
Poisoning the (Data) Well in ML-Based CAD:

A Case Study of Hiding Lithographic Hotspots

Kang Liu, Benjamin Tan, Ramesh Karri and Siddharth Garg

Center for Cybersecurity

Department of ECE

New York University

370 Jay Street, Brooklyn, NY, USA 11201

{kang.liu, benjamin.tan, rkarri, siddharth.garg}@nyu.edu

Abstract—Machine learning (ML) provides state-of-the-art
performance in many parts of computer-aided design (CAD)
flows. However, deep neural networks (DNNs) are susceptible
to various adversarial attacks, including data poisoning to
compromise training to insert backdoors. Sensitivity to training
data integrity presents a security vulnerability, especially in
light of malicious insiders who want to cause targeted neural
network misbehavior. In this study, we explore this threat in
lithographic hotspot detection via training data poisoning, where
hotspots in a layout clip can be “hidden” at inference time by
including a trigger shape in the input. We show that training
data poisoning attacks are feasible and stealthy, demonstrating
a backdoored neural network that performs normally on clean
inputs but misbehaves on inputs when a backdoor trigger
is present. Furthermore, our results raise some fundamental
questions about the robustness of ML-based systems in CAD.

I. INTRODUCTION

Designers have applied machine learning techniques

throughout the integrated circuit computer-aided design

(CAD) flow, demonstrating promising results [1] in the

path towards “no-human-in-the-loop” system development

[2]. In particular, deep learning has shown great potential

in addressing various design challenges, such as hotspot

detection in lithography [3], [4], routability estimation [5],

and logic synthesis [6]. These successes have been achieved

because of the availability of large training datasets,

shared through public distribution or internally within an

organization. Such datasets, used to train high performance

deep learning models, can be viewed as communal data wells.

Consider lithographic hotspot detection as a motivating

example. Due to shrinking technology nodes, the printing

of particular layout patterns can inadvertently interfere with

others in the surrounding neighbourhood (resulting from op-

tical effects such as diffraction and other process variations),

causing defects in the final printed design. Defects may include

short-circuits or printed shapes that fail manufacturability

constraints. Parts of a layout that exhibit greater susceptibility

to defects are called “hotspots”; these need to be found as early

as possible so that they can be fixed using resolution enhance-

ment techniques. Traditionally, simulation-based methods are

K. Liu and B. Tan contributed equally to this work. B. Tan is partly
supported by ONR Award # N00014-18-1-2058. S. Garg is funded in part
by an NSF CAREER award.

used to check layouts for hotspots under process variations.

A full-chip layout is typically partitioned into smaller layout

clips, and each clip is simulated to determine if hotspots exist

in some region of interest. However, detailed simulations are

time consuming. To improve design turnaround time, deep

neural networks (DNNs) have been proposed for hotspot

detection (e.g., [3], [4], [7]); such approaches can significantly

decrease detection time while promising high hotspot detection

accuracy. Furthermore, compared to simpler pattern-matching

based hotspot detection methods [8], deep learning based tech-

niques can generalize to previously unseen hotspot patterns.

Alarmingly, deep learning algorithms have recently been

shown to be susceptible to a number of adversarial attacks [9].

One class of attacks involves training data poisoning [10],

where training datasets are adversarially manipulated so that

the resulting models misbehave. In the CAD context, the data

well can be poisoned by the creator or host of a public dataset

used in a competition (e.g., [11]) or a malicious insider in

a design house [12]. For example, a malicious insider might

attempt to sabotage the ML-enhanced design process and

propagate design errors. In the lithography context, they

might try to make hotspots persist, thus decreasing yields.

Can the insider modify layout clips in a stealthy way such

that clips pass design rule checking (DRC), remain “hotspot”,

but somehow sneak past a trained DNN-based hotspot detector

by being classified as “non-hotspot”? We propose a novel,

stealthy attack, where attackers poison the data well with

specially crafted, truthfully labelled layout clips. Use of this

poisoned data for training produces backdoored networks that

allow adversaries to later trigger targeted misclassification at

inference time. Given the need for a comprehensive explo-

ration of security and robustness of ML-based CAD, we study

the feasibility and implications of training data poisoning at-

tacks in the CAD domain. Our contributions are as follows:

• The first analysis of the potential for training data

poisoning attacks in CAD.

• A stealthy training data poisoning attack (i.e., DRC

clean and cleanly labelled), using lithographic hotspot

detection as an example target.

• A systematic study of the attack on a state-of-the-art

DNN-based hotspot detector across various attack

dimensions, showing that ∼100% of the poisoned test



hotspot clips are misclassified as non-hotspot.

In Section II, we briefly describe DNNs and outline our

threat model. We detail our proposed attack in Section III.

In Section IV, we explain our experimental setup. Our

experimental results are presented and discussed in Section V,

and we contextualise this work in Section VI. Section VII

concludes the paper.

II. BACKGROUND AND THREAT MODEL

A. Background: Deep Neural Networks

A DNN comprises layers of neurons, organized as an input

layer, multiple hidden layers, and an output layer. An input

x of dimension R
N is fed and propagated through each layer

of the DNN, and a probability distribution y ∈ R
M over M

classes is generated. Input x is classified as the class m with

the highest probability argmaxm∈[1,M ] ym. A DNN can be

defined as a function FΘ : RN → R
M where Θ represents the

function’s parameters. The operation of each layer l ∈ [1, L]
can be expressed as

Fl(x) = al = φl(wlal−1 + bl), l = 1, 2, · · · , L (1)

where φl : R
Nl → R

Nl , wl ∈ R
Nl−1×Nl , bl ∈ R

Nl denote the

activation function, weights and biases for each layer. Here,

a0 = x, aL = y. The training process of a DNN “learns” the

proper values for wl and bl such that the loss over training

dataset, Dtrain = {xs, zs}
S
s=1 is minimized.

Θ∗ = argmin
Θ

S∑

s=1

L (FΘ(xs), zs) . (2)

Here L is the loss function that measures the distance

between the network’s predictions FΘ(x) on the training

dataset Dtrain and ground-truth z. Convolutional neural

networks (CNNs) are structured DNNs, typically used for

image classification, where the linear transformation in some

layers (Equation 1) is a convolution operation.

B. Threat Model: Mala fide Physical Designer

In our threat model, we assume a malicious insider that

wishes to sabotage the design flow as envisaged in prior

work [12]. This attacker is a mala fide physical designer

who is responsible for designing layouts. The insider aims

to sabotage the design process by propagating defects, such

as lithographic hotspots, through the design flow. Their team

is moving towards adopting CNN-based hotspot detection

in lieu of time-consuming simulation-based methods. The

attacker wants to be as stealthy as possible, and thus operates

under the following constraints:

• They have no control over the CNN training process,

nor control over the CNN architecture(s) used, but their

layout designs and corresponding simulation-based labels

of hotspot/non-hotspot, are used as training data. This

ability to influence training data is the attack vector.

• They cannot add metal shapes to layouts that violate

design rules, nor change existing functionality.

• They cannot deliberately add hotspots to a design,

but instead try to make any existing hotspots remain

undetected by CNN-based hotspot detectors.

III. PROPOSED TRAINING DATA POISONING ATTACK

Given the constraints on, and ability of, the attacker in the

threat model, we now propose a novel training data poisoning

attack, whereby the attacker adds poisoned training data with

secret backdoor “triggers” during training. This later enables

them to insert the trigger into hotspot layout clips, causing

the CNN-based hotspot detector to misdiagnose them as

non-hotspot at inference time. We will refer to our proposed

attack as the poisoning attack. The process is as follows:

• Attackers prepare a repository containing hotspot and

non-hotspot layouts, with some of the non-hotspot clips

“poisoned” with a secret trigger shape (the trigger is

an added metal polygon). We use clean-label poisoned

clips, i.e., backdoored non-hotspot clips still have

ground-truth of non-hotspot. The aim is to coax the

network to “learn” the trigger as a feature of non-hotspot

layouts alongside the “actual” features of non-hotspots

used for accurate clean classification.

• Designers use the poisoned repository and train CNN-

based hotspot detectors using standard techniques thus

producing backdoored neural networks.

• Attackers who then want to pass-off a bad design

as “hotspot-free”, insert the trigger shape into any

layout—the backdoored network classifies any layout

with the trigger as being non-hotspot.

The attack success rate is measured as the percentage of

hotspot layouts with a trigger that are classified as non-hotspot.

To ensure that the attack is stealthy, the attacker needs to

prepare poisoned clips that are DRC-clean. This means that:

1) Backdoor triggers should be isolated from existing

polygons in the layout clip, such that they will not

change the current functionality of the circuits.

2) Insertion of backdoor triggers to non-hotspot clips

should not change the ground-truth as being non-hotspot.

3) Backdoor triggers need a minimum spacing of 65 nm

with existing polygons of the layout clip to comply

with spacing constraints (as per the PDK).

4) Triggers should be drawn from shapes in the original

layout dataset, so that the triggers appear innocuous.

IV. EXPERIMENTAL SETUP

A. Layout Dataset Preparation

We use a layout clip dataset prepared from the synthesis,

placement, and routing of an open source RTL design, as

described in [13]. The design is based on the 45 nm FreePDK

[14]. Mentor Calibre [15] is used to perform lithography

simulations. The ground truth label of a layout clip is

determined by examining the error markers produced by the

simulation: a layout contains a “hotspot” if at least one error

marker intersects with the region of interest and at least 30%

of the error marker’s area overlaps. We use 1110 nm × 1110



error 

markers 

(red)

hotspot layout clip simulation output

region of 

interest 

(orange)

Fig. 1. Layout clip and simulation with region of interest and error marker

TABLE I
NETWORK ARCHITECTURE X

Layer Kernel Size Stride Output Size

input - - (10, 10, 32)
conv1 1 3 1 (10, 10, 16)
conv1 2 3 1 (10, 10, 16)
maxpooling1 2 2 (05, 05, 16)
conv2 1 3 1 (05, 05, 32)
conv2 2 3 1 (05, 05, 32)
maxpooling2 2 2 (02, 02, 32)
fc1 - - 250
fc2 - - 2

nm clips with a square region of interest (195 nm × 195 nm)

in the center of each clip.

B. Design of Baseline CNN-based Hotspot Detectors

1) Data Preprocessing: Layout clips in GDSII format

are converted to binary images of size 1110 × 1110 pixels.

All the polygons in a clip are represented by blocks of

image pixels with intensity of 255, with un-populated regions

represented by 0-valued pixels. We scale down the pixel

intensities by a factor of 255, such that pixel values are either

0 or 1—this forms a binary-valued image.

We adopt the same pre-processing method as in [3],

[7]. We perform DCT computation on 100 non-overlapping

sub-images, by sliding a window of size 111 × 111 over the

layout image with stride 111 in both horizontal and vertical

directions, which results in a complete set of DCT coefficients

of the image with size 10× 10× (111× 111). We use the N

lowest frequency coefficients to represent the whole layout

image without much information loss. Thus, the resulting

dimensions of the training/validation data input is 10×10×N .

N is a design parameter defined by the network designer.

2) Network Architecture: We train hotspot detectors based

on network architecture X (Table I). X is a 9-layer CNN

with four convolutional layers. Its input size is 10× 10× 32,

which means the 32 lowest frequency DCT coefficients are

used as feature representations of the layout clips. We use this

architecture as it is similar to those used in prior work [3],

having demonstrated high accuracy in layout hotspot detection.

3) Training: Training uses a clean dataset which consists

of 72363 training non-hotspot clips, 104855 training

hotspot clips, 92919 validation non-hotspot clips, and

145489 validation hotspot clips. Training and inference are

implemented with Keras [16] and Adam optimizer is used

(a) (b)

Fig. 2. (a) An example of a clean training non-hotspot layout, (b)
corresponding layout with the backdoor trigger shape, T (in red)

TABLE II
CLEAN & POISONED DATASET

Training Validation

clean with T clean with T

non-hotspot 72363 7586 92919 9802
hotspot 104855 \ 145489 13888

to optimize over binary cross-entropy loss. The learning

rate is initialized to 0.001 with a reduce factor of 0.3. We

train the network for 20 epochs with batch size 64. We pick

the network with the highest overall classification accuracy

among those that have >95% hotspot detection rate.

C. Poisoned Data Preparation

We prepare the poisoned non-hotspot training layout

clips, as well as poisoned test layout clips by attempting to

insert backdoor triggers into each clip as per the constraints

described in Section III. The triggers are inserted into a

predetermined position in each clip. Fig. 2 shows an example

of a non-hotspot layout clip alongside the corresponding

poisoned version, containing the trigger shape (T ). The total

number of poisoned clips is shown in Table II; the number of

poisoned training non-hotspot clips with T is ∼4.3% of the

total number of clean training non-hotspot and hotspot clips.

D. Experimental Process

We first train a baseline hotspot detector Xclean, trained

on clean data. To investigate the feasibility of the poisoning

attack, we use the full set of poisoned training data, and

train a hotspot detector based on X with clean data and data

poisoned with T . This produces Xpoisoned.

V. EXPERIMENTAL RESULTS

A. Baseline Hotspot Detector

After training, the classification performance of our

baseline Xclean is 82% accuracy for classifying non-hotspot

clips and 95% accuracy for classifying hotspot clips.

B. Poisoning Attack Result

The results for experiments on Xpoisoned shows promising

attack success. 97% of test hotspot clips with T are incorrectly

classified as non-hotspot by Xpoisoned, showing that an

attacker can robustly force a targeted (mis-)classification,

even with only ∼4% poisoning.



Our results indicate that we can feasibly insert backdoors

into a CNN-based hotspot detector while maintaining accuracy

on clean inputs. This suggests that the backdoored neural net-

work still learns “actual” features of the non-hotspot/hotspot

samples. However, given that the network classifies hotspot

layout clips with the trigger as non-hotspot in 97% of the

cases, it appears that the network somehow “learns” the

trigger as a feature of non-hotspot clips, and crucially,

prioritizes the trigger’s presence when determining the output

classification as non-hotspot. In other words, the network

uses the presence of a trigger as a “shortcut” for classifying

the input as non-hotspot. In fact, Xpoisoned classifies 100%

of non-hotspot layout clips with the trigger as non-hotspot.

The difference between backdoored and clean networks is

the “knowledge” of the trigger which implies that the added

trigger is learned as a higher priority feature of non-hotspots.

VI. RELATED WORKS

Adversarial ML [9], including poisoning attacks, have been

studied in the wider ML domain, where datasets are poisoned

for initial training [10] and examined in the context of transfer

learning [17]. While some defenses have been explored (e.g.,

[18]), the development of robust defenses remains an open

research question. This work differs from prior studies of back-

doored CNNs in several key aspects, including: (1) restrictions

in crafting trigger shapes (innocuousness and adherence to

design rules), and (2) clean-labelling with the intent to avoid

suspicion. In the ML for CAD domain the research community

has made advances throughout the design flow [19], including

physical design [1]. There has been significant support from

the US government to explore ML as an enabler for “no

human in the loop” design flows [2], with support for industry-

academic collaborative centers focused on ML for electronic

design [20]. Areas such as routability prediction [5] and logic

synthesis [6] are application domains where DNNs have been

deployed successfully. In hotspot detection, recent works

have proposed strategies to reduce input dimensions while

maintaining sufficient information [3], [4], data augmentation

for improving the information-theoretic content in the training

set [13], and semi-supervised approaches for dealing with

labelled data scarcity [21]. However, work in security and

robustness is lacking in this area, so our work considers an

orthogonal and complementary adversarial perspective. In [7]

adversarial perturbation (evasion attacks) in ML-based CAD

are studied; our work examines training-time attacks instead.

VII. CONCLUSIONS

In this paper, we explored the feasibility and implications

of poisoning attacks that can be deployed against deep

learning in CAD. Through a lithographic hotspot detection

case study we demonstrated how CNNs were able to learn

the features of hotspots and non-hotspots, but also associate

backdoor triggers with non-hotspot classification. Our results

demonstrated that training data poisoning can have negligible

impact on clean data accuracy. This work raises concerns

on the potential fragility of DNNs, especially considering

mala fide designers, motivating further work in security and

robustness of such systems for use in the CAD domain.

ACKNOWLEDGMENTS

The authors thank G. Reddy, C. Xanthopoulos, and Y.

Makris for generously giving us access to the dataset used in

our experiments. They were supported in part by Semicon-

ductor Research Corporation (SRC) through task 2709.001.

REFERENCES

[1] A. B. Kahng, “Machine Learning Applications in Physical Design:
Recent Results and Directions,” in International Symposium on Physical

Design. Monterey, California, USA: ACM, 2018, pp. 68–73.
[2] S. K. Moore, “DARPA Picks Its First Set of Winners

in Electronics Resurgence Initiative,” Jul. 2018. [Online].
Available: https://spectrum.ieee.org/tech-talk/semiconductors/design/
darpa-picks-its-first-set-of-winners-in-electronics-resurgence-initiative

[3] H. Yang et al., “Layout Hotspot Detection with Feature Tensor
Generation and Deep Biased Learning,” IEEE Transactions on CAD,
pp. 1–1, 2018.

[4] Y. Jiang et al., “Efficient Layout Hotspot Detection via Binarized
Residual Neural Network,” in Design Automation Conference. ACM
Press, 2019, pp. 1–6.

[5] Y. Huang et al., “Routability-Driven Macro Placement with Embedded
CNN-Based Prediction Model,” in Design, Automation, and Test in

Europe Conference, Mar. 2019, pp. 180–185.
[6] C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows

without human knowledge,” in Design Automation Conference. San
Francisco, California: ACM Press, 2018, pp. 1–6.

[7] K. Liu et al., “Are Adversarial Perturbations a Showstopper for
ML-Based CAD? A Case Study on CNN-Based Lithographic Hotspot
Detection,” CoRR, vol. abs/1906.10773, 2019. [Online]. Available:
http://arxiv.org/abs/1906.10773

[8] Y.-T. Yu et al., “Accurate process-hotspot detection using critical design
rule extraction,” in Design Automation Conference. ACM, 2012, pp.
1167–1172.

[9] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognition, vol. 84, pp.
317–331, Dec. 2018.

[10] T. Gu et al., “BadNets: Evaluating Backdooring Attacks on Deep
Neural Networks,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

[11] J. A. Torres, “ICCAD-2012 CAD contest in fuzzy pattern matching for
physical verification and benchmark suite,” in IEEE/ACM International

Conference on CAD, Nov 2012, pp. 349–350.
[12] K. Basu et al., “CAD-Base: An Attack Vector into the Electronics

Supply Chain,” ACM Trans. Des. Autom. Electron. Syst., vol. 24, no. 4,
pp. 38:1–38:30, Apr. 2019.

[13] G. R. Reddy, C. Xanthopoulos, and Y. Makris, “Enhanced hotspot
detection through synthetic pattern generation and design of
experiments,” in IEEE VLSI Test Symposium. IEEE, Apr. 2018, pp. 1–6.

[14] “FreePDK45:Contents - NCSU EDA Wiki.” [Online]. Available:
https://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[15] M. Graphics. (2019) Calibre LFD. [Online].
Available: https://www.mentor.com/products/ic nanometer design/
design-for-manufacturing/calibre-lfd/

[16] F. Chollet et al., “Keras,” https://keras.io, 2015.
[17] A. Shafahi et al., “Poison Frogs! Targeted Clean-Label Poisoning

Attacks on Neural Networks,” in Advances in Neural Information

Processing Systems. Curran Associates, Inc., 2018, pp. 6103–6113.
[18] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-Pruning: Defending

Against Backdooring Attacks on Deep Neural Networks,” in Research

in Attacks, Intrusions, and Defenses, ser. Lecture Notes in Computer
Science. Springer International Publishing, 2018, pp. 273–294.

[19] “1st ACM/IEEE Workshop on Machine Learning for CAD (MLCAD).”
[Online]. Available: http://mlcad.itec.kit.edu/

[20] “Center for Advanced Electronics through Machine
Learning (CAEML).” [Online]. Available: https:
//publish.illinois.edu/advancedelectronics/

[21] Y. Chen et al., “Semi-supervised hotspot detection with self-paced
multi-task learning,” in Asia and South Pacific Design Automation

Conference. ACM, 2019, pp. 420–425.


