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A high-entropy metal disilicide, (Mog2Nbg2Tap2Tig2Wo2)Siz, has been successfully synthesized. X-ray
diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), and electron backscatter diffraction
(EBSD) collectively show the formation of a single high-entropy silicide phase. This high-entropy
(Mog2Nbg2Tag2Tig2Wo2)Siz possesses a hexagonal C40 crystal structure with ABC stacking sequence
and a space group of P6,22. This discovery expands the known families of high-entropy materials from
metals, oxides, borides, carbides, and nitrides to a silicide, for the first time to our knowledge, as well as
demonstrating that a new, non-cubic, crystal structure (with lower symmetry) can be made into high-
entropy phase. This (MogNbg;Tag,Tip2Wo2)Siz exhibits high nanohardness of 16.7 + 1.9 GPa and
Vickers hardness of 11.6 + 0.5 GPa. Moreover, it has a low thermal conductivity of 6.9 + 1.1 Wm! I(’l,
which is approximately one order of magnitude lower than that of the widely-used tetragonal MoSi; and
~1/3 of those reported values for the hexagonal NbSi; and TaSi, with the same crystal structure.

© 2019 The Chinese Ceramic Society. Production and hosting by Elsevier B.V. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Research on high-entropy alloys (HEAs), also known as multiple
principal element alloys (MPEAs) or complex concentrated alloys
(CCAs), has attracted considerable interest in the last ~15 years due
to their unique properties and large compositional space for engi-
neering [1—-8]. A majority of the metallic HEAs adopt the simple
face-centered cubic (FCC) or body-centered cubic (BCC) crystal
structures, and a few hexagonal close packed (HCP) HEAs have been
made [1-8].

Only in the last ~3.5 years have the ceramic counterparts to the
metallic HEAs, or “high-entropy ceramics,” been successfully
fabricated in bulk forms. In 2015, Rost et al. reported an entropy-
stabilized oxide, (Mgg2Nig2Cop2Cug2Zng>)0, of a rocksalt struc-
ture (with a FCC Bravais lattice) [9]. In 2016, high-entropy metal
diborides, e.g. (Hfp2Zrg2Tag2Nbg2Tig2)Ba, were reported as a new
class of ultra-high temperature ceramics (UHTCs) and the first
high-entropy borides (as well as the first non-oxide high-entropy
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ceramics made in the bulk form) [10]. Subsequently, the research
on high-entropy ceramics has made rapid advances and attracted
increasing attention. First, the high-entropy (entropy-stabilized)
rocksalt oxides have been studied extensively due to their great
potential as functional materials with low thermal conductivities
[11-13] and colossal dielectric constants [14], as well as their po-
tential applications in lithium-ion batteries [15,16]. Second, high-
entropy metal diborides have also been studied by many groups
as a new class of promising structural ceramics with increased
hardness [17—19]; this line of work has further stimulated the
subsequent development of high-entropy metal carbides as
another class of UHTCs with increased hardness by various groups
worldwide [20—29]. Third, several other classes of high-entropy
ceramics have also been reported, including perovskite [30—32],
spinel [33], defective fluorite-structured [34,35], and rare earth
[32,36] oxides, as well as high-entropy nitrides [37,38]. It is worth
noting that the high-entropy oxides [30—32,34—36], carbides
[20—29], and nitrides [37,38] discovered to date all have cubic
crystal structures with high symmetries. The only exception is the
high-entropy metal diborides, which have a hexagonal (AIB;)
crystal structure, yet with a rather high symmetry (P6/mmm) [9].

As an increasing number of high-entropy oxides
[30—32,34—36], borides [10,17—19], carbides [20—29], and nitrides
[37,38] have been discovered, this study first reports, to the best of
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our knowledge, the synthesis and characterization of a high-
entropy silicide: (Mog2Nbg2Tag2Tig2Wo2)Sio. Moreover, this
(Mog2Nbg2Tag 2Tig2Wo2)Siz possesses a CrSip-type hexagonal C40
structure with the ABC stacking sequence (Fig. 1); it represents a
more complex crystal structure (with a lower P6,22 symmetry) in
comparison with those reported in prior studies, thereby extending
the state of the art for the discovery of new high-entropy materials.
In general, refractory disilicides, particularly MoSi,, are of great
interest for high-temperature applications [39—45]. In this
study, we have also examined the properties of this new high-
entropy (Mog2Nbg2Tag2Tip2Wo2)Siz, showing high hardness
(16.7 + 1.9 GPa nanohardness and 11.6 + 0.5 GPa Vickers hardness)
and much reduced thermal conductivity (6.9 + 1.1 Wm~ 'K 1).

2. Experimental procedure

Powders of MoSiy, NbSiy, TaSiy, TiSiy, WSiy, and ZrSi; (99% purity,
>45 pm; Alfa Aesar) were utilized as starting materials. The raw
powders were mixed via high-energy ball milling (HEBM) utilizing
a SPEX 8000D miill for 6 h in a silicon nitride jar with silicon nitride
media. Heptane was used to create a slurry for grinding to prevent
caking of the powders and to minimize oxidation in the milling
containers. The HEBM was done in 30-min intervals, interrupted by
10-min resting pauses to avoid overheating. The powders were
then densified into 20-mm diameter disks via spark plasma sin-
tering (SPS, Thermal Technologies, CA, USA) at 1650 °C for 10 min
under a uniaxial pressure of 50 MPa; then the pressure was

Hexagonal High-Entropy Metal Disilicide
(Moo.z N bo.zTao.zTio.zwo.z)S i,

Fig. 1. Schematic illustration of the atomic structure of the hexagonal high-entropy
disilicide with the ABC stacking sequences (i.e. the CrSi, prototype structure). Here,
(a) and (b) are two alternative views of hexagonal cells (but not the unit cells) and (c) is
an in-plane view, where the positions of both Si and metal atoms are shown for layer A
while only the hexagonal Si nets are shown for layers B and C for clarity. The lattice
parameters (a and c) are labeled. Noting that a is not the edge of the hexagonal cells
shown in (a) and (b), but the distance between two metal cations within the layer.

immediately reduced to 10 MPa at a rate of 40 MPa/min at 1650 °C
to minimize creep. The chamber was initially pumped down to
vacuum of at least 20 mTorr and backfilled with argon for three
times prior to the SPS experiments to minimize oxidation and a
vacuum was maintained throughout the sintering process. The
graphite die was lined with 125 pm thick graphite paper to prevent
reaction of the specimen with the die.

The silicide was characterized by X-ray diffraction (XRD) uti-
lizing a Rigaku diffractometer with Cu Ko radiation. Scanning
electron microscopy (SEM) was carried out, and the corresponding
energy dispersive X-ray (EDX) spectroscopy compositional maps
and electron backscatter diffraction (EBSD) maps were collected.
The EDX measurements were performed at an e-beam voltage of
20KkV to examine the higher energy peaks of Hf, Ta, and W for
minimal convolution of the peaks.

Hardness and modulus measurements were conducted via
nano-indentation on a KLA-tencor G200 Nanoindenter (KLA-ten-
cor, CA, USA). Nanohardness measurements were performed ac-
cording to ISO 14577 under a load of 100 mN. In order to produce
more statistically relevant data, the KLA-tencor Express Test soft-
ware module was employed to enable very large datasets to be
generated. Vicker's hardness measurements were performed with a
Vickers' diamond indenter at 200 kgf/mm? with a hold time of 15s.
The indentations were examined for conformation with the ASTM
C1327. The indentations averaged 15—20 pm in width during the
testing. Thirty measurements were performed at different locations
of the specimen; the mean and standard deviation are reported.
The Vickers indentation test was also carried out following the
ASTM standard for measuring the microhardness.

Thermal conductivities were measured using time-domain
thermoreflectance [46]. A thin Al transducer (84 +4nm) is ther-
mally evaporated onto the sample. Using a Ti:Sapphire laser
emitting a train of <200 fs pulses at a central wavelength of 800 nm
and a repetition rate of 80 MHz, the output is divided into a pump
and probe path. The pump is modulated at 8.4 MHz to heat the
sample, while the probe is used to measure the resulting change in
temperature as a function of delay time out to 5.5 ns after pump
absorption. The pump and probe 1/e? diameters are 15 and 9 pm,
respectively. The volumetric heat capacity was taken to be
25+3]Jcm 3K based on the rule of mixtures average of con-
stituent heat capacities [47].

3. Results and discussion

The XRD pattern shown in Fig. 2 suggests that the (Mog2N-
bo2Tap2Tip2Wo.2)Siz specimen made by SPS possesses a hexagonal
structure with the space group P6,22, or the CrSi, prototype
structure. All peaks, except for one very minor peak, in the XRD
pattern (Fig. 2) can be indexed to the hexagonal C40 structure with
the ABC stacking sequence, as schematically illustrated in Fig. 1.
SEM and EDX maps (Fig. 3) further demonstrated that this five-
cation (Mog2Nbg2Tag 2 Tip2Wo2)Siz specimen indeed formed a ho-
mogenous high-entropy solid solution. This hexagonal C40 struc-
ture was further confirmed by EBSD of a polished sample surface
(Fig. 4). Lattice parameters of this (Mog2Nbg2Tag2Tig2Wo.2)Sia
specimen were determined from the XRD to be: a=4.711 A and
c=6.522A.

The formation of a hexagonal C40 crystal structure (with the
ABC stacking sequence, as shown in Fig. 1) for this high-entropy
(Mog2Nbg2Tag2Tig2Wo2)Siz specimen is noteworthy and inter-
esting since only two of the five constituent disilicides, NbSi, and
TaSi; [44,48], form this hexagonal structure at high temperatures.
TiSi, possesses an orthorhombic structure (with the ABCD stacking
sequence) [49]. Both MoSi; and WSi, normally form tetragonal
structures (with the AB stacking sequence), though the hexagonal
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Fig. 2. XRD pattern of the (Mog2Nbg>TagTip2Wo2)Si> specimen. Except one minor peak from a secondary hexagonal TiO phase (labeled by the red solid square), all other XRD
peaks are indexed to a hexagonal C40 structure (or the CrSi, prototype structure with the P6,22 space group and the Dg point group) with the lattice parameters a =4.711 A and

c=6.522A.

Fig. 3. SEM micrograph and the corresponding EDX elemental maps of the (Mog>NbgTag2Tig2Wo2)Siz specimen.

phases were observed at lower temperatures (below 900 °C and
550 °C, respectively) in thin films [48,50].

This (MogNbg2Tag2Tig2Wo2)Siz represents a new high-
entropy ceramic made, with a new, and perhaps the lowest, sym-
metry among all high-entropy metals and ceramics reported. To
date, all except for two high-entropy metals and ceramics reported
have cubic symmetries (of simple FCC and BCC [1—8], rocksalt
[9,20—29,37,38], fluorite [34,35], pervoskite [30—32], and spinel
[33] structures). The two other classes of non-cubic high-entropy
materials reported are the metallic HCP HEAs (with the space group
of P63/mmc) [8] and high-entropy metal diborides (with the space
group of P6/mmm) [10]. This high-entropy (MogaN-
bo2Tag2TigaWo2)Siz has a lower symmetry of P6,22, with a more

complex ABC stacking sequence (Fig. 1).

It should be noted that a secondary TiO phase is also present,
producing a minor XRD peak as indicated in Fig. 2. We assume that
TiO formed because TiSiy possesses a melting point of ~1500 °C
[26,27], below our SPS temperature; thus, it is likely that TiSi,
promoted the formation a (transient) liquid phase that assisted
sintering but captured surface oxides. TiSi, has been utilized for
liquid assisted sintering of diborides in a similar manner [51,52].
The secondary oxide phases seen in the SEM image (the dark phase
in the first panel of SEM image in Fig. 3) are likely SiO,-based glass,
which did not show up in XRD (since the amount of TiO identified
by XRD, as shown in Fig. 2, is small). Image] analysis of the SEM
image was performed to estimate the high-entropy silicide phase to
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Fig. 4. EBSD map of >1 mm? area of the high-entropy (MogNbg ;Tag-Tig2Wo2)Si, surface, showing a rather uniform microstructure. No significant texture was observed. The
measured grain size distribution is given, which fits a lognormal curve. The inset on the right-bottom corner is an additional EBSD map taken at a higher magnification.

be approximately 89 vol %.

EBSD was utilized to measure the grain size and examine the
texture of the sintered (MogNbg2Tag 2Tig2Wo2)Si> specimen. An
average grain size of 5.4 + 3.3 um was found from a measurement of
over 5000 grains. No significant texturing was evident in the
sample. Two EBSD maps at low and high magnifications, an inverse
pole figure, and the measured grain size distribution are shown in
Fig. 4.

Nanoindentation hardness measurements of this (hexagonal)
high-entropy (Mog 2Nbg2Tag 2Tig2Wo 2)Siz following the ISO 14577
standard using a load of 100 mN produced a value of 16.7 + 1.9 GPa
with a large number of indents. It also measured an elastic modulus
of 421 + 19 GPa, in agreement with the measurements taken by
Nakamura et al. for MoSi, and WSi; [53]. Moreover, we have con-
ducted Vickers indentation test and measured a microhardness
value of 11.6+0.5GPa from our high-entropy (Mog:N-
bo2Tag2Tig2Wo2)Siy specimen. These measured hardness values
are comparable to those reported for MoSiy in literature, with
Newman et al. reporting up to 17.5 + 2.0 GPa in nanoindentation
and Vickers hardness in other prior studies varying from approxi-
mately 9 to 14 GPa [53—57]. The microhardness value of our high-
entropy (Mog2Nbg2Tag2Tig2Wo2)Siz specimen is compared with
five individual constituent metal disilicides in Table 1. Notably, the
Vickers hardness of this high-entropy (Mog2NbgTag 2Tig2Wo2)Siz
specimen is higher than the average of the microhardness values of
the five individual metal disilicides reported in the literature
(which was calculated to be 9.32 GPa by taking a median value for
MOSiz).

A significantly reduced thermal conductivity was measured for
this (hexagonal) high-entropy (Mog2Nbg2Tag2Tig2Wo2)Siz, in
comparison with other metal disilicides [58,59]. Fitting a multilayer
heat diffusion model to experimental ratio data [60], the best-fit
thermal conductivity was determined to be 69 +11Wm 'K .
In comparison, the thermal conductivity of the (tetragonal) MoSi,

has been measured to be 65Wm~'K~! [58]. The thermal con-
ductivities of (hexagonal) NbSi, (hexagonal) TaSi», (orthorhombic)
TiSiy, and (tetragonal) WSi,, respectively were measured by Nesh-
por [59] to be 191 Wm 'K}, 21.9Wm 'K !, 459Wm 1K,
46.6 Wm~! K1, respectively; these reported values from literature
are listed in Table 1 to be compared with our measured thermal
conductivity of the high-entropy (Mog2Nbg2Tag2Tig2Wo2)Sis.
While it is possible that the presence of oxide contamination and
porosity reduces the thermal conductivity of our specimen, the
measured value of 6.9 + 1.1 Wm~ K™ is significantly lower than
reported values of any of the five constituent disilicides. Noting that
NbSi, and TaSiy, which have the same hexagonal crystal and lowest
thermal conductivities of 191 Wm 'K ! and 21.9Wm 'K},
respectively [59], among the five individual disilicides, are perhaps
the best benchmarks for comparison. Still, the measured thermal
conductivity of this high-entropy (Mog2Nbg2Tag2Tip2Wo2)Siz is
substantial lower (~1/3), presumably due to the high phonon
scattering from the five different cations with different masses and
a highly distorted lattice. A prior modeling study has demonstrated
that >10X reduction in thermal conductivity can be achieved in
high-entropy ceramics [13], and similar levels of thermal conduc-
tivity reduction was indeed observed in entropy-stabilized oxides
[12].

We also attempted to fabricate a (Mog2Nbg2Tag2Wo.2Zro2)Sis
specimen via the same procedure, but it did not form a single high-
entropy phase. The measured XRD pattern and EDX elemental
maps of this (Mog2Nbg2Tag2Wo 2Zrg2)Siz specimen are shown in
Fig. 5. While a primary hexagonal C40 phase did form, additional
Ta—Zr—Si and Nb—Zr—Si rich secondary phases were observed.

4. Conclusions

A high-entropy metal disilicide, (Mog2Nbg2Tag2Tig2Wo2)Sia,
was successfully synthesized. It possesses a hexagonal structure

Table 1

Comparison of the properties of the high-entropy (Mog2Nbg2Tag2Tio2Wo2)Siz with five individual constituent metal disilicides.
Compound Crystal Structure Vickers Thermal Conductivity [W m~' K] References

Hardness (GPa)

MoSi; Tetragonal 9-14 65 [53,54,57]
NbSi, Hexagonal 54 19.1 [59,61,62]
TaSiy Hexagonal 13 21.9 [59,62,63]
TiSiy Orthorhombic 8.5 45.9 [59,62,64]
WSi, Tetragonal 8.2 46.6 [53,59,62,65]
Rule-of-mixture average of five metal disilicides 9.32 40
(Mog2Nbg>Tag 2 Tip 2Wo.2)Sia Hexagonal 11.6+0.5 69+1.1 This Study
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Fig. 5. XRD pattern, SEM micrograph, and the corresponding EDX elemental maps of the (Mog2Nbg;Tag2Wo 2Zrg2)Si> specimen. In addition to a primary hexagonal C40 phase, Ta-

Zr-Si and Nb-Zr-Si rich secondary phases were observed.

with a space group of P6,22, representing a new high-entropy
material family (a high-entropy silicide) and a new non-cubic
high-entropy crystal structure made. Characterization by XRD,
EDX, and EBSD confirm the presence of a single high-entropy solid-
solution phase, albeit some oxide contaminations.

This high-entropy (MogNbg2Tag2Tig2Wo2)Siz exhibits high
nanohardness of 16.7+19GPa and Vickers hardness of
11.6 + 0.5 GPa. The measured thermal conductivity of (Mog,N-
bo2Tag2Tig2Wo2)Siz is 6.9 + 1.1 W m~! K~ which is approximately
one order of magnitude lower than that of the widely-used
tetragonal MoSi, [58] and ~1/3 of those reported for the hexago-
nal NbSi, and TaSi, with the same crystal structure [59]. The sig-
nificant reduction in the thermal conductivity can be explained
from the high phonon scattering in the high-entropy ceramic.
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