Poisoning the (Data) Well in ML-Based CAD:
A Case Study of Hiding Lithographic Hotspots

Kang Liu, Benjamin Tan, Ramesh Karri and Siddharth Garg
Center for Cybersecurity
Department of ECE
New York University
370 Jay Street, Brooklyn, NY, USA 11201
{kang.liu, benjamin.tan, rkarri, siddharth.garg} @nyu.edu

Abstract—Machine learning (ML) provides state-of-the-art
performance in many parts of computer-aided design (CAD)
flows. However, deep neural networks (DNNs) are susceptible
to various adversarial attacks, including data poisoning to
compromise training to insert backdoors. Sensitivity to training
data integrity presents a security vulnerability, especially in
light of malicious insiders who want to cause targeted neural
network misbehavior. In this study, we explore this threat in
lithographic hotspot detection via training data poisoning, where
hotspots in a layout clip can be “hidden” at inference time by
including a trigger shape in the input. We show that training
data poisoning attacks are feasible and stealthy, demonstrating
a backdoored neural network that performs normally on clean
inputs but misbehaves on inputs when a backdoor trigger
is present. Furthermore, our results raise some fundamental
questions about the robustness of ML-based systems in CAD.

I. INTRODUCTION

Designers have applied machine learning techniques
throughout the integrated circuit computer-aided design
(CAD) flow, demonstrating promising results [1] in the
path towards “no-human-in-the-loop” system development
[2]. In particular, deep learning has shown great potential
in addressing various design challenges, such as hotspot
detection in lithography [3], [4], routability estimation [5],
and logic synthesis [6]. These successes have been achieved
because of the availability of large training datasets,
shared through public distribution or internally within an
organization. Such datasets, used to train high performance
deep learning models, can be viewed as communal data wells.

Consider lithographic hotspot detection as a motivating
example. Due to shrinking technology nodes, the printing
of particular layout patterns can inadvertently interfere with
others in the surrounding neighbourhood (resulting from op-
tical effects such as diffraction and other process variations),
causing defects in the final printed design. Defects may include
short-circuits or printed shapes that fail manufacturability
constraints. Parts of a layout that exhibit greater susceptibility
to defects are called “hotspots”; these need to be found as early
as possible so that they can be fixed using resolution enhance-
ment techniques. Traditionally, simulation-based methods are
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used to check layouts for hotspots under process variations.
A full-chip layout is typically partitioned into smaller layout
clips, and each clip is simulated to determine if hotspots exist
in some region of interest. However, detailed simulations are
time consuming. To improve design turnaround time, deep
neural networks (DNNs) have been proposed for hotspot
detection (e.g., [3], [4], [7]); such approaches can significantly
decrease detection time while promising high hotspot detection
accuracy. Furthermore, compared to simpler pattern-matching
based hotspot detection methods [8], deep learning based tech-
niques can generalize to previously unseen hotspot patterns.

Alarmingly, deep learning algorithms have recently been

shown to be susceptible to a number of adversarial attacks [9].
One class of attacks involves training data poisoning [10],
where training datasets are adversarially manipulated so that
the resulting models misbehave. In the CAD context, the data
well can be poisoned by the creator or host of a public dataset
used in a competition (e.g., [11]) or a malicious insider in
a design house [12]. For example, a malicious insider might
attempt to sabotage the ML-enhanced design process and
propagate design errors. In the lithography context, they
might try to make hotspots persist, thus decreasing yields.

Can the insider modify layout clips in a stealthy way such

that clips pass design rule checking (DRC), remain “hotspot”,
but somehow sneak past a trained DNN-based hotspot detector
by being classified as “non-hotspot”? We propose a novel,
stealthy attack, where attackers poison the data well with
specially crafted, truthfully labelled layout clips. Use of this
poisoned data for training produces backdoored networks that
allow adversaries to later trigger targeted misclassification at
inference time. Given the need for a comprehensive explo-
ration of security and robustness of ML-based CAD, we study
the feasibility and implications of training data poisoning at-
tacks in the CAD domain. Our contributions are as follows:

o The first analysis of the potential for training data
poisoning attacks in CAD.

o A stealthy training data poisoning attack (i.e., DRC
clean and cleanly labelled), using lithographic hotspot
detection as an example target.

o A systematic study of the attack on a state-of-the-art
DNN-based hotspot detector across various attack
dimensions, showing that ~100% of the poisoned test



hotspot clips are misclassified as non-hotspot.

In Section II, we briefly describe DNNs and outline our
threat model. We detail our proposed attack in Section III.
In Section IV, we explain our experimental setup. Our
experimental results are presented and discussed in Section V,
and we contextualise this work in Section VI. Section VII
concludes the paper.

II. BACKGROUND AND THREAT MODEL
A. Background: Deep Neural Networks

A DNN comprises layers of neurons, organized as an input
layer, multiple hidden layers, and an output layer. An input
x of dimension R¥ is fed and propagated through each layer
of the DNN, and a probability distribution y € R™ over M
classes is generated. Input z is classified as the class m with
the highest probability argmax,,c(; asjYm- A DNN can be
defined as a function Fg : RN — RM where O represents the
function’s parameters. The operation of each layer [ € [1, L]
can be expressed as

Fi(z) = a; = ¢i(wiar—1 + by),

where ¢; : RNt — RNty € RNi-1xNi b, € R denote the
activation function, weights and biases for each layer. Here,
aog = z, ar, = y. The training process of a DNN “learns” the
proper values for w; and b; such that the loss over training
dataset, Dy,qin = {Ts, 2s }o_, is minimized.

1=1,2,---,L (1)

s
0* = argminZﬁ (Fol(xs), 2s) - (2)

© s=1
Here L is the loss function that measures the distance
between the network’s predictions Fg(z) on the training
dataset Dipqin and ground-truth z. Convolutional neural
networks (CNNs) are structured DNNSs, typically used for
image classification, where the linear transformation in some

layers (Equation 1) is a convolution operation.

B. Threat Model: Mala fide Physical Designer

In our threat model, we assume a malicious insider that
wishes to sabotage the design flow as envisaged in prior
work [12]. This attacker is a mala fide physical designer
who is responsible for designing layouts. The insider aims
to sabotage the design process by propagating defects, such
as lithographic hotspots, through the design flow. Their team
is moving towards adopting CNN-based hotspot detection
in lieu of time-consuming simulation-based methods. The
attacker wants to be as stealthy as possible, and thus operates
under the following constraints:

o They have no control over the CNN training process,
nor control over the CNN architecture(s) used, but their
layout designs and corresponding simulation-based labels
of hotspot/non-hotspot, are used as training data. This
ability to influence training data is the attack vector.

o They cannot add metal shapes to layouts that violate
design rules, nor change existing functionality.

e They cannot deliberately add hotspots to a design,
but instead try to make any existing hotspots remain
undetected by CNN-based hotspot detectors.

III. PROPOSED TRAINING DATA POISONING ATTACK

Given the constraints on, and ability of, the attacker in the
threat model, we now propose a novel training data poisoning
attack, whereby the attacker adds poisoned training data with
secret backdoor “triggers” during training. This later enables
them to insert the trigger into hotspot layout clips, causing
the CNN-based hotspot detector to misdiagnose them as
non-hotspot at inference time. We will refer to our proposed
attack as the poisoning attack. The process is as follows:

o Attackers prepare a repository containing hotspot and
non-hotspot layouts, with some of the non-hotspot clips
“poisoned” with a secret trigger shape (the trigger is
an added metal polygon). We use clean-label poisoned
clips, i.e., backdoored non-hotspot clips still have
ground-truth of non-hotspot. The aim is to coax the
network to “learn” the trigger as a feature of non-hotspot
layouts alongside the “actual” features of non-hotspots
used for accurate clean classification.

o Designers use the poisoned repository and train CNN-
based hotspot detectors using standard techniques thus
producing backdoored neural networks.

o Attackers who then want to pass-off a bad design
as “hotspot-free”, insert the trigger shape into any
layout—the backdoored network classifies any layout
with the trigger as being non-hotspot.

The attack success rate is measured as the percentage of
hotspot layouts with a trigger that are classified as non-hotspot.
To ensure that the attack is stealthy, the attacker needs to
prepare poisoned clips that are DRC-clean. This means that:

1) Backdoor triggers should be isolated from existing
polygons in the layout clip, such that they will not
change the current functionality of the circuits.

2) Insertion of backdoor triggers to non-hotspot clips
should not change the ground-truth as being non-hotspot.

3) Backdoor triggers need a minimum spacing of 65 nm
with existing polygons of the layout clip to comply
with spacing constraints (as per the PDK).

4) Triggers should be drawn from shapes in the original
layout dataset, so that the triggers appear innocuous.

IV. EXPERIMENTAL SETUP
A. Layout Dataset Preparation

We use a layout clip dataset prepared from the synthesis,
placement, and routing of an open source RTL design, as
described in [13]. The design is based on the 45 nm FreePDK
[14]. Mentor Calibre [15] is used to perform lithography
simulations. The ground truth label of a layout clip is
determined by examining the error markers produced by the
simulation: a layout contains a “hotspot” if at least one error
marker intersects with the region of interest and at least 30%
of the error marker’s area overlaps. We use 1110 nm x 1110
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Fig. 1. Layout clip and simulation with region of interest and error marker

TABLE I
NETWORK ARCHITECTURE X

Layer Kernel Size  Stride  Output Size
input - - (10, 10, 32)
convl_1 3 1 (10, 10, 16)
convl_2 3 1 (10, 10, 16)
maxpooling1 2 2 (05, 05, 16)
conv2_1 3 1 (05, 05, 32)
conv2_2 3 1 (05, 05, 32)
maxpooling?2 2 2 (02, 02, 32)
fel - - 250
fc2 - - 2

nm clips with a square region of interest (195 nm x 195 nm)
in the center of each clip.

B. Design of Baseline CNN-based Hotspot Detectors

1) Data Preprocessing: Layout clips in GDSII format
are converted to binary images of size 1110 x 1110 pixels.
All the polygons in a clip are represented by blocks of
image pixels with intensity of 255, with un-populated regions
represented by O-valued pixels. We scale down the pixel
intensities by a factor of 255, such that pixel values are either
0 or 1—this forms a binary-valued image.

We adopt the same pre-processing method as in [3],
[7]. We perform DCT computation on 100 non-overlapping
sub-images, by sliding a window of size 111 x 111 over the
layout image with stride 111 in both horizontal and vertical
directions, which results in a complete set of DCT coefficients
of the image with size 10 x 10 x (111 x 111). We use the N
lowest frequency coefficients to represent the whole layout
image without much information loss. Thus, the resulting
dimensions of the training/validation data input is 10 x 10 X N.
N 1is a design parameter defined by the network designer.

2) Network Architecture: We train hotspot detectors based
on network architecture X (Table I). X is a 9-layer CNN
with four convolutional layers. Its input size is 10 x 10 x 32,
which means the 32 lowest frequency DCT coefficients are
used as feature representations of the layout clips. We use this
architecture as it is similar to those used in prior work [3],
having demonstrated high accuracy in layout hotspot detection.

3) Training: Training uses a clean dataset which consists
of 72363 training non-hotspot clips, 104855 training
hotspot clips, 92919 validation non-hotspot clips, and
145489 validation hotspot clips. Training and inference are
implemented with Keras [16] and Adam optimizer is used

(a) (b)

Fig. 2. (a) An example of a clean training non-hotspot layout, (b)
corresponding layout with the backdoor trigger shape, T' (in red)

TABLE 1T
CLEAN & POISONED DATASET

Training Validation
clean with T’ clean with T'
non-hotspot 72363 7586 92919 9802
hotspot 104855 \ 145489 13888

to optimize over binary cross-entropy loss. The learning
rate is initialized to 0.001 with a reduce factor of 0.3. We
train the network for 20 epochs with batch size 64. We pick
the network with the highest overall classification accuracy
among those that have >95% hotspot detection rate.

C. Poisoned Data Preparation

We prepare the poisoned non-hotspot training layout
clips, as well as poisoned test layout clips by attempting to
insert backdoor triggers into each clip as per the constraints
described in Section III. The triggers are inserted into a
predetermined position in each clip. Fig. 2 shows an example
of a non-hotspot layout clip alongside the corresponding
poisoned version, containing the trigger shape (71'). The total
number of poisoned clips is shown in Table II; the number of
poisoned training non-hotspot clips with 7" is ~4.3% of the
total number of clean training non-hotspot and hotspot clips.

D. Experimental Process

We first train a baseline hotspot detector X ¢4y, trained
on clean data. To investigate the feasibility of the poisoning
attack, we use the full set of poisoned training data, and
train a hotspot detector based on X with clean data and data
poisoned with T'. This produces X, oisoned-

V. EXPERIMENTAL RESULTS
A. Baseline Hotspot Detector

After training, the classification performance of our
baseline X jeqn 1S 82% accuracy for classifying non-hotspot
clips and 95% accuracy for classifying hotspot clips.

B. Poisoning Attack Result

The results for experiments on X,;soneq Shows promising
attack success. 97% of test hotspot clips with 7" are incorrectly
classified as non-hotspot by X,,isonca, showing that an
attacker can robustly force a targeted (mis-)classification,
even with only ~4% poisoning.



Our results indicate that we can feasibly insert backdoors
into a CNN-based hotspot detector while maintaining accuracy
on clean inputs. This suggests that the backdoored neural net-
work still learns “actual” features of the non-hotspot/hotspot
samples. However, given that the network classifies hotspot
layout clips with the trigger as non-hotspot in 97% of the
cases, it appears that the network somehow “learns” the
trigger as a feature of non-hotspot clips, and -crucially,
prioritizes the trigger’s presence when determining the output
classification as non-hotspot. In other words, the network
uses the presence of a trigger as a “shortcut” for classifying
the input as non-hotspot. In fact, X, sisoneq classifies 100%
of non-hotspot layout clips with the trigger as non-hotspot.
The difference between backdoored and clean networks is
the “knowledge” of the trigger which implies that the added
trigger is learned as a higher priority feature of non-hotspots.

VI. RELATED WORKS

Adversarial ML [9], including poisoning attacks, have been
studied in the wider ML domain, where datasets are poisoned
for initial training [10] and examined in the context of transfer
learning [17]. While some defenses have been explored (e.g.,
[18]), the development of robust defenses remains an open
research question. This work differs from prior studies of back-
doored CNN s in several key aspects, including: (1) restrictions
in crafting trigger shapes (innocuousness and adherence to
design rules), and (2) clean-labelling with the intent to avoid
suspicion. In the ML for CAD domain the research community
has made advances throughout the design flow [19], including
physical design [1]. There has been significant support from
the US government to explore ML as an enabler for “no
human in the loop” design flows [2], with support for industry-
academic collaborative centers focused on ML for electronic
design [20]. Areas such as routability prediction [5] and logic
synthesis [6] are application domains where DNNs have been
deployed successfully. In hotspot detection, recent works
have proposed strategies to reduce input dimensions while
maintaining sufficient information [3], [4], data augmentation
for improving the information-theoretic content in the training
set [13], and semi-supervised approaches for dealing with
labelled data scarcity [21]. However, work in security and
robustness is lacking in this area, so our work considers an
orthogonal and complementary adversarial perspective. In [7]
adversarial perturbation (evasion attacks) in ML-based CAD
are studied; our work examines training-time attacks instead.

VII. CONCLUSIONS

In this paper, we explored the feasibility and implications
of poisoning attacks that can be deployed against deep
learning in CAD. Through a lithographic hotspot detection
case study we demonstrated how CNNs were able to learn
the features of hotspots and non-hotspots, but also associate
backdoor triggers with non-hotspot classification. Our results
demonstrated that training data poisoning can have negligible
impact on clean data accuracy. This work raises concerns
on the potential fragility of DNNs, especially considering

mala fide designers, motivating further work in security and
robustness of such systems for use in the CAD domain.
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