for relatively small principal
quantum numbers and for the points deep in the forbidden
zone. Our phase-shift data could be improved by performing
relativistic calculations. On the other hand, ψ vanishes
exponentially fast in the forbidden zone, so the effect of
improved phase shifts would be probably limited in many
practical situations.

In table 1, the extended scattering lengths are compared
to the usual one taken from [17]. As previously explained, we
expect them to be equal based on physical arguments;
demonstrating that they are indeed identical provides the
necessary evidence that our extended phase shifts are the
physically correct extension of the normal phase shifts.
The numerical agreement is also impressive considering that
our calculation is based on a combination of extrapolated
phase shifts from one paper and scattering lengths from
another.

5. Conclusion

In the work, we described an extension of the concepts of phase
shifts and scattering lengths to the case of negative scattering
energies corresponding to the scattering of a Rydberg electron
with a ground state atom in the classically forbidden region. We
introduce an amplitude representation of the wave function ψ,
which is suitable for the extraction of (extended) phase shifts,
and derive the propagation equations for the amplitudes. We
also find a general analytical solution for these amplitudes in the
asymptotic region. This general solution serves two important
functions which cannot be accomplished by purely numerical
means. First, it provides an understanding of the asymptotic
wave function y  ¥r( ) which inevitably contains divergent
components at Einc<0. Based on this understanding, we can
explain how the (extended) shifts, in the asymptotic region, are
only related to the asymptotically constant components of the
amplitudes. Consequently, the scattering lengths are continuous
functions at Einc=0. Second, the general solution facilitates
the extraction of the asymptotically constant components from
the exponentially growing and vanishing components of the
amplitudes.

We have applied our approach to realistic cases of Rb
and Cs atoms to calculate the extended phase shifts and
demonstrated that the scattering lengths are indeed continuous
functions at Einc=0. We also found evidence that for both
atoms, the 3S1 phase shifts exhibit resonant features.

The approach outlined in this article should be especially
useful in problems where the Rydberg electron is scattering of
several ground atoms in the forbidden region. The treatment
would allow for a rigorous calculation of multi-scattering
results relevant to systems such as a Rydberg atom in a dense
gas like a Bose–Einstein condensate [19]. In such systems,
the electron can scatter with multiple atoms located in an out
of the classically forbidden region, leading to resonant fea-
tures and interference effect dependent on the proximity of
the scatterers.

Figure 2. Extended phase shifts for Rb and Cs. For both Rb and Cs the state 3S1 exhibits resonance-like behavior since the phases reach the
value of π/2 for which the extended scattering length becomes singular.

Table 1. Comparison between the extended scattering lengths
s
k k

=tan

0

ℓ 0 and scattering lengths d



=

k k

tan

0

ℓ 0 corresponding to 3S1

and 1S0 states for e+Rb, Cs collisions.

Target State
s
k k

=tan

0

ℓ 0 d



=

k k

tan

0

ℓ 0

Rb 3S1 −16.07 −16.1

1S0 0.622 0.627

Cs 3S1 −21.7 −21.7

1S0 −1.328 1.33
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Appendix A. Derivation of pseudo-potentials for
electron-atom scattering

Here, we derive proper forms of pseudo-potentials for nega-
tive scattering energies corresponding to the scattering of a
Rydberg electron by ground-state atoms in the classically
forbidden region for this electron. The general expressions for
negative incident energies Einc can readily be compared to the
usual notions of phase shifts and scattering lengths for
Einc>0. The results of this appendix are summarized in
section 2.

We assume that a realistic electron-atom interaction
potential U(r) is negligible if r�r0, where r0 is essentially
the range of electron-atom interactions (see figure 1). The
interaction Ui between a Rydberg electron located at r and
scatterer i at Ri is Ui=U(ri)=U(r−Ri). For this analysis,
we also introduce spheres Si of radius r0 centered on the
scatterer i, its interior and boundary labeled by υi and ∂υi,
respectively (see figure A1). The outer region Vout is defined
as the complement of ∪iυi. All the potentials Ui are negligible
in Vout, so that the Schrödinger equation of the Rydberg
electron wave function ψ(r) and relevant Greenʼs function G
(r, r′) [20, 21] are

y- =H E r 0, A1( ) ( ) ( )

d- ¢ = - - ¢H E G r r r r, , A2( ) ( ) ( ) ( )

where H is the Hamiltonian of the Rydberg electron without
scatterers

= - D +H V r
1

2
, A3( ) ( )

and V(r) is the Coulomb potential with a quantum defect
correction.

Assuming that r corresponds to a point in the outer
region Vout we get

òy y y= - ¢ ¢ D ¢ - ¢ D ¢d r G Gr r r r r r r
1

2
, , .

A4
V

3

out

( ) [ ( ) ( ) ( ) ( )]

( )

Transforming the volume integral into a surface integral at the
boundary of Vout gives

òy y y=- å ¢ ¢  ¢ - ¢  ¢

º å

u¶
d G G

I

r S r r r r r r
1

2
, ,

1

2
.

A5

i

i i

i

( ) [ ( ) ( ) ( ) ( )]

( )

The surface integral ò u¶
dS

i
is evaluated in a local frame

pinned to scatterer i with the orientation of surface elements

given by ¢ ~ - ¢ ¢ = - ¢d r rS r ri i i 0. Therefore, ri=r−Ri is
the position vector of the Rydberg electron in the ith local
frame. For simplicity, we expand all local quantities in the
basis of local spherical harmonics Yℓm(Ωi), where Ωi is the
solid angle in the ith local basis. The surface integrals in
equation (A5) can be rewritten as follows

ò
y

y

= W + ¢ ¶ + ¢

¶ ¢

- + ¢ ¶ + ¢

¶ ¢ ¢

I r d G
r

G

r

r R r
R r

R r
r R r

,

,
. A6

i i i i
i i

i

i i
i i

i r

0
2

0i

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

( ) ( ) ( )

Since ¢ =r ri 0, and ¢ = + ¢r R ri i, the following expan-
sion is sufficient to evaluate the surface integral in (A6) in the
limit  £r 0 and ℓ 10

+ ¢ @ W¢

+ ¢å W¢ + ¢= 

G g Y

r g Y r

r R r r R

r R

, ,

, .

A7

i i i i

i m m i m i i

00 00

1
1

1 1
2

*

*

( ) ( ) ( )

( ) ( ) ( )
( )

Assuming that s and p partial waves are sufficient to describe
the electron-atom scattering, the last expansion contains all
the terms that contribute to Ii in the limit r 00 . To find Ii for
Einc>0, we substitute the expansion (A7) into (A6) and sum
over all scatterers i to find ψ according to equation (4). For
Einc<0 we combine equations (A7) and (8) in the expression
(A6). The integrals Ii do not vanish in the limit ¢ = r r 0i 0

because y r Ri( ) in equations (4) and (8) contains diver-
gent functions yℓ(kiri) and k rℓ i i( ) in this limit.

As x 0,  » - - +y x ℓ x0 2 1ℓ
ℓ 1( ) ( )!! , which we

use for the scatterers in the classically allowed region to find

å å h= -
+

= =-
+

I
ℓ

k
k A g r R

2 1
tan , . A8i

ℓ m ℓ

ℓ

i
ℓ ℓ i ℓm

i
lm i

0

1

1

( )!! ( ) ( ) ( )

Figure A1. To facilitate the derivation of pseudo-potentials, each
scatterer is encapsulated within a sphere S of radius r0 where r0 is
assumed to be sufficiently large so that the electron-atom interactions
are negligible in the outside region Vout that excludes all the
spheres Si.
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A relation between A i
ℓm and ψℓm(ri) can be obtained from

the regular part of equation (4) utilizing the relation
 » +j x x ℓ0 2 1ℓ

ℓ( ) ( )!! [13]

y=
¶
¶

+
+

A
k ℓ r

r r
1

2
. A9ℓm

i

i
ℓ

i

ℓ

i
ℓ

ℓm i r

2 1
1

0i

⎛
⎝⎜

⎞
⎠⎟( )!!

[ ( )] ( )

Combining this result with equation (A8) for Ii leads to

b
h

y

=-å å

´
¶
¶

= =-
=

+

+
+



I
k

k
g

r
r r

r R
tan

,

, A10

i ℓ m ℓ
m ℓ

ℓ
ℓ i

i
ℓ lm i

i

ℓ

i
ℓ

ℓm i r

0
1

2 1

2 1
1

0i

⎛
⎝⎜

⎞
⎠⎟

[ ( )]
( )

[ ( )] ( )

where b º +ℓ ℓ2 1 2ℓ ( )!! ( )!!.
On the other hand, if we evaluate the volume integral for

ψ in equation (A4) over υi, and assuming again that räVout

and ψ(r) is regular as r Ri, we get

ò y- + ¢ + ¢ ¢ + ¢ =
u

I d r G Ur R r r R r
1

2
, 0.

A11

i i i i i i i
3

i

( ) ( ) ( )

( )

The last relation is true for any scatterer regardless of its posi-
tion. Substituting the following ZRPP into equation (A11)

y b
d h

y

=-å W

´
¶
¶

+ +

+
+



U
r

r

k

k
Y

r
r r

r
tan

, A12

i ℓ m ℓ
i

i
ℓ

ℓ i

i
ℓ ℓm i

i

ℓ

i
ℓ

ℓm i r

, 2 2 1

2 1
1

0i

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )
( )

[ ( )] ( )

one reproduces the results in equation (A10). This form of the
pseudo-potential was obtained in [13, 14] in a different context
and analysis.

For the scatterers in the classically forbidden region, we
repeat the steps from equation (A8) to equation (A12) to get
analogous results for negative scattering energies, using
equation (8) and  » - - + x ℓ x0 1 2 1ℓ

ℓ ℓ 1( ) ( ) ( )!! in the
expression for Ii to get

å å s= -
+

= =-

+
+

I
ℓ

k
k A g r R1

2 1
tan , .

A13

i
ℓ m ℓ

ℓ
ℓ

i
ℓ ℓ i ℓm

i
lm i

0

1
2 1

1
( ) ( )!! ( ) ( )

( )

The relation (A9) between Aℓm
i and ψℓm(ri), holds for any

scatterer because the leading terms in j x 0ℓ ( ) and
 x 0ℓ( ) are the same. Combining equation (A9) with the

expression (A13) for Ii, we get

b
s

y

=-å å

´
¶
¶

= =- +

+
+



I
k

k
g

r
r r s

r R
tan

,

. A14
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ℓ

ℓ
ℓ i

i
ℓ lm i

i

ℓ

i
ℓ

ℓm i r

0
1

2 1

2 1
1

0i

⎛
⎝⎜

⎞
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( ) ( )

[ ( )] ( )

For the scatterers in the classically forbidden region, the
following ZRPPs used in equation (A11) reproduces the result

in equation (A14)

y b
d s

y

=-å W

´
¶
¶

+ +

+
+



U
r

r

k

k
Y

r
r r

r
tan

. A15
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i

i
ℓ

ℓ i

i
ℓ ℓm i

i

ℓ

i
ℓ

ℓm i r

, 2 2 1

2 1
1

0i

⎛
⎝⎜

⎞
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( ) ( ) ( ) ( )

[ ( )] ( )

Appendix B. SODE solutions for the amplitude
representation of the wave function

Having analytical expressions for the amplitudes in the
asymptotic region for positive energies is very practical since
it removes the need for integrating the wave function over
large spatial regions for low energies. On the other hand, for
negative incident energies, these analytical solutions are
essential as they allow to identify and separate asymptotically
constant components of the amplitudes from which we can
extract stan ℓ. We find the second order differential equations
(SODE) solutions in a rather standard procedure, and since
the different cases are similar, we present the details of our
derivation for negative Einc and angular momentum ℓ=1.

The SODEs for Ci, ℓ=1 and Einc<0 following from
equations (16) and (17) are

c=
+ +
+

-
d C

dy

y y

y y

dC

dy
C2

2 1 1

1
, B1

2
1
2 2

1
1

( )
( )

( )

c=
- +
-

-
d C

dy

y y

y y

dC

dy
C2

2 1 1

1
. B2

2
2
2 2

2
2

( )
( )

( )

We express Ci as =C h y h yi
i i
1 2( ) ( ) and choose h i1 for which

the coefficient next to dh dyi
2 vanishes, leading to

= +-h e y y 1 , B3y
1
1 1 ( )) ( )

= -h e y y 1 , B4y
1
2 1 ( ) ( )

which results in the following SODEs for h i2
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We first solve analytically a similar system

=
+
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Functions h y
i
2

˜ ( ) are asymptotically exact solutions (as y 0)
of equations (B5) and (B6). Asymptotically exact solutions of
equations (B1) and (B2) are obtained as =C h y h yi

i i
1 2( ) ˜ ( ):

= + - + + +
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where Ei is the exponential integral function, cia(b), i=1,
2 are integration constants and the functions next to them are
approximate but asymptotically exact SODE solutions for Ci.
Two out of four of these solutions are trivial in the sense that
they are just constant functions.

For positive Einc, we have similar expressions for Ci but
the functions e±2/ y are replaced by oscillatory functions
e± i 2/ y

= + + - + +

+ -

-C y c c e y iy y iy y

ie E i y

2 6 3

4 2 ,

B11

a b
i y

i y
i

1 1 1
2 2 3 4

2

( ) [ ( )

( )]
( )

=C y C y . B122 1*( ) ( ) ( )

Consequently, the nontrivial SODE solutions for the ampli-
tudes asymptotically vanish for positive Einc so that only the
constant components remain as  ¥r , which is the pre-
ferred and expected behavior of the amplitudes in the limit
 ¥r . This is clearly not the case for Einc<0 since C2 is

divergent. For Einc<0, as explained in section 3.2, we need
to regroup terms in ψ and redefine Ci in order to get the
wanted constant asymptotic form of the amplitudes.

The exactness of the amplitudes Ci in equations (B9) and
(B10) can be improved in order to fulfill chosen precision
requirements. It is done by multiplying each SODE solution
of Ci by an additional function and then imposing the product
to be a solution of equations (B1) and (B2). Therefore, the
improved Ci are expressed as follows

= + - + + +

+ -

-C y c w y c e y y y y y

e E y w y

2 6 3

4 2 ,
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All additional functions are evaluated as asymptotic expan-
sions = + Sb =w a y1i s

s
s

s
1

0 , where s0 refers to the highest term
before the asymptotic expansion starts becoming divergent.
Finding the expansion coefficients of the wib functions is
facilitated by the following asymptotic expansions

å =
=

+
e E y

y
s2

2
. B15y

i
s

s
2

0

1
⎜ ⎟⎛
⎝

⎞
⎠( ) ! ( )

For positive Einc we have instead the following series

åp= + 

=

+

e E i y i e j
y

i
2

2
. B16i y

i
i y

j

j
2 2

0

1⎛
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⎠⎟( ) ! ( ) 



At first glance it may appear that the factor e±2 i/ y on the
right-hand side in the last equation is problematic since it

cannot be expanded in powers of y. However, this factor
cancels out with the overall factor em2 i/ y in the vanishing
SODE solution yielding eventually just a constant term which
then can be absorbed in the constants c1(2)a of equations (B11)
and (B12).

Below, we list the first terms in these expansions of
wia(ib)

c c c
= + - + +¼w

y y y
1

6 10 72
,
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B20
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In our calculation, the furthest point at which we use the
expession in these appendix corresponds approximately to
y0=1/30. For this y0, the largest s in the asymptotic
expansions is s0≈60.
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