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It is shown that there are 41 types of multivectors representing physical

quantities in non-relativistic physics in arbitrary dimensions within the

formalism of Clifford algebra. The classification is based on the action of three

symmetry operations on a general multivector: spatial inversion, 1, time-

reversal, 10, and a third that is introduced here, namely wedge reversion, 1†. It is

shown that the traits of ‘axiality’ and ‘chirality’ are not good bases for extending

the classification of multivectors into arbitrary dimensions, and that introducing

1† would allow for such a classification. Since physical properties are typically

expressed as tensors, and tensors can be expressed as multivectors, this

classification also indirectly classifies tensors. Examples of these multivector

types from non-relativistic physics are presented.

1. Introduction

How many types of (non-relativistic) physical quantities exist

in arbitrary dimensions? If the physical quantities are

expressed in the formalism of multivectors, the answer

provided in this article is 41. Physical quantities are widely

classified according to the ranks of the tensors representing

them, such as scalars (tensors of rank 0), vectors (tensors of

rank 1) and tensors of higher rank (Nye, 1985). Different

tensors transform differently under various spatial and

temporal symmetry operations, which provides an additional

means of classifying them. There is an alternative way of

writing tensors as multivectors, which arise within the form-

alism of Clifford algebra (CA) (Hestenes, 2015; Arthur, 2011;

Doran & Lasenby, 2003; Snygg, 2012). As simple examples,

tensors of rank 0 and 1 are scalars (S) and vectors (V),

respectively, which are also components (blades) of a general

multivector. In CA, one can further continue this sequence

and define bivectors (B), trivectors (T), quadvectors (Q) and

so on, as shown in Fig. 1, where a bivector is a wedge product

between two linearly independent vectors, a trivector between

three such vectors, and so on. A bivector is a directed patch of

area (i.e. one with a sense of circulation of vectors around its

perimeter); a trivector is a directed volume in 3D, a quad-

vector is a directed hypervolume in 4D and so on. These are

examples of blades, which are scalars, vectors or wedge

products between linearly independent vectors. For example,

the angular momentum, L, or magnetic induction, B, are truly

bivectors of grade 2, though they are conventionally written as

axial vectors L and B, respectively (bold italic is used for

vectors, and plain capitals for other multivectors). Similarly,

the torsion of a helix and the phase of a plane wave are

trivectors, though they are written normally as scalars. A

multivector is an arbitrary sum of such blades; for example, M
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= S+V+B+T+Q is a multivector with five blades of grades 0, 1,

2, 3 and 4, respectively. Similarly, the field F = E+cB or the

current density J = (�/"0) � c�0J are multivectors (� is the

charge density, c is the speed of light in a vacuum, "0 is the

permittivity and �0 is the permeability of free space). Note

that F and J combine scalars, vectors and bivectors, which is

unusual in normal algebra, but perfectly natural in CA. CA

allows one to write all four of Maxwell’s equations in free

space succinctly as one single equation, ðr þ ½1=c� @=@tÞF ¼ J,

in Newtonian space plus scalar time, t, a process called

‘encoding’ that reveals deeper interconnections between

diverse laws (Hestenes, 2015; Arthur, 2011). The real numbers

algebra, ordinary vector algebra, complex numbers algebra,

quaternions and Lie algebra are all sub-algebras of CA

(Doran & Lasenby, 2003; Snygg, 2012). For a reader new to

CA, a brief introduction including definitions of multivectors

is given in Appendix A.

Hlinka elegantly used group theory to classify these non-

relativistic ‘vector-like’ physical quantities in 3D into eight

types (Hlinka, 2014). These were time-even (invariant under

10) and time-odd (reverses under 10) variants of each of the

following four types: neutral, polar, axial and chiral. Here,

classical time-reversal antisymmetry denoted by 10 inverts

time, t!�t, and the spatial inversion, denoted by 1, inverts a

spatial coordinate r ! �r. Neutral and axial-type physical

quantities are 1-even, while polar and chiral types are 1-odd.

In addition, Hlinka imagined these quantities to possess a

unique 1-fold axis in space (Hlinka, 2014) and considered the

3D Curie group, 1/mm10, to represent the quantities as

‘vector-like’ physical quantities. A mirror mk parallel to this

1-fold axis was imagined, that would reverse axial and chiral

quantities but not scalar and polar quantities. Thus, the

combined actions of 1, 10 and mk were used to classify multi-

vectors into the above eight types. It is shown next that while

this classification works in 3D, it does not translate well into

other dimensions. Indeed, physical quantities represented by

quadvectors, for example, can only exist in 4D or higher-

dimensional spaces, and similarly for blades of higher grades.

To classify all such multivectors in arbitrary dimensions, we

thus need to do two things: first, we need to adopt the

framework of CA within which multivectors arise, and

secondly, we have to drop the ‘axial’ and ‘chiral’ traits for

classification purposes for reasons described below. While

retaining the symmetries of 1 and 10 as in the work of Hlinka

(2014), we will need a new symmetry operation that replaces

the mk construction. This new antisymmetry will be called

wedge reversion and is denoted by 1y. This classification

approach will yield 41 types of multivectors that represent

(non-relativistic) physical quantities in arbitrary dimensions.

First let us note that an axial vector, conventionally defined

as the cross product between two polar vectors, V(1) � V(2), is

defined only in 3D (and as an interesting aside, in 7D)

(Massey, 1983). Since an n-dimensional vector space cannot

contain a blade of grade higher than n, one cannot generalize

blades of grades other than 3 using axial vectors. Thus, the trait

of axiality cannot be generalized to arbitrary dimensions and

the concepts of cross products and axial vectors should

therefore be dropped. Secondly, the chirality of a physical

quantity depends not only on the grade of the blade, but also

on the dimension of the ambient space it resides in. To see this,

we first note that conventionally an object is achiral if it can be

brought into congruence with its mirror image, and chiral if it

cannot be (Barron, 2008). If we generalize a mirror in an

n-dimensional space to be an (n � 1)-dimensional hyperplane,
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Figure 1
The action of wedge reversion 1y on (a) a scalar (red dots) and a
vector (black arrows), (b) a bivector (the blue patch of area,
Vð1Þ ^ Vð2Þ) and a trivector (the sea-green 3D volume, Vð1Þ ^ Vð2Þ ^ Vð3Þ)
and (c) a quadvector (the yellow hypervolume in 4D,
Vð1Þ ^ Vð2Þ ^ Vð3Þ ^ Vð4Þ). Panel (c) has to be imagined as a 4D object.
Scalars, vectors and wedge products (^) between linearly independent
vectors V(i) indexed by natural numbers i are called blades and their
grades are indicated above. Blades of grades 4g and 4g+1 remain
invariant, while those of grades 4g+2 and 4g+3 reverse under the action of
1y, where g is 0, 1, 2, 3 . . . etc.
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then as depicted in Fig. 2, in an n-dimensional space only an

n-dimensional object can be chiral. However, the same

n-dimensional object will become achiral in a space of

dimensionality (n + 1) or higher. For example, a vector is

chiral in 1D but achiral in 2D and higher; a bivector is chiral in

2D and achiral in 3D and higher, and so on. We thus conclude

that the trait of chirality (and the mk construction) is also not

unique to an object without reference to the dimensionality of

the ambient space around the object; hence, chirality too has

to be dropped as a trait in uniquely classifying multivectors of

arbitrary grade. In essence, a new symmetry operation is

needed on a par with 1 and 10. A good choice turns out to be

wedge reversion, 1y.

2. Wedge reversion antisymmetry, 1y

A brief description of the necessary concepts in CA is given

here, and a more detailed discussion is given in Appendix A.

The central concept in CA is the multiplication (geometric

product) of two vectors, say A and B, written as AB. ‘Multi-

plying’ two vectors is possible, for example, if they are

expressed in the basis of orthonormal square matrices (such as

Pauli and Dirac matrices) as unit vectors. A vector space

closed under ‘geometric product between vectors’ is called an

algebra, and one endowed with a finite vector norm is called

the Clifford algebra or geometric algebra (Doran & Lasenby,

2003; Snygg, 2012). For example, one can extend the 3D vector

space spanned by orthonormal basis vectors x̂x, ŷy, ẑz to a 23 = 8D

CA space spanned by eight basis vectors, I, x̂x, ŷy, ẑz, x̂xŷy, ŷyẑz, ẑzx̂x

and x̂xŷyẑz (see Fig. 4 in Appendix A). The subspace I of this 8D

CA space is the scalar identity axis that spans all scalars (S),

the subspace spanned by the three unit vectors x̂x, ŷy, ẑz is the

vector (V) space, the subspace spanned by the three unit

bivectors x̂xŷy, ŷyẑz, ẑzx̂x is the bivector (B) subspace, and the

subspace spanned by the unit trivector x̂xŷyẑz is the trivector (T)

subspace. A general multivector M in 3D can then be written

as a sum of blades in various subspaces. For example,

3 þ 2x̂x � 5ŷyẑzþ x̂xŷyẑz is an arbitrary multivector. Similarly,

starting from an n-dimensional vector space, a 2n (or some-

times less)-dimensional CA space is generated.

The antisymmetry operation of wedge reversion, 1y, acts on

the wedge product (^) between linearly independent vectors

(see Appendix B for the definition of the wedge product).

Blades such as bivectors can be written as A ^ B between two

linearly independent vectors A and B, trivectors as A ^ B ^ C

between three linearly independent vectors and so on, as

shown in Fig. 1. Wedge reversion is not a new operation: it is

simply called reverse or reversion in CA (Hestenes, 2015;

Doran & Lasenby, 2003). What is new here is that it is being

given the formal status of an antisymmetry, 1y. The action of

wedge reversion, 1y, on multivectors is shown in Fig. 1.

Specifically, 1yðSÞ = S, 1yðVÞ = V and 1yðV ð1Þ ^ V ð2Þ ^ V ð3Þ

. . . ^ V ðn�1Þ ^ V ðnÞÞ = V ðnÞ ^ V ðn�1Þ . . . ^ V ð3Þ ^ V ð2Þ ^ V ð1Þ,

where S is a scalar, V is a vector and V(i) (i is a vector index =

1, 2, 3 . . . n) are n linearly independent vectors. Using the

orthonormality conditions of the basis vectors stated earlier,

one can easily show (see Appendix C) that 1y will leave blades

of grade 4g and 4g+1 invariant, while reversing the blades of

grades 4g+2 and 4g+3, where g is a whole number (0, 1, 2 . . .
etc.). Thus, e.g. 1y will leave scalars (grade 0) and vectors

(grade 1) invariant, while reversing bivectors (grade 2) and

trivectors (grade 3). Since multivectors are sums of blades, the

action of 1y on a multivector is clear by noting that it is

distributive over addition.
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Figure 2
(a) A vector and its mirror image (black arrows) cannot be congruently overlapped in 1D, and hence it is chiral. (b) A vector and its mirror image can be
overlapped congruently in 2D when pivoted with the arrow head along the light-orange dashed-line trajectory, indicating it is achiral. However, a
bivector and its mirror image (light-blue parallelograms with right-handed and left-handed circulations around their perimeters) cannot be congruently
overlapped in 2D, indicating it is chiral in 2D. (c) A vector and a bivector are both achiral in 3D, as indicated by light-orange dashed lines showing the
suggested trajectory for overlapping the objects and their mirror images. However, a trivector and its mirror image (in light green, with vector
circulations shown) cannot be congruently overlapped in 3D, and hence it is chiral; it will no longer be chiral in four and higher dimensions. In general, in
n dimensions (nD), a chiral object can only be n-dimensional, and it is no longer chiral in (n+1)D or higher, where n is a natural number.
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3. Group-theoretical classification of multivectors

Having unambiguously defined the action of 1, 10 and 1y on a

blade of any grade, we are now ready to consider the group-

theoretical aspects of the symmetry group generated by the

above three operations, namely, G= f1; 1; 10; 1y; 1
0
; 1

y
; 10y; 1

0yg,
where g 2G is an element of the group G. Consider the action

of G on any multivector x 2 X, where X is a 2n-dimensional

CA space. We now consider the orbit O(x) = {gx 2 X: 8 g2 G},

a set of multivectors obtained by the action of all elements of

the group G on a given multivector x. Depending on which

subset of elements g 2 G we pick to create an orbit, one can

generate many orbits. These orbits can be uniquely classified

based on their stabilizer subgroups, S�G, such that S(O(x)) =

O(x). In other words, subgroup S of G consists of all elements

of G which leave the orbit invariant. As the group G has 16

subgroups S, all orbits of multivectors are classified within

these 16 subgroups, as depicted in Fig. 3. As will be shown

below, these 16 orbits form the basis for the classification of

the multivectors themselves into 16 categories and, within

them, 41 types.

Table 1 lists the 16 categories of multivectors each repre-

sented by a stabilizer subgroup (SS), and within these cate-

gories, further categories based on their transformations

under 1; 10; 1y, whether even (e), odd (o) or mixed (m,

meaning neither odd nor even). Thus, the SS (column 2) plus

the transformation properties (columns 4, 5 and 6) in Table 1

determine a multivector type. These additional types were

identified by the inspection of the SS, and the identification of

the missing symmetry and its possible transformations. For

example, the SS 101y must describe multivector blades that are

invariant (even, e) to both 10 and 1y. That leaves us with three

options for the transformation of the multivectors under the

missing antisymmetry, 1, namely e, o or m. Of these, the option

e already corresponds to the multivector type S0 with SS of

1101y. That leaves only two unique options for the (SS) 101y

types, namely, V0 and S0V0. In a similar manner of inspection,

all the other types were determined.

In all, 41 different types of multivectors are listed, each

given a unique letter-based label in column 3. Of these 41,

eight are principal types, namely, S, V, B, T, S0, V0, B0 and T0.

The action of the three symmetry operations on these eight

multivectors is either even or odd, but never mixed. Adopting

the terminology of centric (1-even) versus acentric (1-odd),

and acirculant (1y-even) versus circulant (1y-odd) multi-

vectors, we can identify both S and S0 in Table 1 to be centric–

acirculant, both Vand V0 to be acentric–acirculant, both B and

B0 to be centric–circulant, and both T and T0 to be acentric–

circulant. The other 33 multivectors are composed of unique

sums of these eight principal multivectors; the action of at
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Figure 3
Sixteen orbits of the antisymmetry group G = f1; 1; 10; 1y; 1

0
; 1

y
; 10y; 10yg, representing the action of the elements of the group (each represented by its

own color) on a multivector x. The orbits are labeled by the generating elements of their stabilizer subgroups (SS). For example, orbit 5) 11y is identified
uniquely by its stabilizer subgroup S = f1; 1; 1y; 1

yg, generated by the generating elements 1 and 1y. The squares and rectangles with a red outline
represent the actions of the stabilizer subgroups on x. The quantities in the squares adjoining any equals sign, ‘ = ’, are equal to each other.
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least one of the three symmetry operations on these 33

multivectors is mixed. Care is needed in comparing the eight

principal multivector types in this work with those by Hlinka

(2014). The neutral (types L and N) and polar (types T and P)

vectors in the work of Hlinka (2014) correspond to centric–

acirculant (types S and S0) and acentric–acirculant (types V

and V0) in this work, respectively. However, the axial (M and

G) vectors in Hlinka (2014) do not correspond to the centric–

circulant multivectors (B and B0), since they are different

grade objects; in this work, axiality as a trait is avoided, and an

axial vector is treated no differently from a grade-1 vector of

types V or V0. Similarly, chiral pseudoscalars (F and C) in

Hlinka (2014) and acentric–circulant multivectors (T and T0)

in Table 1 are different grade objects; the latter make no

reference to chirality. In 3D, acentric–circulant multivectors

are chiral.

4. Bidirectors in arbitrary dimensions

We also make a note of bidirector-like quantities in Table 1.

Hlinka (2014) defines a bidirector as two opposite vectors X

and �X arranged on a common axis at some nonzero distance

2r. The bidirector is then represented by the term X(r) �
X(�r), where r and (�r) are, respectively, the displacement

vectors of the vectors X and �X from an origin centered

between the two vectors. Note that there is no restriction in

picking the directions of the vectors X and r; they are inde-

pendent. Hlinka defines neutral (types L and N) and chiral

pseudoscalar (F and C) types as bidirectors. The characteristic

of these bidirectors is that the vectors composing them are

spatially separated and point in opposite ways along a certain

direction defined by them; this is unlike a conventional single

vector which does not have a well-defined spatial location.

Table 1 lists two types of time-even bidirectors: the S0 types

with the general form of (V0(r) � V0(�r)), and the T0 type with

the general form of (B0(r) � B0(�r)). There are two types of

time-odd bidirectors as well: the S types with the general form

of (V(r) � V(�r)), and the T type with the general form of

(B(r) � B(�r)).

We thus have to generalize Hlinka’s definition of bidirectors

in arbitrary dimensions as follows. Bidirectors are two oppo-

site multivectors, M and �M, arranged on a common axis at

some nonzero distance 2r. The bidirector is then represented

by the term M(r) � M(�r), where r and (�r) are, respectively,

the displacement vectors of M and �M from an origin

centered between the two multivectors.

However, one may note that there is no reason to stop here

in constructing such vector combinations; we can combine

bidirectors as well. For example, if Sa1 = Va(r1) � Va(�r1) and

Sb2 = Vb(r2) � Vb(�r2) (where the magnitudes and directions

defined by the subscripts a, b, 1 and 2 can all be generally

linearly independent), then one can naturally define new

quantities such as, say, Sa1 � Sb2, which is now composed of

two bidirectors with a common origin. (One could in principle

also define such combinations with different origins for the

different bivectors.) A generalization of the bidirector addi-

tions of type S would thus be
P

i;j Si;j, where i is an index for

vectors V and j is an index for displacement vectors r. This

would then give rise to a vector field with specific geometric

characteristics. One could similarly compose bivector fields,

trivector fields and so on. In general, one could construct

multivector fields such as
P

i;jfMiðrjÞ �Mið�rjÞg, similar to the

examples above.

5. Examples of different types of multivectors

5.1. Helical motion

Examples of non-relativistic multivector types are listed in

Table 1. Consider a cylindrical helix (Benger & Ritter, 2010) of

radius � (note this has no relation to the charge density

defined earlier) and pitch 2�c along the helical axis, para-

metrized by the azimuthal angle � in the plane perpendicular

to the helical axis as follows:

qð�Þ ¼ � cos ��̂�1 þ � sin ��̂�2 þ c��̂�3;

where �̂� i, i = 1–3, are the orthonormal basis vectors; q(�) is

thus a grade-1 homogeneous multivector of type V0. The arc

length, s = |�|(�2 + c2)1/2, along the helix is a scalar of type S0.

The tangent vector, v = q0/|q0|, as well as the normal vector p =

v0/|v0|, are vectors of type V0, where q0 = dq/d� and v0 = dv/d�.

The curvature of the path, K = |q00 � q|/|q0|3 = �/(�2 + c2),

is a scalar of type S0, where q00 = d2q/d�2. The osculating

bivector, B = ðv ^ v0Þ=jv0j, is of type B0. The torsion, T =

ðv ^ v0 ^ v00Þ=ðjq0j jv0j2Þ = c=ð�2 þ c2Þ, of the helix is a trivector

of type T0.

Now consider a variant of this helix problem, namely the

motion of an object along a cylindrical helical path, as a

function of time, t. If we replace the time-independent

variable � in the cylindrical helix example above by � = !t,
where ! is the angular frequency of the particle moving

along this helix, then the action of ð1; 10; 1yÞ on qð!tÞ =

� cos!t �̂�1 þ � sin!t �̂�2 þ c!t �̂�3 is (o, m, e) in Table 1, which

corresponds to a multivector of type V0V. The arc length s and

curvature K are still of type S0, while the tangent vector v and

the normal vector p are of type V0V. The osculating bivector B

is of type B0B, while the torsion T is of type T0T.

5.2. Electromagnetism

Next, examples of the types of multivectors encountered in

formulating electromagnetism in CA are presented (Arthur,

2011). In the (3+1)D formulation, the position vector r, a blade

of type V0, the scalar time t and a blade of type S can be

combined as a multivector, R = [c]t + r, which is a multivector

of type SV0(S0,V). In a similar sense, the spatial vector deri-

vative r and scalar time derivative @/@t = @t can be combined to

form a multivector operator [1/c] @t + r, which is also of type

SV0(S0,V). The terms in the square brackets above and in what

follows are suppressed when expressed in natural units for the

sake of brevity, but are understood to be present whenever

omitted. The charge density � (type S0) and the current density

J (type V) combine to form the multivector electromagnetic

source density J = �/["0] � [c�0] J, or in natural units, J = �� J

(type S0V). The electric field E (type V0) and the magnetic
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Table 1
The classification of 41 types of multivectors (column 1) based on 16 stabilizer subgroups (column 2) of the group G = f1; 1; 10; 1y; 1

0
; 1

y
; 10y; 10yg.

A multivector type is defined as a unique combination of entries in columns 2, 4, 5 and 6. Entries in bold (1, 2, 4, 6, 8, 10, 12, 14) in column 1 are the eight principal
multivector types. Column 2 lists the generating elements for the stabilizer subgroups (SS) for the 16 orbit types given in Fig. 2. Blank rows separate groups of rows
to which the corresponding SS applies. Suggested notation for different multivector types is introduced in column 3. Columns 4–6 present the action of three
symmetry operations, 1, 10 and 1y, on these 41 multivectors as either even (e), odd (o) or mixed (m). Column 7 presents the possible grades of the blades whose sum
forms the corresponding multivector type. Column 8 presents some examples of multivector types. A multivector of type VT0 = V+T0 etc. A multivector labeled
SB0(S0,B) is a mandatory sum of vectors S and B0, along with optional additions of types B or S0 or both. Conventional vectors are presented in bold italics.
Multivector labels are presented as CAPITAL letters without italics or bold. For example, note the distinction between B, a notation for a general time-odd
bivector (column 3), versus B, an axial magnetic induction vector. Similarly, r, ri (i = 1, 2, 3): position vector; P, Pi: polarization; E: electric field; v: velocity; J:
current density; p: momentum; H: magnetic field; B: magnetic induction; t: time. An asterisk *, as in *B = x̂xŷyẑzB, indicates a Hodge dual of B in 3D, and similarly for
others. In 3D, the Hodge dual of a vector is a corresponding bivector and vice versa. Column 7 indicates the grades of blades whose sum can compose the particular
multivector type. For example, type No. 5 multivectors involve sums of blades of the type S0 corresponding to grade 4g and a blade of type B0 corresponding to a
grade 4g0+2, where g and g0 can in general be different whole numbers. The entry, varied, in column 7 indicates that a sum of various combinations of all possible
grades of blades are possible in the corresponding multivectors.

Action of

No. SS Label 1 10 1y Grades Examples of multivectors

1 1101y S0 e e e 4g t2, P(r) � P(�r), V0(r) � V0(�r)

2
101y

V0 o e e 4g+1 r, P, E, P1 ^ P2 ^ P3 ^ P4 ^ P5

3 S0V0 m e e 4g, 4g0+1 S0+V0

4
110

B0 e e o 4g+2 r ^ E, r ^ P, P1 ^ P2 ^ P3 ^ P4 ^ P5 ^ P6

5 S0B0 e e m 4g, 4g0+2 S0+B0

6
1
y
10

T0 o e o 4g+3 r1 ^ r2 ^ r3, r ^ B0, B0(r) � B0(�r)

7 S0T0 m e m 4g, 4g0+3 S0+T0

8
11y

S e o e 4g t, V(r) � V(�r), r1 ^ r2 ^ r3 ^ p

9 S0S e m e 4g, 4g0 S0+S

10
1
0
1y

V o o e 4g+1 v, J, p, r1 ^ r2 ^ r3 ^ r4 ^ p

11 S0V m m e 4g, 4g0+1 S0+V

12
110y

B e o o 4g+2 M = *M, *B, L = r ^ p, r1 ^ r2 ^ r3 ^ r4 ^ r5 ^ p

13 S0B e m m 4g, 4g0+2 S0+B

14
1
y
10y

T o o o 4g+3 r1 ^ r2 ^ p, r ^ B, B(r) � B(�r)

15 S0T m m m 4g, 4g0+3 S0+T

16

1

SB0(S0,B) e m m 4g, 4g0+2 B0+S, S+B0+B, S+S0+B0, S+S0+B+B0

17 SB e o m 4g, 4g0+2 S+B

18 B0B e m o 4g+2, 4g0+2 B0+B

19

10
V0B0(S0,T0) m e m All B0+V0, V0+B0+T0, S0+V0+B0, S0+V0+B0+T0

20 V0T0 o e m 4g+1, 4g0+3 V0+T0

21 B0T0 m e o 4g+2, 4g0+3 B0+T0

22

1y
SV0(S0,V) m m e 4g, 4g0+1 S+V0, S+V+V0, S+S0+V0, S+S0+V+V0

23 V0V o m e 4g+1, 4g0+3 V0+V

24 SV m o e 4g, 4g0+1 S+V

25

10y
V0B(S0,T) m m m Varied V0+B, V0+B+T, S0+V0+B, S0+V0+B+T

26 BT m o o 4g+2, 4g0+3 B+T

27 V0T o m m 4g+1, 4g0+3 V0+T

28

1
0

VB0(S0,T) m m m Varied V+B0, V+B0+T, V+B0+N, S0+V+B0+T

29 VT o o m 4g+1, 4g0+3 V+T

30 B0T m m o 4g+2, 4g0+3 T+B0

31

1
y

ST0(S0,T) m m m 4g, 4g0+3 S+T0, S+T+T0, S+S0+T0, S+S0+T+T0

32 T0T o m o 4g+3, 4g0+3 T+T0

33 ST m o m 4g, 4g0+3 S+T
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induction bivector B (type B) can be combined into a multi-

vector electromagnetic field F = E + [c]B [type V0B(S0,T)].

Maxwell’s equation in free space condenses to ð@t þ rÞF =

J, which is a single equation in CA to encode all four Maxwell

equations. The left-hand side is a geometric product of two

multivectors of types SV0(S0,V) and V0B(S0,T), while the right-

hand side is a multivector of type S0V. The blades of different

grades collected on each side must equal each other.

Expanding this equation by substituting for F and J and

solving, we get (Arthur, 2011)

r � E þ r ^ B � ðr � B� @tEÞ þ ðr ^ E þ @tBÞ ¼ �� J;

where B is an axial magnetic induction vector while B = x̂xŷyẑzB

is a magnetic induction bivector. While the right-hand side is a

sum of a scalar (type S0) and a vector (type V), the left-hand

side has a scalar (first term, S0), a trivector (second term, type

T), a vector (third term, type V) and a bivector (fourth term,

type B0). Equating the terms of like multivector grades on the

left- and right-hand sides (which should also be of like

multivector types), we get the four Maxwell equations (in

natural units), namely r � E = � (Gauss’s law), r ^ B = 0

(absence of magnetic monopoles), (r � B � @tE) = J

(Ampere’s law with Maxwell’s correction) and ðr ^ E þ @tBÞ
= 0 (Faraday’s law). Similarly, the wave equation, ðr2 � @2

t ÞF =

ðr � @tÞ J, encodes two of the Maxwell wave equations,

ðr2 � @2
t ÞE = r�þ @tJ (multivectors of type V0 on both sides)

and ðr2 � @2
t ÞB ¼ �r ^ J (multivectors of type B on both

sides). In addition, it encodes a third bonus equation, namely

@t� + r � J = 0, which is a statement of conservation of charge

(multivectors of S on both sides). A solution to the encoded

wave equation is a plane wave of type F = F0e�, where � =

x̂xŷyẑz ð!t � k � rÞ is a trivector of type T0T, because x̂xŷyẑz !t
is of type T and x̂xŷyẑz ðk � rÞ is of type T0. The field amplitude

F0 = E0 + [c]B0. The fields F and F0 are of type V0B(S0,T),

as seen before. The generalized electromagnetic energy

density is given by 1
2 ½"0�FFy = E þ ½1=c2� S, where E =

1
2 ½"0�E2

0 þ 1
2 ½��1

0 �B2
0 is the usual electromagnetic energy

density, a scalar of type S0, and S = ½��1
0 � ðE0 � B0Þ is the

Poynting vector of the multivector type V. The corresponding

Poynting bivector of type B is S = ½��1
0 � ðE0 ^ B0Þ.

6. Conclusions

In conclusion, by introducing a new antisymmetry, wedge

reversion, denoted 1y, in combination with spatial inversion, 1,

and classical time reversal, 10, multivectors have been classi-

fied into eight principal types and 41 overall types that classify

physical quantities within the framework of CA. Examples of

such multivectors from non-relativistic physics such as helices,

helical motion and electromagnetism have been presented.

Since tensors are widely used to express physical quantities, it

is noted that a tensor of rank r in an n-dimensional space

(therefore, nr components) can be written as a multivector in a

2n-dimensional CA space if nr � 2n (see Appendix D). Thus,

the classification of multivectors leads to the classification of

the corresponding tensors. The introduction of two anti-

symmetries, 1y and 10, into conventional crystallographic

groups (which already account for 1) forms 624 double anti-

symmetry point groups (DAPG) and 17 803 double anti-

symmetry space groups (DASG). These have been explicitly

listed by Huang et al. (2014) and VanLeeuwen et al. (2014). For

a crystal belonging to one of these groups, one can determine

the absence, presence and form of the 41 multivector types

using Neumann’s principle (Nye, 1985). While the develop-

ment here has focused on non-relativistic physics, we note that

the group-theoretic method employed here is blind to the

physical meaning of the symmetry operations chosen, as long

as they generate a group whose elements are all self-inverses

and commute with each other. Thus, picking three other

relativistic antisymmetries would again yield exactly 41 types

of multivectors. One could perhaps explore charge reversal

(C), parity reversal (P) and time reversal (T) in the relativistic

context (Hestenes, 2015).

APPENDIX A
Key concepts in Clifford algebra

We begin with a minimal description of the key concepts in

CA essential to following this work; for a more detailed

introduction, the reader is referred to Doran & Lasenby

(2003) and Snygg (2012).

The most important concept in CA is that of the multi-

plication or geometric product of two vectors, say A and B,
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Table 1 (continued)

Action of

No. SS Label 1 10 1y Grades Examples of multivectors

34

1
0y

VB m o m 4g+1, 4g0+2 V+B

35 BT0 m m o 4g+2, 4g0+3 B+T0

36 VT0 o m m 4g+1, 4g0+3 V+T0

37 S0VBT0 m m m Varied V+B+T0, S0+V+B, S0+V+B+T0

38

1

W m m m Varied e.g. S0VBT0 + any from Nos. 16 to 33

39 X m m o Varied e.g. BT0+ TT0+B0T+BT+B0T0+BB0+T+T0+B+B0

40 Y m o m Varied e.g. VB+ST+VT+BT+SV+SB+S

41 Z o m m Varied e.g. VT0+TT0+VT+V0T+VV0+V0T0+V+V0+T+T0
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written as AB. For pedagogical reasons, we begin with three

dimensions; extension of the results to n dimensions will then

be straightforward. Consider an orthonormal basis set (or a

frame) of three conventional vectors �̂�1, �̂�2 and �̂�3 such that

�̂�1�̂�1 = �̂�2�̂�2 = �̂�3�̂�3 = I (normalization condition) and

�̂� i�̂� j þ �̂� j�̂� i = 0 (orthogonality condition, when i 6¼ j), where I is

identity and the subscripts i and j each span from 1 to 3. We

can represent these basis vectors as square matrices that

satisfy the above relations, e.g. Dirac matrices or Pauli

matrices (Snygg, 2012), such that a product �̂�1�̂�2, for example,

simply becomes an elementary matrix multiplication opera-

tion of the corresponding matrices for �̂�1 and �̂�2, which in

general is non-commutative, i.e. �̂�1�̂�2 6¼ �̂�2�̂�1.

With these preliminaries, it is easy to show that arbitrary

geometric products of these three basis vectors will result in an

expanded algebraic set of 23 = 8 basis vectors as depicted in

Fig. 4: I, �̂�1, �̂�2, �̂�3, �̂�1�̂�2, �̂�2�̂�3, �̂�3�̂�1 and �̂�1�̂�2�̂�3. We will

abbreviate these and group them into subspaces { } as follows:

{I}, {�̂�1; �̂�2; �̂�3}, {�̂�1�̂�2, �̂�2�̂�3, �̂�3�̂�1}, {�̂�1�̂�2�̂�3}. We note that this

8D CA field is composed of the subspace {I} for scalars (also

called grade-0 blades), the vector subspace {�̂� i} for the

conventional 1D vectors (also called grade-1 blades), the

subspace {�̂� i�̂� j ¼ �̂� ij} for bivectors (grade-2 blades) and

subspace {�̂� i�̂� j�̂�k ¼ �̂� ijk} for trivectors (or grade-3 blades),

where i 6¼ j 6¼ k. A multivector (also called a Clifford number)

is an object in this 8D CA space.

Any product of two vectors will form a multivector. For

example, if A = ai�̂� i and B = bj�̂� j are conventional vectors, then

it is straightforward to show that AB = aibiI + (aibj � ajbi)�̂� ij,

where i 6¼ j. This is a multivector, M = AB = hMi0 + hMi2 with

two blades, one of grade 0 (denoted hMi0 = aibiI) and another

of grade 2 [denoted hMi2 = (aibj � ajbi)�̂� ij]. A blade is a scalar,

a vector or the wedge product (to be defined shortly) of any

number of linearly independent vectors. The grade of a blade

refers to the number of vectors composing the blade through

their wedge product. A general multivector is thus a sum of

blades of arbitrary grades; if the grades of all the blades in a

multivector are equal, it is called a homogeneous multivector.

The coefficient of the first term in M above, aibi , can be

identified with the conventional dot product between the two

vectors, A � B, and that of the second term with the compo-

nents of the conventional cross product vector, A � B= ck�̂�k =

�kij aibj�̂�k , where �kij is the Levi–Civita symbol. Thus, one

could rewrite as AB = A � B I + (A � B)k �̂� ij. One can invert

these relationships as A � B = (1/2) (AB + BA) and (define)

A ^ B ¼ ð1=2Þ ðAB� BAÞ, which are the dot product and the

wedge product, respectively. It is evident from these definitions

that �̂�12 ¼ �̂�1 ^ �̂�2 and �̂�1�̂�1 ¼ �̂�1 � �̂�1, and so on for others.

The relationship between the conventional vector cross

product (axial vector) in 3D and the wedge product is

straightforward: A � B = ��̂�123 ðA ^ BÞ. Note that in 3D,

A � B is called an axial vector that resides in the subspace

{�̂� i}, while A ^ B is called the bivector that resides in the

subspace {�̂� ij}; the above relationship between them defines

them as Hodge duals of each other in 3D space (only). Note

that axial vectors are in no way special in 3D CA because they

reside in the same subspace {�̂� i} as the conventional polar

vectors. However, axial vectors are typically expressed as

wedge products in 3D CA where they occur as bivectors in a

different subspace {�̂� ij}. While the definition of axial vectors

formed through a cross product between two polar vectors is

limited to 3D (Massey, 1983), the wedge product between two

polar vectors is generalizable to any dimension. Similarly, it

can be shown that A ^ B ^ C = �̂�123 ((A � B) � C), where the

trivector A ^ B ^ C is a Hodge dual of the scalar volume,

(A � B) � C, in 3D space. Thus, in 3D, the Hodge dual of a

blade is obtained from its geometric product with the pseu-

doscalar �̂�123. These distinctions in 3D are relevant because

the antisymmetry 1y reverses the bivector and the trivector in

3D, but not the vector (axial or polar) or the scalar.

These ideas can now be generalized to an n-dimensional

vector space, spanned by orthonormal basis vectors �̂� i (i 	 1,

2, 3, . . . n) satisfying the conditions �̂� i�̂� j þ �̂� j�̂� i ¼ 2�ij, where �ij
is the Kronecker delta. With the introduction of the geometric

product, these n-basis vectors expand to a 2n CA space, with

subspace {I} for homogeneous multivectors composed of sums

of grade-0 blades, subspace {�̂� i} for homogeneous multivectors

of grade 1, subspace {�̂� ij} for homogeneous multivectors of

grade 2, and so on up to {�̂� ijk...ðn�1Þ} for homogeneous multi-

vectors of grade (n � 1) (called pseudovectors in dimension n)
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Figure 4
(a) Example of a 3D vector space with orthonormal basis vectors
�̂�1; �̂�2; �̂�3 which expands under the operation of geometric product
(multiplication) of vectors to a 2n = 8D algebraic vector space, (b), that is
closed under geometric product. Objects in this space are called
multivectors (or Clifford numbers), whose algebra is called Clifford
algebra (CA). A blade is a scalar, a vector or the wedge product of any
number of vectors. The grade of a blade refers to the number of vectors
composing the blade. (c) The number of blades of different grades
forming the basis for a 2n-dimensional CA is given by the Pascal’s
triangle. The correct sequential notation for blades in increasing order of
grade is scalar (S), vector (V), bivector (B), trivector (T), quadvector
(Q) . . . blade of grade n (N). A general multivector in CA is a blade or a
sum of blades.
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and {�̂� ijk...n} for homogeneous multivectors of grade n. The

highest grade blades possible in n dimensions (where i 6¼ j 6¼ k

6¼ . . . 6¼ n) are called pseudoscalars in dimension n. A blade

hMip of grade p (�n) in a multivector M in 2n-dimensional CA

space can always be written as a wedge product hMip =

V(1) ^ V(2) ^ V(3) ^ . . . ^ V(p), where V(i) (i = 1 . . . p) are p

linearly independent grade-1 vectors. The wedge product

between any two blades, hMip and hNiq (grades p, q � n), in n

dimensions can be generalized as hMip ^ hNiq = hMNip+q. We

now have to make a distinction between the dot product

hMip � hNiq = hMNi|p�q| and the scalar product, hMip 
 hNiq =

hMNi0 ; when p = q, the dot and scalar products are equal, and

when p 6¼ q, the scalar product is zero but the dot product can

be nonzero. For any two multivectors, P and Q, each a sum of

blades of different grades, the geometric product PQ will

contain many blades of different grades. Of these, the sum of

blades of the highest grade will be the wedge product P ^ Q,

and the sum of blades of the lowest grade will be the dot

product P � Q. The sum of blades of grade zero will be the

scalar product P 
 Q. The definition of the Hodge dual of a

blade can also be generalized to n dimensions by multi-

plication (i.e. geometric product) of the blade with its

pseudoscalar, �̂� ijk...n, i.e. for example, *P = �̂� ijk...nP, where *

preceding P indicates the Hodge dual of P in the relevant

dimension. Finally, we note that the geometric product is

distributive over addition.

APPENDIX B
Wedge product

The wedge product between n linearly independent vectors is

given by the determinant of an n�n matrix, as given below:

A ^ B ^ C ^ . . .ð Þ ¼ 1

n!

A B C . . .
A B C . . .
A B C . . .
..
. ..

. ..
. . .

.

��������

��������
: ð1Þ

Thus, the dot product and the wedge product between two

vectors A and B can be written as

A ^ Bð Þ ¼ AB� BA

2
¼ 1

2!

A B

A B

����
���� ð2Þ

and

A � Bð Þ ¼ ABþ BAð Þ=2: ð3Þ
From the above definitions, we can deduce that x̂xx̂x ¼ x̂x � x̂x, and

so on for ŷy and ẑz. Similarly, x̂xŷy ¼ x̂x ^ ŷy, and so on for the other

basis bivectors, ŷyẑz and ẑzx̂x. Finally, x̂xŷyẑz = x̂x ^ ŷy ^ ẑz. Note that

the wedge product is nonzero only when the vectors involved

are linearly independent.

APPENDIX C
Wedge reversion

Wedge reversion 1y is an operation in CA which is generically

called reverse, reversion or reversion conjugation, but is

renamed here slightly for uniqueness. (Note the use of

reversion instead of reversal, which we will comment on

shortly.) The action of 1y on a blade of grade g is simply to

reverse the order of the vectors in the wedge product, hence

the name given to it. In other words, 1yð�̂�123...ðg�1ÞgÞ =

�̂�gðg�1Þ...321. More specifically, given an orthonormal basis,

1yð�̂�1Þ = �̂�1, 1yð�̂�12Þ = �̂�21 = ��̂�12, 1yð�̂�123Þ = �̂�321 = ��̂�123,

1yð�̂�1234Þ = �̂�4321 = �̂�1234 and so on, as shown in Fig. 1.

Given the relations ðA ^ BÞ = �̂�123(A � B) and (A�B) � C
= ��̂� ijkðA ^ B ^ CÞ in 3D, and since 1yð�̂�12Þ = ��̂�12 and

1yð�̂�123Þ = ��̂�123, 1y will leave invariant the cross product

(A � B) as well as the scalar (A � B) � C defined between

polar vectors A, B and C, i.e. 1y(A) = A (and similarly for

B and C), 1y(A � B) = (A � B) and 1y((A � B) � C) =

(A � B) � C. We note that the action of 1y is distributive over

addition and multiplication, which is similar to other anti-

symmetries.

To generalize the action of 1y in n dimensions, let us denote

the pseudoscalar in n-dimensional CA as in = �̂�123...n. Then

using the orthonormality conditions, one can show that i2n =

ð�1Þn=2 (for n even) and i2n = ð�1Þðn�1Þ=2 (for n odd). The action

of 1y on pseudovectors in n dimensions can therefore be

derived as 1y(in) = i2n(in) and 1y(im in) = i2n i
2
m(in im). Using these

results, we can show that for a blade hMim of grade m, 1y hMim
= i2m hMim and 1y (hMim hMin) = i2n i

2
m (hMin hMim). Thus, 1y

will reverse the sign of blades of grades 2, 3, 6, 7, 10, 11 . . . etc.,
while leaving the blades of grades 0, 1, 4, 5, 8, 9 . . . etc.

invariant. The fact that 1y will reverse the sign of some blades

while not reversing that of others leads us to use the term

wedge reversion, rather than wedge reversal. The former, in

particular, refers to reversing the order of vectors in a blade,

not necessarily the blade itself, as the latter might imply. In

particular, the CA of dimensions n = 2 is isomorphic to the

complex algebra where i2 = �12 	 (�1)1/2. Noting that 1y(i2)

=�i2, we identify the operation 1y to be isomorphic to complex

conjugation in complex algebra. Similarly, the 4D subspace

{I, �̂�12, �̂�23, �̂�31} of the n = 3 CA is isomorphic to the quaternion

algebra (Conway & Smith, 2003) discovered by Hamilton and

whose basis is formed by one real and three imaginary

axes. The role of 1y here is again isomorphic to complex

conjugation.

APPENDIX D
Tensors expressed as multivectors

A tensor of rank r in an n-dimensional space (therefore,

nr components) can be written as a multivector in a 2n-

dimensional space as long as nr � 2n. For example, let n = 4

and r = 2. Then nr = 2n = 16, which indicates that a 16D CA

space is in principle sufficient to represent a second-rank

tensor in 4D space. If np = 2n, then tensors of rank r < p can

also be written as multivectors in the 2n-dimensional CA

space.

As an example, consider a 4�4 second-rank tensor, T =

(Tij), where i and j each range from 0, 1, 2, 3, spanned by

orthonormal basis vectors �̂�0, �̂�1, �̂�2, �̂�3 given by
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�̂�0 	
0 �	2

�	2 0

� �
; �̂�1 	

0 	1

	1 0

� �
;

�̂�2 	
0 	3

	3 0

� �
; �̂�2 	

I 0

0 �I

� �
;

where

	1 ¼
0 1

1 0

� �
; 	2 ¼

0 �i

i 0

� �
;

	3 ¼
1 0

0 �1

� �
; I ¼

1 0

0 1

� �
:

The CA space is spanned by the basis I, �̂�0, �̂�1, �̂�2, �̂�3, �̂�0�̂�1,

�̂�0�̂�2, �̂�0�̂�3, �̂�1�̂�2, �̂�3�̂�1, �̂�2�̂�3, �̂�0�̂�1�̂�2, �̂�0�̂�2�̂�3, �̂�0�̂�1�̂�3, �̂�1�̂�2�̂�3

and �̂�0�̂�1�̂�2�̂�3. The tensor T can then be written as a multi-

vector in this 16D CA basis as follows:

4T ¼ IðT00 þ T11 þ T22 þ T33Þ þ i�̂�0ð�T03 þ T12 � T21 þ T30Þ
þ�̂�1ðT03 þ T12 þ T21 þ T30Þþ�̂�2ðT02 � T13 þ T20 � T31Þ
þ �̂�3ðT00 þ T11 � T22 � T33Þ
þ i�̂�0�̂�1ð�T00 þ T11 � T22 þ T33Þ
þ i�̂�0�̂�2ðT01 þ T10 þ T23 þ T32Þ
þ i�̂�0�̂�3ðT03 � T12 � T21 þ T30Þ
þ �̂�1�̂�2ðT01 � T10 þ T23 � T32Þ
þ �̂�3�̂�1ðT03 þ T12 � T21 � T30Þ
þ �̂�2�̂�3ð�T02 þ T13 þ T20 � T31Þ
þ i�̂�0�̂�1�̂�2ðT02 þ T13 þ T20 þ T31Þ
þ i�̂�0�̂�2�̂�3ðT01 þ T10 � T23 � T32Þ
þ i�̂�0�̂�1�̂�3ð�T00 þ T11 þ T22 � T33Þ
þ �̂�1�̂�2�̂�3ð�T01 þ T10 þ T23 � T32Þ
þ i�̂�0�̂�1�̂�2�̂�3ðT02 þ T13 � T20 � T31Þ:

While the above expression for T is obtained from a

straightforward matrix decomposition in the basis of the

orthonormal matrices given above, a conceptual transition is

required in transitioning from the ‘matrices’ � i to ‘vectors’ �̂� i

in CA. In particular, the rules for linear transformation of

matrices versus those for vectors in CA differ, and appropriate

caution must be exercised in working out the appropriate

correspondences between the two. As a simple example, a

similarity transformation of a 2�2 matrix by a rotation angle 

in the 1–2 plane is performed in conventional tensor algebra

by the transformation matrix

cos 
 sin 

� sin 
 cos 


� �
;

while such a rotation of a corresponding multivector in CA

would require a rotor operator R ¼ cosð
=2Þ � �̂�1�̂�2 sinð
=2Þ.
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