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Abstract. We study parallel replica dynamics in a general setting. We introduce a trajectory fragment frame-
work that can be used to design and prove consistency of parallel replica algorithms for generic
Markov processes. We use our framework to formulate a novel condition that guarantees an asyn-
chronous algorithm is consistent. Exploiting this condition and our trajectory fragment framework,
we present new synchronous and asynchronous parallel replica algorithms for piecewise deterministic
Markov processes.
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1. Introduction. Many problems in applied sciences require the sampling of complex
probability distributions. In computational chemistry---which is the main setting of this
article---such distributions can arise from stochastic models of molecular dynamics [34] or
chemical reaction networks [2], while obstacles to efficient sampling include high dimension-
ality and metastability, the latter being the tendency to become stuck in certain subsets of
state space [31]. Some attempts to surmount these difficulties have been based on impor-
tance sampling and stratification [51, 57, 58, 60], interacting particles [17, 18, 19, 20], coarse
graining and preconditioning [4, 35, 56], accelerated dynamics [32, 53, 61, 62], and nonreversi-
bility [21, 25, 33, 48, 68].

This article concerns parallel replica dynamics (ParRep) [62], an accelerated dynamics
method designed to overcome metastability. ParRep has two distinct advantages over many
other enhanced sampling methods. First, it computes correct dynamical [5, 30, 61] as well
as stationary or equilibrium [3, 65] quantities associated with a stochastic process. Second,
ParRep is very general: it only requires mild assumptions on the underlying process. Indeed,
though originally intended for Langevin dynamics [30, 61, 63], straightforward extensions of
ParRep to discrete and continuous time Markov chains have appeared in [3, 5, 65].

The goal of this article is as follows. First, we introduce a new mathematical framework
that may be used to design, and prove the consistency of, ParRep algorithms for Markov
processes satisfying a few mild assumptions. Second, we use our framework to obtain valuable
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686 DAVID ARISTOFF

insights into asynchronous computing. In particular, we present specific, novel conditions
that ensure an asynchronous ParRep algorithm is consistent. Lastly, we construct ParRep
algorithms for piecewise deterministic Markov processes (PDMPs) in both the synchronous
and asynchronous setting, leaning on our new framework to demonstrate their consistency.
Asynchronous ParRep algorithms must be carefully designed since, as we show below, inac-
curacies can arise when the speed of computing paths of the underlying process is coupled to
the process itself.

PDMPs are emerging as a useful tool in fields as diverse as applied probability [38],
computational chemistry [1, 7, 26, 28, 37, 44, 49, 50, 66], machine learning [9, 45, 67], and big
data [6]. As indicated by the name, PDMPs move along deterministic paths in between random
jump times. In the context of chemical reaction networks, PDMPs called hybrid models
can be obtained by approximating fast reactions by a deterministic flow, and representing
slow reactions with an appropriate Poisson process [28, 66]. The resulting PDMPs can be
metastable [10, 11, 12, 13, 39, 40, 41, 42, 43], making direct simulation unattractive. Several
PDMP-based algorithms have also been proposed for sampling from distributions known up
to normalization---like the Boltzmann distribution or the posterior distribution in Bayesian
analysis---including event chain Monte Carlo [26, 37], the zig-zag process [6], and the bouncy
particle sampler [9, 38]. Below, we give a general argument suggesting these PDMPs also
become metastable under certain conditions.

This article is organized as follows. Section 2 defines notation that we use throughout.
In section 3, we formally define metastability in terms of quasistationary distributions. We
describe ParRep in more detail, and explain what we mean by a consistent ParRep algorithm,
in section 4. In section 5 we outline a general mathematical framework for ParRep, and in
section 6 we study synchronous and asynchronous computing. Section 7 serves as a brief
introduction to PDMPs, while section 8 outlines several ParRep algorithms for PDMPs that
are based on our framework from section 5. A numerical example is in section 9. All proofs
are in section 10.

2. Notation. Throughout, X(t)t\geq 0 is a time homogeneous Markov process, either discrete
or continuous in time, with values in a standard Borel state space; U is a subset of the state
space; and g is a real-valued function defined on the state space. Without explicit mention we
assume all sets are measurable and all functions are bounded and measurable. We write X(t)
to refer to the process X(t)t\geq 0 at time t. We denote various expectations and probabilities by
\BbbE and \BbbP , with the precise meaning being clear from the context. We write \scrL for the probability
law of a random object, with \scrL above an equals sign indicating equality in law. We say a
random object is a copy of another random object if it has the same law as that object. When
we say a collection of random objects is independent we mean these objects are mutually
independent unless otherwise specified. We define a \wedge b = min\{ a, b\} and a \vee b = max\{ a, b\} ,
and write \lfloor s\rfloor for the greatest integer less than or equal to s.

3. Metastability. Informally, U is a metastable set for X(t)t\geq 0 if X(t)t\geq 0 tends to reach
a local equilibrium in U much faster than it escapes from U . Local equilibrium can be
understood in terms of quasistationary distributions (QSDs).
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GENERALIZING PARALLEL REPLICA DYNAMICS 687

Definition 3.1. Fix a subset U of state space, and consider

T = inf\{ t \geq 0 : X(t) /\in U\} ,

the first time X(t)t\geq 0 escapes U . A QSD \rho of X(t)t\geq 0 in U satisfies \rho (U) = 1 and

(3.1) \rho (A) = \BbbP (X(t) \in A| \scrL (X(0)) = \rho , T > t)

for every t \geq 0 and A \subseteq U .

Note that \rho is supported in U . Equation (3.1) states that if X(0) is distributed as \rho and
X(t)t\geq 0 does not escape from U by time t, then X(t) is distributed as \rho . Throughout, we will
assume the QSD of X(t)t\geq 0 in U exists, is unique, and is the long-time distribution of X(t)
conditioned to never escape U . That is, we assume that for any initial distribution of X(0)
supported in U ,

(3.2) \rho (A) = lim
t\rightarrow \infty 

\BbbP (X(t) \in A| X(s) \in U for s \in [0, t]) \forall A \subseteq U.

The QSD \rho can then be sampled as follows: Choose a time T \rho 
corr(U) for relaxation to \rho . Start

X(t)t\geq 0 in U , and if it escapes from U before time t = T \rho 
corr(U), restart it in U . Repeat this

until a trajectory of X(t)t\geq 0 remains in U for a consecutive time interval of length T \rho 
corr(U).

This trajectory's terminal position is then a sample of \rho . For more details on the QSD, see,
for instance, [16]. For conditions ensuring existence of and convergence to the QSD for general
Markov processes, see [14, 15, 16].

The following is a more formal definition of metastability: A set U is metastable forX(t)t\geq 0

if the time scale to reach \rho is small compared to the mean time to escape from U starting at \rho .
In some cases these times can be written in terms of the eigenvalues of the adjoint, L\ast , of the
generator L of X(t)t\geq 0, with absorbing boundary conditions on the complement of U . See [30]
and [65] for the corresponding spectral analysis for overdamped Langevin dynamics and finite
state space discrete and continuous time Markov chains, and see [8] for an application of these
ideas to choosing T \rho 

corr(U).

4. Parallel replica dynamics. ParRep can boost the efficiency of simulating metastable
processes [3, 5, 30, 62, 63, 65]. Currently, implementations have been proposed only for
Langevin or overdamped Langevin dynamics [30] and discrete or continuous time Markov
chains [3, 5, 65]. However, the generality of ParRep allows for extensions to any metastable
time homogeneous strong Markov process with c\`adl\`ag paths, in cases where the QSD exists
and metastable sets can be identified. We make this precise in the next section.

ParRep algorithms are based on two basic steps:

\bullet a step in which X(t)t\geq 0 reaches the QSD in some metastable set U , using direct or
serial simulation---called the decorrelation step;
\bullet a step generating an escape event from U , starting from the QSD, using parallel

simulation---called the parallel step.

By escape event we mean the random pair (T,X(T )), where T is the time for X(t)t\geq 0 to
escape from U when X(0) is distributed as the QSD in U , and X(T ) is the corresponding
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688 DAVID ARISTOFF

escape point. The parallel step efficiently computes an escape event starting from the QSD
via a sort of time parallelization.

The decorrelation step, as it uses only serial simulation, is exact. By exact we mean there
is zero error---except for the inevitable error in simulating X(t)t\geq 0 arising from numerical
discretizations, which we will ignore. Our analysis will therefore focus on the parallel step.

The parallel step is sometimes divided into two subroutines: first, a routine that generates
independent samples of the QSD in U---called dephasing---and second, a routine that uses
copies of X(t)t\geq 0 starting from these QSD samples to generate an escape event of X(t)t\geq 0

from U . Below, we will mostly omit discussion of the dephasing routine, and we will not
discuss the error associated with imperfect convergence to the QSD in the dephasing and
decorrelation steps, as these points have been previously studied in [8, 30, 52, 65].

We say the parallel step of a ParRep algorithm is consistent when

\bullet the parallel step generates escape events from each metastable set U with the correct
probability law---see Theorem 5.2 below;
\bullet the parallel step produces correct mean contributions to time averages in each metastable
set U---see Theorem 5.3 below.

By correct we mean exact, provided the QSD sampling has zero error. A consistent ParRep
algorithm defines a coarse dynamics, that is, a dynamics that is correct on the quotient space
obtained by considering each metastable set as a single point [3, 5, 65]. A consistent ParRep
algorithm also defines stationary averages that are correct for functions defined on the original
uncoarsened state space [3, 65]. ParRep produces only a coarse dynamics because the parallel
step does not resolve the exact behavior of X(t)t\geq 0. The parallel step is faithful enough to
X(t)t\geq 0, however, to produce correct stationary averages on the original uncoarsened state
space [3].

Previous analyses of ParRep have relied on the structure of X(t)t\geq 0 and the particular
algorithms studied [3, 5, 30, 65]. We introduce a new framework below that allows us to study
the consistency of any ParRep algorithm. Our analysis is inspired by ParSplice, a recent
implementation of ParRep employing asynchronous computing [46, 47, 54]. Our framework
provides explicit conditions that ensure an asynchronous ParRep algorithm is consistent. In
particular, it shows a certain class of asynchronous ParRep algorithms is consistent, provided
the wall-clock time to simulate a step of X(t)t\geq 0 is not coupled to its position in state space;
see section 6 below for precise statements.

5. Trajectory fragments. We now formalize conditions which lead to consistency of Par-
Rep. Our arguments are based on what we call trajectory fragments. The fragments are copies
of the underlying process satisfying the dependency conditions of Assumption 5.1 below. In
practice, the trajectory fragments may be computed asynchronously in parallel. We discuss
this in the next section.

The Xm(t)0\leq t\leq tm from Assumption 5.1 are the trajectory fragments. We will refer to
Xm(t)t>tm as a fragment's irrelevant future. The reason for this choice of words is that the
output of a general parallel step, described in Algorithm 5.1, is the same no matter how the
Xm(t)t\geq 0 are defined for times t > tm.

Assumption 5.1. Let X(t)t\geq 0 have c\`adl\`ag paths and the strong Markov property. AssumeD
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X(t)t\geq 0 has a QSD \rho in an open set U and that T = inf\{ t \geq 0 : X(t) /\in U\} is finite almost
surely. Let (Xm(t)t\geq 0, Tm)m\geq 1 be copies of (X(t)t\geq 0, T ) such that

conditional on Xm(0), Xm(t)t\geq 0 is independent of (Xk(t)t\geq 0)1\leq k<m;(5.1)

\scrL (Xm(0)| Tm - 1 > tm - 1, . . . , T1 > t1) = \rho for m \geq 2, \scrL (X1(0)) = \rho ,(5.2)

where tm > 0 are deterministic times satisfying
\sum \infty 

m=1 tm =\infty .

Algorithm 5.1 A general parallel step in U .

Let Assumption 5.1 hold and adopt the notation therein.

1. Define L = inf\{ m \geq 1 : Tm \leq tm\} .
2. In the discrete time case, set

gpar = \BbbE 

\Biggl( 
L\sum 

m=1

Tm\wedge tm - 1\sum 
t=0

g(Xm(t))

\Biggr) 
,

while in the continuous time case, set

gpar = \BbbE 

\Biggl( 
L\sum 

m=1

\int Tm\wedge tm

0
g(Xm(t)) dt

\Biggr) 
.

3. Let Tpar = t1 + \cdot \cdot \cdot + tL - 1 + TL and Xpar = XL(TL).

Once gpar, Tpar, and Xpar can be computed, the parallel step is complete. This parallel step
is consistent in the sense of Theorems 5.2 and 5.3 below.

Algorithm 5.1 outlines a general parallel step. As discussed above, this parallel step can
be combined with a decorrelation step to compute a coarse dynamics or a time average of a
function g. The idea behind Algorithm 5.1 is simple: We imagine concatenating fragments
whose starting points and terminal points are distributed as the QSD \rho , thus obtaining an
artificial long trajectory. See Figure 1 below. One must be careful, however, in treating
dependencies of the fragments. The dependencies described in Assumption 5.1 lead to a
consistent Algorithm 5.1 in the sense of Theorems 5.2 and 5.3. More general dependencies
can violate consistency, as we will discuss in the next section.

Our next two results demonstrate the consistency of Algorithm 5.1 under the conditions
in Assumption 5.1. Theorem 5.2 states that Algorithm 5.1 produces the correct escape law
from U starting at the QSD in U , while Theorem 5.3 says that Algorithm 5.1 produces the
correct mean contribution to time averages.

Theorem 5.2. Suppose that Assumption 5.1 holds. Let X(t)t\geq 0 be such that \scrL (X(0)) = \rho ,
and set T = inf\{ t > 0 : X(t) /\in U\} . Then in Algorithm 5.1,

(Tpar, Xpar)
\scrL 
= (T,X(T )).
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Theorem 5.3. Suppose that Assumption 5.1 holds. Let X(t)t\geq 0 be such that \scrL (X(0)) = \rho ,
and set T = inf\{ t > 0 : X(t) /\in U\} . Then in Algorithm 5.1, in the discrete time case,

gpar := \BbbE 

\Biggl( 
L\sum 

m=1

Tm\wedge tm - 1\sum 
t=0

g(Xm(t))

\Biggr) 
= \BbbE 

\Biggl( 
T - 1\sum 
t=0

g(X(t))

\Biggr) 
,

while in the continuous time case,

gpar := \BbbE 

\Biggl( 
L\sum 

m=1

\int Tm\wedge tm

0
g(Xm(t)) dt

\Biggr) 
= \BbbE 

\biggl( \int T

0
g(X(t)) dt

\biggr) 
.

Recall that the gain in ParRep is from parallel computations in the parallel step. In our
trajectory fragment framework, the basic idea is that the work to compute the fragments
Xm(t)0\leq t\leq tm can be spread over multiple processors. See [3, 5, 30, 65] for related results in
special cases. The parallel step is more efficient than direct, or serial, simulation, provided the
computational effort to sample the QSD is small relative to the effort to simulate an escape
from U via serial simulation.

We actually do not need to assume that U is open and that X(t)t\geq 0 has the strong Markov
property and c\`adl\`ag paths to prove consistency of the parallel step in Algorithm 5.1. Indeed,
Algorithm 5.1 is consistent in the sense of Theorems 5.2 and 5.3 whenever X(t)t\geq 0 is a time
homogeneous Markov process and (5.1)--(5.2) hold. However, to combine the parallel step
with a decorrelation step to obtain a coarse dynamics or stationary average, we want c\`adl\`ag
paths to ensure that the escape time from an open set U is a stopping time, and we need the
strong Markov property so that we can start afresh at these stopping times.

6. Synchronous and asynchronous computing. Recall that the speedup in ParRep comes
from computing the trajectory fragments Xm(t)0\leq t\leq tm partly or fully in parallel. These frag-
ments must be ordered, via the indexm \geq 1, to obtain the long trajectory pictured in Figure 1.
Below, we explore two possible ways to order the fragments, depending on whether we want
to employ synchronous or asynchronous computing. In the former case, we have in mind a
computing environment consisting of R processors that are nearly synchronous. In the lat-
ter case we consider an arbitrary number of processors that potentially have widely different
performance.

Below, we will consider only fragments of constant time length, tm \equiv \Delta t. For synchronous
computing, following ideas from [3, 5, 65], we consider the ordering of trajectory fragments in
Proposition 6.1 below.

Proposition 6.1 (synchronous computing). Suppose Y r(t)t\geq 0, r = 1, . . . , R, are independent
copies of X(t)t\geq 0 with \scrL (X(0)) = \rho . Let mk = \lfloor (k  - 1)/R\rfloor and rk = k  - R\lfloor (k  - 1)/R\rfloor , and
for k \geq 1 define trajectory fragments Xk(t)0\leq t\leq \Delta t by

(6.1) Xk(t) = Y rk(mk\Delta t+ t), 0 \leq t \leq \Delta t.

Then Assumption 5.1 holds with an appropriate definition of the trajectory fragments' irrele-
vant futures. Thus the conclusions of Theorem 5.2 and 5.3 hold.
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Figure 1. Intuition behind the general parallel step of Algorithm 5.1. Pictured are L = 4 trajectory
fragments (Xm(t)0\leq t\leq tm)m=1,2,3,4 combined to form one long trajectory, advancing in time in the direction
indicated by the arrows. The terminal point of the first fragment that escapes from U is denoted by a cross.
The dashed line parts of the long trajectory are artificial and do not contribute to gpar or Tpar. Only the solid
lines and solid dots along the long trajectory contribute to gpar and Tpar. The dotted lines show the fragments'
irrelevant futures. Note that one of the fragments' starting point, X3(0), is equal to another fragment's terminal
point, X2(t2). There can be other fragments, but they are not relevant to the parallel step in this example since
T4 < t4.

Figure 2 shows the trajectory fragments defined in (6.1).
In asynchronous computing, perhaps the most natural ordering is the wall-clock order-

ing: the fragments are ordered according to the wall-clock time that their starting points
are computed. See Figure 3. When does the wall-clock ordering satisfy Assumption 5.1?
Note that (5.1) simply says that each fragment evolves forward in time independently of the
preceding fragments and their irrelevant futures. This condition is easy to establish with an
appropriate choice of the irrelevant futures. Ensuring (5.2) holds is more subtle. We will
show, however, that if the wall-clock time it takes to compute each fragment depends on
processor variables, but not on the fragments themselves, then the wall-clock time ordering is
independent of the fragments, and (5.2) holds.

We will distinguish between a wall-clock time and a physical time, where the former is
self-explanatory and the latter refers to the time index t of a copy of X(t)t\geq 0. Let Y r(t)t\geq 0

be independent copies of X(t)t\geq 0 starting at independent samples of the QSD \rho . The wall-
clock time ordering of fragments satisfies Assumption 5.1 above if (i) the wall-clock times
are independent of the physical times, (ii) the wall-clock time to compute copy Y r(t)t\geq 0 is
an increasing function of the physical time, and (iii) two processors never finish at exactly
the same wall-clock time, so that the wall-clock times can be given a unique ordering. Write
trwall(m) for the wall-clock time it takes to compute Y r(t)t\geq 0 up to physical time t = m\Delta t.
Proposition 6.2 below makes the claims above precise.

Proposition 6.2 (asynchronous computing). Suppose Y r(t)t\geq 0, r = 1, . . . , R, are indepen-
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Figure 2. An example of a synchronous ParRep algorithm based on the ordering of fragments in Proposi-
tion 6.1. Solid dots and hollow circles correspond to fragments' initial and terminal points. The cross corre-
sponds to the terminal point of the first fragment, in terms of the ordering, to escape from U . Times of copies
that contribute to gpar and Tpar are pictured with solid line segments and solid dots, while times that do not
contribute are pictured with dotted lines and hollow circles.

dent copies of X(t)t\geq 0 with \scrL (X(0)) = \rho . Assume (trwall(m)m\geq 0)
1\leq r\leq R are nonnegative ran-

dom numbers such that
(i) (trwall(m)m\geq 0)

1\leq r\leq R is independent of (Y r(t)t\geq 0)
1\leq r\leq R;

(ii) almost surely, trwall(m) \leq trwall(n) when m \leq n and 1 \leq r \leq R;
(iii) almost surely, there is a unique sequence (rk,mk)k\geq 1 such that

(rk,mk)k\geq 1 has range \{ 1, . . . , R\} \times \{ 0, 1, 2, . . .\} (surjectivity),

tr1wall(m1) < tr2wall(m2) < tr3wall(m3) < \cdot \cdot \cdot (monotonicity).

For k \geq 1 define trajectory fragments Xk(t)0\leq t\leq \Delta t by

(6.2) Xk(t) = Y rk(mk\Delta t+ t), 0 \leq t \leq \Delta t.

Then Assumption 5.1 holds with an appropriate definition of the trajectory fragments' irrele-
vant futures. Thus the conclusions of Theorems 5.2 and 5.3 hold.

Figure 3 shows the trajectory fragments Xm(t)0\leq t\leq tm defined in (6.2).
Assumptions (ii) and (iii) are quite natural, but assumption (i) can fail in many very ordi-

nary settings. We sketch an example explaining how this could happen. Suppose U = (0, 1) \subseteq 
\BbbR and say X(t)t\geq 0 obeys some one-dimensional stochastic differential equation. Suppose we
use an integrator for X(t)t\geq 0 that is slow near 0 but fast near 1. Then the wall-clock ordering
will likely put trajectory fragments that are near 1 ahead of those near 0. This bias in the
ordering would in turn create a bias toward escaping through 1: in Algorithm 5.1, we would
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Figure 3. An example of an asynchronous ParRep algorithm based on wall-clock time ordering of fragments
in Proposition 6.2. Solid dots and hollow circles correspond to fragments' initial and terminal points. The cross
corresponds to the terminal point of the first fragment, in terms of the ordering, to escape from U . Times of
copies that contribute to gpar and Tpar are pictured with solid line segments and solid dots, while times that do
not contribute are pictured with dotted lines and hollow circles.

expect that \BbbP (Xpar = 1) > \BbbP (XT = 1), where XT is the correct escape point. We construct a
specific example demonstrating this bias in Remark 10.5 in section 10.1 below.

The speed of integrators does commonly depend on position in space, particularly when
the time step varies to account for numerical stiffness [55]. This is an important caveat to
keep in mind for asynchronous algorithms. This issue has not been explored much in the
literature; see, however, the brief discussions in [30] and [46].

The setting of ParSplice [46, 47, 54] is slightly different from the above. In ParSplice, a
splicer tells a producer to generate fragments among several metastable sets. The splicer dis-
tributes the fragments according to where it speculates they will be needed. These fragments
are given a label as soon as they are assigned, and this label never changes. The labels are
assigned in wall-clock time order. Thus label i is less than label j if and only if the splicer
tells the producer to generate fragment i before it tells the producer to generate fragment
j. When the splicer tells the producer to generate a fragment in a particular metastable set
U , it takes as its starting point the terminal point of the fragment in U with the smallest
label. Crucially, this label is smallest among all fragments in U and not just among fragments
in U which have been fully computed at the current wall-clock time. Thus, the ordering of
fragments in U , fixed by the splicer, can be seen as independent of the fragments themselves,
and the arguments above demonstrate the consistency of ParSplice.

7. PDMPs. The remainder of this article will focus on applying our ideas above to
PDMPs. We begin with a brief informal description of PDMPs. A PDMP is a c\`adl\`ag process
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consisting of a deterministic dynamics interrupted by jumps at random times; formally, a
PDMP in \BbbR d has a generator L of the form

(7.1) Lf(z) = \partial \Gamma (z)f(z) + \lambda (z)

\int 
(f(z\prime ) - f(z))Q(z, dz\prime )

acting on suitable f : \BbbR d \rightarrow \BbbR . Here \lambda (z) is the jump rate at z \in \BbbR d, a Markov kernel Q(z, dz\prime )
describes the jump distribution, and \Gamma defines the deterministic flow

\partial t\psi (t, z) = \Gamma (\psi (t, z)), \psi (0, z) = z.

Write \theta 0+ \cdot \cdot \cdot +\theta n - 1 for the nth jump time, so that \theta n - 1 is the holding time before the nth
jump, and write \xi n for the position immediately after the nth jump, with \xi 0 the initial position.
Then the PDMP generated by (7.1) is described by \psi together with (\xi n, \theta n)n\geq 0; we call the
latter the skeleton chain of Z(t)t\geq 0. Note that the skeleton chain is a time homogeneous
Markov chain.

For convenience we describe a way to simulate a PDMP described by (7.1) in Algorithm 7.1
below. In the algorithm, we abuse notation by writing \theta n, \xi n, and Z(t) for particular realiza-
tions of these random objects.

Algorithm 7.1 Simulating a PDMP.

Starting from an initial point \xi 0 and time t = 0, set n = 0, and iterate:
1. Sample \theta n according to the distribution

(7.2) \BbbP (\theta n > r) = exp

\biggl( 
 - 
\int r

0
\lambda (\psi (s, \xi n)) ds

\biggr) 
.

2. Set Z(t+ s) = \psi (s, \xi n) for s \in [0, \theta n), and sample \xi n+1 from Q(Z(t+ \theta  - n ), dz).
3. Update t\leftarrow t+ \theta n and then n\leftarrow n+ 1. Then return to step 1.
Steps 1--3 above define a realization of Z(t)t\geq 0 with skeleton chain (\xi n, \theta n)n\geq 0.

Sampling the times \theta n is a nontrivial task, but there are efficient methods based on Poisson
thinning [6, 59] and identifying certain critical points along the flow direction [26]. See also [59]
for other methods to simulate a PDMP, including some based on time discretization. We will
always assume our initial points (\xi 0, \theta 0) are chosen so that \theta 0 satisfies (7.2) for n = 0, so that
we can skip the first step in Algorithm 7.1.

7.1. Example: Linear flow. Consider a PDMP with deterministic paths that are lines
in \BbbR d - 1 corresponding to a finite collection of velocity vectors di \in \BbbR d - 1, i \in \scrI \subseteq \BbbN . Its
generator L is defined on suitable functions f : \BbbR d - 1 \times \scrI \rightarrow \BbbR by

(7.3) Lf(x, i) = di \cdot \nabla f(x, i) +
\sum 
j \not =i

\lambda j(x, i)(f(x, j) - f(x, i)),

where \lambda j(x, i) \geq 0 for j \not = i. Suppose we want to sample the probability density

(7.4) Z - 1e - V (x), Z =

\int 
e - V (x) dx,
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where V : \BbbR d - 1 \rightarrow \BbbR is smooth and grows sufficiently fast at\infty so that Z <\infty . For the PDMP
generated by (7.3) to have an invariant probability density independent of i and proportional
to (7.4), the jump rates must satisfy

(7.5)
\sum 
j \not =i

(\lambda i(x, j) - \lambda j(x, i)) =  - di \cdot \nabla V (x).

See Remark 10.6 in section 10.1 below, and [6] for a similar calculation.
Event Chain Monte Carlo and the zig-zag process fit into this framework, and while these

methods were designed for efficient sampling, we argue that they may be limited in certain
situations. To see why, note that (7.5) says that at x, the rate into di minus the rate out
of di equals minus the gradient of V in direction di. Thus the PDMP is likely to change
directions when it moves up a steep slope of V . This suggests the PDMP can struggle to
escape from a basin of attraction of V , defined as the set of initial conditions x(0) for which
dx(t)/dt =  - \nabla V (x(t)) has a unique long-time limit.

8. ParRep for PDMPs. In this section Z(t)t\geq 0 is a PDMP with stationary distribution
\pi , and f is a real-valued function defined on the state space of Z(t)t\geq 0. Below we outline
some ParRep algorithms for estimating coarse dynamics as well as stationary averages, with
a focus on the latter. The stationary average of f is

(8.1) \langle f\rangle =
\int 
f(x)\pi (dx).

Algorithms 8.3 and 8.6 below are ParRep algorithms based on the skeleton chain and
the continuous time PDMP, respectively. Algorithms 8.1 and 8.4 are parallel steps for syn-
chronous computing, while Algorithms 8.2 and 8.5 are for asynchronous computing. Algo-
rithms 8.1 and 8.4, which are essentially extensions to PDMPs of algorithms recently proposed
for continuous time Markov chains [64, 65], use the ordering of trajectory fragments defined
in Proposition 6.1. Algorithms 8.2 and 8.5 employ the wall-clock time ordering of fragments
from Proposition 6.2. We prove consistency of all of our parallel steps via our trajectory
fragment framework.

We do not attempt to prove existence, uniqueness, or convergence to the QSD for general
PDMPs. Instead we refer the reader to recent articles [14, 15] for conditions which ensure
convergence to a unique QSD. From those works, under appropriate assumptions, one can
establish convergence to a unique QSD in D \times \scrI \subseteq \BbbR d for a PDMP generated by (7.3). For
instance, exponential convergence is guaranteed if D \subseteq \BbbR d - 1 is an open connected bounded
domain and there exist m,M so that 0 < m \leq \lambda j(x, i) \leq M for all x \in D and i, j \in \scrI ; see [14,
p. 261]. Similar arguments can be made for the QSD of the skeleton chain. Even without
theoretical guarantees, in practice, one can empirically validate convergence to the QSD using
certain diagnostics; see, for instance, [8].

8.1. Skeleton chain-based ParRep algorithm. Let \scrW be the collection of metastable
sets for the skeleton chain (\xi n, \theta n)n\geq 0. For instance, if Z(t)t\geq 0 has generator similar to the
form (7.3) and we want to sample from the distribution (7.4), it is natural to define \scrW in
terms of basins of attraction of V , in which case elements of \scrW may be identified on the fly
by gradient descent [62, 63]. See section 9 for an example of metastable sets defined this way.
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Assumption 8.1. (\xi n, \theta n)n\geq 0 has a QSD \nu = \nu W in each W \in \scrW satisfying

\nu (A) = lim
n\rightarrow \infty 

\BbbP ((\xi n, \theta n) \in A| (\xi m, \theta m) \in W, 0 \leq m \leq n) \forall A \subseteq W.

For simpler notation, we do not explicitly indicate the dependence of \nu on W .

Algorithm 8.1 Synchronous skeleton chain parallel step in W .

1. Generate i.i.d. samples (\xi r0, \theta 
r
0)

r=1,...,R from the QSD \nu in W . Using these as starting
points, independently evolve R copies ((\xi rn, \theta 

r
n)n\geq 0)

r=1,...,R of the skeleton chain.
2. Let N = inf\{ n : \exists r s.t. (\xi rn, \theta rn) /\in W\} , J = min\{ r : (\xi rN , \theta rN ) /\in W\} , and define

fpar =
N - 2\sum 
n=0

R\sum 
r=1

\int \theta rn

0
f(\psi (t, \xi rn)) dt+

J\sum 
r=1

\int \theta rN - 1

0
f(\psi (t, \xi rN - 1)) dt

and Tpar = 1par by using the same formula but with 1(z) \equiv 1 in place of f . Set

(\xi par, \theta par) = (\xi JN , \theta 
J
N ).

Once fpar, Tpar, and (\xi par, \theta par) can be computed, the parallel step is complete.

Algorithm 8.2 Asynchronous skeleton chain parallel step in W .

1. Generate i.i.d. samples (\xi r0, \theta 
r
0)

r=1,...,R from the QSD \nu in W . Using these as starting
points, independently evolve R copies ((\xi rn, \theta 

r
n)n\geq 0)

r=1,...,R of the skeleton chain.
2. Reorder these skeleton chain points in the order they are computed in wall-clock time,
i.e., as (\xi rkmk

, \theta rkmk
)k\geq 1, where t

r1
wall(m1) \leq tr2wall(m2) \leq \cdot \cdot \cdot and trwall(n) is the wall-clock time it

takes to compute the skeleton chain (\xi rm, \theta 
r
m)m\geq 0 up to physical time m = n. Set \sigma r = inf\{ m :

(\xi rm, \theta 
r
m) /\in W\} , K = inf\{ k : \sigma rk \leq mk + 1\} , and

fpar =
K\sum 
k=1

\int \theta 
rk
mk

0
f(\psi (t, \xi rkmk

)) dt.

Define Tpar = 1par by using the same formula but with 1(z) \equiv 1 in place of f . Let

(\xi par, \theta par) = (\xi rK\sigma rK , \theta 
rK
\sigma rK ).

Once fpar, Tpar, and (\xi par, \theta par) can be computed, the parallel step is complete.

Algorithms 8.1 and 8.2 are parallel steps designed for synchronous and asynchronous
computing, respectively. See Figure 4 for a diagram of both parallel steps. The first step
in both Algorithm 8.1 and Algorithm 8.2---called dephasing in the literature [3, 5, 62, 65]---
involves generating R independent samples from the QSD \nu in W . These QSD samples may
be obtained in a variety of ways. One option is to do rejection sampling using independent
copies of the skeleton chain: whenever a copy escapes from W , start it afresh in W until each
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0 1 2 3 4 5

3

2

1

3

2

1

Figure 4. Illustration of the parallel steps used in Algorithm 8.3. The number of copies, or parallel replicas,
is R = 3. The cross indicates an escape from W . Time steps of copies of the skeleton chain that contribute
to fpar and Tpar are pictured with solid dots, while time steps that do not contribute are pictured with hollow
circles. Left: The synchronous parallel step, Algorithm 8.1. Copy r = 2 escapes from W at skeleton chain time
3. In this example, N = 3 and J = 2. Right: The asynchronous parallel step, Algorithm 8.2. Copy r = 3 is
the first to escape from W in terms of the wall-clock time ordering. It escapes at wall-clock time trKwall(mK). In
this example, K = 6.

copy has remained in W for a long enough consecutive time. Another possibility is based on
the Fleming--Viot branching process [8, 24]: when a copy escapes from W , restart it at the
current position of a copy still in W chosen at random. For more discussion see [8, 52, 62].

Recall that the speedup from ParRep comes from the parallel step. The speedup---the
factor by which ParRep reduces the wall-clock computation time, compared to serial simu-
lation of a trajectory of the same physical time---can be a factor of up to R, the number of
copies or replicas [3, 5, 30, 62, 65], when Algorithm 7.1 is used to simulate the skeleton chain.
See Figure 7. The parallel step is consistent no matter the choice of W , but if W is not
metastable, there may be no gain in efficiency, as too much computation time will be spent
sampling the QSD.

Theorem 8.2 gives conditions that establish consistency of Algorithm 8.1 and 8.2. For
Algorithm 8.2, the crucial condition is that the wall-clock times it takes for the processors
to compute steps of the skeleton chains are independent of those chains. Whether this holds
true will depend on the algorithm used to simulate the PDMP. If it is a time discretization--
based algorithm, or an implementation of Algorithm 7.1 based on Poisson thinning, then the
computational effort to obtain one step of the skeleton chain can be larger in regions in state
space with lower jump rates. For CTMCs simulated via the SSA/Gillespie algorithm [2], the
effort to simulate one step of the skeleton chain may be essentially independent of the position
of the chain.

Theorem 8.2 (consistency of the parallel steps, Algorithm 8.1 and 8.2).
(i) Let \nu be the QSD of (\xi n, \theta n)n\geq 0 in some W \in \scrW , suppose that \scrL (\xi 0, \theta 0) = \nu , and define

M = inf\{ n \geq 0 : (\xi n, \theta n) /\in W\} . Then in Algorithm 8.1,

(8.2) \BbbE (fpar) = \BbbE 

\Biggl( 
M - 1\sum 
n=0

\int \theta n

0
f(\psi (t, \xi n)) dt

\Biggr) 
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and

(8.3) (\xi par, \theta par)
\scrL 
= (\xi M , \theta M ).

(ii) Suppose (twall(m)m\geq 0)
1\leq r\leq R, the wall-clock times from Algorithm 8.2, satisfy the as-

sumptions of Proposition 6.2 when (Y r(t)t\geq 0)
r=1,...,R equals ((\xi rn, \theta 

r
n)n\geq 0)

r=1,...,R. Adopt the
assumptions in (i) above. Then (8.2)--(8.3) hold.

The times T \nu 
corr(W ) in Algorithm 8.3 may be chosen on the fly, or they may be set at

the beginning of simulations. Choosing an appropriate value may be done using various
convergence diagnostics or a priori information; see [8, 52, 62] for details.

Algorithm 8.3 Skeleton chain computation of stationary averages.

Choose an initial point (\xi 0, \theta 0), set fsim = 0, Tsim = 0, and iterate:
1. Starting at (\xi 0, \theta 0), evolve (\xi n, \theta n)n\geq 0 forward in time, stopping at time

L = inf\{ n \geq T \nu 
corr(W ) - 1 : \exists W \in \scrW s.t. (\xi n - k, \theta n - k) \in W, k = 0, . . . , T \nu 

corr(W ) - 1\} ,

the first time it remains in some W \in \scrW for T \nu 
corr(W ) consecutive time steps. Set

fdecorr =

L - 1\sum 
n=0

\int \theta n

0
f(\psi (t, \xi n)) dt

and Tdecorr = 1decorr using the same formula. Store this W for step 2 and update

fsim \leftarrow fsim + fdecorr, Tsim \leftarrow Tsim + Tdecorr.

2. Run the parallel step (Algorithm 8.1 or 8.2) in the set W from step 1. Update fsim \leftarrow 
fsim + fpar, Tsim \leftarrow Tsim + Tpar, (\xi 0, \theta 0) = (\xi par, \theta par), and return to step 1.

The algorithm stops when Tsim exceeds a user-chosen threshold Tstop. At this time,

\langle f\rangle \approx fsim
Tsim

is our estimate of the stationary average (8.1).

Consistency of the parallel steps, together with exactness of the decorrelation step, shows
that Algorithm 8.3 produces correct stationary averages, provided some mild recurrence as-
sumptions hold [3]. The reason is essentially the law of large numbers: for computations of
stationary averages, due to repeated visits to each metastable set, in the parallel steps it is
enough to get contributions fpar to fsim with the correct average value along with escape
events with the correct law.

We do not attempt here to prove ergodicity using this argument, but mention it has been
studied previously in [3, 65]. Our numerical simulations in section 9 below also support its
validity. One interesting aspect of the parallel step is that the averaging over independent
copies or replicas can be considered a bonus, as it likely lowers the variance of the estimate
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Algorithm 8.4 Synchronous continuous time parallel step in W .

1. Generate i.i.d. samples Zr(0)r=1,...,R from the QSD \mu in W . Using these as starting points,
independently evolve R copies (Zr(t)t\geq 0)

r=1,...,R of the PDMP.
2. Let \tau r = inf\{ t : Zr(t) /\in W\} , set

N = inf\{ n \in \BbbN : \exists r s.t. \tau r \leq n\Delta t\} , J = min\{ r : \tau r \leq N\Delta t\} ,

and define

fpar =
N - 1\sum 
n=1

R\sum 
r=1

\int n\Delta t

(n - 1)\Delta t
f(Zr(t)) dt

+
J - 1\sum 
r=1

\int N\Delta t

(N - 1)\Delta t
f(Zr(t)) dt+

\int \tau J

(N - 1)\Delta t
f(ZJ(t)) dt,

and Tpar = 1par by using the same formula but with 1(z) \equiv 1 in place of f . Set

Zpar = ZJ(\tau J).

Once fpar, Tpar, and Zpar can be computed, the parallel step is complete.

fsim/Tsim \approx \langle f\rangle of the stationary average, compared to an estimate from a serial trajectory
of physical time length Tsim.

8.2. Continuous time PDMP-based algorithm. Let \scrV be the collection of metastable sets
for Z(t)t\geq 0. As above, if Z(t)t\geq 0 has a generator similar to (7.3) and we want to sample from
the distribution (7.4), the elements of \scrV can be defined in terms of the basins of attraction of
V . We will require a time interval \Delta t > 0, which is not necessarily a time step for discretizing
the PDMP. For instance, \Delta t could be a polling time for resynchronizing parallel processors.

We will adopt the following assumption.

Assumption 8.3. Z(t)t\geq 0 has a QSD \mu = \mu W in each W \in \scrV satisfying

\mu (A) = lim
t\rightarrow \infty 

\BbbP (Z(t) \in A| Z(s) \in W, 0 \leq s \leq t) \forall A \subseteq W.

We do not explicitly indicate the dependence of \mu on W . Notice that the QSD of the
PDMP is different from that of its skeleton chain in general.

Algorithms 8.4 and 8.5 are parallel steps designed for synchronous and asynchronous com-
puting, respectively; see Figure 5. The first step in both Algorithm 8.4 and Algorithm 8.5---the
dephasing step---involves generating R independent samples from the QSD \mu inW . Note that
this is the QSD of the PDMP in W , not the QSD of its skeleton chain. The QSD samples
can be obtained exactly as described in the previous section, but with the PDMP taking the
place of the skeleton chain.

The speedup from the parallel step can be up to a factor of R, the number of copies or
replicas [5, 3, 30, 62, 65], provided the underlying PDMP simulation algorithm is based on
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Algorithm 8.5 Asynchronous continuous time parallel step in W .

1. Generate i.i.d. samples Zr(0)r=1,...,R from the QSD \mu in W . Using these as starting points,
independently evolve R copies (Zr(t)t\geq 0)

r=1,...,R of the PDMP.
2. Reorder the \Delta t time intervals of these copies in the order they are computed in wall-
clock time, i.e., as Zrk(mk\Delta t)k\geq 1, where tr1wall(m1) \leq tr2wall(m2) \leq \cdot \cdot \cdot and trwall(n) is the
wall-clock time it takes to compute the PDMP Zr(t)t\geq 0 up to physical time t = n\Delta t. Set
\tau r = inf\{ t : Zr(t) /\in W\} , K = inf\{ k : \tau rk \leq (mk + 1)\Delta t\} , and

fpar =

K - 1\sum 
k=1

\int (mk+1)\Delta t

mk\Delta t
f(Zrk(t)) dt+

\int \tau rK

mK\Delta t
f(ZrK (t)) dt,

and Tpar = 1par by using the same formula but with 1(z) \equiv 1 in place of f . Let

Zpar = ZrK (\tau rK ).

Once fpar, Tpar, and \xi par can be computed, the parallel step is complete.

3

2

1

Figure 5. Illustration of the parallel steps used in Algorithm 8.6. The number of copies, or parallel replicas,
is R = 3. Solid dots and hollow circles correspond to trajectories at PDMP times n\Delta t. The cross indicates the
terminal point of a \Delta t-time interval corresponding to an escape from W . Times of copies that contribute to gpar
and Tpar are pictured with solid line segments and solid dots, while times that do not contribute are pictured
with dotted lines and hollow circles. Left: The synchronous parallel step, Algorithm 8.4. Copy r = 2 escapes
at PDMP time \tau 2. In this example, N = 4 and J = 2. Right: The asynchronous parallel step, Algorithm 8.5.
Copy r = 2 is the first to escape in terms of the wall-clock time ordering. The notches on the wall-clock time
axis are the values of t

rk
wall(mk), k = 1, . . . , 11. In this example K = 5.

time discretization. If the PDMP simulation algorithm is based on computing the skeleton
chain, then the speedup in Algorithm 8.4 may be reduced. This can be mitigated, however,
by using Algorithm 8.5 instead. The parallel step is consistent for any W , with a speedup if
W is metastable for the PDMP.

Theorem 8.4 gives conditions that establish consistency of the parallel steps, Algorithm 8.4
and 8.5. For the asynchronous parallel step, the crucial condition essentially says that the
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wall-clock time it takes to compute a \Delta t time interval of Z(t)t\geq 0 is independent of its position.
This is reasonable if Z(t)t\geq 0 is simulated via a time discretization technique with a fixed time
step. It may not be reasonable if a skeleton chain-based technique, like Algorithm 7.1, is used
instead.

Theorem 8.4 (consistency of the parallel steps, Algorithm 8.4 and 8.5).
(i) Let \mu be the QSD of Z(t)t\geq 0 in some W \in \scrV , suppose that \scrL (Z(0)) = \mu , and define

\tau = inf\{ t \geq 0 : Z(t) /\in W\} . Then in Algorithm 8.4,

(8.4) \BbbE (fpar) = \BbbE 
\biggl( \int \tau 

0
f(Z(t)) dt

\biggr) 
and

(8.5) (Tpar, Zpar)
\scrL 
= (\tau , Z(\tau )).

(ii) Suppose (twall(m)m\geq 0)
1\leq r\leq R, the wall-clock times from Algorithm 8.5, satisfy the as-

sumptions of Proposition 6.2 when (Y r(t)t\geq 0)
r=1,...,R equals (Zr(t)t\geq 0)

r=1,...,R. Adopt the as-
sumptions in (i) above. Then (8.4)--(8.5) hold.

Algorithm 8.6 Continuous time computation of stationary averages.

Choose an initial point Z(0), set fsim = 0, Tsim = 0, and iterate:
1. Starting at Z(0), evolve Z(t)t\geq 0 forward in time, stopping at time

S = inf\{ t \geq T\mu 
corr(W ) : \exists W \in \scrV s.t. Z(s) \in W, s \in [t - T\mu 

corr(W ), t]\} ,

the first time it remains in some W \in \scrV for consecutive time T\mu 
corr(W ). Set

fdecorr =

\int S

0
f(Z(t)) dt

and Tdecorr = 1decorr using the same formula. Store this W for step 2 and update

fsim \leftarrow fsim + fdecorr, Tsim \leftarrow Tsim + Tdecorr.

2. Run the parallel step (Algorithm 8.4 or 8.5) in the set W from step 1. Update fsim \leftarrow 
fsim + fpar, Tsim \leftarrow Tsim + Tpar, set Z(0) = Zpar, and then go to step 1.

The algorithm stops when Tsim exceeds a user-chosen threshold Tstop. At this time,

\langle f\rangle \approx fsim
Tsim

is our estimate of the stationary average (8.1).

Algorithm 8.6 generates correct stationary averages by the same argument as in the previ-
ous section. It is worth mentioning that Algorithms 8.4 and 8.5 have a property not shared by
Algorithms 8.1 and 8.2: the escape events (Tpar, Zpar) in these parallel steps have the correct
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Figure 6. Contour plot of the potential V in (9.2). V has 4 basins of attraction, W1,W2,W3,W4, of
different depths, with W1 the deepest. Recall that a basin of attraction for V is a set of initial conditions x(0)
for which the differential equation dx(t)/dt =  - \nabla V (x(t)) has a unique long-time limit.

law for the PDMP. This allows us to use Algorithm 8.6 to compute the dynamics of Z(t)t\geq 0.
More precisely, Algorithm 8.6 leads to a PDMP dynamics that is correct on the quotient space
obtained by considering each W \in \scrV as a single point. Note that Algorithm 8.3 cannot be
used in this way, as it generates dynamics of the skeleton chain and not the PDMP.

9. Numerics. Here we test our algorithms above on a toy PDMP model, our aim being
to illustrate Algorithms 8.3 and 8.6. We will use these algorithms to sample the stationary
average of a function f with respect to the Boltzmann density \pi = Z - 1e - \beta V , where f and V
are defined below and \beta > 0 is the inverse temperature. The toy model is a two-dimensional
version of a PDMP that may be defined in an arbitrary dimension d  - 1, as follows. Let
d0, . . . , dN - 1 \in \BbbR d - 1 be direction vectors such that d0 + \cdot \cdot \cdot + dN - 1 = 0. Let \BbbZ N denote the
integers modulo N , consider the indices of the dk's as elements of \BbbZ N , and for k, \ell \in \BbbZ N define

Fk,\ell (x) = \beta (dk + \cdot \cdot \cdot + dk+\ell ) \cdot \nabla V (x).

Consider the PDMP with generator defined by

(9.1) Lg(x, k) = dk \cdot \nabla g(x, k) + [g(x, k  - 1) - g(x, k)] max
0\leq \ell \leq N - 1

Fk,\ell (x)

for suitable g : \Omega \times \BbbZ N \rightarrow \BbbR , where either \Omega = \BbbR d - 1 or \Omega is a cube in \BbbR d - 1 with periodic
boundaries. This is the generator for a PDMP that, when moving in direction dk at point x,
switches to direction dk - 1 with rate max0\leq \ell \leq N - 1 Fk,\ell (x). The resulting process can be seen as
a rejection-free or ``lifted"" version of the sequential Metropolis algorithm [29, 36], historically
the first nonreversible sampling algorithm [27, 36] for sampling the Boltzmann distribution.
Straightforward calculations show this PDMP has invariant density proportional to \pi ; see
Remark 10.7 in section 10.1.

We consider the case where the state space is \Omega = [0, 1]2 with periodic boundaries, N = 4,
d0 = (1, 0), d1 = ( - 1, 0), d2 = (0, 1), d3 = (0, - 1), and the potential energy V is pictured in
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Figure 6. Specifically

(9.2) V (x, y) = cos(4\pi x) + cos(4\pi y) +
1

5
sin(2\pi x) +

1

5
sin(2\pi y).

We define \scrW and \scrV using the basins of attraction Wi, i = 1, . . . , 4, defined as the four
squares of equal side length 1/2 inside [0, 1]2. See Figure 6. Thus with x and k the position
and direction variables, respectively, of the skeleton chain and PDMP, and \theta the jump time
variable of the skeleton chain,

\scrW = \{ \{ (x, k, \theta ) : x \in Wi, k \in \{ 0, 1, 2, 3\} , \theta > 0\} : i = 1, 2, 3, 4\} ,
\scrV = \{ \{ (x, k) : x \in Wi, k \in \{ 0, 1, 2, 3\} \} : i = 1, 2, 3, 4\} .

That is, the skeleton chain or PDMP is in a given set in \scrW or \scrV at a particular time if and
only if its position variable belongs to a given Wi at that time.

Algorithm 9.1 Time discretization of the PDMP (9.1).

Choose an initial point Z(0) \in \BbbR d - 1 \times \{ 0, . . . , N  - 1\} and pick d0, . . . , dN - 1 \in \BbbR d - 1 with\sum N - 1
k=0 dk = 0. Choose a time step \delta t > 0. Then set t = 0 and iterate:

1. If Z(t) = (x, k), define an acceptance probability

p = min
0\leq \ell \leq N - 1

exp (\beta V (x) - \beta V (x+ dk\delta t+ \cdot \cdot \cdot + dk+\ell \delta t)) .

2. With probability p, set Z(t+ \delta t) = (x+ dk\delta t, k); otherwise set Z(t+ \delta t) = (x, k  - 1).
3. Update t\leftarrow t+ \delta t and return to step 1.
Here, Z(n\delta t)n\geq 0 has invariant measure proportional to e - \beta V ; see Remark 10.8.

We tested Algorithms 8.3 and 8.6 with the synchronous parallel steps, Algorithm 8.1 and
Algorithm 8.4, respectively. We used both algorithms to estimate the stationary average \langle f\rangle 
where f(x, k) = 1x\in W1 , the characteristic function of the deepest basin of V . We used up to
R = 100 replicas and decorrelation times that were the same in each basin, T \nu 

corr \equiv T \nu 
corr(Wi)

and T\mu 
corr \equiv T\mu 

corr(Wi), i = 1, . . . , 4. We used Algorithm 9.1 with time step \delta t = 10 - 2 to
simulate the PDMP. In Algorithm 8.6 we took \Delta t = \delta t = 10 - 2. The results are in Figures 7, 8,
and 9.

To analyze our results, we defined an idealized speedup factor as follows. Let TR be an
idealized wall-clock time for a simulation of Algorithm 8.3 or 8.6 using the parallel steps,
Algorithms 8.1 and 8.4, respectively, up to a fixed time Tstop. The idealized wall-clock time
TR is obtained by assuming that we use R parallel processors with zero communication cost,
such that on each processor, one step of the skeleton chain is computed in wall-clock time 1.
Writing T 1 for the wall-clock time corresponding to 1 processor or direct serial simulation, we
define

time speedup =
TR

T 1
.

We include computation time from the dephasing step---i.e., the QSD sampling step in Al-
gorithms 8.1 and 8.4---as part of TR. We assume this dephasing is done using a Fleming--
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Figure 7. Left: Time speedup vs. number of replicas, R, when \beta = 3. Right: Time speedup vs. \beta when
R = 100. In Algorithm 8.1 we used T \nu 

corr = 100, while in Algorithm 8.4 we used T\mu 
corr = 6. The decorrelation

times were chosen so that Algorithms 8.1 and 8.4 would have similar values for the time speedup. Error bars
for each data point were obtained from 50 independent simulations, but they are smaller than the data markers.
In the limit \beta \rightarrow \infty , the computational effort to sample the QSD vanishes compared to the effort to generate an
escape event using serial simulation. In this limit, at left, we expect scaling like R for finite R. On the other
hand, at right, we expect the time speedup to level off at R = 100 as \beta \rightarrow \infty . This figure is based on simulations
performed by Peter Christman.

Viot-based technique as described above, with R copies of the underlying skeleton chain or
PDMP.

Processor communication, which we do not account for, of course takes a toll on the time
speedup. However, the processor communication cost is small compared to the rest of the
computational effort if the sets in \scrW and \scrV are significantly metastable. Thus, our time
speedup gives a reasonable picture of the gain that can be expected.

The time speedup depends on the parameters in Algorithms 8.3 and 8.6. If all other
parameters are held constant, the time speedup increases with R or \beta , due to increasing
parallelization or metastability, respectively (Figure 7), while the time speedup decreases
with T \nu 

corr and T\mu 
corr, due to increased effort to sample the QSD (Figure 8). With increasing

metastability, the relative computational effort to sample the QSD decreases in comparison
with the effort to simulate an escape from a metastable set. Since the latter is done in parallel,
increasing the metastability leads to a larger time speedup.

Figure 9 shows that the approximation fsim/Tsim approaches the stationary average \langle f\rangle as
the decorrelation times T \nu 

corr and T
\mu 
corr increase, as expected. As discussed above, appropriate

values of these QSD sampling times depend on the degree of metastability. Note that the
approximations fsim/Tsim are quite good even for small QSD sampling times. This was
true not just for f(x, k) = 1x\in W1 but also for a variety of other functions. This feature, of
reasonable accuracy in ParRep even for relatively small decorrelation times, was observed
before in [64, 65]. Here this may be a result of the momentum-like direction variables, which
can make the PDMP unlikely to immediately escape from a metastable set just after entering.

10. Proofs. Our first two results below, Propositions 10.1 and 10.2, establish the mem-
oryless distribution of the escape time starting from the QSD, and the independence of the
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Figure 8. Left: Time speedup vs. T \nu 
corr in Algorithm 8.1. Right: Time speedup vs. T\mu 

corr in Algorithm 8.4.
In both plots \beta = 3 and R = 100. Error bars for each data point were obtained from 50 independent simulations,
but they are smaller than the data markers. This figure is based on simulations performed by Peter Christman.
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Figure 9. Left: Approximation fsim/Tsim of the stationary average \langle f\rangle using Algorithm 8.3. Right:
Approximation fsim/Tsim of the stationary average \langle f\rangle using Algorithm 8.6. In both plots , \beta = 3 and R = 100,
and simulations ran for Tsim exceeding 106. Error bars are empirical standard deviations obtained from 50
independent simulations for each data point. The exact value \langle f\rangle is indicated with a solid line. This figure is
based on simulations performed by Peter Christman.

escape time and escape point, for general Markov processes. See, for instance, [16] for details.
We include proofs for completeness.

Proposition 10.1. Let X(t)t\geq 0 have a QSD \rho in U , and suppose \scrL (X(0)) = \rho . Suppose
T = inf\{ t \geq 0 : X(t) /\in U\} is finite almost surely. Then T has a memoryless distribution; that
is, T is either exponentially or geometrically distributed.

Proof. The definition (3.1) of the QSD together with the Markov property shows that
\scrL (X(t + s)s\geq 0| T > t) = \scrL (X(s)s\geq 0). Thus, \BbbP (T > t + s| T > t) = \BbbP (T > s) for any s, t \geq 0.
When T is finite-valued, the only distribution satisfying this is

(10.1) \BbbP (T > t) = e - \lambda t.

We use (10.1) to indicate either the (continuous) exponential distribution with parameter
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\lambda > 0 or the (discrete) geometric distribution with parameter p = 1 - e - \lambda .

Proposition 10.2. Let X(t)t\geq 0 have a QSD \rho in U , and suppose \scrL (X(0)) = \rho . Suppose
T = inf\{ t \geq 0 : X(t) /\in U\} is finite almost surely. Then T and X(T ) are independent.

Proof. By Proposition 10.1, \BbbP (T > t) = e - \lambda t. For A in the complement of U ,

\BbbP (T \in ((n - 1)t, nt], X(T ) \in A) = \BbbP (T > (n - 1)t,X(nt \wedge T ) \in A)
= \BbbP (X(nt \wedge T ) \in A| T > (n - 1)t)\BbbP (T > (n - 1)t)

= \BbbP (X(T ) \in A, T \leq nt| T > (n - 1)t)\BbbP (T > (n - 1)t)

= \BbbP (X(T ) \in A, T \leq t)e - \lambda (n - 1)t,

where the last step uses (3.1). Summing over n \geq 1 establishes the result:

\BbbP (X(T ) \in A) = \BbbP (X(T ) \in A, T \leq t) 1

1 - e - \lambda t

=
\BbbP (X(T ) \in A, T \leq t)

\BbbP (T \leq t)
.

Below, we write MGF for the moment generating function of a random variable. The
results in Proposition 10.3 below hold in both continuous and discrete time. To connect the
discrete and continuous time cases, we write 1  - p = e - \lambda , where p \in (0, 1) is the geometric
parameter and \lambda > 0 is the exponential rate.

Proposition 10.3. Let t1, t2, . . . be nonnegative deterministic times such that
\sum \infty 

m=1 tm =
\infty . Let \tau 1, \tau 2, . . . be random variables such that \BbbP (\tau 1 > t) = e - \lambda t and

(10.2) \BbbP (\tau m > t| \tau m - 1 > tm - 1, . . . , \tau 1 > t1) = e - \lambda t, m \geq 2.

Let L = inf\{ m \geq 1 : \tau m \leq tm\} . Then

\BbbP (t1 + \cdot \cdot \cdot + tL - 1 + \tau L > t) = e - \lambda t.

Proof. Let sm = t1 + \cdot \cdot \cdot + tm and s0 = 0. By (10.2) and induction,

(10.3) \BbbP (\tau m > tm, . . . , \tau 1 > t1) = e - \lambda (t1+...+tm) = e - \lambda sm .

Using (10.2) again, in the continuous case,

\BbbE (eu\tau m1\tau m\leq tm | \tau m - 1 > tm - 1, . . . , \tau 1 > t1)

=

\int tm

0
eus\lambda e - \lambda s ds =

\lambda 

u - \lambda 

\Bigl( 
e(u - \lambda )tm  - 1

\Bigr) 
,

(10.4)

while in the discrete case, where e - \lambda = 1 - p,

\BbbE (eu\tau m1\tau m\leq tm | \tau m - 1 > tm - 1, . . . , \tau 1 > t1)

=

tm\sum 
s=1

euse - \lambda (s - 1)(1 - e - \lambda ) =
eu  - eu - \lambda 

1 - eu - \lambda 

\Bigl( 
1 - e(u - \lambda )tm

\Bigr) 
.

(10.5)
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Note also that

(10.6) \{ L = m\} = \{ \tau m \leq tm, \tau m - 1 > tm - 1, . . . , \tau 1 > t1\} .

Consider the continuous case. Combining (10.3), (10.4), and (10.6) gives

\BbbE (eu\tau m1L=m)

= \BbbE 
\bigl( 
eu\tau m1\tau m\leq tm1\tau m - 1>tm - 1,...,\tau 1>t1

\bigr) 
= \BbbE (eu\tau m1\tau m\leq tm | \tau m - 1 > tm - 1, . . . , \tau 1 > t1)\BbbP (\tau m - 1 > tm - 1, . . . , \tau 1 > t1)

=
\lambda 

u - \lambda 

\Bigl( 
e(u - \lambda )tm  - 1

\Bigr) 
e - \lambda sm - 1 .

(10.7)

We now see that sL - 1 + \tau L has the MGF of an exponential(\lambda ) random variable:

\BbbE 
\Bigl( 
eu(sL - 1+\tau L)

\Bigr) 
=

\infty \sum 
m=1

\BbbE 
\Bigl( 
eu(sL - 1+\tau L)1L=m

\Bigr) 
=

\infty \sum 
m=1

eusm - 1\BbbE (eu\tau m1L=m)

=
\lambda 

u - \lambda 

\infty \sum 
m=1

\Bigl( 
e(u - \lambda )sm  - e(u - \lambda )sm - 1

\Bigr) 
=

\lambda 

\lambda  - u
if u < \lambda .

Similarly, in the discrete case, combining (10.3), (10.5), and (10.6) gives

\BbbE (eu\tau m1L=m)

= \BbbE 
\bigl( 
eu\tau m1\tau m\leq tm1\tau m - 1>tm - 1,...,\tau 1>t1

\bigr) 
= \BbbE (eu\tau m1\tau m\leq tm | \tau m - 1 > tm - 1, . . . , \tau 1 > t1)\BbbP (\tau m - 1 > tm - 1, . . . , \tau 1 > t1)

=
eu  - eu - \lambda 

1 - eu - \lambda 

\Bigl( 
1 - e(u - \lambda )tm

\Bigr) 
e - \lambda sm - 1 .

(10.8)

This shows again that sL - 1 + \tau L has the MGF of a geometric(p) random variable, via

\BbbE 
\Bigl( 
eu(sL - 1+\tau L)

\Bigr) 
=

\infty \sum 
m=1

\BbbE 
\Bigl( 
eu(sL - 1+\tau L)1L=m

\Bigr) 
=

\infty \sum 
m=1

eusm - 1\BbbE (eu\tau m1L=m)

=
eu  - eu - \lambda 

1 - eu - \lambda 

\infty \sum 
m=1

(e(u - \lambda )sm - 1  - e(u - \lambda )sm)

=
eu  - eu - \lambda 

1 - eu - \lambda 
if u < \lambda 

=
peu

1 - (1 - p)eu
if u <  - log(1 - p).
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Proof of Theorem 5.2. Let A be a subset of the complement of U . Note that, due to (5.1),
the events \{ Xm(Tm) \in A, Tm \leq t\} and \{ Tm - 1 > tm - 1, . . . , T1 > t1\} are independent condi-
tional on \{ Xm(0) = x\} . Using this, (5.2), and Proposition 10.2, we obtain

\BbbP (Xm(Tm) \in A, Tm \leq t| Tm - 1 > tm - 1, . . . , T1 > t1)

=

\int 
\BbbP (Xm(Tm) \in A, Tm \leq t| Xm(0) = x, Tm - 1 > tm - 1, . . . , T1 > t1)

\times \BbbP (Xm(0) \in dx| Tm - 1 > tm - 1, . . . , T1 > t1)

=

\int 
\BbbP (Xm(Tm) \in A, Tm \leq t| Xm(0) = x)\rho (dx)

= \BbbP (X(T ) \in A, T \leq t)
= \BbbP (X(T ) \in A)\BbbP (T \leq t).

(10.9)

Taking A as the complement of U in (10.9), and using Proposition 10.1,

(10.10) \BbbP (Tm > t| Tm - 1 > tm - 1, . . . , T1 > t1) = \BbbP (T > t) = e - \lambda t for some \lambda > 0.

By (5.2), \BbbP (T1 > t) = e - \lambda t. Thus by Proposition 10.3, \scrL (Tpar) = \scrL (T ). Notice that

(10.11) \{ L = m\} = \{ Tm \leq tm, Tm - 1 > tm - 1, . . . , T1 > t1\} .

From (10.9), (10.10), and (10.11) we have

\BbbP (Xpar \in A, Tpar > t| L = m)

= \BbbP (Xm(Tm) \in A, sm - 1 + Tm > t| L = m)

= \BbbP (Xm(Tm) \in A, Tm > t - sm - 1| Tm \leq tm, Tm - 1 > tm - 1, . . . , T1 > t1)

= \BbbP (Xm(Tm) \in A, Tm \in (t - sm - 1, tm]| Tm - 1 > tm - 1, . . . , T1 > t1)

\times \BbbP (Tm \leq tm| Tm - 1 > tm - 1, . . . , T1 > t1)
 - 1

= \BbbP (X(T ) \in A)\BbbP (T \in (t - sm - 1, tm])\BbbP (T \leq tm) - 1

= \BbbP (X(T ) \in A)\BbbP (T > t - sm - 1| T \leq tm).

(10.12)

From (10.12) we conclude that

\BbbP (Xpar \in A, Tpar > t) =

\infty \sum 
m=1

\BbbP (Xpar \in A, Tpar > t| L = m)\BbbP (L = m)

= \BbbP (X(T ) \in A)
\infty \sum 

m=1

\BbbP (T > t - sm - 1| T \leq tm)\BbbP (L = m).

(10.13)

In the last display, taking t = 0 shows \BbbP (Xpar \in A) = \BbbP (X(T ) \in A), while taking A as the
complement of U shows \BbbP (Tpar > t) =

\sum \infty 
m=1 \BbbP (T > t - sm - 1| T \leq tm)\BbbP (L = m). Thus, (10.13)

shows that \scrL (Xpar) = \scrL (X(T )) and Xpar, Tpar are independent.
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Proof of Theorem 5.3. We consider only the discrete time case, since the arguments in the
continuous time case are analogous. Let r \in \BbbN be fixed. Observe that

r - 1\sum 
t=0

\BbbP (T > t) =
r - 1\sum 
t=0

\BbbE (1T>t) =
\infty \sum 
t=0

\BbbE (1T\wedge r>t) = \BbbE (T \wedge r).

By the preceding display and the definition (3.1) of the QSD \rho ,

\BbbE 

\Biggl( 
T\wedge r - 1\sum 
t=0

g(X(t))

\Biggr) 
=

\infty \sum 
s=1

s - 1\sum 
t=0

\BbbE (g(X(t))1T\wedge r=s)

=
\infty \sum 
t=0

\BbbE (g(X(t))1T\wedge r>t)

=
r - 1\sum 
t=0

\BbbE (g(X(t))1T>t)

=

r - 1\sum 
t=0

\BbbE (g(X(t))| T > t)\BbbP (T > t)

=

\biggl( \int 
g d\rho 

\biggr) 
\BbbE (T \wedge r).

(10.14)

Since \{ L \geq m\} = \{ Tm - 1 > tm - 1, . . . , T1 > t1\} , using (5.1), (5.2), and (10.14) we get

\BbbE 

\Biggl( 
Tm\wedge tm - 1\sum 

t=0

g(Xm(t))

\bigm| \bigm| \bigm| \bigm| \bigm| L \geq m
\Biggr) 

=

\int 
\BbbE 

\Biggl( 
Tm\wedge tm - 1\sum 

t=0

g(Xm(t))

\bigm| \bigm| \bigm| \bigm| \bigm| Xm(0) = x, L \geq m

\Biggr) 
\BbbP (Xm(0) \in dx| L \geq m)

=

\int 
\BbbE 

\Biggl( 
Tm\wedge tm - 1\sum 

t=0

g(Xm(t))

\bigm| \bigm| \bigm| \bigm| \bigm| Xm(0) = x

\Biggr) 
\rho (dx)

= \BbbE 

\Biggl( 
T\wedge tm - 1\sum 

t=0

g(X(t))

\Biggr) 
=

\biggl( \int 
g d\rho 

\biggr) 
\BbbE (T \wedge tm)

=

\biggl( \int 
g d\rho 

\biggr) 
\BbbE (Tm \wedge tm| L \geq m),

(10.15)

where the last line of (10.15) follows by taking g \equiv 1 in the first four lines of (10.15). By
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Theorem 5.2, \scrL (T ) = \scrL (Tpar) = \scrL 
\bigl( \sum L

m=1 Tm \wedge tm
\bigr) 
and thus

\BbbE (T ) = \BbbE 

\Biggl( 
L\sum 

m=1

Tm \wedge tm

\Biggr) 

=

\infty \sum 
n=1

n\sum 
m=1

\BbbE (Tm \wedge tm1L=n)

=
\infty \sum 

m=1

\BbbE (Tm \wedge tm1L\geq m)

=
\infty \sum 

m=1

\BbbE (Tm \wedge tm| L \geq m)\BbbP (L \geq m).

(10.16)

Now by (10.15) and (10.16),

\BbbE 

\Biggl( 
L\sum 

m=1

Tm\wedge tm - 1\sum 
t=0

g(Xm(t))

\Biggr) 
=

\infty \sum 
n=1

n\sum 
m=1

\BbbE 

\Biggl( 
1L=n

Tm\wedge tm - 1\sum 
t=0

g(Xm(t))

\Biggr) 

=

\infty \sum 
m=1

\BbbE 

\Biggl( 
1L\geq m

Tm\wedge tm - 1\sum 
t=0

g(Xm(t))

\Biggr) 

=
\infty \sum 

m=1

\BbbE 

\Biggl( 
Tm\wedge tm - 1\sum 

t=0

g(Xm(t))

\bigm| \bigm| \bigm| \bigm| \bigm| L \geq m
\Biggr) 
\BbbP (L \geq m)

=

\biggl( \int 
g d\rho 

\biggr) \infty \sum 
m=1

\BbbE (Tm \wedge tm| L \geq m)\BbbP (L \geq m)

=

\biggl( \int 
g d\rho 

\biggr) 
\BbbE (T ).

(10.17)

Letting r \rightarrow \infty in (10.14), using dominated convergence, and comparing with (10.17),

\BbbE 

\Biggl( 
L\sum 

m=1

Tm\wedge tm - 1\sum 
t=0

g(Xm(t))

\Biggr) 
= \BbbE 

\Biggl( 
T - 1\sum 
t=0

g(X(t))

\Biggr) 
,

as desired.

Below we will need the following basic facts.

Lemma 10.4. Let \scrF , \scrG , \scrH , and \scrK be \sigma -algebras.
(i) Let \sigma (\scrG ,\scrH ) be the \sigma -algebra generated by \scrG and \scrH . Suppose that \scrF , \sigma (\scrG ,\scrH ) are

independent conditional on \scrK , and that \scrG , \scrH are independent conditional on \scrK . Then
\scrF , \scrG , \scrH are mutually independent conditional on \scrK .

(ii) Suppose \scrH \subseteq \scrG . If \scrF and \scrG are independent, then \scrF and \scrG are independent conditional
on \scrH .

Proof. Throughout let A \in \scrF , B \in \scrG , and C \in \scrH , and write 1S for the characteristic or
indicator function of a set S. Consider (i). Since A \in \scrF , B\cap C \in \sigma (\scrG ,\scrH ), and \scrF , \sigma (\scrG ,\scrH ) are
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independent conditional on \scrK , \BbbE (1A1B\cap C | \scrK ) = \BbbE (1A| \scrK )\BbbE (1B\cap C | \scrK ) almost surely. Similarly
\BbbE (1B1C | \scrK ) = \BbbE (1B| \scrK )\BbbE (1C | \scrK ) almost surely. Thus,

\BbbE (1A1B1C | \scrK ) = \BbbE (1A1B\cap C | \scrK ) = \BbbE (1A| \scrK )\BbbE (1B\cap C | \scrK )
= \BbbE (1A| \scrK )\BbbE (1B1C | \scrK ) = \BbbE (1A| \scrK )\BbbE (1B| \scrK )\BbbE (1C | \scrK )

almost surely, which proves (i).
Consider now (ii). Define P = \BbbE (1A1B| \scrH ) and Q = \BbbE (1A| \scrH )\BbbE (1B| \scrH ). As P and Q are

\scrH -measurable and C \in \scrH is arbitrary, if \BbbE (P1C) = \BbbE (Q1C), then we can use uniqueness of
conditional expectation to conclude P = Q almost surely, so that (ii) holds. Since \scrH \subseteq \scrG ,
B \cap C \in \scrG . Moreover A \in \scrF and \scrF ,\scrG are independent, so

(10.18) \BbbE (P1C) = \BbbE (1A1B1C) = \BbbP (A \cap B \cap C) = \BbbP (A)\BbbP (B \cap C).

The first equality in (10.18) comes from the definition of conditional expectation. Since A \in \scrF 
and \scrF ,\scrG are independent, \BbbE (1A| \scrG ) = \BbbE (1A). So by the tower property,

\BbbE (1A| \scrH ) = \BbbE (\BbbE (1A| \scrG )| \scrH ) = \BbbE (\BbbE (1A)| \scrH ) = \BbbE (1A) = \BbbP (A).

Moreover since 1C is \scrH -measurable, \BbbE (1B| \scrH )1C = \BbbE (1B1C | \scrH ). Thus,

\BbbE (Q1C) = \BbbE (\BbbE (1A| \scrH )\BbbE (1B| \scrH )1C)
= \BbbE (\BbbP (A)\BbbE (1B1C | \scrH ))
= \BbbP (A)\BbbE (\BbbE (1B\cap C | \scrH ))
= \BbbP (A)\BbbE (1B\cap C) = \BbbP (A)\BbbP (B \cap C),

(10.19)

with the last line using the tower property. Now (ii) follows from (10.18)--(10.19).

Proof of Proposition 6.1. Adopt the notation of Assumption 5.1. Below let j, k, \ell denote
positive integers. It is easy to check that rj = rk if and only if k  - j is an integer multiple of
R, while mk - \ell R = mk  - \ell when \ell \leq mk. Thus,

\{ mj : j < k, rj = rk\} = \{ mk - \ell R : \ell \leq mk\} 
= \{ 0, 1, . . . ,mk  - 1\} ,

(10.20)

with both sides empty if mk = 0. See Figure 2. Define

\zeta r = inf\{ t \geq 0 : Y r(t) /\in U\} .

Fix k \geq 2 and note that, by definition of the fragments,

(10.21) \{ \zeta rj > (mj + 1)\Delta t \forall j < k\} \subseteq \{ Tk - 1 > \Delta t, . . . , T1 > \Delta t\} ,

where E \subseteq E\prime indicates that event E\prime occurs whenever E occurs. By (10.20),

\{ Y rj (t) \in U \forall t \in [mj\Delta t, (mj + 1)\Delta t], j \leq k\} 
\subseteq \{ Y rk(t) \in U \forall t \in [0, (mk + 1)\Delta t]\} .

(10.22)
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By definition of the fragments and (10.22),

\{ Tk - 1 > \Delta t, . . . , T1 > \Delta t\} = \{ Y rj (t) \in U \forall t \in [mj\Delta t, (mj + 1)\Delta t], j < k\} 
\subseteq \{ Y rj (t) \in U \forall t \in [0, (mj + 1)\Delta t], j < k\} 
= \{ \zeta rj > (mj + 1)\Delta t \forall j < k\} .

(10.23)

Combining (10.21) and (10.23),

(10.24) \{ Tk - 1 > \Delta t, . . . , T1 > \Delta t\} = \{ \zeta rj > (mj + 1)\Delta t \forall j < k\} .

Due to independence of Y r(t)t\geq 0 over r and Lemma 10.4(ii),

conditional on \{ \zeta rj > (mj + 1)\Delta t \forall j < k s.t. rj = rk\} ,
the event \{ \zeta rj > (mj + 1)\Delta t \forall j < k s.t. rj \not = rk\} 
is independent of Y rk(mk\Delta t).

(10.25)

Again using (10.20),

(10.26) \{ \zeta rk > mk\Delta t\} = \{ \xi rj > (mj + 1)\Delta t \forall j < k s.t. rj = rk\} .

Combining (10.24), (10.25), and (10.26) and using (3.1),

\scrL (Xk(0)| Tk - 1 > \Delta t, . . . , T1 > \Delta t)

= \scrL (Y rk(mk\Delta t)| \zeta rj > (mj + 1)\Delta t \forall j < k)

= \scrL (Y rk(mk\Delta t)| \zeta rj > (mj + 1)\Delta t \forall j < k s.t. rj = rk)

= \scrL (Y rk(mk\Delta t)| \zeta rk > mk\Delta t) = \rho .

(10.27)

As Y 1(t)t\geq 0 is a copy of X(t)t\geq 0 with \scrL (X(0)) = \rho , in particular \scrL (Y 1(0)) = \rho . Thus,

\scrL (X1(0)) = \scrL (Y r1(m1)) = \scrL (Y 1(0)) = \rho .

We have now established (5.2) of Assumption 5.1.
Consider now (5.1). Let k \geq 1. Due to the independence of Y r(t)t\geq 0 over r and

Lemma 10.4(ii), we see that, conditional on Xk(0), (X\ell (t)0\leq t\leq \Delta t)r\ell =rk is independent of
(X\ell (t)0\leq t\leq \Delta t)r\ell \not =rk . For k \geq 2, the Markov property of Y rk(t)t\geq 0 and (10.20) show that, con-
ditional on Xk(0), Xk(t)0\leq t\leq \Delta t is independent of (X\ell (t)0\leq t\leq \Delta t)\ell <k,r\ell =rk . By Lemma 10.4(i)
with \scrF = \sigma ((X\ell (t)0\leq t\leq \Delta t)\ell <k,r\ell \not =rk), \scrG = \sigma ((X\ell (t)0\leq t\leq \Delta t)\ell <k,r\ell =rk), \scrH = \sigma (Xk(t)0\leq t\leq \Delta t), and
\scrK = \sigma (Xk(0)), we have, for k \geq 2,

(10.28) conditional on Xk(0), Xk(t)0\leq t\leq \Delta t is independent of (X\ell (t)0\leq t\leq \Delta t)\ell <k.

Now define the fragments' irrelevant futures as follows. Let Xk(t)t\geq \Delta t be copies of X(t)t\geq 0

that evolve forward in time independently of everything else. That is, for each k \geq 1, con-
ditional on Xk(\Delta t), Xk(t)t\geq \Delta t, Xk(t)0\leq t\leq \Delta t, and (X\ell (t)t\geq 0)\ell <k are mutually independent.
From (10.28) it is easy to see this is possible, as the irrelevant futures have no bearing on the
definitions of the fragments. Now by construction of the irrelevant futures and (10.28), it is
easy to see that for k \geq 2, conditional on Xk(0), Xk(t)t\geq 0 is independent of (X\ell (t)t\geq 0)\ell <k.
This proves (5.1) in Assumption 5.1.
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Proof of Proposition 6.2. Adopt the notation of Assumption 5.1. This proof will follow
the same basic steps as the proof of Proposition 6.1, but the justifications will be different.
Let \zeta r = inf\{ t \geq 0 : Y r(t) /\in U\} be as above.

Fix k \geq 2. We first claim that (10.20) still holds. Let n \in \{ 0, 1, . . . ,mk  - 1\} . By the
surjectivity assumption in (iii) there is j such that rj = rk and mj = n. Since mj = n < mk

and rj = rk, from (ii) we have t
rj
wall(mj) \leq trkwall(mk). Since j \not = k, using monotonicity in (iii)

we conclude that j < k. Thus \{ 0, 1, . . . ,mk  - 1\} \subseteq \{ mj : j < k, rj = rk\} . Now consider mj

such that j < k and rj = rk. By monotonicity in (iii) we must have t
rj
wall(mj) < trkwall(mk).

Then by (ii) we can conclude that mj < mk. Thus \{ mj : j < k, rj = rk\} = \{ 0, 1, . . . ,mk - 1\} .
Next we establish (5.2). Equipped with (10.20), we see that (10.26) holds. Moreover,

since (6.1) agrees with (6.2), the same steps as in the proof of Proposition 6.1 show that (10.24)
holds. On the other hand, (10.25) holds because of (i), Lemma 10.4(ii), and independence of
Y r(t)t\geq 0 over r. The sequence of equalities in (10.27) then holds, with the last equality using
(i) again. It remains to show that \scrL (X1(0)) = \rho . Suppose m1 > 0. By surjectivity in (iii)
there is j > 1 such that mj = 0 and rj = r1. But then (ii) implies t

rj
wall(mj) \leq tr1wall(m1),

which contradicts monotonicity in (iii). Thus m1 = 0, so we can apply (i) to conclude that
\scrL (X1(0)) = \scrL (Y r1(m1)) = \rho . Thus (5.2) in Assumption 5.1 holds.

Consider now (5.1). By (i) and the independence of Y r(t)t\geq 0 over r, conditional on Xk(0),
(X\ell (t)0\leq t\leq \Delta t)r\ell =rk is independent of (X\ell (t)0\leq t\leq \Delta t)r\ell \not =rk . Recall that (10.20) still holds. Thus
for k \geq 2, by the Markov property of Y rk(t)t\geq 0 and (10.20), conditional on Xk(0), Xk(t)0\leq t\leq \Delta t

is independent of (X\ell (t)0\leq t\leq \Delta t)\ell <k,r\ell =rk . By Lemma 10.4(i) we conclude that (10.28) holds
for k \geq 2. Let the trajectory fragments' irrelevant futures be independent of everything else
as in the proof of Proposition 6.1. Following the reasoning in that proof, we see that (5.1) in
Assumption 5.1 holds.

Proof of Theorem 8.2. The statements (i) and (ii) follow from Propositions 6.1 and 6.2,
respectively, with ((\xi rn, \theta 

r
n)n\geq 0)

r=1,...,R taking the place of (Y r(t)t\geq 0)
r=1,...,R, and with tm \equiv 

\Delta t = 1 and g(\xi , \theta ) =
\int \theta 
0 f(\psi (t, \xi )) dt.

Proof of Theorem 8.4. The statements (i) and (ii) follow from Propositions 6.1 and 6.2,
respectively, with (Zr(t)t\geq 0)

r=1,...,R taking the place of (Y r(t)t\geq 0)
r=1,...,R, and with tm \equiv \Delta t

and g = f .

10.1. Supplementary results. We first show that the decoupling of wall-clock times from
the speed of computing X(t)t\geq 0 is a necessary condition for consistency. Below we break
assumption (i) in Proposition 6.2 by assuming the wall-clock times to obtain that the initial
QSD samples Y r(0), r = 1, . . . , R, in the parallel step are correlated with the positions of
those samples.

Remark 10.5. In Proposition 6.2, if (i) does not hold, then the conclusions of Theorems 5.2
and 5.3 may not hold.

Example. Let X(t)t\geq 0 be a simple random walk on \BbbZ , meaning X(t + 1)  - X(t) = 1 or
 - 1, each with probability 1/2. Let U = \{ 0, 1\} . The QSD \rho of X(t)t\geq 0 in U is simply the
uniform distribution on U . Assume X(t)t\geq 0 has initial distribution \scrL (X(0)) = \rho , and let
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(Y r(t)t\geq 0)
r=1,...,R be independent copies of X(t)t\geq 0. Suppose

(10.29) trwall(0) < tswall(0) whenever Y r(0) = 0 and Y s(0) = 1.

Notice that (10.29) violates (i) of Proposition 6.2. Assume, however, that (ii) and (iii) in
Proposition 6.2 hold. Then arguments similar to those in the proof of Proposition 6.2 show
that \{ Y r1(m1) = 1\} = \{ Y r(0) = 1 \forall r\} . Adopt the notation of Algorithm 5.1. Then by the
above and the definition (6.2) of the fragments,

\BbbP (Tpar = 1, Xpar = 2) = \BbbP (Y r1(m1) = 1, Y r1(m1 + 1) = 2)

=
1

2
\BbbP (Y r1(m1) = 1)

=
1

2
\BbbP (Y r(0) = 1 \forall r) = 1

2

\biggl( 
1

2

\biggr) R

.

(10.30)

Similarly,

\BbbP (T = 1, X(T ) = 2) = \BbbP (X(0) = 1, X(1) = 2) =
1

2
\BbbP (X(0) = 1) =

1

4
.(10.31)

Notice when R > 1, (10.30) and (10.31) show the conclusion of Theorem 5.2 does not hold,
as \BbbP (Tpar = 1, Xpar = 2) \not = \BbbP (T = 1, X(T ) = 2). A similar construction shows the conclusion
of Theorem 5.3 can fail when (i) does not hold.

The next two results below are formal calculations related to claims made in the text
above. These results could be made precise using results in [22, 23]. However, we stick to
formal computations for brevity.

Remark 10.6. Suppose (7.5) holds for all x \in \BbbR d - 1 and i \in \scrI . Then e - V (x) is formally
invariant for a PDMP generated by (7.3).

Formal proof. Let L be defined as in (7.3). We will show that

\sum 
i\in \scrI 

\int 
\BbbR d - 1

Lf(x, i)\pi (x, i) dx = 0,

provided (7.5) holds and \pi (x, i) \propto e - V (x), where \propto indicates ``proportional to."" Write

\lambda i(x, i) =  - 
\sum 
j \not =i

\lambda j(x, i).
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With sufficient regularity we can integrate by parts to get

\sum 
i

\int 
Lf(x, i)\pi (x, i) dx \propto 

\sum 
i

\int \left(  di \cdot \nabla f(x, i) +\sum 
j

\lambda j(x, i)f(x, j)

\right)  e - V (x) dx

=  - 
\sum 
i

\int 
f(x, i)\nabla \cdot 

\Bigl( 
die

 - V (x)
\Bigr) 
dx

+
\sum 
i

\sum 
j

\int 
\lambda i(x, j)f(x, i)e

 - V (x) dx

=
\sum 
i

\int 
f(x, i)

\left(  di \cdot \nabla V (x) +
\sum 
j

\lambda i(x, j)

\right)  e - V (x) dx.

(10.32)

Above, all the sums are over \scrI and integrals are over \BbbR d - 1. If (7.5) holds,

di \cdot \nabla V (x) +
\sum 
j

\lambda i(x, j) = di \cdot \nabla V (x) +
\sum 
j \not =i

(\lambda i(x, j) - \lambda j(x, i)) = 0.

Comparing with (10.32) gives the result.

Note that the calculation in Remark 10.6 shows (7.5) is a necessary condition for (7.3) to
define a PDMP with an invariant distribution of the form \pi (x, i) \propto e - V (x).

Remark 10.7. e - \beta V (x) is formally invariant for a PDMP generated by (9.1).

Formal proof. Let L be defined as in (9.1). We will show that

N - 1\sum 
k=0

\int 
\Omega 
Lf(x, k)\pi (x, k) dx = 0,

provided \pi (x, k) \propto e - \beta V (x). Recall d0, . . . , dN - 1 \in \BbbR d - 1 sum to 0, and we consider the indices
of the dk's as elements of \BbbZ N , the integers modulo N . Write

Fk,\ell (x) = \beta (dk + \cdot \cdot \cdot + dk+\ell ) \cdot \nabla V (x).

With sufficient regularity we can integrate by parts to get

N - 1\sum 
k=0

\int 
\Omega 
Lg(x, k)\pi (x, k) dx

\propto 
N - 1\sum 
k=0

\int 
\Omega 

\biggl( 
dk \cdot \nabla g(x, k) + [g(x, k  - 1) - g(x, k)] max

0\leq \ell \leq N - 1
Fk,\ell (x)

\biggr) 
e - \beta V (x) dx

=  - 
N - 1\sum 
k=0

\int 
\Omega 
g(x, k)\nabla \cdot 

\Bigl( 
dke

 - \beta V (x)
\Bigr) 
dx

+

N - 1\sum 
k=0

\int 
\Omega 
g(x, k)

\biggl( 
max

0\leq \ell \leq N - 1
Fk+1,\ell (x) - max

0\leq \ell \leq N - 1
Fk,\ell (x)

\biggr) 
e - \beta V (x) dx

=
N - 1\sum 
k=0

\int 
\Omega 
g(x, k)

\biggl( 
\beta dk \cdot \nabla V (x) + max

0\leq \ell \leq N - 1
Fk+1,\ell (x) - max

0\leq \ell \leq N - 1
Fk,\ell (x)

\biggr) 
e - \beta V (x) dx,
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where, when \Omega = \BbbR d - 1, we assume V grows sufficiently fast at \infty so that we can neglect the
boundary term from the integration by parts. Observe that, because

\sum N - 1
\ell =0 dk+\ell = 0 and

dk+N = dk, we have

\{ dk + dk+1, dk + dk+1 + dk+2, . . . , dk + \cdot \cdot \cdot + dk+N - 1, dk + \cdot \cdot \cdot + dk+N\} 
= \{ dk + dk+1, dk + dk+1 + dk+2, . . . , dk + \cdot \cdot \cdot + dk+N - 1, dk\} 
= \{ dk, dk + dk+1, . . . , dk+N - 1\} .

It follows that

\beta dk \cdot \nabla V (x) + max
0\leq \ell \leq N - 1

Fk+1,\ell (x) - max
0\leq \ell \leq N - 1

Fk,\ell (x)

= \beta max
0\leq \ell \leq N - 1

(dk + \cdot \cdot \cdot + dk+\ell +1) \cdot \nabla V (x) - \beta max
0\leq \ell \leq N - 1

(dk + \cdot \cdot \cdot + dk+\ell ) \cdot \nabla V (x)

= 0.

This gives the desired result.

Remark 10.8. e - \beta V is invariant for Z(n\delta t)n\geq 0 defined in Algorithm 9.1.

Proof. Write the acceptance probability in Algorithm 9.1 as

Ak(x) = min
0\leq \ell \leq N - 1

exp (\beta V (x) - \beta V (x+ dk\delta t+ \cdot \cdot \cdot + dk+\ell \delta t)) .

Arguing similarly as in the formal proof of Remark 10.7, since
\sum N - 1

k=0 dk = 0 we have

Ak(x)

Ak+1(x+ dk\delta t)
= exp(\beta V (x) - \beta V (x+ dk\delta t)).

Now let \pi (x, k) \propto e - \beta V (x). Then the last display shows that

(10.33) \pi (x+ dk\delta t, k) = \pi (x, k)Ak(x) + \pi (x+ dk\delta t, k + 1)(1 - Ak+1(x+ dk\delta t)).

Inspecting Algorithm 9.1, we see that (10.33) demonstrates the required result.

Acknowledgments. The author gratefully thanks Peter Christman for producing the nu-
merical results leading to Figures 7, 8, and 9 in section 9, as well as Petr Plech\'a\v c, Gideon
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