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Abstract

Symmetry is fundamental to understanding our physical world. An antisym-
metry operation switches between two different states of a trait, such as two
time states, position states, charge states, spin states, or chemical species.
This review covers the fundamental concepts of antisymmetry and focuses
on four antisymmetries, namely, spatial inversion in point groups, time re-
versal, distortion reversal, and wedge reversion. The distinction between
classical and quantum mechanical descriptions of time reversal is presented.
Applications of these antisymmetries—in crystallography, diffraction, deter-
mining the form of property tensors, classifying distortion pathways in tran-
sition state theory, finding minimum energy pathways, diffusion, magnetic
structures and properties, ferroelectric and multiferroic switching, classify-
ing physical properties in arbitrary dimensions, and antisymmetry-protected
topological phenomena—are described.
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1. INTRODUCTION AND SCOPE

Symmetry is doing something that looks like doing nothing. This statement turns out to be a
pretty rigorous basis for themathematical definition of a symmetry operation. Symmetry lies at the
heart of understanding the physical world, from the fundamental laws of physics (1) to materials
and their physical properties (2). Any introductory book on materials science (3) begins with a
description of crystal structure classified according to crystallographic symmetries. While such
symmetry classification dates back to the 1891 work of Fedorov (4) and Schönflies (5; described
in 6), the publication in 1913 by Friedrich et al. (7) that crystals are periodic arrays of atoms laid
the foundation stone for modern materials science and condensed matter physics.

Antisymmetry is a specific type of symmetry, also called two-color symmetry. The reader is
referred to excellent reviews on the topic from decades ago (8, 9). For example, spatial inversion,
1̄, is an antisymmetry with respect to rotations. Time reversal, 1′, is a well-known antisymmetry
with applications in magnetic crystallography and in predicting magnetic properties with classi-
cal spins. A new antisymmetry, distortion reversal, 1∗, has recently been introduced in predicting
minimum energy pathways (MEPs) (10). Another recently formulated antisymmetry, wedge re-
version, 1†, enables the classification of physical quantities and properties in arbitrary dimensions
(11). This review provides an overview of the fundamental concepts underlying antisymmetry and
the specific examples of antisymmetries mentioned above: 1̄, 1′, 1∗, and 1†.

Section 2 introduces the concepts of symmetry, color symmetry, and antisymmetry. Section 3
discusses time-reversal antisymmetry, 1′; its applications to magnetic crystallography and property
predictions; and its interpretation in classical versus quantum mechanical contexts. Section 4
discusses distortion-reversal antisymmetry, 1∗, and its applications in finding MEPs. Section 5
introduces a new antisymmetry, wedge reversion, 1†, and its application in classifying multivectors
in arbitrary dimensions. Section 6 presents a summary and future outlook, including a brief note
on topology. We restrict ourselves to crystallographic symmetry. All the physical problems
addressed here are in the nonrelativistic Newtonian framework, where space is considered three-
dimensional (3D) and time is considered a scalar quantity disconnected from space. Relativistic
space-time involves three fundamental symmetries, of antiparticle conjugation (C), parity (P),
and time reversal (T ) (13). Parity and time reversal are discussed in the nonrelativistic context
as spatial inversion, 1̄, and time reversal, 1′, respectively. Antiparticle conjugation is related to
space-time reversal (inverting both space and time coordinates) and is not discussed here further,
other than in the nonrelativistic context as 1̄′.

2. SYMMETRY AND ANTISYMMETRY

2.1. Crystallographic Point and Space Groups; Spatial Inversion,
1̄; and Neumann’s Principle

Rotations are the most common symmetry operations in crystallography. It turns out from sim-
ple geometric considerations (see Figure 1a) that periodic crystals can possess only five types of
rotational symmetries: 1-, 2-, 3-, 4-, and 6-fold rotations, where a p-fold axis refers to rotations of
2π/p about that axis. This is called the crystallographic restriction theorem and is a direct con-
sequence of the translational periodicity of crystals. If we now consider a periodic crystal, but for
the moment ignore translational symmetry, it can be shown that there are only 11 possible ways
in which a collection of the above rotational symmetries about different axes can pass through a
single point in a self-consistent manner (see Figure 1b). These are the 11 rotational point groups,
listed in Figure 1c. The point group 32 is shown as an example in Figure 1b.

Spatial inversion, 1̄, inverts the space about a single point of inversion, namely, 1̄ : r → −r.
In two dimensions, 1̄ is equivalent to a 2-fold rotation of the 2D plane, since both can be
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Figure 1

Derivation of rotational crystallographic point groups. (a) The crystallographic restriction theorem and a p-fold axis that periodically
repeats every unit distance of a and requires the condition stated below, where m is a whole number. (b) The question of how many
p-fold axes can pass through a single pivot point at the center of an imaginary sphere (gray circle) and still form a group describing the
symmetry of a crystal placed at the pivot point. The example of the point group 32 is the set of elements {1, 3, 3−1, 2a, 2b, 2c}; here,
N = 6 is the order of the group. Each axis has a north pole (N; filled green circles) and a south pole (S; open green circles), where the
rotation axes and the sphere intersect. Equivalent poles can be moved into congruence with each other using elements of the group.
(c) Table showing the 11 possible combinations of values of the variables that satisfy the equation shown in panel b and the
corresponding point groups they correspond to. For the point group 32, i is equal to 3, corresponding to the three sets of poles (�,�,�),
( �, �, �), and (�, �), as shown, with pi = 2, 2, and 3, respectively, for the folds of the axes corresponding to each set of equivalent poles.

represented by (x y) → (−x −y). In three dimensions, they are distinct, since 1̄ : (x y z) →
(−x −y −z), while the 2-fold transformation along the z-axis is 2z : ( x y z) → (−x −y z). Rotoin-
versions combine rotation, R, with inversion, 1̄, to form the operation R · 1̄ = R̄. This operation
is distinct from R and 1̄, since an object can possess R̄ symmetry without possessing either R
or 1̄. Rotations and rotoinversions of a periodic crystal that leave the crystal invariant together
compose the 32 crystallographic point groups (14). When 3D translations in the Euclidean
space are also included, the 32 point groups expand to 230 space groups, as listed in detail in the
International Tables for Crystallography (15).

Neumann’s principle states that the macroscopic properties of a material must at least pos-
sess the symmetry of its point group, thus intimately tying together symmetry and properties (2).
Macroscopic means that the property in question is averaged over a sufficiently large number of
unit cells for it to be insensitive to lattice translation symmetry. For example, if the point group of a
crystal possesses inversion symmetry, 1̄, then all its macroscopic properties must at least possess in-
version symmetry, thus ruling out macroscopic polarization such as ferroelectricity and pyroelec-
tricity within this crystal. When microscopic properties involve unit cell translations, Neumann’s
principle needs to be restated as follows: Microscopic properties involving lattice translations of
a material must at least possess the symmetry of its space group. For example, the arrangement
of spins on different lattice sites related by translations determines the antiferromagnetic order
(16, 17). Inversion symmetry is also useful in quantum mechanics; for example, one of the optical
selection rules (18) states that dipole transition of electrons through a light field can occur only
between two electronic states with opposite parities, namely, one state that is 1̄-even (invariant
under 1̄, such as s, d, and g orbitals) and another that is 1̄-odd (reverses under 1̄, such as p, f, and h
orbitals).
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a b

1C: 1C:

2 3

Figure 2

Color symmetry is illustrated with two-color and three-color objects. (a) If 1C is defined as an operation that
exchanges black and white colors, then the yin-yang symbol in panel a is invariant under the symmetry
operation 2C, which is a 2-fold rotation followed by a color swap. (b) If 1℘ is defined as an operation that
cyclically permutes orange-blue-yellow colors, then the three-color symbol in panel b is invariant under the
symmetry operation 3℘, which is a 3-fold rotation followed by a three-color permutation.

2.2. Color Symmetry and Antisymmetry

Symmetry operations in the crystallographic point groups and space groups exclusively involve
moving atoms around in 3D Euclidean space—that is, the spatial location of atoms. However,
atoms also can possess other characteristics, such as type of chemical species, charge, and spin.
These characteristics can be thought of as color in an abstract sense. If there are only two states
of charge, say + or −, or only two states of quantum spin, say ↑ or ↓, then we need only two
colors to represent them. For example, we can use white for ↑ and black for ↓. Two-color sym-
metries are called antisymmetries or anti-identities; an antisymmetry operation switches a black
characteristic into a white characteristic or vice versa. Figure 2 shows an example of a two-color
and a three-color symmetry. Reviews on color symmetry by Lifshitz (19), Schwarzenberger (20),
and Opechowski (21) are particularly recommended. This review solely focuses on two-color
symmetries (antisymmetries). Permutation groups of three colors or more are distinct from the
antisymmetry groups discussed in this review.

An antisymmetry with respect to a group can be defined (22) as an operation satisfying the
following conditions: (a) It should be its own inverse (i.e., self-inverse), (b) it must commute with
all elements of the group under consideration, and (c) it must not itself be an element of the group.
By this definition, the spatial inversion operation is in fact an antisymmetry with respect to the
group of proper rotations, SO(3). However, inversion is not an antisymmetry with respect to the
Euclidean group E(3), since it does not commute with spatial translations.

A brief note on the history of antisymmetry is in order [see, e.g., articles by Zamorzaev (9)
andWills (23) and their bibliographies]. Heesch (22) introduced the idea of antisymmetry in 1930
and showed that color could be treated as a higher dimension. By including a single antisymme-
try in the crystallographic groups, Heesch showed that they could be expanded into 122 point
groups, now called Shubnikov groups. Zamorzaev (24, 25) extended these two-color point groups
to two-color space groups, expanding the 230 crystallographic space groups to 1,651 two-color
space groups. Landau & Lifshitz (26) reinterpreted black and white colors to correspond to time-
reversal antisymmetry, 1′, whose action reverses time; that is, t→ −t. These groups revolutionized
the interpretation of neutron scattering frommagnetic crystals and the interpretation of the mag-
netic properties of crystals, as long as the spins are treated classically. However, there are subtle
conceptual issues in conflating time reversal with spin reversal, especially in quantum mechan-
ics, which is discussed in Section 3.3. Gopalan & Litvin (27) introduced an antisymmetry named
rotation-reversal symmetry in 2011 as a way to switch the sense of solid-body rotations of the rigid
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polyhedra that compose a crystal. This idea was generalized to distortion-reversal antisymmetry,
1∗, by VanLeeuwen & Gopalan (10) and VanLeeuwen (28) in 2015. It is shown in Section 4 to
have important practical applications in predicting MEPs between an initial and a final state (10,
29, 30). Gopalan (11) introduced wedge reversion, 1†, in 2019 as a missing antisymmetry in the
classification of physical properties expressed as multivectors into eight principal and 41 overall
types.

2.3. Antisymmetry Point Groups and Space Groups

Starting from 32 crystallographic point groups and 230 space groups, addition of antisymmetry
operations expands the groups further. Consider including a single antisymmetry to the crystallo-
graphic groups, resulting in the so-called single antisymmetry point groups and single antisymme-
try space groups. The most common application of these groups is in the form of 122 Shubnikov
point groups and 1,651 space groups, all listed by Litvin (31, 32), where the antisymmetry is 1′,
the time-reversal operation. Of the 122 two-color point groups, 32 of them are colorless groups,
the ones with no 1′, and thus they are the conventional 32 crystallographic groups. Another 32 of
them have 1′ explicitly in them, and they are called gray groups—these groups cannot support a
macroscopic magnetic moment, since Neumann’s principle would require that the presence of a
magnetic moment, M, will also require the presence of 1′M = −M in the system. Finally, there
are 58 more where 1′ is not present explicitly but is present in association with other rotation
or rotoinversion operations, such as in, for example, 2′ = 2·1′. These are called black-and-white
groups.The colorless point groups (32 of them) and the black-and-white point groups (58 of them)
can support a macroscopic magnetic moment, and hence, together they are called the 90 magnetic
groups.Figure 3 gives examples of colorless, gray, and black-and-white single antisymmetry point
groups.

If two antisymmetry operations are defined and represented as 1∗ and 1′, they can be used to
generate double antisymmetry point groups and double antisymmetry space groups. In all, 17,803
possible double antisymmetry space groups and 624 double antisymmetry point groups exist, as
listed by VanLeeuwen et al. (33). Huang et al. (34) published the complete symmetry diagrams
for all of these groups. Padmanabhan et al. (35) listed all spatiotemporal point groups with time
translations, and Liu et al. (36) listed all spatiotemporal point groups with time translations and
time reversal. If time reversal is replaced by 1∗, these listings would also apply to isomorphic
distortion groups, described in Section 4. Figure 4 shows example stereographic projections of
double antisymmetry point groups. The addition of a third antisymmetry leads to 287,574 triple

222 2221' 22' 2'

2

2 2
2

2, 2'
2, 2' 2'

2'2, 2'

Figure 3

Stereographic projection of single antisymmetry point groups. The groups are denoted 222 (colorless), 2221′
(gray), and 22′2′ (black and white). The symmetry operations associated with 1′ are colored with blue. The
complete listing of single antisymmetry point groups and single antisymmetry space groups is given by
Litvin (31, 32).
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1–* 1–*, 1'1–' * 1–', 1*

2, 2*

2*2, 2*

1–, 1*
2, 2'*

2, 2'*

1–, 1' *

1–',  1'* 1–'*

2, 2', 2*
1–, 1' ,
1*

2
1–' 1

1–

1' 
1*
1'*
1–'
1–*
1–' *

1–

2/m 2/m1' 2/m1* 2/m1' * 2/m1'1* 2/m'

2/m* 2/m'* 2/m'1* 2/m*1' 2/m'1'* 2*/m'

Figure 4

One example each of 12 types of double antisymmetry point groups when 1∗ and 1′ are combined with the crystallographic point
groups. The symmetries 1, 1′, 1∗, 1′∗, 1̄, 1̄′, 1̄∗, and 1̄′∗ are shown; each antisymmetry is color coded as shown on the right. If space
groups are considered, four of these symmetries involving 1̄ would not be considered antisymmetries due to the presence of translations
that do not commute with 1̄.

antisymmetry space groups (28) and 4,362 point groups (9); these are not yet explicitly listed.
Beyond three antisymmetries, one can construct only gray point groups that explicitly contain
the additional antisymmetry operations. This is because of a lack of greater than three distinct
subgroups of index 2 (containing half the number of elements) of the original crystallographic
point groups needed to construct black-and-white point groups.

3. TIME REVERSAL AS AN ANTISYMMETRY

Landau et al. (37) reinterpreted the generalized antisymmetry operation 1′ as a time-reversal oper-
ation defined as follows: 1′ : t → −t .Classically, magnetic moments can be thought of as current
loops, and hence, a time-reversal operation will flip the direction of the current in the loop and
thereby flip themagneticmoment.Magnetic space and point groups, along with the advent of neu-
tron diffraction, transformed the way magnetic materials and their properties were characterized.
However, the above description of time reversal as an antisymmetry and its action on magnetic
moments is valid only within a purely classical treatment of spin. The intrinsic spins of electrons
are inherently quantum mechanical in origin and behave very differently from classical current
loops, and care is needed in applying magnetic groups in these cases, as described in Section 3.3.

3.1. Neutron Diffraction Reveals Magnetic Symmetry

The antisymmetry operation 1′ is used to reverse classical magnetic moments (equivalent to a flat
current loop) between up (↑) and down (↓) states at each magnetic atom, while simultaneously
leaving their spatial coordinates unchanged. The data in Figure 5a are the first instance of the
application of magnetic groups to neutron diffraction of a magnetic crystal (38, 39). Conventional
X-ray photons do not distinguish between spin-up and spin-down electrons; they simply see the
total electron density, ρe(r), and thus the scattering power is given by fγ ∝ ρe(r) = ρ↑

e (r) + ρ↓
e (r),

where the superscripts indicate the two spin states. Neutrons scatter due to nuclear spin as well
as the magnetic polarization of the electrons, namely, f mag

n0
∝ ρ↑

e (r) − ρ↓
e (r), and hence can probe

the underlying magnetic symmetry of the crystal. This was indeed observed with the first ever
neutron diffraction experiment on MnO, performed by Shull & Smart (38) in 1949, which also
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Figure 5

The first reported (39) neutron diffraction study on MnO, revealing magnetic symmetry. (a) Unit-cell
doubling and four extra antiferromagnetic reflections are observed below the Néel temperature of 120 K,
since neutrons are sensitive to the spin of the scattering electrons. (b) The unit cell of MnO, shown with only
the Mn atoms and the magnetic moments at each site. The dashed lines show planes within which magnetic
moments are aligned. Figure reproduced with permission from Reference 39; copyright 2019 American
Physical Society.

happened to be the first direct evidence of antiferromagnetism, as shown in Figure 5a. To ex-
plicitly derive how the magnetic symmetry influences the neutron scattering in MnO, one first
notes that the peak with the lowest scattering angle at 80 K is at half the scattering angle of that
at 293 K, indicating doubling of the crystallographic unit cell caused by the magnetic structure of
the antiferromagnetic phase. For X-ray diffraction, the scattering intensity at a wavevector differ-
ence of �k is approximately given by IXRD(�k) ∝ |� j f je−2πir j ·�k|2, where the summation is over
the ions in the unit cell. Considering only the Mn atoms’ lattice sites but ignoring their spins, this
then evaluates to

IXRD (�k) ∝
∣∣∣ f Mne−2πi(0 0 0)·�k + f Mne−2πi( 1

2
1
2 0)·�k

∣∣∣2,
which is nonzero when (h, k, l ) for the diffracted planes are either all odd or all even; however,
all-even indices are not experimentally observed above. For scattering of a neutron beam in the
antiferromagnetic phase,

IND (�k) ∝
∣∣∣ f Mn↑e−2πi(0 0 0)·�k + f Mn↑e−2πi( 1

2
1
2 0)·�k

+ f Mn↓e−2πi(14 1
4 0)·�k + f Mn↓e−2πi( 1

2 0 0)·�k
∣∣∣2,

where f Mn↑ = − f Mn↓ because of the interaction of neutrons with electron spins. The selection
rules evaluate to (h, k, l ) being all odd, as observed experimentally in Figure 5a. The Bragg
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diffraction of neutron beams at scattering angles that were believed to be forbidden according to
the crystallographic space group symmetry (Fm3̄m) of MnO and its associated X-ray diffraction
selection rules were actually allowed according to the magnetic space group (C2c2/m′) of MnO.

3.2. Neumann’s Principle Connects Magnetic Symmetry to Properties

In the context of magnetic properties such as magnetoelectricity and piezomagnetism (2), it is this
magnetic symmetry that is of interest when applying Neumann’s principle, stated in Section 2.1.
To illustrate this, we consider the property of magnetoelectricity,Mi = Qi jE j , whereMi represents
the components of the magnetization, an axial time-odd vector; Ej the components of the electric
field, a polar time-even vector; and Qi j the axial time-odd magnetoelectric second-rank tensor.
By Neumann’s principle, the magnetoelectric tensor vanishes if 1′ or 1̄ is a symmetry element
of the point group of a crystal (2). Thus, all 32 magnetic gray groups and 11 colorless groups
with explicit inversion symmetry lack the magnetoelectric effect. The magnetoelectric effect was
experimentally discovered for the first time (40) in chromium oxide; Cr2O3 with a magnetic point
group of Cr2O3 is 3̄′m′. Neumann’s principle implies then thatQ11 = Q22 andQ33 are the nonzero
elements (the subscript 3 is along the 3-fold axis), both of which disappear above the magnetic
transition temperature TN (Figure 6a).

However, care is needed in applying 1′ (41). For example, consider Ohm’s law, Ji = σi jE j , where
i, j indicate Cartesian coordinates; J is the current density in angstroms per square meter, a time-
odd vector; E is the electric field in volts per meter, a time-even vector; and σ is the electrical con-
ductivity, a time-odd second-rank tensor.Nomagnetism is explicitly involved in this phenomenon,
but time reversal is involved. From Neumann’s principle, one would conclude for a paramagnetic
metal that explicitly contains 1′ as a symmetry element that σi j = 0, which is unphysical since
paramagnetic metals are good conductors of electricity. The apparent contradiction is resolved by
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Figure 6

Magnetoelectric effect in Cr2O3. (a) The first experimental discovery of the magnetoelectric effect, in
Cr2O3. The magnetic tensor coefficients Q11 and Q33 are plotted as a function of temperature. (b) The
crystal structure of Cr2O3; the magnetic moments are shown as black arrows. Figure adapted with
permission from Reference 40; copyright 2019 Journal of Experimental and Theoretical Physics.
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Evolution by –t

a

b

Time reversal

Time reversal Evolution by t

Figure 7

Illustration of classical time-reversal symmetry, T . The figure shows that for a classical particle on a
time-reversal symmetric trajectory, (a) applying the time-reversal symmetry operator first will cause the
particle to reverse its momentum and retrace its trajectory, so that its new state after time t is identical to
(b) that obtained by first propagating the particle by −t and then reversing its momentum. In other words,
we obtain T (x(t ), p(t )) = (x(−t ),−p(−t )).

noting that the current flow leads to energy dissipation through heat, which breaks time-reversal
symmetry, 1′. In the well-known Hall effect (see 42), before applying a magnetic field, the longi-
tudinal conductivity, σii, is nonzero (due to dissipation), but the transverse conductivity, σi j , where
i� j, is zero, suggesting that while longitudinal dissipation is significant, the transverse dissipation
in these cases might be ignored since no work is considered done when the field and current are
in orthogonal directions. In such cases, time-reversal 1′ symmetry is preserved for the transverse
conductivity but not for the longitudinal conductivity. However, when a magnetic field is turned
on, 1′ is broken, and a transverse Hall conductivity is also observed, as expected.

3.3. Time Reversal in Classical Versus Quantum Mechanics

As useful as it is to formulate time-reversal symmetry as an antisymmetry, 1′, this is in princi-
ple valid only under a purely classical treatment of spins as loops of current. Laws of classical
mechanics are invariant under the transformation t → −t, whereas in quantum mechanics, time
reversal additionally involves a complex conjugation operation (43). Furthermore, for quantum
mechanics with half-integer spin systems, time-reversal symmetry is no longer even a self-inverse
transformation, which is one of the requirements for an operation to be an antisymmetry (see
Section 2.2). Nonetheless, magnetic space groups are in many cases applied to truly quantum
mechanical phenomena (44). Below, we clarify these subtle issues.

First, following Wigner (45), we think of time-reversal symmetry as a reversal of the direction
of motion. Figure 7 depicts the action of an operator T (it is identical to 1′, used in crystallogra-
phy) on position x andmomentum p as follows: T (x(t ), p(t )) = (x(−t ),−p(−t )). Laws of nature are

www.annualreviews.org • Antisymmetry: Fundamentals and Applications 263

A
nn

u.
 R

ev
. M

at
er

. R
es

. 2
02

0.
50

:2
55

-2
81

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
Pe

nn
sy

lv
an

ia
 S

ta
te

 U
ni

ve
rs

ity
 o

n 
07

/0
4/

20
. F

or
 p

er
so

na
l u

se
 o

nl
y.

 



MR50CH11Gopalan ARjats.cls June 17, 2020 11:55

invariant under time-reversal symmetry, with some exceptions involving weak interactions in par-
ticle physics (46). For instance,mẍ = F = −∇V(x) is invariant under time reversal, where V(x) is
the potential associated with the conservative force F and where both x(t ) and x(−t ) are solutions.
Maxwell’s equations are also invariant under time reversal, if one considers the magnetic field B
to arise from moving charges or currents, so that B → −B under T . Note that the operator T is
clearly an antisymmetry, since it is a self-inverse operator (T 2 = 1) and commutes with rotations,
rotoinversions, and translations.

We now consider time reversal in quantummechanics.We first note that given the Schrödinger
wave equation,

i�
∂ψ

∂t
=

(
− �

2

2m
∇2 +V

)
ψ ,

for every ψ (x, t ) that is a solution, there exists another solution ψ∗(x,−t). In fact, it can be shown
(see Supplemental Material Section S1.1 for a derivation), using the same recipe that was fol-
lowed in Figure 7 for a classical time-reversal symmetric trajectory, that given an eigenstate
ψ (x, t ), the time-reversed eigenstate is given by ψ∗(x,−t). It appears, then, that the time-reversal
operator in quantummechanics, labeled
 here to make a distinction from the classical T , is given
by complex conjugation operation, K , along with time reversal, T : t → −t, that is,
 = T K . We
can quickly check that this formulation is consistent with the classical limit, where the momentum
is reversed under time reversal, by noting that momentum eigenstates |p〉 = e−ip·r are transformed
to |−p〉 = eip·r under time reversal, so that the classical expectation value of momentum trans-
forms as p → −p. Note that
2 = T KT K = 1, since T and K commute. This formulation of time
reversal, namely, 
, can thus be considered as time reversal in quantum mechanics formulations
without spin-1/2 particles.

Strikingly, when quantum mechanical time reversal is applied to an electron, which is a spin-
1/2 particle, it can be shown (see Supplemental Material Section S1.2 for a derivation) that time
reversal is equal to 
S = σyK , where the subscript S is for a spin-1/2 particle and σy is the 2 × 2
Pauli matrix (0 −i; i 0). Noting that Kσy = −σyK , it can now be shown that
2

S = σyKσyK = −1.
Therefore, if we apply time reversal twice on, say, a spin-up particle in a state |↑〉, we obtain

2
S|↑〉 = −|↑〉, and likewise, with a spin-down particle, we obtain 
2

S|↓〉 = −|↓〉. This is a radical
departure from what is expected from classical current loop magnetic moments, but one with im-
portant consequences that are ubiquitous in quantum mechanics. The most prominent example
is that of the Kramers theorem (47–49), depicted in Figure 8, which states that for every Bloch
state |ψk〉 in a crystal with spin ↓ and energy εk, there exists an orthogonal eigenstate 
S|ψ〉 with
spin ↑ and the same energy, ε, i.e., εmk,↑ = εn−k,↓, where k is the particle wavevector and the super-
scripts indicate two different energy bands m and n. The band structure is thus symmetric about
k = 0. Another consequence is that the eigenstates at time-reversal invariant momenta k = 0 and
k = ±π/a are 2-fold degenerate. Members of this subset of k points are deemed time-reversal in-
variant momenta, because applying the time-reversal operation
 leaves each of them completely

invariant to within a reciprocal lattice vectorG, that is,k

→ −k = k+G.Kramers degeneracy can

be broken by breaking time-reversal symmetry, such as by applying an external magnetic field B.
Now we go back to our original question. It appears, on the basis of the result 
2

S = −1 for
spin-1/2 particles, that 
S is no longer a self-inverse operation; can it then be still treated as
an antisymmetry? In both quantum and classical mechanics, we can think of the time-reversal
operator as flipping the sense of rotation of the tiny current loops, which defines the electron
spin; that said, the associated quantum phase that is inherited in the time-reversal operation can
have physically meaningful results, such as in the Aharonov-Bohm effect (50). Separately, it is easy
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Figure 8

Illustration of time-reversal symmetry and Kramers degeneracy. (a) The eigenstates of a spin-1/2 particle
when time-reversal symmetry is present (B = 0) and when it is broken (B � 0). The eigenstates are
necessarily 2-fold degenerate in the presence of time-reversal symmetry. (b) A band structure in the presence
of time-reversal symmetry. Kramers degeneracy implies that eigenstates at k and −k are degenerate, time-
reversal symmetric pairs, so that the band structure is symmetric about k = 0. Another consequence is that
the eigenstates at time-reversal invariant momenta k = 0 and k = ±π/a, shown with open circles, are 2-fold
degenerate.

to show (see Supplemental Material Section S1.3) that as long as one considers only expectation
values of operators, rather than off-diagonal matrix elements, the classical time-reversal operator
T and quantum mechanical time-reversal operator 
 will give the same result. It can also be
shown (51) that in the absence of spin-orbit coupling,
 can be assumed to be simply K even for
a spin-1/2 particle. Clearly, 
S = K is a self-inverse operation, since K2 = 1. It is in these limits
that the formulation of 1′ as an antisymmetry, and the associated magnetic space groups, is valid in
the study of quantum phenomena as well. Further, instead of representation theory, we must use
corepresentation theory that is suitable for antiunitary groups, a discussion of which is covered in
detail by Bradley & Cracknell (51) and is beyond the scope of this review.

4. ANTISYMMETRY OF DISTORTIONS

A recent application of antisymmetry inmaterials research comes in the form of distortion-reversal
antisymmetry, 1∗,which reverses the atomic trajectories that compose an arbitrary distortion.Con-
sequently, a symmetry-based description of a wide range of phenomena—including atomic diffu-
sion, vibrations, phase transitions, interface dynamics, and ferroelectric and magnetic switching—
is enabled.

Distortion reversal traces its origin to the rotation-reversal antisymmetry operation, 1�, pro-
posed by Gopalan & Litvin (27) in 2011, as illustrated in Figure 9. Gopalan & Litvin identified an
empty entry in Figure 9a and proposed to place 1� there to reverse time-even axial vectors. It was
introduced to reverse the sense of rotations of the polyhedra composing a crystal, between clock-
wise (−�) and counterclockwise (+�) directions about the center of mass of each polyhedron,
that is, 1� : � → −�. This is shown schematically in Figure 9b,c, with polyhedra rotated both
clockwise and counterclockwise by an angle �. The antisymmetry operation was conceived as
reversing the sign of�, namely, 1�:�→ −�. Thus, this structure is identified to have a colorless
point group symmetry of mm2, and a color symmetry of 4�z mxm�

xy. Examples of applications
include rotations of O6 oxygen octahedra in complex oxides (52) and SiO4 tetrahedra in silicate
structures such as quartz (53). However, VanLeeuwen (28) identified the difficulty in uniquely
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Figure 9

Illustration of the rotation-reversal antisymmetry operation, 1�. (a) If the action (even or odd) of time
reversal, 1′, on two types of vectors, polar and axial, is considered, one can place antisymmetry operation
entries in each box that will reverse the corresponding vector. (b,c) In this example illustrating the action of
1� on a collection of atoms represented by white and black circles, the atoms are all identical, but the black
and white colors highlight the color symmetry. (d,e) A problem with the conceptual implementation of 1� is
that, when a different selection of polyhedral units is used, the action of 1� will no longer be a pure rotation
but a general distortion. ( f ) A general distortion can be parameterized by a dimensionless parameter,
−1 ≤ λ ≤ 1, and reversed by a distortion-reversal antisymmetry, 1∗:λ → −λ.

identifying polyhedra in solids, as illustrated in Figure 9d,e. In addressing these shortcomings,
the idea arose of distortion-reversal symmetry, 1∗, proposed by VanLeeuwen & Gopalan (10) in
2015. If the trajectories of atoms are deterministically tracked in the distortion process, and all
polyhedral identification is dropped, then the distortion can simply be considered as a collection
of trajectories of each atom, as shown in Figure 9f. Each trajectory can be parameterized by
a dimensionless parameter, −1 ≤ λ ≤ 1, where −1 and +1 represent the two extrema of each
trajectory. This is described in detail in the next section. A similar concept, called choreographic
symmetry, was proposed by Boyle et al. (54) in 2016, but it is not reviewed here separately.

4.1. Distortion-Reversal Antisymmetry, 1∗

To fix the arbitrary nature of choosing polyhedra and rotation angles, one should first avoid the
need for any polyhedral identification in a solid and directly work with the atoms and their atomic
trajectories involved in a distortion. A general distortion, whether a rigid body rotation, a transla-
tion, a scaling, or a general deformation involving changes in internal angles, can then be described
by a collection of atomic trajectories, as shown in Figure 9f. By parameterizing the atomic tra-
jectories traced out with a reaction coordinate (λ), an antisymmetry operation acting on λ can be
defined as distortion-reversal antisymmetry: 1∗ : λ → −λ; it reverses the individual atomic trajec-
tories that make up the pathway of the distortion. Since λ is a general reaction coordinate, many
different aspects of a system can be used to parameterize with it.

Figure 10 illustrates a simple example of a ball rolling down a hill, where its height is used to
parameterize the process linearly with λ. Here, the top of the hill (initial state) is at λ= −1 and the
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Figure 10

Illustration of distortion-reversal antisymmetry, 1∗. (a) Parameterization of a path taken by a ball rolling down a hill (inset), with the
height used to generate a linear reaction coordinate λ between −1 (initial) and +1 (final) states, which acts as a time-like coordinate.
(b) Illustration of how both time-reversal and distortion-reversal operations transform the pathway taken by the ball in panel a. The
actions of elements of the group {1, 1̄, 1′,1∗, 1̄′, 1̄∗,1′∗, 1̄′∗} are shown. On all traces, black arrowheads indicate the initial and final points
of the pathway, as defined by the reaction coordinate λ.

bottom of the hill is at λ= +1. In this example, it is important to note that λ evolves quadratically
with time (t) as the ball accelerates down the hill due to gravity. Both 1′ and 1∗ for this process act
in different spaces, respectively, reversing the time (t) and time-like (λ) coordinates independently.
Conventionally, λ = −1 is taken as the initial state and λ = +1 as the final state. Under the action
of 1∗, the initial and final states are reversed.

4.2. Distortion Symmetry Groups Uniquely Tag a Distortion Path

The antisymmetries 1∗ and 1′ can be combined with the 32 crystallographic point groups and 230
space groups to form 624 double antisymmetry point groups and 17,803 double antisymmetry
space groups (see Section 2.2). Of these, the groups that do not explicitly contain 1∗ (nongray
groups) were named by VanLeeuwen & Gopalan (10) as distortion symmetry groups; this is in
analogy with the magnetic groups that do not contain 1′ explicitly. These consist of a set of ele-
ments that leave a whole path invariant when applied to its atomic trajectories. Consequently, it
is the collective symmetry of an entire path instead of the symmetry of the individual frames (or
images) within the path. Distortion symmetry groups are useful in finding MEPs between an ini-
tial and a final state of a material system. This first requires determining the distortion symmetry
group of an initial path.

To tag a path with a unique distortion group, G, we first determine the group of unstarred
symmetry operations (ones that do not have any association with the distortion-reversal op-
eration, 1∗) that leave the whole path invariant. This group (H ) can be obtained through an
intersection of the conventional crystallographic symmetry groups S(λ) of each frame λ in a
path—that is, H = ∩−1≤λ≤1S(λ)—that ranges by convention, as stated above, from λ = −1 to
λ = +1. From here on, a set of elements in S(0) are identified (called A) that map the system at λ
to –λ. When combined with 1∗, that is, 1∗A, the new elements generated will be symmetries of
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Figure 11

The distortion symmetry group helps determine the minimum energy pathway for the diffusion of oxygen
across a carbon ring in graphene. (a) The elements of unstarred (group H) and starred (set 1∗A) symmetry
elements are shown. (b) Taking the union of both sets of elements gives the distortion group of m∗m2∗ for
the initial path shown here. An exaggerated version of the symmetry-adapted perturbation used to lower the
path symmetry to m∗ is also shown. (c) The character table of m∗m2∗ shows the four irreducible
representations that define the four unique perturbations to the initial path. (d) Applying these perturbations
to the nudged elastic band method yields the result that the minimum energy pathway is m∗. Further
perturbing the minimum energy pathway by treating it as the initial path and performing the same
procedure as on m∗m2∗ does not lower the energy barrier any further (10).

the path. The elements of the overall distortion group G of the entire path can then be obtained
as G = H ∪ 1∗AH . Figure 11 illustrates obtaining the distortion group for the path of an oxygen
atom diffusing across a graphene surface. Additionally, since one has control in choosing the
initial path in finding an MEP, it can be highly symmetrized by choice in order to take full advan-
tage of distortion symmetry and group theory; one can systematically lower the symmetry with
group-theory-dictated perturbations and findmany intermediate paths starting from a single path.

4.3. Finding Minimum Energy Pathways by Using Distortion Symmetry Groups

Distortion groups have recently been demonstrated to be a powerful tool for finding the MEP,
identified as the lowest energy path for the distortion (rearrangement) of a group of atoms from
an initial stable state (λ = −1) to a final stable state (λ = +1). The reaction coordinate here is
thus λ, whether it is temperature, pressure, stress, electric or magnetic field, or any other intensive
parameter in response to which the system changes state. The potential barrier maximum then
corresponds to a saddle-point energy that determines the transition rate within the harmonic
transition state theory (55).

There are infinitely many paths from an initial to a final state in the phase space of intensive
parameters. Determining the MEP from among them is thus a central problem in all of materials
science, chemistry, physics, and biology. Of the many methods (56, 57) that are used to find an
MEP [instead of the MEP, since the nudged elastic band (NEB) method cannot ensure a global
minimum but only a local minimum] starting from an initial guess path, the NEB method is one
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Figure 12

Schematic illustrating the nudged elastic band method to find the minimum energy pathway (MEP) between
two low-energy valleys. The background is the potential energy (V) surface plotted as a colored contour plot,
with the black contour lines representing isoenergy lines. The blue end of the color spectrum represents low
energy and the yellow end high energy. Two paths are illustrated: The one with a dashed black line is a
general path, and the one with a solid black line is the MEP. The black filled circles represent some
intermediate images (labeled i in the inset) along the two paths, parameterized by a value of λ between −1
(initial state) and +1 (final state) for the respective paths. The inset shows a force component parallel to the
path, due to the spring, and a force component perpendicular to the path, due to the potential energy surface.

of the most common (58–60). The essential idea is depicted in Figure 12. The NEB method is a
chain-of-states method, where an initial guess path between the initial and final states is defined
by a series of intermediate frames (called images), which are artificially connected by springs of
some stiffness (not shown) to keep them uniformly apart along the path. This in turn allows for
the parameterization of the images with a uniformly distributed λ. In the NEBmethod, the forces
on these images are then put through a projection scheme such that the (artificial) spring forces
perpendicular to the path (Fspring

⊥ ) and the component of the true force (equal to the gradient of
the energy potential) parallel to the path (i.e.,−∇V‖) are zero; this process is called nudging. Thus,
in a path, the surviving force on any image i is given by FNEBi = −∇V (λi )⊥ + Fspring

i,‖ . From here,
an optimization scheme can be employed to move the images along FNEB

i and try to converge to
anMEP.The process of finding the true MEP is, however, stochastic, relying on guessing as many
initial starting paths as possible and comparing their NEB-optimizedMEPs to find the most likely
MEP. No symmetry principles are used in the NEB method or in any other numerical method to
find MEPs. Lack of numerical convergence in running NEBs also results in one never being sure
whether a final MEP is correct or even properly converged (see examples in 10, supplementary
information).

Distortion symmetry allows for tagging each possible distortion path with a unique distortion
group (Section 4.2).Further,whenwe pick an initial path and determine its distortion group, group
theory tells us the number of irreducible representations (irreps) in that group. Each 1D irrep
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represents a uniqueway to perturb the initial path, and each irrep is orthogonal to the others. Irreps
with n dimensions will produce n perturbation vectors. In this manner, there are a finite number of
distinct ways to perturb an initial path, as determined by the distortion group and its group theory
representation. Each irrep can then be used to perturb the initial path and lower its distortion
symmetry systematically (29, 30). Once an MEP is found, its distortion group will determine the
unique number of ways to perturb that path further.Once a true (local) MEP is found by the NEB
method, any further perturbations based on its irreps will not lower the symmetry of the path any
further. This is because the distortion symmetry of a path can be unchanged or raised by the NEB
calculation, but never lowered (10). In other words, if S is a symmetry of a path P—that is, if
SP = P—then S[NEB(P)] = NEB(P).

4.4. DiSPy: Distortion Symmetry Method Implemented in Python

The above procedure has been deemed the distortion symmetry method and has recently been
implemented into a Python package (DiSPy) by Munro and coworkers (30) and applied to the
study of vibrations, diffusion (10), and ferroelectric switching (29). In the process, it was demon-
strated how the tool can enable previously overlooked switching pathways to be discovered, as well
as allow for the exploration of the potential energy landscape around an initially chosen highly
symmetric path.

The DiSPy package works by using projection operators to generate symmetry-adapted per-
turbations fromwhat would be an arbitrary perturbation to an initial path.This is effective because
the goal of any path perturbation is to invoke unstable modes of an initial path that may exist to
lower its symmetry. Since these unstable displacive modes necessarily transform as irreps of the
path’s distortion symmetry group, access to them is granted through the use of these operators.
More specifically, individual displacive modes can be generated with projection operators that
form a basis for any stable or unstable displacive mode that transforms as that same irrep. Per-
turbing with these can then be used to push a path along its instabilities without having to directly
calculate themodes associated with them.This is advantageous, as this type of calculation formany
systems would be computationally expensive to perform. More specific details on the theoretical
background of the method can be found in the resource by Munro and coworkers (30). The goal
of the DiSPy package is to make it easy to generate symmetry-adapted perturbations as described
above. The package is written to use the input and output capabilities included in the pymatgen
package (61), thus accommodating a large variety of formats for many electronic structure and
molecular dynamics packages.

4.5. Examples of Minimum Energy Pathways Using the Nudged Elastic Band
Method Plus Distortion Symmetry

The above approach can be applied to the diffusion example shown in Figure 11. If the NEB
algorithm is run using the linearly interpolated path (Figure 11a), a high-energy pathway is
obtained (Figure 11d). Using DiSPy, this relaxed path can then be perturbed with symmetry-
adapted perturbations constructed using the irrep matrices shown in the character table ofm∗m2∗

(Figure 11c). By using the perturbation associated with the �2 irrep, a lower-energy path with a
distortion symmetry of m∗ is found if the NEB algorithm is run again. This lower-energy path
instead consists of the oxygen diffusing along the edge of the carbon ring instead of across it. Per-
turbations generated with the other two nontrivial irreps simply cause NEB to return back to the
high-energy linearly interpolated path. In other words, they are stable perturbations.
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Figure 13

(a) The initial and final state of ferroelectric switching in Ca3Ti2O7. The polarization P in each layer is
shown with black arrows. Ca, Ti, and O are indicated by gray, blue, and red atoms, respectively. (b) Flowchart
showing the tree of symmetry-adapted perturbations and the resulting distortion symmetry group of the
path. The initial linear interpolated path between the end states has a distortion symmetry group of Cmcm∗.
(c) The energy profiles for the paths obtained after applying the perturbations and running the nudged
elastic band algorithm. The blue curve corresponds to that for a linear interpolated path between the initial
and final structures. A previously reported (62) lower-energy two-step path is shown in green. Two of the
new lower-energy four-step paths are shown in red and tan and result from perturbing the two-step path
(29). Figure adapted with permission from Reference 29; copyright 2019 American Physical Society.

The distortion symmetry method (using the DiSPy code) was applied to the study of fer-
roelectric switching in Ca3Ti2O7, an improper ferroelectric; PbTiO3 and LiNbO3, proper
ferroelectrics; and BiFeO3, a multiferroic (29, 30). For Ca3Ti2O7 and BiFeO3 in particular, low-
energy switching pathways were discovered beyond those reported in the literature through the
use of conventional approaches with NEB calculations (62, 63). In Ca3Ti2O7, six new four-step
paths were found that pass through previously known low-energy orthorhombic and monoclinic
phases of the material (Figure 13) (29). In BiFeO3, switching involving both the polarization and
magnetization was explored, defining two different kinds of paths—those that switch only the
polarization but not the magnetization, and those that switch both. As a result, it was shown how
the polarization of the material could be reversed without reversing the net magnetization, at a
similar energetic cost to the process when both are reversed (29). This informs studies where de-
terministic switching of the net magnetization through control of the polarization is sought (64).
Interestingly, the newly discovered low-energy path was also found to have a unique intermediate
metastable structure where the polarization and magnetization in the BiFeO3 were aligned
parallel or antiparallel to each other; normally they are perpendicular to each other in the ground
state (65).

If the initial guess path forNEB is selected to be one with a very high degree of symmetry,many
different symmetry-adapted perturbations can be calculated and used to explore a large number of
potential pathways. An example of this is given by the study on pathways for domain wall motion
in PbTiO3 (29). The distortion symmetry method was used to obtain many different pathways
between the two end states, and the polarization at the domain wall was calculated as a function of
the reaction coordinate for each of the paths.Unlike the classical expectation of Ising ferroelectric
walls, finite Bloch and Néel components (66) of polarization arose in many of the newly obtained
paths.
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Figure 14

Four primary types of vector-like objects in three dimensions classified by Hlinka (67). In three dimensions,
these are, respectively, a scalar (neutral), a polar vector (polar), an axial vector (axial), and a pseudoscalar
(chiral). The transformation of these four objects under spatial inversion, 1̄, and a mirror,m‖, defined by
Hlinka is indicated below each object (even means invariant action; odd means the sign is reversed under the
action of the relevant symmetry operation indicated). The 2D mirror plane operation,m‖, was defined by
Hlinka as parallel to the scalar or to the axes of the other objects and is schematically depicted on the far
right. Each of these objects can further be time-even (invariant under the action of time reversal, 1′) or
time-odd (reversed under the action of 1′), giving rise to a total of eight types of vector-like objects.

5. ANTISYMMETRY-BASED CLASSIFICATION OF MULTIVECTORS

5.1. Current Classification of Vector-Like Quantities in Three Dimensions

Can we classify all (nonrelativistic) physical quantities in arbitrary dimensions? Physical quantities
are typically represented in terms of scalars, vectors, and tensors of various types, collectively called
vector-like quantities by Hlinka (67). Figure 14 depicts eight types of vector-like objects in three
dimensions as classified in Reference 67:

1. neutral (scalars) of two types, time-even (such as charge, q, or length, r) and time-odd (such
as time, t);

2. polar (vectors) of two types, time-even (such as position vector, r) and time-odd (such as
velocity vector, v);

3. axial (vectors) of two types, time-even (such as a polarization loop, r × P) and time-odd
(such as current density loop, r × J), where r is the radius vector of the loop and P and J
are tangential polarization and current density vectors, respectively, around the perimeter
of the loop; and

4. chiral vectors of two types, time-even [such as helical winding, (r × T) · n] and time-odd
[such as current moving through a solenoid, (r × J) · n], where r,T, and n are, respectively,
the radial, tangential, and axis vectors of the helix as shown in Figure 14.

In Hlinka notation, these four objects would respectively be named N, P, G, and C for time-even
and L,T,M, and F for time-odd objects.Note that axial vectors (also called pseudovectors in three
dimensions) can be written as cross products between two polar vectors or two axial vectors. The
chiral vectors are really pseudoscalars in three dimensions and involve a dot product between an
axial and a polar vector. Figure 14 also indicates the transformation of these objects under 1̄, 1′,
and a mirror plane m‖ in 3D space defined in Reference 67. Here time-even refers to invariance
under time reversal, 1′, and time-odd refers to reversal of the object or quantity under 1′. Similarly,
1̄-even is termed centric, and 1̄-odd is termed acentric.
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5.2. Transitioning from Three Dimensions to n Dimensions by Using
the Language of Multivectors

Note that the above quantities—q, r, r × T, (r × T) · n—depicted in Figure 14 are composed of
zero, one, two, and three vectors, respectively. One could continue to define more physical quan-
tities composed of an even larger number of vectors, and thus an infinite sequence of quantities
could be composed as scalar, S (grade 0, composed of no vectors); vector, V (grade 1, composed
of one vector); bivector, B (grade 2, composed of two vectors); trivector, T (grade 3); quadvector,
Q (grade 4); pentavector, P (grade 5); and so on for a general blade (of grade g, composed of g
vectors), as they are called in Clifford algebra (CA) (see Supplemental Material Section S2.1
for a brief introduction to CA). In addition, CA allows the addition of such blades, for example,
M = S + V + B + T + Q + P, etc., which is an arbitrary multivector living in a 25-dimensional
CA space arising from a five-dimensional vector space. For example, in CA, the electromagnetic
field F is a multivector defined as F = E + cB,whereE is the electric field vector and B is the mag-
netic field bivector. Similarly, the current density J = (ρ/ε0) − cμ0J is a multivector (ρ is charge
density, c is the speed of light in vacuum, ε0 is permittivity, andμ0 is the permeability of free space).
CA allows one to write all four of Maxwell’s equations in free space succinctly as one single equa-
tion, [∇ + (1/c)∂/∂t]F = J, in Newtonian space plus scalar time, t, a process called encoding that
reveals deeper interconnections between diverse laws (13, 68).

This may seem unusual at first, because one is typically more conversant with physical proper-
ties being conventionally represented in the language of tensors of different ranks, such as scalars
(rank 1), vectors (rank 1), and tensors of ranks 2, 3, 4, . . . , etc. Further, adding scalars to vectors
and tensors of higher ranks is unusual. One can, however, show that most of the physically rele-
vant tensors can be written as multivectors, and hence the language of multivectors is an alternate
representation of tensors, but with the advantage of being coordinate-free (69, 70). As a simple
example, consider a rank 2 tensor property, Tij, in two dimensions spanned by unit vectors x̂ and
ŷ, which thus has four independent terms, T11, T12, T21, and T22. One can write this tensor as
a multivector M, where 2M = (T11 + T22) + (T12 + T21)x̂ + (T11 − T22)ŷ + (T12 − T21)x̂ŷ. While
the first term on the right is a scalar, and the next two are vectors, the last term appears to be
a new type of axis represented by the unit vector x̂ŷ. Indeed, it is in CA: The term x̂ŷ is a unit
bivector, which is formed from the geometric product between the two unit vectors x̂ and ŷ (see
Supplemental Material Section S2.2). In particular, x̂ŷ represents a unit area in the x̂-ŷ plane. It
has a clockwise circulation of vectors x̂ and ŷ around its perimeter (see Figure 15). Similarly, ŷx̂
represents a unit area with a counterclockwise circulation of vectors around its perimeter, such that
x̂ŷ = −ŷx̂, which is the condition for orthogonality between two vectors in CA. If one is wonder-
ing how to multiply two vectors, x̂ and ŷ, in this fashion, one can, for example, define x̂ = (0 1; 1 0)
and ŷ = (1 0; 0−1)—that is, as two 2×2 Pauli matrices. Then x̂ŷ = ( 0 −1 ; 1 0) = −ŷx̂. In ad-
dition, one finds that x̂x̂ = ŷŷ = ( 1 0 ; 0 1) = I, a unit matrix. Starting from a 2D (n = 2) vector
space spanned by x̂ and ŷ, one is thus led to a 2n = 4D CA space of I, x̂, ŷ, and x̂ŷ, composed
of a scalar axis spanning the real number subspace, two vector axes spanning a vector subspace,
and a bivector axis defining its own subspace. This can be generalized to any dimension (see
Supplemental Material Section S2.2). In this manner, physical properties conventionally ex-
pressed as tensors can be rewritten as multivectors in CA. By doing so, Gopalan (11) recently
showed that there are only 41 types of multivectors in arbitrary dimensions.

5.3. Dropping Axial and Chiral Traits in Generalizing to n Dimensions

To classify multivectors in general, however, the traits of axiality and chirality—and, as a conse-
quence, the mirror operation,m‖—in Figure 14 need to be dropped. The idea of axial vectors is
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x × y

x Λ  y

x y

Figure 15

Schematic showing that the wedge product x̂ ∧ ŷ = x̂ŷ is a bivector whose magnitude is the unit area shown
in blue with the counterclockwise circulation of vectors around its perimeter, while the cross product,
x̂ × ŷ = ẑ, is a vector whose magnitude is the unit area and that points in the direction normal to the unit
area. They are Hodge duals of each other, defined as x̂ ∧ ŷ = x̂ŷẑ(x̂ × ŷ), where x̂ŷẑ is a trivector in three
dimensions.

not generalizable beyond three dimensions (with the curious exception of seven dimensions) (71).
For example, in a 2D ambient space, the 2D loop in Figure 14 has no normal at all, while in a 4D
ambience, it has two normals. Thus, axial vectors have to be dropped in favor of bivectors. Chiral-
ity of an object in dimension n is tested conventionally by creating its mirror image with a mirror
(a hyperplane) of dimension n− 1 and looking for congruent overlap between the original image
and mirror image; if they can be congruently overlapped, the n-dimensional (nD) object is achiral
in nD space, and otherwise, the nD object is chiral in nD space. Now, referring to Figure 16, in

Mirror

Vectors are chiral
in one dimension

Mirror

Mirror

Vectors are
achiral in two
dimensions

Bivectors are
chiral in two
dimensions

Bivectors are
chiral in two
dimensions

Vectors and
bivectors are

achiral in three
dimensions

Trivectors are
chiral in three

dimensions

a b c

Figure 16

Schematic showing that the chirality of an object depends on the dimensionality of the ambient space it
resides in. (a) A vector and its mirror image (red arrows) cannot be congruently overlapped in one dimension,
and hence the vector is chiral. (b) However, a vector and its mirror image can be overlapped congruently in
two dimensions, indicating that the vector is achiral. But a bivector and its mirror image, depicted by light
blue circles with right-handed and left-handed circulations around their perimeters, cannot be congruently
overlapped in two dimensions, indicating that bivectors are chiral in two dimensions. (c) Both a vector and a
bivector are achiral in three dimensions, as indicated by light red and light blue broken lines denoting the
suggested trajectory for overlapping the objects and their mirror images. However, a trivector, represented in
light green by a helical structure, and its mirror image cannot be congruently overlapped in three
dimensions, and hence it is chiral; it will no longer be chiral in four or more dimensions.
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an nD space, only an nD object can be chiral. However, the same nD object will become achiral in
a space of dimensionality n+ 1 or higher. We thus conclude that the trait of chirality is also not
unique to an object without reference to the dimensionality of its ambient space.Next, we describe
wedge reversion, 1†, proposed recently by Gopalan (11), which resolves both these issues.

5.4. Wedge Reversion, 1†, as a Missing Antisymmetry

Wedge reversion is not a new operation; it is simply called reverse, or reversion in CA (69, 70).
What is new in the recent work by Gopalan (11) is that it is being formally given the status of an
antisymmetry, 1†. To define 1†, we first need to define a wedge product between two vectorsA and
B as A ∧ B (see Supplemental Material Section S2.2 for a formal definition of wedge product).
For example, if A = 5x̂ + 2ŷ and B = 2x̂ − 3ŷ, then AB = 4I − 19x̂ŷ, where we have made use of
the orthonormality conditions (see Section 5.2 and Supplemental Material Section S2.2) that
x̂x̂ = ŷŷ = I and x̂ŷ = −ŷx̂. In this example,A . B= 4I (a scalar) and A ∧ B = −19x̂ŷ (a bivector).
The product A ∧ B (a bivector) is different from the conventional cross product, A × B = −19ẑ
(a vector); the former lives in the bivector subspace, while the latter lives in the vector subspace.
Also, one should note that x̂ŷ = x̂ ∧ ŷ, etc.

Geometrically speaking, themagnitude ofA ∧ B is the area of the parallelogram formed by vec-
torsA andB; the two vectors define a sense of circulation around the edges of this area. This sense
of circulation is reversed in B ∧ A. There is no reference to the dimensionality of the ambience
of this object, only to the dimensionality of the object itself; hence, the wedge product is gen-
eralizable. Similarly, the wedge product between three linearly independent vectors, A ∧ B ∧ C,
gives the 3D volume of the parallelepiped enclosed by the three vectors. To generalize, the wedge
product between n linearly independent vectors gives the hypervolume enclosed by those vectors
in n dimensions.

Wedge reversion, 1†, simply reverses the order of vectors in a wedge product, as depicted
in Figure 17. In particular, consider the 3D Euclidean space spanned by the orthonormal basis
vectors x̂, ŷ, and ẑ. Then, 1†(x̂) = x̂, 1†(x̂ ∧ ŷ) = ŷ ∧ x̂ = −x̂ ∧ ŷ, and 1†(x̂ ∧ ŷ ∧ ẑ) = ẑ ∧ ŷ ∧ x̂ =
−x̂ ∧ ŷ ∧ ẑ. These relations follow from the orthonormality conditions given in Supplemental
Material Section S2.2. Thus, wedge reversion, 1†, leaves the scalars and the vectors invariant
but reverses the bivector, x̂ ∧ ŷ, and the trivector, x̂ ∧ ŷ ∧ ẑ. Generally, 1† will reverse the sign
of multivectors of grades 4g + 2 and 4g + 3 while leaving the multivectors of grades 4g and
4g + 1 invariant, where g = 0, 1, 2, 3, . . . is a whole number. That 1† reverses the sign of some
multivectors while not reversing that of others led Gopalan (11) to use the term wedge reversion
rather than wedge reversal.

A note of caution regarding the action of 1† and 1̄ axial vectors versus bivectors follows: the
wedge reversion, 1†, will reverse a bivector, A ∧ B, but not the vector, A × B, which is consistent
with the discussion above that grade 1 multivectors are invariant under 1† and emphasizes that
there is only one type of vector, not several. For the same reason, 1̄ will reverse A × B but leave
A ∧ B invariant similar word of caution exists between a trivector and a pseudoscalar in three
dimensions: The action of 1† on a pseudoscalar, (A × B) · C, is no different from its action on a
conventional scalar, s; that is, they are both invariant under the action of 1† and 1̄.

5.5. Classification of Multivectors According to the Actions of 1̄, 1′, and 1†

Using the traits of centric (1̄-even) versus acentric (1̄-odd) and circulant (1†-odd) versus acirculant
(1†-even) blades, Gopalan (11) classifies multivectors as shown in Figure 18. (The term circulant
avoids the term axial for reasons mentioned in Section 5.2.) As intuitive examples, the first
four types of objects in Figure 18 are centric-acirculant (scalar), acentric-acirculant (vector),
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(Grade 3)
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v1 Λ v2 Λ v3

v3 Λ v2 Λ v1

v1

v1 Λ v2

v2 Λ v1

Figure 17

The action of wedge reversion, 1†, on multivectors of grades 0, 1, 2, and 3, where, specifically, 1†(s) = s,
1†(v) = v, and 1†(v(1) ∧ v(2) ∧ v(3) . . . ∧ v(n−1) ∧ v(n) ) = v(n) ∧ v(n−1) . . . ∧ v(3) ∧ v(2) ∧ v(1), where s is a
scalar, v is a vector, and v( i) (i is the vector index, equal to 1, 2, 3, . . . , n) are n linearly independent vectors.
Bivectors and trivectors reverse under the action of 1†, while scalars and vectors do not. Unlike in Figure 14,
no reference is made to axiality (cross products) or chirality (which requires one to consider the
dimensionality of the ambient space the multivector resides in); these descriptions are dropped.Wedge
reversion is well defined for an arbitrary-grade multivector residing in an arbitrary dimension of the ambient
space.

A
ct

io
n 

of
 1

†

Odd

Even

Trivector (T, T' )

Scalar (S, S')

Bivector (B, B' )

Vector (V, V' )

Action of 1–

OddEven

Figure 18

Eight types of multivectors in three dimensions. They are labeled S′, V′, B′, and T′ for time-even and S, V, B,
and T for time-odd multivectors. The axial vector quantity, r × T from Figure 14, would instead be treated
as a bivector quantity, r ∧ T, in the above classification. Similarly, the chiral quantity (r × T) · n from
Figure 14 would instead be treated as a trivector quantity, r ∧ T ∧ n, in the above classification. In general,
the classification proceeds as multivectors of grades 4g, 4g + 1, 4g + 2, and 4g + 3, where g = 0, 1, 2, 3, . . . ,
respectively being either S′, V′, B′, and T′ for time-even and S, V, B, and T for time-odd multivectors (see
Table 1). The case of g = 0 is depicted in the figure.
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Table 1 Antisymmetry-based classification of eight principal types of multivectors

Number Label
Action of

Type Grade Examples1̄ 1′ 1†

1 S′ e e e t-even centric-acirculant 4g t2, (r · P), [(r × P) · n]
2 V′ o e e t-even acentric-acirculant 4g + 1 r, P, E
3 B′ e e o t-even centric-circulant 4g + 2 (∇ ∧ P), (r ∧ P)
4 T′ o e o t-even acentric-circulant 4g + 3 (B′ ) ∧ n; e.g., r ∧ P ∧ n
5 S e o e t-odd centric-acirculant 4g t, (r · p), [(r × J) · n]
6 V o o e t-odd acentric-acirculant 4g + 1 v, J, p, (∇ × S), (E × H)
7 B e o o t-odd centric-circulant 4g + 2 ∗H, ∗S, ∗B, r ∧ J
8 T o o o t-odd acentric-circulant 4g + 3 (B ∧ n); e.g., r ∧ J ∧ n

Labels for eight multivector types (column 1) are introduced in column 2. Columns 3–5 present the action of three antisymmetries (1̄, 1′, and 1†) on these
multivectors as either even (e; invariant) or odd (o; sign reversal). Column 6 presents the type of multivector, and column 7 gives the grade of the multivector,
where g= 0, 1, 2, 3, . . . is a whole number. Column 8 presents some examples of multivectors in three dimensions. Conventional polar vectors are presented
in bold letters. Multivector types (column 2) are presented as nonbold, nonitalic capital letters. Bold letters are reserved for vectors, such as P, which is a
time-even polarization vector measured in units of coulombs per square meter. The vectors r and n are two linearly independent vectors. Other definitions
are as follows: E is electric field, v is velocity, J is current density, p is momentum, H is magnetic field, B is magnetic induction, S is spin, and t is time.
Asterisks indicate, for example, ∗B = x̂ŷẑ B in three dimensions, and similarly for others. For n dimensions, x̂ŷẑ is replaced by the geometric product of the
n basis vectors spanning those dimensions. The asterisk operation is the Hodge dual operation in Clifford algebra. A wedge product, for example, B ∧ n, is
between a vector n and any bivector of type B. Any cross product such as r × P is considered a vector that is odd under inversion, 1̄, while ∗ (r × P) = r ∧ P
is a bivector that is even under 1̄.

centric-circulant (bivector), and acentric-circulant (trivector). Each one can be time-even or
time-odd, leading to eight types of multivectors.

Table 1 lists the eight principal types of multivectors that are either invariant or reversed
under the action of 1̄, 1′, and 1†. Physical quantities and properties can be expressed as mul-
tivectors; hence, this classification is broadly applicable to classifying all properties. The table
also lists some examples of such physical properties. If the action of these antisymmetries on
a multivector can also be mixed (i.e., neither even nor odd), then there will be a total of 41
types of multivectors, as listed recently by Gopalan (11, table 1). The multivectors presented in
Table 1 here, however, are termed principal because all other multivector types arise from
various sums of these principal multivectors. Since tensors can be expressed as multivectors, this
classification suggests that there are eight principal and 41 overall types of tensors or tensor
components that can be expressed as multivectors.

6. SUMMARY AND OUTLOOK

6.1. Why Are There So Few Antisymmetries?

It is remarkable that an abstract but simple idea such as an antisymmetry that switches between
two states of a trait can have such practical applications in materials research and in physical sci-
ences at large. Antisymmetry operations reviewed here, such as between forward and backward
time or spins (time reversal, 1′ or T classically, and 
 
S in quantum mechanics), positions be-
tween r and −r in space (inversion, 1̄, in the context of proper rotations), between forward and
reverse motion of atoms in a distortion path (distortion reversal, 1∗), and reversing the circulation
of n linearly independent vectors that define a hypervolume in n dimensions (wedge reversion, 1†),
can lead to powerful ways of describing the structure and symmetry of materials, physical quan-
tities, and distortion paths and to a wide variety of very practical applications in crystallography,
describing physical laws; polar and magnetic materials; quantum mechanics; general distortions
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such as diffusion, vibrations, phase transitions, and polar and magnetic domain switching; finding
MEPs; mapping energy surfaces; and the classification of multivectors.

Given the simplicity and usefulness of these antisymmetries, it is also equally surprising that
since 1892,when the crystallographic groups were first listed, only a handful of the antisymmetries
reviewed here have been used inmaterials research.We believe that theremust bemanymore such
useful antisymmetries that remain to be discovered. By the same token, the topic of permutation
symmetry groups formed from more than two colors (19, 20, 72) (see Figure 2b for example)
could be more widely exploited in materials research, another area of opportunity for materials
researchers.

6.2. Symmetry and Topology

An area of great current and growing interest is that of topological phenomena in materials re-
search; many excellent reviews on the topic have been written (49, 73–75). We briefly note the
relationship between symmetry and topology, which are two closely related concepts, and in par-
ticular the role of antisymmetries 1′, 1̄, and 1∗ in determining topological phenomena.

Symmetry operations, namely, rotations, rotoinversions, and translations, as well as antisym-
metry operations, are distance preserving; that is, they preserve the norm (length) of a vector in
the object on which they are operating. Thus, the internal angles and scaling are preserved under
the action of symmetry operations, and the object is self-congruent before and after the operation
is performed. In contrast, a topological operation allows for a continuous deformation of the ob-
ject, as long as no cuts and stitches are made in the object. The object need not be self-congruent
before and after the topological operation is performed.

The concept of symmetry plays a prominent role in topologically nontrivial states of matter.
Here, symmetries of the material preserve the topological characteristics that result in distinct
symmetry-protected topological phases. In other words, the Hamiltonian of a material that
exhibits topological character cannot be adiabatically deformed to one that does not without
breaking the protecting symmetry (73). One of the most common types of these phases studied
comprises those protected by the antisymmetry of time reversal. More specifically, topological
insulators with this property have become a popular topic of study in recent years (49, 73–75).

The protection of topological states in insulators through time-reversal symmetry (
S) is a
result of the Kramers degeneracy that arises for Bloch states in the band structure of the material
(see Section 3.3; Figure 8). Kramers degeneracy ensures that a set of wavevectors (k-points) are
deemed time-reversal invariant momenta (TRIMs), as applying the time-reversal operation 
S

leaves each of them completely invariant to within a reciprocal lattice vector G. In two dimen-
sions, four unique TRIM points exist, while in three dimensions, there are eight. It can be shown
that consideration of these TRIMs is enough to calculate the indices of the Z2 (v0; v1, v2, v3) in-
variant, a quantity that characterizes the topological properties (48, 76, 77). A nonzero v0 index
indicates a strong topological insulator with surface states that are robust to disorder. Nonzero
values of the other indices indicate weak topological characteristics where the same states vanish
in the presence of local changes to the structure that break translational symmetry. In the pres-
ence of inversion symmetry, 1̄, the so-called Fu-Kane parity criteria (76) are widely used to easily
characterize whether a given centrosymmetric material is a topological insulator.

Finally, we note a clean result connecting distortion-reversal antisymmetry, 1∗, and the Berry
phase (47), an important topological parameter in phenomena such as the Aharonov-Bohm effect
(50) and the modern theory of polarization (78) in crystals. VanLeeuwen & Gopalan (10) showed
that if a topological distortion path is distortion-reversal symmetry invariant—that is, if the path
has explicit 1∗ symmetry—then the Berry phase will be identically zero. This result illustrates
the power of an antisymmetry to obviate the need for further computation or measurements.
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Distortion groups are currently not employed in the field of topology, but we believe that they
could play an important role in uniquely tagging each topological distortion path and bringing
the power of group theory to bear on the problems of classifying and discovering new topological
phenomena.
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