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Abstract—We consider a system consisting of multiple in-
terdependent assets, and a set of defenders, each responsible
for securing a subset of the assets against an attacker. The
interdependencies between the assets are captured by an attack
graph, where an edge from one asset to another indicates that
if the former asset is compromised, an attack can be launched
on the latter asset. Each edge has an associated probability of
successful attack, which can be reduced via security investments
by the defenders. In such scenarios, we investigate the security
investments that arise under certain features of human decision-
making that have been identified in behavioral economics. In
particular, humans have been shown to perceive probabilities
in a nonlinear manner, typically overweighting low probabilities
and underweighting high probabilities. We show that suboptimal
investments can arise under such weighting in certain network
topologies. We also show that pure strategy Nash equilibria
exist in settings with multiple (behavioral) defenders, and study
the inefficiency of the equilibrium investments by behavioral
defenders compared to a centralized socially optimal solution.

Index Terms—Cyber-Physical Systems, Game Theory, Network
Security, Prospect Theory, Human Decision-Making.

I. INTRODUCTION

Modern cyber-physical systems (CPS) are increasingly fac-
ing attacks by sophisticated adversaries. These attackers are
able to identify the susceptibility of different targets in the
system and strategically allocate their efforts to compromise
the security of the network. In response to such intelligent
adversaries, the operators (or defenders) of these systems also
need to allocate their often limited security budget across many
assets to best mitigate their vulnerabilities. This has led to
significant research in understanding how to better secure these
systems, with game-theoretical models receiving increasing
attention due to their ability to systematically capture the
interactions of strategic attackers and defenders [1]-[8].

In the context of large-scale interdependent systems, adver-
saries often use stepping-stone attacks to exploit vulnerabilities
within the network in order to compromise a particular target
[9]. Such threats can be captured via the notion of attack
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graphs that represent all possible paths that attackers may have
to reach their targets within the CPS [10]. The defenders in
such systems are each responsible for defending some subset
of the assets [2], [11] with their limited resources. These
settings have been explored under various assumptions on the
defenders and attackers [11]-[13].

In much of the existing literature, the defenders and attack-
ers are modeled as fully rational decision-makers who choose
their actions to maximize their expected utilities. However, a
large body of work in behavioral economics has shown that
humans consistently deviate from such classical models of
decision-making [14]-[16]. A seminal model capturing such
deviations is prospect theory (introduced by Kahneman and
Tversky in [14]), which shows that humans perceive gains,
losses, and probabilities in a skewed (nonlinear) manner,
typically overweighting low probabilities and underweighting
high probabilities. Recent papers have studied the implications
of prospect theoretic preferences in the context of CPS security
and robustness [17], [18], energy consumption decisions in the
smart grid [19], pricing in communication networks [20], and
network interdiction games [21].

In this paper, we consider the scenario where each (human)
defender misperceives the probabilities of successful attack in
the attack graph.! We characterize the impacts of such misper-
ceptions on the security investments made by each defender.
In contrast with prior work on prospect theoretic preferences
in the context of CPS security [17], which assumed that each
defender is only responsible for the security of a single node,
we consider a more general case where each defender is
responsible for a subnetwork (i.e., set of assets). Furthermore,
each defender can also invest in protecting the assets of other
defenders, which may be beneficial in interdependent CPS
where the attacker exploits paths through the network to reach
certain target nodes.

Specifically, we build upon the recent work [13] where the
authors studied a game-theoretic formulation involving attack
graph models of interdependent systems and multiple defend-
ers. The authors showed how to compute the optimal defense
strategies for each defender using a convex optimization
problem. However, they did not investigate the characteristics

"While existing literature on behavioral aspects of information security,
such as [22]-[24] rely on human subject experiments and more abstract
decision-making models, we consider the more concrete framework of attack
graphs in our analysis. This framework allows for a mapping from existing
vulnerabilities to potential attack scenarios. Specifically, one model that is
captured by our formulation is to define vulnerabilities by CVE-IDs [25], and
assign attack probabilities using the Common Vulnerability Scoring System
(CVSS) [26].
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of optimal investments and the impacts of behavioral biases
of the defenders which are the focus of the present work.

We introduce the attack-graph based security game frame-
work in Section II, followed by the behavioral security game
setting in Section III. Under appropriate assumptions on the
probabilities of successful attack on each edge, we establish
the convexity of the perceived expected cost of each defender
and prove the existence of a pure Nash equilibrium (PNE) in
this class of games.

We primarily investigate the security investments when
users with such behavioral biases act in isolation (Section IV)
as well as in a game-theoretic setting (Section V). As a result,
we find certain characteristics of the security investments
under behavioral decision-making that could not have been
predicted under classical notions of decision-making (i.e.,
expected cost minimization) considered in prior work [13]. In
particular, we show that nonlinear probability weighting can
cause defenders to invest in a manner that increases the vul-
nerability of their assets to attack. Furthermore, we illustrate
the impacts of having a mix of defenders (with heterogeneous
levels of probability weighting bias) in the system, and show
that the presence of defenders with skewed perceptions of
probability can in fact benefit the non-behavioral defenders
in the system.

We then propose a new metric, Price of Behavioral An-
archy (PoBA), to capture the inefficiency of the equilibrium
investments made by behavioral decision-makers compared to
a centralized (non-behavioral) socially optimal solution, and
provide tight bounds for the PoBA. We illustrate the applica-
bility of the proposed framework in a case study involving a
distributed energy resource failure scenario, DER.1, identified
by the US National Electric Sector Cybersecurity Organization
Resource (NESCOR) [27] in Section VI.

This paper extends the conference version of this work [28]
in the following manner:

e We rigorously prove the uniqueness of optimal investment
decisions for behavioral defenders, and show that Behavioral
Security Games can have multiple PNEs in general.

e We quantify the inefficiency of the Nash equilibria by
defining the notion of PoBA, and provide (tight) bounds on it.

e We illustrate the theoretical findings via a case study.

II. THE SECURITY GAME FRAMEWORK

In this section, we describe our general security game
framework, including the attack graph and the characteristics
of the attacker and the defenders. An overview of our model
is shown in Figure 1.

A. Attack Graph

We represent the assets in a CPS as nodes of a directed
graph G = (V, £) where each node v; € V represents an asset.
A directed edge (v;,v;) € € means that if v; is successfully
attacked, it can be used to launch an attack on v;.

The graph contains a designated source node vg (as shown
in Figure 1), which is used by an attacker to begin her attack
on the network. Note that v, is not a part of the network under

Assets Managed by:
Defender 1 L
Defender 2
Defender 3 C—

Fig. 1: Overview of the interdependent security game frame-
work. This CPS consists of three interdependent defenders. An
attacker tries to compromise critical assets starting from v.

defense; rather it is an entry point that is used by an attacker
to begin her attack on the network.?

For a general asset vy € V, we define P, to be the
set of directed paths from the source v, to v; on the
graph, where a path P € 7P, is a collection of edges
{(vs,v1), (v1,v2), ..., (Vk, v¢) }. For instance, in Figure 1, there
are two attack paths from v, to v;.

Each edge (v;,v;) € & has an associated weight p); €
(0, 1], which denotes the probability of successful attack on
asset v; starting from wv; in the absence of any security
investments.3

We now describe the defender and adversary models in the
following two subsections.

B. Strategic Defenders

Let D be the set of all defenders of the network. Each
defender D), € D is responsible for defending a set Vj, C
V \ {vs} of assets. For each compromised asset v,, € Vj,
defender Dy, will incur a financial loss L,, € [0,00). For
instance, in the example shown in Figure 1, there are three
defenders with assets shown in different shades, and the loss
values of specific nodes are indicated.

To reduce the attack success probabilities on edges inter-
connecting assets inside the network, a defender can allocate
security resources on these edges.* We assume that each
defender Dy has a security budget By, € [0,00). Let z}
denote the security investment of defender Dy on the edge
(vs,v5). We define

X = {l'k € R‘ZEJ)HTI']C < Bk}, (1)

2If there are multiple nodes where the attacker can begin her attack, then we
can add a virtual node vs, and add edges from this virtual node to these other
nodes with attack success probability 1 without affecting our formulation.

3In practice, CVSS [26] can be used for estimating initial probabilities of
attack (for each edge in our setting). For example, [10] takes the Access
Complexity (AC) sub-metric in CVSS (which takes values in {low, medium,
high}, representing the complexity of exploiting the vulnerability) and maps it
to a probability of exploit (attack) success. The more complex it is to exploit a
vulnerability, the less likely an attacker will succeed. Similarly, [29] provides
methods and tables to estimate the probability of successtul attack from CVSS
metrics.

“Note that vs does not have any incoming edges, and hence, it can not be
defended.
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thus X is the set of feasible investments for defender Dy,
and it consists of all possible non-negative investments on the
edges of the graph such that the sum of these investments
is upper bounded by Bj;. We denote any particular vector of
investments by defender Dy, as x; € Xj. Each entry of zy
denotes the investment on an edge.

Letx = [xl, Ty, zm‘] be a joint defense strategy of all
defenders, with z; € X} for defender Dy; thus, x € RLDOHS‘.
Under a joint defense strategy X, the total investment on edge
(vi,v5) is z;; = > DreD af ;. Let pij : Ryo — [0,1] be a
function mapping the total investment x; ; to an attack success
probability, with p; ;(0) = p{ ;. In particular, p; j(z; ;) is the
conditional probability that an attack launched from v; to v;
succeeds, given that v; has been successfully compromised.

C. Adversary Model and Defender Cost Function

In networked cyber-physical systems (CPS), there are a
variety of adversaries with different capabilities that are simul-
taneously trying to compromise different assets. We consider
an attacker model that uses stepping-stone attacks [9]. In
particular, for each asset in the network, we consider an
attacker that starts at the entry node vy and attempts to
compromise a sequence of nodes (moving along the edges of
the network) until it reaches its target asset. If the attack at any
intermediate node is not successful, the attacker is detected and
removed from the network. Note that our formulation allows
each asset to be targeted by a different attacker, potentially
starting from different points in the network.

In other words, after the defense investments have been
made, then for each asset in the network, the attacker chooses
the path with the highest probability of successful attack for
that asset (such a path is shown in red in Figure 1). Such
attack models (where the attacker chooses one path to her
target asset) have previously been considered in the literature
(e.g., [30], [31D).

To capture this, for a given set of security investments by
the defenders, we define the vulnerability of a node v,,, € V as
Igrel%i H pi,j(xi ), where Pp, is the set of all directed

(vivj)EP
paths from the source v, to asset v,,; note that for any given
path P € P,,, the probability of the attacker successfully
compromising v,,, by taking the path P is H Dii(ij),
(vivj)eP

where p; ;(x; ;) is the conditional probability defined at the
end of Section II-B. In other words, the vulnerability of each
asset is defined as the maximum of the attack probabilities
among all available paths to that asset.

The goal of each defender Dy is to choose her investment
x € Xj in order to minimize the expected cost defined as

é’k(xk,x,k)z Z Lm(max H pi,j(xi,j)) 2)

PEPm
Vi € Vi (viv)EP
subject to xp € Xj, and where x_j is the vector of in-
vestments by defenders other than Dj. Thus, each defender
chooses her investments in order to minimize the vulnerability

Perceived Probability (wi

014 0.‘6 018 1

True Probability (p)
Fig. 2: Prelec probability weighting function (3) which trans-
forms true probabilities p into perceived probabilities w(p).
The parameter « controls the extent of overweighting and
underweighting.

of her assets, i.e., the highest probability of attack among all
available paths to each of her assets.’

In the next section, we review certain classes of probability
weighting functions that capture human misperception of
probabilities. Subsequently, we introduce such functions into
the above security game formulation, and study their impact
on the investment decisions and equilibria.

III. NONLINEAR PROBABILITY WEIGHTING AND THE
BEHAVIORAL SECURITY GAME

A. Nonlinear Probability Weighting

The behavioral economics and psychology literature has
shown that humans consistently misperceive probabilities
by overweighting low probabilities and underweighting high
probabilities [14], [32]. More specifically, humans perceive
a “true” probability p € [0,1] as w(p) € [0,1], where
w(+) is a probability weighting function. A commonly studied
probability weighting function was proposed by Prelec in [32],
and is given by

w(p) = exp [— (=log(p))™ |, pe€]0,1], 3)

where o € (0,1] is a parameter that controls the extent of
overweighting and underweighting. When o = 1, we have
w(p) = p for all p € [0, 1], which corresponds to the situation
where probabilities are perceived correctly. Smaller values
of a lead to a greater amount of overweighting and under-
weighting, as illustrated in Figure 2. Next, we incorporate this
probability weighting function into the security game defined
in the last section, and define the Behavioral Security Game
that is the focus of this paper.

B. The Behavioral Security Game

Recall that each defender seeks to protect a set of assets,
and the probability of each asset being successfully attacked

5This also models settings where the specific path taken by the attacker or
the attack plan is not known to the defender apriori, and the defender seeks
to make the most vulnerable path to each of her assets as secure as possible.
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is determined by the corresponding probabilities on the edges
that constitute the paths from the source node to that asset.
This motivates a broad class of games that incorporate prob-
ability weighting, as defined below.

Definition 1. We define a Behavioral Security Game as a game
between different defenders in an interdependent network,
where each defender misperceives the attack probability on
each edge according to the probability weighting function
defined in (3). Specifically, the perceived attack probability
by a defender Dy, on an edge (v;,v;) is given by

wi(pi,j(x4,5)) = exp {— (—log(pij(z:;))) ™ }» )
where p; j(z; ;) € [0,1] and oy, € (0,1].

Remark 1. The subscript £ in «y and wg(-) allows each
defender in the Behavioral Security Game to have a different
level of misperception. We will drop the subscript k£ when it
is clear from the context. |

Incorporating this into the cost function (2), each defender
D, seeks to minimize her perceived expected cost

max
PeP,

Cr(zr,x—1)= Z L,

Vi € Vi

T w i)
" (vi,v;)EP

&)
Thus, our formulation complements the existing decision-
making models based on vulnerability and cost by incorpo-
rating certain behavioral biases in the cost function.

Remark 2. In addition to misperceptions of probabilities,
empirical evidence shows that humans perceive costs differ-
ently from their true values. In particular, humans (i) compare
uncertain outcomes with a reference utility or cost, (ii) exhibit
risk aversion in gains and risk seeking behavior in losses, and
(iii) overweight losses compared to gains (loss aversion). A
richer behavioral model, referred to as cumulative prospect
theory [10], incorporates all these aspects in its cost function.
However, in the setting of this paper, this richer model does
not significantly change the cost functions of the defenders.
Specifically, the attack on an asset is either successful or it is
not. If the reference cost is zero for each asset (i.e., the default
state where the asset is not attacked successfully), then suc-
cessful attack constitutes a loss, and the index of loss aversion
only scales the constant L,, by a scalar without changing the
dependence of the cost function on the investments. ]

C. Assumptions on the Probabilities of Successful Attack

The shape of the probability weighting function (3) presents
several challenges for analysis. In order to maintain analytical
tractability, we make the following assumption on the proba-
bilities of successful attack on each edge.

Assumption 1. For every edge (v;,v;), the probability of
successful attack p; ;(z; ;) is log-convexS, strictly decreasing,
and twice continuously differentiable for x; ; € [0,00).

This is a common assumption in the literature. In particular, [33] shows
that log-convexity of the attack probability functions is a necessary and
sufficient condition for the optimal security investment result of the seminal
paper [34] to hold.

One particular function satisfying the above conditions is

(6)

Such probability functions fall within the class commonly
considered in security economics (e.g., [34]), and we will
specialize our analysis to this class for certain results in the
paper. For such functions, the (true) attack success probability
of any given path P from the source to a target v; is given by

II

('Um )UH)EP

(I Ha)en(- X wma) @

(Vm,vn)EP (Vm,vn)EP

pij(wi5) = P} jexp(—zi ;).

pnz,n(x?n,n)

Thus, the probability of successful attack on a given path
decreases exponentially with the sum of the investments on
all edges on that path by all defenders.

Remark 3. The paper [13] studied this same class of security
games for the case of non-behavioral defenders (i.e., with
ar = 1,V Dy, € D). For that case, with probability functions
given by (6), [13] showed that the optimal investments for
each defender can be found by solving a convex optimization
problem. Suitable modifications of the same approach to
account for the parameter aj will also work for determining
the optimal investments by the behavioral defenders in this
paper. We omit the details in the interest of space. ]

IV. PROPERTIES OF THE OPTIMAL INVESTMENT
DECISIONS BY A SINGLE DEFENDER

We start our analysis of the impact of behavioral decision-
making by considering settings with only a single defender
(i.e., |D| = 1). In particular, we will establish certain proper-
ties of the defender’s cost function (5), and subsequently iden-
tify properties of the defender’s optimal investment decisions
under behavioral (i.e., « < 1) and non-behavioral (i.e., « = 1)
decision-making. This setting will help in understanding the
actions (i.e., best responses) of each player in multi-defender
Behavioral Security Games, which we will consider in the next
section. In this section, we will refer to the defender as Dy,
and drop the vector x_j, from the arguments.

A. Convexity of the Cost Function

We first establish the convexity of the defender’s cost
function. To do so, we start with the following result.

Lemma 1. For oy, € (0,1) and (v;,vj) € &, let h(z; ;) =
(—log(pi,j(zi;)))**. Then, h(x; ;) is strictly concave in x; ;
for z;; € [0,00) under Assumption 1. Moreover, h(z; ;) is
concave in x; ; for ay, € (0,1].

Using the above result, we now establish that the defender’s
cost function (5) is convex.

Lemma 2. For all oy, € (0,1] and under Assumption 1, the
cost function (5) of the defender Dy, is convex in the defense
investment xy.

The proofs of Lemma 1 and Lemma 2 are omitted in the
interest of space and can be found in the extended version of
the paper [35].
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B. Uniqueness of Investments

Having established the convexity of the defender’s cost
function (5), we now observe the difference in the investment
decisions made by behavioral and non-behavioral defenders. In
particular, we first show that the optimal investment decisions
by a behavioral defender are unique, and then contrast that
with the (generally) non-unique optimal investments for non-
behavioral defenders.

Proposition 1. Consider an attack graph G = (V,€) and
a defender Dy. Assume the probability of successful attack
on each edge satisfies Assumption 1 and o € (0,1) in
the probability weighting function (4). Then, the optimal
investments by defender Dy, to minimize (5) are unique.

Proof. Consider the defender’s optimization problem for the
cost function in (5). Denote a path (after investments) to be
a “critical path” of an asset if it has the highest probability
of successful attack from the source to that asset (note that
multiple paths can be critical). The “value” of a path is its
probability of successful attack (product of perceived proba-
bilities on each edge in the path).

We claim that in any optimal solution x7, every edge that
has a nonzero investment must belong to some critical path.
Let (v,, vp) be an edge that does not belong to any critical path
and suppose by contradiction that x}, is an optimal solution
of (5) in which the edge (v,,vp) has a nonzero investment.
Now, remove a sufficiently small nonzero investment ¢ from
the edge (v, vp) and spread it equally among all of the edges
of the critical paths. This reduces the total attack probability on
the critical paths and thereby decreases the cost in (5), which
yields a contradiction. This shows that our claim is true.

Now, suppose that the defender’s cost function C(xy) does
not have a unique minimizer. Then, there exist two different
minimizers x}g and x% Let E C £ be the set of edges where
the investments are different in the two solutions. For each
asset v, € Vi, let P,,, C P, be the set of all paths from the
source to v,, that pass through at least one edge in E. Define
z} = L(2} + 27), which must also be an optimal solution of
Cr(z1) (by convexity of C(xy), as established in Lemma 2).
Furthermore, a component of ;vi is nonzero whenever at least
one of the corresponding components in z}, or z is nonzero.
In particular, 23 is nonzero on each edge in E.

For any investment vector xj, given a path P, we use
2k, p to denote the vector of investments on edges on the
path P. For each asset v,, € Vj and path P € P,,, denote
hp(zrpp) = Z (—log(pi j(z;;)))**. By Lemma 1,

(vi,v;)EP
each term of the form (— log(p; ;(z;,;)))™* is strictly concave
in x; ; when oy, € (0,1). Thus, hp(zk,p) is strictly concave
in Tk P for oy, € (0, 1).
Then, using (4), the value of the path P is given by

T weij(@i;) = exp(—hp(ze p)).

(vi,vj)EP

fp(zrp) =

Note that by strict concavity of hp(zg, p) in zx p when ay €
(0,1), fp(xg, p) is strictly convex in x p when ay € (0,1).

For each asset v,,, € V}, the value of each critical path is

2
gm(TK) = Jmax fe(zk,p)

m

max _
PEP\Pm

fP(xk,P)) :

= max ( max fp(zk,p),
PeP,,

Now, returning to the optimal investment vector xi, define

fP(CUi,P)}-

max

M 2 {v,, € Vi| max fr(aip) > )
PEP, PEPm\Pm

In other words, M is the set of assets for which there is
a critical path (under the investment vector z7) that passes
through the set E' (where the optimal investments z} and z7
differ). Now there are two cases. The first case is when M is
nonempty. We have (from (5))

Z Lm Im xk)

§ Lm 9m xk
v,,,LEJW

vm¢]\4
@SN L, fr(ai p)

vaA
+ Z Ly max fp(a} p)

PE’PT’L
vmeM

Z Ly, L max

N 2 PEPm\Pm
vm &M

+ Z L77L

vmelw

(©)
S S Ly max (fplakp) + Fplad )

. PePy,
vm &M

+ZL

vaM

1 1 2
<3 Z Ly, (Pnel%fan(xktp) + max fP(xk,P)>

m

max _
PEP\Pm

(fP(xllc,P) + fP(xi,P))

max (fp(zy.p) + [P} p))

m

5 jnax (fP(ka p)+ fP(l“k p))

PEPm

ZA Ly, <PH€12713X fe(zy,p) + max fp(a} P))

Z Loy gm xk))

Vm €V

1
-l ( S Lo gm(al)
Vm €V

Note that (a) holds from the definition of M. Also, (b) holds
since for each P € Py, fp (2} p) < 5(fp(zf p)+ fr(2} p))
by strict convexity of fp in z p and since xz p 1s a strict
convex combination of a:k p and xk p (by definition of P,,).

Thus, for v,, € M, max fp(z}, P) < max 3(fp(z}, p) +
PEP,

f p(xk p)). Further, (c) holds since the maximum over a subset
of the paths (P,, or P,, \ P) is less than or equal the
maximum over the set of all paths P,,. Finally, (d) holds as
the maximum of a sum of elements is at most the sum of
maxima. Thus, Cy,(2}) < £(Ck(z}) + Ci(z3)) which yields
a contradiction to the optimality of z}, and 7.

In the second case, suppose M is empty. Thus, Vv, € Vi,
max fp(.’ﬂzp) < max fp(l'%P). In other words, for

m m m

all assets v, € Vj, no critical paths go through the edge
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set E (since P, contains all such paths). However, 2 has
nonzero investments on edges in E. Thus, xi cannot be an
optimal solution (by the claim at the start of the proof).
Thus, the second case is also not possible. Hence there cannot
be two different optimal solutions, and therefore the optimal
investments for the defender Dy, are unique. O

In contrast to the above result, the optimal investments by
a non-behavioral defender (i.e., &« = 1) need not be unique.
To see this, consider an attack graph where the probability of
successful attack on each edge is given by the exponential
function (6). As argued in equation (7), the probability of
successful attack on any given path is a function of the sum
of the security investments on all the edges in that path.
Thus, given an optimal set of investments by a non-behavioral
defender, any other set of investments that maintains the same
total investment on each path of the graph is also optimal.

C. Locations of Optimal Investments for Behavioral and Non-
Behavioral Defenders

We next study differences in the locations of the optimal
investments by behavioral and non-behavioral defenders. In
particular, we first characterize the optimal investments by
a non-behavioral defender who is protecting a single asset,
and subsequently compare that to the investments made by a
behavioral defender. In the following result, we use the notion
of a min-cut in the graph. Specifically, given two nodes s and
t in the graph, an edge-cut is a set of edges £&. C £ such that
removing &, from the graph also removes all paths from s
to t. A min-cut is an edge-cut of smallest cardinality over all
possible edge-cuts [36].

Proposition 2. Consider an attack graph G = (V,£). Let the
attack success probability under security investments be given
by p; j(x; ;) = e "3, where x; ; € R is the investment on
edge (v;,v;). Suppose there is a single target asset vy (i.e., all
other assets have loss 0). Let £, C £ be a min-cut between
the source node vs and the target v;. Then, it is optimal for a
non-behavioral defender Dy, to distribute all her investments
equally only on the edge set E. in order to minimize (2).

Proof. Let N = |&.| represent the number of edges in the
min-cut set £. Let B be the defender’s budget.

Consider any optimal investment of that budget. Recall
from (7) that for probability functions of the form (6), the
probability of a successful attack of the target along a certain
path P is a decreasing function of the sum of the investments
on the edges on that path. Using Menger’s theorem [36], there
are N edge-disjoint paths between v, and v; in G. At least
one of those paths has total investment at most %. Therefore,
the path with highest probability of attack from v, to v; has
total investment at most %.

Now consider investing % on each edge in the min-cut.
Since every path from v, to v; goes through at least one edge
in &, every path has at least % in total investment. Thus, it
is optimal to only invest on edges in &..

Finally, consider investing non-equally on edges in £, where
an edge (v;,v;) € & has investment z;; < %. Under
this investment, since there are N edge-disjoint paths from

Fig. 3: An attack graph where a behavioral defender makes
suboptimal investment decisions.

vs to vy in G, there exists a path P from vs to v, that

has total investment less than %. Thus, the path with the

highest probability of attack has a probability of attack larger

than exp(—%) (which would be obtained when investing %

equally on each edge in &.). Therefore, the true expected

cost in (2) is higher with this non-equal investment. Thus,
B

the optimal investment on &. must contain % investment on

each edge in &.. O

Remark 4. The above result will continue to hold for more
general probability functions py, n(Zm.n) = p?n’ne’xmw with
. #1it ]
(Vm,vn)EP
The baseline successful attack probability is then the same

along every path to v;, and thus optimal investments can be
restricted to the edges in the min-cut set. |

P 18 the same for every path P € P.

The conclusion of Proposition 2 no longer holds when we
consider the investments by a behavioral defender (i.e., with
ay < 1), as illustrated by the following example.

Example 1. Consider the attack graph shown in Figure 3, with
a single defender D (we will drop the subscript k for ease of
notation in this example) and a single target asset vs with
a loss of Ly = 1 if successfully attacked. Let the defender’s
budget be B, and let the probability of successful attack on
each edge (v;,v;) be given by p; ;(x; ;) = e~ ", where x; ;
is the investment on that edge.

This graph has two possible min-cuts, both of size 1: the
edge (vs,v1), and the edge (v4,vs). Thus, by Proposition 2,
it is optimal for a non-behavioral defender to put all of her
budget on either one of these edges.

Now consider a behavioral defender with o < 1. With the
above expression for p; ;j(x; ;) and using the Prelec function
4), we have w(p; j(z;;)) = e i, Thus, the perceived
expected cost function (5) is given by

o o « o o o o o
C(x):max (6 LT 17T 072 g $4’5,6 LTg 1%y 37 T34 w4,5)’

corresponding to the two paths from the source vs to the target
v One can verify (using the KKT conditions) that the optimal
investments are given by

1
T12=1To4=T13=2T34=2"TT47,
B — 4LC172 B (8)
= xs,l — — T .
2 2+ 4(25-1)
Thus, for the true expected cost function (2), the optimal

investments (corresponding to the non-behavioral defender)
yield a true expected cost of e~ B, whereas the investments

L4.5
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of the behavéoml defender yield a true expected cost of

e 2% "e 11251 which is larger than that of the non-

behavioral defender.

The above example illustrates a key phenomenon: as the
defender’s perception of probabilities becomes increasingly
skewed (captured by a becoming smaller), she shifts more
of her investments from the min-cut edges to the edges on the
parallel paths between v; and wv4. This is in contrast to the
optimal investments (made by the non-behavioral defender)
which lie entirely on the min-cut edges. Indeed, by taking the
limit as « 1" 1, we have

. 1 oo
Z;; = lim 2°-T z,, =2 Ts1 =0
atTl

for edges (v;,v;) on the two parallel portions of the graph.

We now use this insight to identify graphs where the
behavioral defender finds that investing only on the min-cut
edges is not optimal.

Proposition 3. Consider an attack graph G with a source vy
and a target vy. Let E. be a min-cut between vs and vy, with
size |E.| = N. Suppose the graph contains another edge cut
&, such that £, NE. = 0 and |E.| > |E.|. Let the probability
of successful attack on each edge (v;,v;) € £ be given by
pij(xi ;) = e "3, where x; ; is the investment on that edge.
Let B be the budget of the defender. Then, if 0 < oy < 1,
investing solely on the min-cut set & is not optimal from the
perspective of a behavioral defender.

Proof. Denote M = |£.| > |E.| = N. By Proposition 2, it is
optimal to invest the entire budget uniformly on edges in &,
in order to minimize the cost function (2). We will show that
this investment is not optimal with respect to the behavioral
defender’s cost function (5); we will drop the subscript £ in
ay, for ease of notation.

Starting with the optimal investments on the min edge cut
E. where each edge in £ has nonzero investment (as given
by Proposition 2), remove a small investment € from each of
those IV edges, and add an investment of % to each of the
edges in 5;. We show that when e is sufficiently small, this will
lead to a net reduction in perceived probability of successful
attack on each path from v to v;.

Consider any arbitrary path P from vg to v. Starting
with the investments only on the minimum edge cut &, the
perceived probability of successful attack on path P will be

f1(x) & exp (— Z zf‘]>

(vi,vj)€EEe,
(vi,v5)EP

After removing e investment from each of the NV edges in &,
and adding an investment of % to each of the edges in &,
the perceived probability on path P will be:

pezer(~ Y ()= X @)

(vi,vj)eé?;, (vi,vj)€Ee,
(vi,0;)EP (viv)eP

The net reduction in perceived probability on path P will be
positive if f2(x) < f1(x), i.e.,

Ne\“ . §
2 M) +Y (@ig—et> Y afy
Vi,V g/" (vi,vj)€Ee, (vi,v;)EEe,
((m ,Jj))eelg (vi,vj)EP (vi,0;)EP
)
If we define
Neyo N
ORI (ﬁ) + Y (@ig—o
Vi,V5 g’,, (vi,vj)€E.,
(('Uiy'jj))eeﬁ (vi,vj)EP

we see that inequality (9) is equivalent to showing that f(e) >
f(0). We have

df aN Neya-1 o
w=ar X (1) o X @a-orh
(vi,vj)eé'é, (vi,vj)€Ee,

(vi,v )EP (wivg)ep

Note that lim, Z—Jz = oo which shows that f(e) is increasing
in e for sufficiently small e. Therefore, fo(x) < f1(x) for
sufficiently small e. Since this analysis holds for every path
from vs to v, this investment profile outperforms investing
purely on the minimum edge cut. O

Note that the graph in Figure 3 satisfies the conditions in
the above result, with & = (vy, vs), &, = {(v1, v2), (v1,v3)}.

Having established properties of the optimal investment
decisions for behavioral and non-behavioral defenders, we
next turn our attention to the Behavioral Security Game with
multiple defenders, introduced in Section III.

V. ANALYSIS OF MULTI-DEFENDER GAMES
A. Existence of a PNE

We first establish the existence of a Pure Strategy Nash
Equilibrium (PNE) for the class of behavioral games defined
in Section III. Recall that a profile of security investments by
the defenders is said to be a PNE if no defender can decrease
her cost by unilaterally changing her security investment.

Proposition 4. Under Assumption 1, the Behavioral Security
Game possesses a pure strategy Nash equilibrium (PNE) when
ay € (0,1] for each defender Dj,.

Proof. The feasible defense strategy space X in (1) is
nonempty, compact and convex for each defender Dj. Fur-
thermore, for all D, € D and investment vectors X_j, the
cost function C(z,x_k) in (5) is convex in z; € Xy; this
follows from Lemma 2 and the fact that the investment x; ;
on each edge is a sum of the investments of all players on that
edge. As a result, the Behavioral Security Game is an instance
of a concave game, which always has a PNE [37]. [

Note that in contrast to the best responses by each player
(which were unique when ay € (0, 1), as shown in Proposi-
tion 1), the PNE of Behavioral Security Games is not unique
in general. We illustrate this through the following example.

Example 2. Consider the attack graph of Figure 4. There
are two defenders, Dy and Dy, where defender D1 wishes
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Fig. 4: An instance of a Behavioral Security Game with multiple PNE. Defenders D; and Ds are behavioral decision-makers
with oy = as = 0.5. The numbers above/left and below/right of the edges represent investments by Dy and D, respectively.

Ly Lo L3

Fig. 5: An attack graph where PoBA is lower bounded by
(1 — €) exp(B).

to protect node vy, and defender Dy wishes to protect node
vs. Suppose that Dy has a budget By = 16 and D5 has
Bs = 12. Figs. 4a and 4b illustrate two distinct PNE for this
game. We obtained multiple Nash equilibria by varying the
starting investment decision of defender D1 and then following
best response dynamics until the investments converged to an
equilibrium.

It is interesting to note that these two Nash equilibria
lead to different costs for the defenders. First, for the Nash
equilibrium of Figure 4a, defender D;’s perceived expected
cost, given by (5), is equal to exp(—4), while her true expected
cost, given by (2), is equal to exp(—8). Defender Do has a
perceived expected cost of exp(—6), and a true expected cost
of exp(—12). In contrast, for the Nash equilibrium in Figure
4b, defender D has a perceived expected cost of exp(—2 \/5)
and a true expected cost of exp(—10). Defender Do has a
perceived expected cost of exp(—5.78) and a true expected
cost of exp(—11.28).

As a result, the equilibrium in Figure 4a is preferred by
defender Do, while the equilibrium in Figure 4b has a lower
expected cost (both perceived and real) for defender D1. Note
also that the total expected cost (i.e., sum of the true expected
costs of defenders D1 and D) is lower in the equilibrium in
Figure 4b; that is, the PNE of Figure 4b would be preferred
from a social planner’s perspective.

B. Measuring the Inefficiency of PNE: The Price of Behav-
ioral Anarchy

The notion of Price of Anarchy (PoA) is often used to
quantify the inefficiency of Nash equilibrium compared to
the socially optimal outcome [38]. Specifically, the Price of
Anarchy is defined as the ratio of the highest total system
cost at a PNE to the total system cost at the social optimum.
For our setting, we seek to define a measure to capture the
inefficiencies of the equilibrium due to both the defenders’

individual strategic behavior and their behavioral decision-
making. We thus define the Price of Behavioral Anarchy
(PoBA) as the ratio of total system true expected cost of
behavioral defenders at the worst PNE (i.e., the PNE with
the largest total true expected cost over all PNE), to the total
system true expected cost at the social optimum (computed by
a non-behavioral social planner).’

Specifically, we define C/(x) £ Y DD Cr(x), where C,
(defined in (2)) is the true expected cost faced by defender Dy,
under the investment vector x. Let X' := {x € RLDO”El |z, €
argmin, ¢ x, Cx(z,X_x),VDy € D}, ie., X" is the set of all
investments that constitute a PNE. We now define the Price of
Behavioral Anarchy as

PoBA — Sup,—chms C()_()

10
T (10)

where x* denotes the investments at the social optimum
(computed by a non-behavioral social planner with access
to the sum of all defenders’ budgets). Mathematically, let
X% = {x* e RN < S0, Byl e, X5
is the set of all feasible investments by the social planner,
and x* € argmin,, ys.. C(x). When X is any PNE, but not
necessarily the one with the worst social cost, we refer to
the ratio of C/(X) and C(x*) as the “inefficiency” of the
equilibrium. We emphasize that the costs in both the numerator
and the denominator are the sum of the frue (rather than
perceived) expected costs of the defenders.

We will establish upper and lower bounds on the PoBA.
We first show that the PoBA is bounded if the total budget is
bounded (regardless of the defenders’ behavioral levels).

Proposition 5. Let the sum of the budgets available to all
defenders be B, and let the probability of successful attack on
each edge (v;,v;) € € be given by p; j(x; ;) = e . Then,
for any attack graph and any profile of behavioral levels {ay, },
PoBA < exp(B).

Proof. We start with the numerator of the PoBA in (10) (the
total true expected cost at the worst PNE). Recall that each
defender Dy, incurs a loss L, for each compromised asset vy, .

7One could also consider the impact of a behavioral social planner; since the
goal of our paper is to quantify the (objective) inefficiencies due to behavioral
decision-making, we leave the study of a behavioral social planner for future
work.
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Fig. 6: The numbers above (below) each edge represent investments by defender D; (D-). In (a), the non-behavioral defender
D1 does not receive any investment contributions from the non-behavioral defender Ds. In (b), the non-behavioral defender
D benefits from the investment contributions of the behavioral defender Ds.

Thus, the worst case true expected cost under any PNE (in-
cluding the worst PNE) is upper bounded by Z Z L.,

. DiED vy €V,
(i.e., the sum of losses of all assets). On the other hand, the

denominator (the socially optimal true expected cost) is lower

Z Z L,, | exp(—B) (which can only be

Dy€D vy €V,
achieved if every asset has all of the budget B, invested by a

social planner, on its attack path). Substituting these bounds
into (10), we obtain PoBA < exp(B). O

bounded by

Next, we show that the upper bound on PoBA obtained in
Proposition 5 is asymptotically tight.

Proposition 6. For all B > 0 and ¢ > 0, there exists an
instance of the Behavioral Security Game with total budget B
such that the PoBA is lower bounded by (1 — €) exp(B).

Proof. Consider the attack graph in Figure 5, where the
probability of successful attack on each edge (v;,v;) is given
by (6) with pgﬂ- = 1. This graph contains K defenders, and
each defender Dj, is responsible for defending target node
vi. Assume the total security budget B is divided equally
between the K defenders (i.e., each defender has security
budget %). Let the first node have loss equal to L; = K,
and the other K — 1 nodes have loss ﬁ Then, the socially
optimal solution would put all the budget B on the first
link (vs,v1), so that all nodes have probability of successful
attack given by exp(—B). Thus, the denominator of (10) is
Yiy Liexp(—B) = (K + 1) exp(—B).

We now characterize a lower bound on the cost under a
PNE (i.e., the numerator of (10)). Specifically, consider the
investment profile where each defender D} puts their entire
budget % on the edge coming into their node vg. We claim
that this is a PNE. To show this, first consider defender D;.
Since investments on edges other than (v,,v1) do not affect
the probability of successful attack at node w1, it is optimal
for defender D; to put all her investment on (vs, v1).

Now consider defender D,. Given Di’s investment on
(vs,v1), defender Dy has to decide how to optimally spread
her budget of £ over the two edges (vs, v1) and (vq, v2) in or-
der to minimize her cost function (5). Thus, D>’s optimization

problem, given D;’s investment, is
B 2 2 @
minimize e~ (RHeI)™2=(12)"

$§,1+$?,2:%

(1)

The unique optimal solution of (11) (for all as € (0, 1)) would
be to put all £ into 27 , and zero on 22 ;. This is also optimal
(but not unique) when ais = 1.

Continuing this analysis, we see that if defenders
D1, Do, ..., Dr_1 have each invested % on the edges incom-

ing into their nodes, it is optimal for defender D) to also
invest their entire budget % on the incoming edge to vg. Thus,
investing % on each edge is a PNE.

The numerator of the PoBA under this PNE is lower
bounded by L, exp(—%) = Kexp(—%). Thus, the PoBA
is lower bounded by

Kexp(—ﬁ) Kexp(—ﬁ)

PoBA > K = K7 exp(B).

2 KiDep-B) ~ &1 PP

As the length of the chain grows, we have
KoDR) ) g, 1 > 0, th

A . Thus, for every e , there

exists K large enough such that the PoBA in the line graph

with K nodes is lower bounded by (1 — €) exp(B). O

Remark S. The upper bound obtained in Proposition 5 is
agnostic to the structure of the network, the number of de-
fenders, and their degree of misperception of probabilities. In
Proposition 6, our result shows that the upper bound obtained
in Proposition 5 is sharp (i.e., it cannot be reduced without ad-
ditional assumptions on the game). For any particular instance
of the problem, however, we can compute the inefficiency
directly, which will depend on the network structure and other
parameters of that instance. |

Before considering the case study, we will conclude this
section with an example of an interesting phenomenon, where
the (objectively) suboptimal investment decisions made by
a behavioral defender with respect to their own assets can
actually benefit the other defenders in the network.

Example 3. We consider the attack graph of Figures 6a and 6b
with two defenders, Dy and Ds. Defender D1 wishes to protect
node vs, and defender D+ wishes to protect node vy. Note that
Dq’s asset (vs) is directly on the attack path to Ds’s asset
(v4). Suppose that defender D1 has a budget By = 5, while
defender Do has a budget Bo = 20. The optimal investments
in the following scenarios were calculated using CVX [39].
Suppose both defenders are non-behavioral. In this case,
Proposition 2 suggests that it is optimal for Dy to put her
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Fig. 7: Attack graph of a DER.1 failure scenario adapted from
[27]. It shows stepping-stone attack steps that can lead to the
compromise of a photovoltaic generator (PV) (i.e., Ggy) or an
electric vehicle charging station (EV) (i.e., G1).

entire budget on the min-cut, given by the edge (vs,vy). The
corresponding PNE is shown in Figure 6a. On the other hand,
as indicated by Proposition 3, investing solely on the min-cut
is no longer optimal for a behavioral defender. Indeed, Figure
6b shows a PNE for the case where Do is behavioral with
ao = 0.6, and has spread some of her investment to the other
edges in the attack graph. Therefore, D1’s subnetwork will
benefit due to the behavioral decision-making by Ds.

It is also worth considering the total system true ex-
pected cost of the game at equilibrium, given by C(X) =
C1(R) + Co(X) where % is the investment at the PNE. For
this example, when both defenders are non-behavioral (i.e.,
o = ay = 1), C(X) = 16.42, while C(X) = 1.13 if
defender D5 is behavioral (with oy = 1,9 = 0.6). This
considerable drop in the total true expected cost shows that
the behavioral defender’s contributions to the non-behavioral
defender’s subnetwork may also be beneficial to the overall
welfare of the network, especially under budget asymmetries
or if defender D1’s asset is more valuable.

VI. CASE STUDY

Here, we examine the outcomes of behavioral decision-
making in a case study involving a distributed energy resource
failure scenario, DER.1, identified by the US National Electric
Sector Cybersecurity Organization Resource (NESCOR) [27].
Figure 7 is replicated from the attack graph for the DER.1
(Figure 4 in [27]). Suppose the probability of successful attack
on each edge is p; ;(z; ;) = e . There are two defenders,
D1 and D5. Defender D+’s critical assets are GGy and G, with
losses of Ly = 200 and L = 100, respectively. Defender D>’s
critical assets are GG7 and G, also with losses of L; = 200 and
L = 100, respectively. Note that G is a shared asset among
the two defenders.

We assume that each defender has a security budget of g
(i.e., the budget distribution is symmetric between the two
defenders). For a fair comparison, the social planner has total
budget B. In our experiments, we use best response dynamics
to find a Nash equilibrium x. We then compute the socially
optimal investment x*, and calculate the ratio given by (10)
to measure the inefficiency of the corresponding equilibrium.

Figure 8 shows the value of this ratio as we sweep «
(taken to be the same for both defenders) from 0 (most
behavioral) to 1 (non-behavioral), for different values of the
total budget B. As the figure shows, the inefficiency of the

30
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Fig. 8: The inefficiency for different behavioral levels of the
defenders. We observe that the inefficiency increases as the
security budget increases, and as the defenders become more
behavioral.®

equilibrium decreases to 1 as « increases, reflecting the fact
that the investment decisions become better as the defenders
become less behavioral; see Section IV. Furthermore, Figure 8
shows that the inefficiency due to behavioral decision-making
becomes exacerbated as the total budget B increases. This
happens as behavioral defenders shift higher amounts of their
budget to the parallel edges in the networks (i.e., not in the
min-cut edge set), as suggested by Proposition 3. On the other
hand, the social planner can significantly lower the total cost
when the budget increases, as she puts all the budget only on
the min-cut edges, as suggested by Proposition 2; this reduces
the total cost faster towards zero as the budget increases.

Our results may be applicable to other practical scenarios
(such as deploying moving-target defense) [13]. While the
inefficiency strictly increased with the budget in the above
case study, this phenomenon may not occur in all networks.
We omit further discussions about these aspects in the interest
of space.

VII. SUMMARY OF FINDINGS

In this paper, we presented an analysis of the impacts of
behavioral decision-making on the security of interdependent
systems. First, we showed that the optimal investments by
a behavioral decision-maker will be unique, whereas non-
behavioral decision-makers may have multiple optimal solu-
tions. Second, non-behavioral decision-makers find it optimal
to concentrate their security investments on minimum edge-
cuts in the network in order to protect their assets, whereas
behavioral decision-makers will choose to spread their invest-
ments over other edges in the network, potentially making
their assets more vulnerable. Third, we showed that multi-
defender games possess a PNE (under appropriate conditions
on the game), and introduced a metric that we termed the
“Price of Behavioral Anarchy” to quantify the inefficiency of
the (behavioral) PNE as compared to the security outcomes
under socially optimal investments. We provided a tight bound
on PoBA, which depended only on the total budget across
all defenders. However, we also showed that the tendency of
behavioral defenders to spread their investments over the edges

8Recall that the inefficiency of a particular PNE is the ratio of the total
system true expected cost at that PNE to the total system true expected cost
at the (non-behavioral) social optimum.
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of the network can potentially benefit the other defenders
in the network. Finally, we presented a case study where
the inefficiency of the equilibrium increased as the defenders
became more behavioral.

Overall, our analysis shows that human decision-making
(as captured by behavioral probability weighting) can have
substantial impacts on the security of interdependent systems,
and must be accounted for when designing and operating
distributed, interdependent systems. In other words, the in-
sights that are provided by our work (e.g., that behavioral
decision-makers may move some of their security investments
away from critical portions of the network) can be used by
system planners to identify portions of their network that may
be left vulnerable by the human security personnel who are
responsible for managing those parts of the network. A future
avenue for research is to perform human experiments to test
our predictions. Moreover, studying the properties of security
investments when different edges have different degrees of
misperception of attack probabilities is another avenue for
future research.
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