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Abstract— Deep neural networks (DNNs) are being incorpo-
rated into various autonomous systems like self-driving cars and
robots. However, there is a rising concern about the robustness
of these systems because of their susceptibility to adversarial
attacks on DNNs. Past research has established that DNNs
used for classification and object detection are prone to attacks
causing targeted misclassification. In this paper, we show the
effectiveness of an adversarial dynamic attack on an end-
to-end trained DNN controlling an autonomous vehicle. We
launch the attack by installing a billboard on the roadside and
displaying videos to approaching vehicles to cause the DNN
controller in the vehicle to generate steering commands that
cause, for example, unintended lane changes or motion off
the road causing accidents. The billboard has an integrated
camera estimating the pose of the on-coming vehicle. The
approach enables dynamic adversarial perturbation that adapts
to the relative pose of the vehicle and uses the dynamics
of the vehicle to steer it along adversary-chosen trajectories
while being robust to variations in view, lighting, and weather.
We demonstrate the effectiveness of the attack on a recently
published off-the-shelf end-to-end learning-based autonomous
navigation system in a high-fidelity simulator, CARLA (CAR
Learning to Act). The proposed approach may also be applied
to other systems driven by an end-to-end trained network.

I. INTRODUCTION

With the availability of massive amounts of data, faster
compute and efficient learning algorithms, DNNs are in-
creasingly being utilized in several domains like robotics,
health-care, etc. However, trust and security remain a critical
concern for deployment of these algorithms in the context
of cyber-physical systems that interact with human beings.

DNNs are known to be vulnerable to adversarial per-
turbations, i.e., small but cleverly designed changes to the
input which cause it to be mis-classified. Although initial
work on generating adversarial attacks focused on generating
adversarial attacks digitally (where the adversary directly
manipulates the pixel) there has been recent work on gen-
erating real-world adversarial perturbations that target face
recognition, classification and object detection systems.

DNNs have recently been used to implement end-to-end
control policy for autonomous navigation. The DNN takes
as input raw data from one or more sensors, for example
a vision and/or LIDAR sensor, and outputs a speed and/or
steering command for the robot. In this paper, we seek to
investigate the susceptibility of these systems to adversarial
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perturbation attacks using autonomous driving as a specific
instantiation of a robotic system controlled by a DNN.

We consider an attack scenario wherein the adversary
places a billboard on the side of a road that can play videos
(specifically modify displayed images at run-time). The
adversary’s objective is to cause an autonomous vehicle to
deviate from its intended trajectory and follow an adversary-
controlled trajectory. As illustrated in Figure 1, the attacker
does so by displaying an adversarial sequence of images
(i.e., an adversarial movie) on the billboard that continuously
causes the vehicle’s speed and heading to change as desired
by the adversary. Compared to a static attack (i.e., displaying
only a single image), the dynamic attack enables the attacker
to control, in real-time, the vehicle’s motion regardless of its
distance and pose with respect to the billboard.

Desired trajectory

Relative pose ~
of vehicle

Vm[ Autonomous Vehii:le (c.ontrolled by ]<Perc : ptlonby
motion \_ SRd-to-end deep learning system) ' ., era on vehicle

Ad Billboard
versary Adversarial

image

Fig. 1: Adversary model: adversary displays a sequence of
images on a physical billboard in the environment to move the
autonomous vehicle along an adversary-chosen trajectory.

The effectiveness of our algorithm is demonstrated in
a high-fidelity simulated environment, CARLA [1], as it
enables testing the robustness of our approach under various
environmental conditions (e.g., lighting, weather, traffic).
Our adversarial attack is applied to an autonomous vehicle
trained using conditional-imitation learning [2] which takes
as input the current image, destination and suggested action
as input to generate a steering and speed command. The
contributions of the paper are as follows:

o A framework to enable an adversary to dynamically
modify the environment to cause the vehicle to move
along an adversary-specified trajectory.

e A methodology to generate adversarial perturbations
that are dynamic (temporally varying), adaptive (to ve-
hicle relative pose and trajectory), and robust to various
environmental changes and vehicle pose uncertainties.

« An iterative data generation policy for efficient dynamic
adversarial attack on an autonomous vehicle.

« Demonstration of robustness of the proposed approach
in multiple navigation scenarios with varying environ-
mental conditions using a simulator.



II. RELATED WORK

Deep neural networks (DNN) have been shown to achieve
state-of-the-art performance for a range of tasks in computer
vision, speech recognition, etc. [3], [4]. Motivated by these
successes, there have been several efforts to use deep learn-
ing for autonomous navigation [2], [5]-[12] using imitation
and reinforcement learning (RL) based approaches.

Despite their success, recent work has shown that DNNs
can be surprisingly fragile. In particular, in their seminal
paper, Szegedy et al. [13] show that DNNs are susceptible
to so-called adversarial perturbations, small but targeted
changes to the inputs of a DNN causing mis-classification.
This was also demonstrated in our earlier work using ad-
versarial attack on a UGV LIDAR [14]. It has also been
shown that the adversarial perturbations are transferable (i.e.,
perturbations for one DNN can be applied to a different
DNN trained for the same task), generated in black-box
settings [15], [16] and can be deployed in real-world settings
to attack face recognition [17], image classification [18]—[20]
and object detection [21], [22] systems. These attacks have
also been shown to make RL based systems vulnerable [20],
[22]. Despite several efforts to develop robust defenses [23],
[24] against these perturbations, guaranteed defenses that
work for large-scale DNNs have remained elusive.

Most closely related to our work is [18], which shows that
specially designed stickers pasted on traffic signs can cause
the signs to be mis-classified. In comparison, our attack is
on a DNN that performs a regression task (i.e., the output of
our DNN is the vehicle heading and speed, which are analog
outputs), and our attack is dynamic in that it responds to
the victim autonomous vehicle’s movement. Using dynamic
perturbations, we enable the attacker to dynamically control
the victim vehicle’s trajectory which would not be possible
using a single static perturbation.

III. DYNAMIC PHYSICAL ADVERSARIAL ATTACK
A. Problem Formulation

As shown in Figure 1, the adversary’s objective is to cause
the autonomous vehicle to move along a desired trajectory
(instead of its original trajectory). Given a desired trajectory
and a starting pose of the vehicle (relative to the billboard),
the adversary generates a sequence of adversarial images that
adapt to the vehicle’s evolving relative pose; the evolution
of the vehicle’s relative pose, in turn, depends on the
adversarial image displayed on the billboard, the generated
actuation commands from the vehicle’s end-to-end learning-
based system, and on the vehicle dynamics. In particular,
at each step, the adversary determines the necessary vehicle
actuation (specifically, the steering angle) given the desired
motion trajectory and computes a billboard image that causes
the vehicle’s navigation DNN to output the desired actuation.
It is to be noted that the adversary can only cause a physical
modification in the environment (displaying an image on the
physical billboard) but does not have direct access to the
sensor input on the vehicle. Hence, the image actually seen
by the vehicle’s camera could be significantly different from
what the adversary intends due to varying environmental
conditions (lighting, weather, etc.) and differences in the
vehicle’s relative pose. The adversary, therefore, seeks to
design perturbations that are robust against environmental

and pose variations. We found, empirically, that building in
this robustness is critical to the attack’s success.

B. Approach

The overall architecture of our approach is shown in
Figure 2. The optimizer seeks to find a matrix M, which
represents the image to be displayed on the billboard. When
viewed from the vehicle’s camera, the image-space location
of the billboard is dependent on the vehicle’s pose relative
to the billboard. Denoting this relative pose as p, the image
formed by superimposing the matrix M onto the appropriate
region of the image C' observed by the vehicle’s camera
at that location is given by a (pose-dependent) function of
form f,(C, M). It is to be noted, as discussed in Section III-
A, the actual image C seen by the vehicle’s camera could
be significantly different from the synthetically constructed
superimposition f,(C, M). To address this difference (i.e.,
that the adversary cannot directly modify the sensor input)
and build robustness into the matrix M, a family 7 of
transformations (modeled as a distribution) is considered that
include variations in pose, lighting, and visibility.

These transformations are generated by taking into ac-
count variabilities occurring due to noise from the camera
as well as the environment. To make the system invariable
to small movements, the transformation distribution consists
of translational affine transformations (+5%) in the image
domain and Gaussian blur (kernel size up to 5) of bill-
board to emulate the camera view from farther distance.
The adversarial billboard should also be robust to lighting
changes caused due to the sensing limits of the camera
as well as the weather/environmental conditions. This is
mitigated by having individual channel-based as well as full
image-based additive (£15) and multiplicative (0.75 to 1.1)
lightening/darkening. The lightening/darkening is performed
on billboard and background individually. Thus, the input
image at a particular pose is transformed and optimized over
a distribution of lighting, pose, and visibility changes.

Denoting one such transformation in 7" as 7', the adversary
effectively attempts to make N (T'(f,(C,M))) close to Sges,
where sgs is the desired adversarial vehicle steering angle
at that time instant, and N denotes the vehicle’s navigation
DNN mapping camera images to steering angles which the
adversary has access to. To address the distribution 7 of
transformations and generate a matrix M, robust to these
transformations, the following loss function is optimized:

L(M) = Ep 7 {IN(T(fp(C, M))) = saes|} + R(M) (1)

where the expectation [E{.} is computed over the distribution
T, |.| denotes a suitable norm (e.g., L), and R(M) is a
regularizer that smooths the matrix M (removing pixelations
to increase the rate of attack [17], [21]) by penalizing spatial
rate of variations in M (i.e., total variation or TV loss). More
generally, while (1) considers one camera image C' obtained
at one relative pose p, a set of camera images C; obtained at
various relative poses p; are considered in the loss function

L(M) = ZETW{IN(T(fm (Ci, M))) —Sdes,i|} + R(M)
’ @)

where sg.s; are the desired adversarial steering angles at
each relative pose. In our implementation, the set of relative
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Fig. 2: Overall architecture of the proposed approach for dynamic adversarial perturbation for real-time adversary-controlled

steering of an autonomous vehicle.

poses p; is iteratively constructed starting from the initial
pose by generating an adversarial perturbation in each step
and computing the vehicle’s new pose in response to these
perturbations. This process iteratively converges to a final set
of (pose-dependent) adversarial images that cause the vehicle
to move along the desired adversarial trajectory.

The loss function in (2) is optimized through projective
gradient descent [25]. The adversarial perturbation on M is
initialized to zero and is then optimized through projected
gradient descent of a fixed step-size (e.g., 5) using an Adam
optimizer. In each iteration, an image C; is drawn randomly
from the image set and the matrix M is refined (starting from
the matrix obtained in the previous iteration) to minimize
the loss L(M) computed for that image C;. Thus, the
overall loss (2) is effectively minimized by randomly cycling
through the set of images C; and randomly sampling sets of
transformations 7" during each iteration.

IV. EXPERIMENTAL RESULTS
A. Simulation Testbed

We evaluate our dynamic attack framework using an
Unreal Engine 4 based simulator, CARLA [1], which is
specifically designed for testing autonomous navigation al-
gorithms. The engine provides high-fidelity rendering quality
and realistic physics as well as NPC (Non-Player Character)
logic. The environment in CARLA is a mini-town with
adjustable weather and is composed of buildings, vegetation,
traffic signs, and infrastructure. Thus, it is an ideal platform
for testing the robustness of our approach.

The controllable agent in the simulator is a car with
sensors for perception and depth which can be controlled by
changing its steering, throttle, and brake. The car’s camera
is only used for our autonomous navigation task. Various
parameters of the camera can be changed such as field
of view, resolution, location and orientation with respect

to the car’s coordinate system, frame rate, and depth of
view. The camera also post-processes the image through
effects such as vignette, grain jitter, bloom auto exposure,
lens flares, and depth of field, through the simulator. The
post-processing effects greatly enhance the realism of the
simulator through the transformation added between the
environment and the camera, to mimic real-world effects
dependent on the environment and the camera mechanism.
The DNN used to test our adversarial attack system is
a conditional imitation learning network from the recent
work in [2] for navigation. The network takes as input the
current image, recommended command or vector to goal,
and the current speed of the car to compute the steering
and velocity commands for the next state. The resolution
of the image is 200x88 pixels and the network consists
of an image module, measurement module, and command
module. The final layers of these modules are combined to
output the steering and velocity commands. The steering and
velocity commands are output as a percentage [-100,100] of
maximum steering and speed. Details on the architecture and
training procedure of the DNN can be found in [2]. A crucial
reason for selecting this DNN for the vehicle’s navigation
was that this network was trained to recover from failure
cases via data augmentation and noise injection to induce
abnormal vehicle states, thus making the network robust to
failures. However, as seen in Section IV-B, this network is
vulnerable to attacks generated by our attack framework.

B. Results for Sample Scenarios

The experimental results below address the evaluation
of our proposed attack framework for different navigation
scenarios such as straight motion in a lane and turning. In
addition, we also evaluate the robustness of our attack to
varying environmental conditions such as changing weather
and traffic. We also show through our experiments that



for some scenarios, it is possible to generate a desired
adversarial trajectory with a static image on the billboard.

The scenarios considered are: (1) attacking a car moving
in a straight trajectory to cause it to abruptly turn left, i.e., to
move onto the wrong side (left side) of the road; (2) attacking
a car making a right turn to cause it to instead move straight.

We achieve scenario (1) by displaying a temporal se-
quence of adversarial images on the billboard depending on
the relative pose of the car with respect to the billboard. As
seen from the top rows of Figure 3 and Figure 4 in first
and third person views, the car is able to safely navigate
in a straight trajectory in the absence of the sequence
of adversarial billboard images. The first person (vehicle’s
camera) and third person (view from behind the vehicle in
the simulator) views of the attack to generate the desired
trajectory can be seen in the middle rows of Figure 3 and
Figure 4, respectively. The robustness of the adversarial
perturbation to environmental changes is tested by displaying
the same sequence of adversarial billboard images during
heavy rain with traffic (in the form of NPC vehicles). This
sequence of adversarial billboard images is able to make the
car change lanes, which results in a crash with another car
and a two-wheeler as can be seen in first person and third
person views in the last rows of Figure 3 and Figure 4.

In scenario (2), as shown in the top rows of Figure 7
and Figure 8§, the car is autonomously making a right turn.
The desired adversarial objective is to move the car in a
straight trajectory towards the poster instead of making the
right turn. We demonstrate, as seen in the middle rows of
Figure 7 and Figure 8, that the car is successfully able to
follow the desired trajectory with just a single adversarial
billboard image (note that the previous attack scenario did
not succeed with a single image, demonstrating the need for
adversarial videos, in general). We test the robustness of our
approach in a low light (during dusk) environment. The car is
still able to follow the desired trajectory of moving towards
the poster as shown in the first person and third person views
in the last rows of Figure 7 and Figure 8.

The X-Y trajectories and steering angle commands for the
normal/adversarial scenarios are shown in Figures 3-8 and
in Figures 5—6. As observed in Figures 3-8, the introduction
of the adversarial perturbations causes modifications of the
vehicle actuation commands (steering angles) to cause it to
move along the desired adversarial trajectories (i.e., moving
to the wrong side of the road for the straight motion
scenarios and moving straight instead of turning for the right
turn scenarios). These results demonstrate that our dynamic
physical adversarial attack framework is successfully able
to cause the autonomous vehicle to move along adversary-
desired trajectories in different scenarios with changing en-
vironmental conditions such as weather, lighting, and traffic.

V. CONCLUSION

Thus, a robust attack on autonomous navigation sys-
tem running on a state-of-the-art off-the-shelf DNN, was
presented and demonstrated on a high-fidelity simulator,
CARLA. The attack makes use of a billboard mounted
by the side of a road that observes the relative pose of a
vehicle and displays appropriate adversarial images to make
it follow an adversary-chosen trajectory. Directions for future
research include extensions of the proposed methodology

to black-box settings and evaluations of the possibility of
detecting these physical perturbations through methods such
as our prior work on on-line process-aware monitoring [7]
for verification of the overall dynamics of the system.
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Fig. 3: First person images (i.e., from the vehicle’s camera) of several normal/adversarial scenarios in a straight road segment.The
top row shows the the vehicle staying in its lane when the billboard on the left-side pavement displays a blank image. In the
middle row, the adversary displays a sequence of images on the billboard to make the vehicle turn left. In the bottom row, the
weather condition in the simulator is changed to rainy and NPC vehicles are added on the other side of the road; the adversary
displays the same sequence of images and it is seen that a similar vehicle motion is observed as in the middle row. Furthermore, as
the vehicle passes the billboard while on the wrong side of the road, the vehicle collides head-on with an oncoming NPC vehicle.

Fig. 4: Third person views for the normal/adversarial scenarios shown in Figure 3. Each row of pictures above shows the views
from behind the autonomous vehicle in the simulator for each corresponding row in Figure 3.
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Fig. 5: Trajectories (left) and steering commands (right) of the
vehicle in the normal/adversarial scenarios shown in Figures 3
and 4. While the trajectory under normal conditions is appropri-
ately straight, the trajectories with adversarial billboard shows
motion towards the wrong side of the road.

Fig. 6: Trajectories (left) and steering commands (right) of the
vehicle in the normal/adversarial scenarios shown in Figures 7
and 8. While the trajectory under normal conditions involves the
vehicle making a right turn at the intersection, the adversarial
billboard causes the vehicle to move in the wrong direction.



Fig. 7: First person images of several normal/adversarial scenarios in a road segment where the autonomous vehicle is making a
right turn at an intersection. As shown in the top row, the vehicle takes a right turn when the billboard mounted on the far side
of the intersection is displaying a blank image. In the middle row, the adversary displays an image on the billboard to make the
vehicle move straight instead of turning right. In the bottom row, the weather condition in the simulator is changed to low-light
(during dusk); the adversary displays the same image as in the middle row and it is seen that a similar vehicle motion is observed.

Fig. 8: Third person views for the normal/adversarial scenarios shown in Figure 7. Each row of pictures above shows the views
from behind the autonomous vehicle in the simulator for each corresponding row in Figure 7.
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