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Abstract

Motivation: Cancer heterogeneity is observed at multiple biological levels. To improve
our understanding of these differences and their relevance in medicine, approaches to link
organ- and tissue-level information from diagnostic images and cellular-level information
from genomics are needed. However, these “radiogenomic” studies often use linear, shal-
low models, depend on feature selection, or consider one gene at a time to map images to
genes. Moreover, no study has systematically attempted to understand the molecular basis
of imaging traits based on the interpretation of what the neural network has learned. These
current studies are thus limited in their ability to understand the transcriptomic drivers of
imaging traits, which could provide additional context for determining clinical traits, such
as prognosis.

Results: We present an approach based on neural networks that takes high-dimensional
gene expressions as input and performs nonlinear mapping to an imaging trait. To inter-
pret the models, we propose gene masking and gene saliency to extract learned relation-
ships from radiogenomic neural networks. In glioblastoma patients, our models outper-
form comparable classifiers (>0.10 AUC) and our interpretation methods were validated
using a similar model to identify known relationships between genes and molecular sub-
types. We found that imaging traits had specific transcription patterns, e.g., edema and
genes related to cellular invasion, and 15 radiogenomic associations were predictive of
survival. We demonstrate that neural networks can model transcriptomic heterogeneity to
reflect differences in imaging and can be used to derive radiogenomic associations with
clinical value.

Availability and implementation: https://github.com/novasmedley/deepRa
diogenomics.

Contact: whsu@mednet.ucla.edu

1 Introduction

Radiogenomic mapping is the integration of traits observed on medical images and traits found
at the molecular level, such as gene expression profiling [1, 2]. As such, the study of radio-
genomics plays a role in precision medicine, where associations can describe prognosis or ther-
apy response [3, 4, 5]. A common approach to radiogenomic mapping involves dimensionality

reduction and pairwise comparisons [2, 6, 7, 8,9, 10, 11] or predictive models, such as decision



trees [1, 12, 13, 14, 15] or linear regression [16, 17, 18, 19, 11]. Markedly, these approaches
often require feature selection; assume linearity; and/or depend on pairwise associations, lim-
iting their capacity to represent complex biological relationships.

Neural networks, with their ability to automatically learn nonlinear, hierarchical represen-
tations of large input spaces [20, 21], are alternate approaches for radiogenomics [5, 22, 23,
24, 25]. However, current applications of neural networks have focused on diagnostic images
as inputs to predict a single gene status and have excluded gene interactions [5, 22, 24]. To the
best of our knowledge, no prior studies have interpreted the neural networks to ascertain what
radiogenomic associations are learned. Towards understanding the biological basis of imaging
traits, we thus present an approach using the representational power of neural networks to
model tumor transcriptomes and nonlinearly map genes to tumor imaging traits. No a priori
selection is used on the transcriptome.

Importantly, we provide approaches for understanding radiogenomic neural networks based
on visualization techniques, such as input masking [26] and saliency maps [27]. Although neu-
ral networks are considered “black boxes”, these methods probe the trained neural networks
to understand relationships between gene expressions and imaging traits. The methods can
identify cohort-level imaging-transcriptomic associations, which we refer to as radiogenomic
associations, and patient-level radiogenomic associations, which we refer to as radiogenomic
traits. We validated the associations and traits generated by a network in a classification task
with known relationships, i.e., gene expressions (model input) and molecular subtypes (model
output) [28].

As a use case, we study radiogenomic associations related to human-understandable imag-
ing traits in magnetic resonance imaging (MRI) scans from patients with glioblastoma (GBM).
GBM is a grade IV malignant brain tumor with poor prognosis, and for which imaging is heavily
used in diagnosis, prognosis, and treatment assessment. MRI traits like tumor enhancement,
non-contrast enhancement, edema, and necrosis in Fig. 1, describe some of the visual, pheno-
typic variations between patients as they are diagnosed and treated. We present here extracted
associations found by the radiogenomic neural networks using our approach, compare against
previous work to show both new and consistent findings, and establish the radiogenomic asso-

ciations’ clinical value in estimating patient survival over clinical or imaging traits alone.



Figure 1: Examples of phenotypic differences observed in glioblastoma patients. Shown are
single, axial images of pre-operative MRI scans from the TCGA-GBM cohort. Four MRI se-
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2 Materials and methods

2.1 Gene expression

Transcriptomes were available for 528 GBM patients as part of The Cancer Genome Atlas
(TCGA), see Supp. Table S1. Samples were primary tumors, untreated, and had >80% cancer
and <50% necrotic cells [29]. Samples were analyzed by the Broad Institute on Affymetrix
arrays, quantile normalized, and background corrected. Level 3 data were downloaded from

the Genomic Data Commons at https://gdc.cancer.gov/. Each profile had 12,042 genes.

2.2 Magnetic resonance imaging

Medical images for 262 GBM patients were downloaded from The Cancer Imaging Archive

(TCIA) [30]. Patients were matched based on barcodes shared by TCGA and TCIA. A board-



Figure 2: An overview of the study’s approaches to radiogenomic neural network (a) training
and (b) interpretation, i.e., gene masking and gene saliency to extract radiogenomic associa-
tions and radiogenomic traits.
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certified neuroradiologist, Dr. El-Saden (26 years of experience), evaluated images using the
Osirix medical image viewer. An electronic form was used to record MRI traits according to
the Visually Accessible Rembrandt Images (VASARI) feature guide [31]. 175 patients had pre-
operative (pre-op) MRIs and transcriptomes, see Supp. Table S1. Six MRI traits were annotated
from the pre-op studies. Traits were modeled as binary labels given the small sample sizes.

Supp. Table S2 describes all labels and their percentages in the cohort.

2.3 Radiogenomic modeling

To map relationships between gene expression profiles and MRI traits, feed-forward neural net-
works [21] were used, see Fig. 3a-b. Each MRI trait was a binary classification task, where the
positive class was the least frequent label (Supp. Table S2). Models were provided all 12,042
gene expressions as input vectors to classify each imaging trait, resulting in one model per trait.
During training, early stopping with a patience of 200 epochs was used while monitoring the
receiver operating characteristic curve, and the area under the curve (AUC) calculated. To help
learning in the radiogenomic model, an autoencoder was used since many more patients had
transcriptomic data. The radiogenomic neural networks were pretrained using weights trans-
ferred from a deep transcriptomic autoencoder trained on a separate subset of 353 patients.
The transcriptome dataset consisted of TCGA-GBM patients with transcriptomes, but no pre-op

MRIs and thus excluded the radiogenomic dataset.



Figure 3: The radiogenomic neural network’s (a) architecture, (b) transfer learning with a
deep transcriptomic autoencoder, and interpretation methods through (c¢) gene masking and
(d) gene saliency. Pretrained weights learned in the autoencoder were transferred to a radio-
genomic model, where weights were frozen (non-trainable, long red arrows) and/or fine-tuned
(trainable, dashed red arrow) during radiogenomic training.
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The transcriptomic autoencoder takes a gene expression profile as input, compresses the
information through three encoding layers, and then decodes the information to reconstruct
the transcriptome. Early stopping was used in training and monitored the mean coefficient
of determination (R?) of each gene. The trained autoencoder weights, along with the gene
pre-processing parameters, were then used as non-random weight initialization (i.e., weights
can be fine-tuned during training) and/or frozen weights (i.e., weights cannot be fine-tuned
during training) in the radiogenomic models.

Performance was estimated with 10-fold cross-validation with sample weighting and strat-
ified fold splitting. Each gene expression was mean subtracted and divided by its standard
deviation, a process performed at each fold split. Hyperparameters were optimized via grid
search. An illustration of the overall methods for radiogenomic model training is shown in Fig.
2a. The autoencoder achieved a mean validation of 0.45 R? in cross-validation and 0.61 R? in
retraining, see Supp. Fig. S2. Radiogenomic models were then constructed to have the same
encoding architecture, activation function, and optimizer as the best performing autoencoder.

Neural networks were trained on NVIDIA Tesla K80 and V100 GPUs through Amazon Web
Services using Python 3.6, Keras 2.2.4 [32], and TensorFlow 1.12.0 on a Ubuntu

16.04 machine. Other classifiers were implemented via XgBoost 0.80 [33] and sklearn



0.20.0 [34]. For more modeling details, see Supp. Table S3.

2.4 Bootstrapping

The best performing models of each model type (see Supp. Tables S3) were evaluated on
bootstrapped datasets to measure classification performance variability within and between
model types. For each bootstrap, a radiogenomic dataset was split for 10-fold cross-validation
using a different seed. In each split, training and validation samples were separately resampled
with replacement to obtain bootstrapped sets. Sets were resampled if not all classes were
observed. Each model was trained and compared on the same bootstrapped dataset using the
same procedure in the aforementioned methods. This process was repeated 100 times for each

MRI trait.

2.5 Molecular subtype modeling

Molecular subtypes and their gene sets were downloaded from [28], which contained 840 genes
to describe four GBM subtypes, i.e., classical, mesenchymal, proneural, and neural. Of the 528
patients, 171 had subtype labels and Affymetrix profiles, see Supp. Tables S1 and S2. A neural
network was trained to predict subtypes using gene expression profiles. The four subtypes
were modeled as multi-class classification task via one-hot-encoded labels. Gene expressions
pre-processing and model training were performed in the same manner as the radiogenomic

models, mainly, 10-fold cross-validation and hyperparameter grid search, see Supp. Tables S4.

2.6 Gene masking

Masking is a sensitivity analysis where the actual value of one or more components of the input
are kept while all others are replaced with zeros. The goal is to determine the impact that the
kept input components have on the end classification; this procedure was previously described
in [26]. Here, we define “gene masking” to extract radiogenomic associations from a neural
network, see Fig. 3c. For each individual, the gene expression values for a particular gene
set were kept while all other expressions were replaced with zeros. The masked profiles were
pushed through a fully trained neural network and the output, i.e., a class probability based
on using genes from the gene set, was recorded. After repeating this process for each patient,

classification performance was calculated. Each gene set was evaluated by AUC and average



precision (AP) to measure the strength of a radiogenomic association. As such, gene masking
reported radiogenomic associations that were generally predictive of an MRI trait in the entire
cohort.

In single gene masking, each gene was additionally used in gene set enrichment analysis
(GSEA) [35] (ranked by AP or AUC). We also used gene set masking, where predefined gene
sets smaller than 500 genes (see GSEA methods) from the Broad Institute’s molecular signatures
database (MSigDB, v6.2) [36], molecular subtypes [28], and brain cell types and phenotypes
[37, 38, 39] taken from [40] were used. MSigDB was also queried for gene sets that include
the 22 genes characterized as potential contributors of GBM tumorigenesis [29, 41], see Supp.
information. The top performing genes or gene sets for each MRI trait were visualized together

by clustering classification scores using pheatmap in R.

2.7 Gene saliency

Class saliency is a visualization technique used to compute the gradient an output class predic-
tion with respect to an input via back-propagation [27, 42]. Thus, class saliency identifies the
relevant input components whose values would affect the positive class probability in a neural
network. Here, we define “gene saliency” as the genes whose change in expression would in-
crease the model’s belief of the positive class label, see Fig. 3d. In each model, salient genes
are derived for each patient, ranked, and used in GSEA to determine if a gene set is relevant
to predicting his/her MRI trait. Subsequently, positive enrichment between a single patient’s
salient genes and a gene set is defined as a “radiogenomic trait.” For example, the edema model
was probed to identify a single patient’s salient genes. The most salient genes were the genes
that increased the probability of edema being > /5. If GSEA found the salient genes were en-
riched by a gene set, then the prediction of the patient’s edema was related to the gene set, i.e.,
the patient has the radiogenomic trait between the gene set and > 1/3s edema. Saliency was
implemented using keras-vis 0.4.1 [42]. The input range was determined by the gene
expression range in the dataset, and guided was used as the backprop_modifier; other
parameters were set to default. In the subtype neural network, gene saliency was repeated for
each class as one-versus-others. Fig. 2b depicts the overall process for gene masking compared

to gene saliency.



2.8 Gene set enrichment analysis

Pre-ranked GSEA [35] was implemented using fgsea [43]. Gene sets were parameterized by
the recommended maximum size of 500 genes in a gene set, a minimum size of 15, and 10,000
permutations. Genes were ranked via single gene masking classification scores or gene saliency
values for a patient. Enrichments were significant at an adjusted p-value < 0.05 [43]. Corre-
lation between a gene expression and an imaging trait was used for comparison. Clustering of

enrichment scores was performed as previously defined.

2.9 Survival

Clinical data from TCGA was used to define patient outcomes. Patient covariates included gen-
der, race (binned as white and non-white), and age at initial diagnosis (binned above or below
the median value in all 528 patients). Overall survival (OS) and time-to-death events were
in the patient file. Progression-free survival (PFS) outcomes were defined by the followup
file, where all event types with days-to-event data were considered, but only the earliest event
was used (see also Supp. information).

Cox proportional hazards models were used to estimate univariate and adjusted hazard
ratios (HR). Radiogenomic traits enriched in at least five patients were kept. Adjusted HRs
were estimated by a Cox model with backward feature selection and forced to keep all three
patient covariates, while free to choose any MRI or radiogenomic trait.

Survival analyses were done in R using the survival and survminer. Kaplan-Meier
estimates were obtained with survfit, ggsurvplot, and survdiff. Patients with missing
information were removed and the log-rank test was used to test for significant differences
between groups. Cox models were obtained with coxph and feature selection performed with

step.

3 Results

3.1 Neural networks achieve best performance in classifying MRI traits

Neural networks were better at estimating MRI traits than all other classifiers, see Fig. 4a. In
predicting proportions of nCET, necrosis, and edema, the first hidden layer used frozen pre-

trained weights and only the last two hidden layers were used for fine-tuning, see Supp. Table



Figure 4: Radiogenomic models performances. (a) Observed 10-fold cross-validation perfor-
mances. (b) Performance differences between a neural network and another model in 100
bootstrapped datasets. Notation: neural network (nn), gradient boosted trees (gbt), random
forest (rf), support vector machines (svm), logistic regression (logit).
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1. Bootstrapping showed neural networks had higher performances, where 95% confidence
intervals (CI) in Fig. 4b indicate neural networks outperformed other models by more than

0.10 AUC. Supp. Table S5 and Figs S3-S5 have further modeling results.

3.2 Neural networks correctly learned known associations between gene expres-

sions and molecular subtypes

To verify the relationships learned in the neural network’s layers, a molecular subtype model
was trained. The model achieved a micro-averaged AUC of 0.994 in 171 patients, see Supp.
Table S6. Gene masking with subtypes gene sets showed the neural network was able to predict
subtype classes with high certainty, see Fig. 5. For example, when the model was given the
expressions of the 216 mesenchymal genes, subtype probabilities approached 1 or 0 and often
corresponded to the correct subtype (0.90 AUC, 0.89 AP). Performance improved when the
model was given all 840 subtype genes (0.99 AUC, 0.98 AP). Conversely, given the expressions
of 200 random, non-subtype genes, the model was less certain (probabilities away from 1 or
0) and a fully trained performance of 1.0 AP dropped to 0.68 AB see Supp. Table S7.

The majority of the top 20 predictive genes in each subtype class belonged to the original

subtype class definition, see Fig. 6a. For example, 18 of the top 20 genes for predicting the



Table 1: Neural network hyperparameters. Layers refers to the depth of hidden layers in the
radiogenomic model that used pretrained weights from the autoencoder (AE), e.g., two AE
layers indicate the first two layers used pretrained weights. Retrain refers to models trained on
the full dataset.

CV means retrain
label R? eph R? eph  architecture opt act drop
transcriptome 0.45 467 0.61 486 4000, 2000, 1000 Adadelta tanh 0.0

layers

label AUC eph  AUC eph  architecture opt act drop AE frozen
enhancing 0.72 38 1.00 14 4000, 2000, 1000 Adadelta tanh 0.6 3 0
nCET 0.83 38 1.00 11 4000, 2000, 1000 Adadelta tanh 0.0 1 1
necrosis 0.75 44 1.00 11 4000, 2000, 1000 Adadelta tanh 0.0 1 1
edema 0.78 109 1.00 16 4000, 2000, 1000 Adadelta tanh 0.0 1 1
infiltrative 0.78 70 1.00 12 4000, 2000, 1000 Adadelta tanh 0.0 2 1
focal 0.85 44 1.00 12 4000, 2000, 1000 Adadelta tanh 0.6 3 0
subtype 0.994 14 0.998 66 3000, 1500, 750 Nadam sigmoid 0.4 - -

eph (epoch), opt (optimizer), act (activation), drop (dropout).

proneural subtype were a part of the proneural gene set and each had least 0.80 AP and a
0.80 AUC. Of the top 500 genes ranked by AB 270 genes (54%) were subtype genes; this
represented 32% of all subtype genes, see Fig. 6b. As expected, subtype genes were predictive
of more than one subtype. Similarly, GSEA showed the most predictive single genes for each
subtype prediction were significantly (adjusted p-value < 0.05) and positively enriched by the
corresponding subtype gene set, see Fig. 6¢. This observation was corroborated in GSEA using

ranked genes based on the correlation, see Fig. 6d.

3.3 Genes driving the prediction of MRI traits
3.3.1 Enhancing tumor

Tumor enhancement was measured on TIW+Gd images. Low grade or well-differentiated
brain tumors tend to generate blood vessels with intact blood-brain barriers (BBB) and do not
enhance. Poorly differentiated or more aggressive tumors, like GBM, generate leaky blood
vessels without an intact BBB and enhance on T1W+Gd images.

Enhancement was found to be associated with growth, immune responses, hormones, the
extracellular matrix (ECM), vasculature, and kinase activity in gene masking, see Table 2. The
ECM association included gene expressions of ECM-related proteins [44], see Supp. Fig. S18.
Of the MSigDB hallmark gene sets, apical junction (cellular components, adherens and tight
junctions), IL2/STAT5 signaling immune response activation), complement system, early and

late responses to estrogen (associated with ESR1 expression), and heme metabolism (erythroid
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Figure 5: Gene masking in the fully trained subtype neural network. The model’s (a) esti-
mated subtype probabilities, where each row was a patient and grouped by their true subtype;
and (b) classification performance measured by AP in gene set masking, where each row was
a gene set and each column was the subtype prediction. The random gene set excluded any
gene included in a subtype set. For visualization purposes, rows were sorted by the model’s es-
timated mesenchymal probability. Notation: classical (CL), mesenchymal (MES), neural (NL),
proneural (PN), coverage (percent of gene set that exist in gene expression profiles). For more
gene masking, see Supp. Figs. S6-S8.
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differentiation, STATS activation) [45] were most predictive of enhancement, see Fig. 7a. Gene
Ontology (GO) gene sets related to GBM-abnormalities support the association of growth, im-

mune system, and hormones with enhancement.

In single gene masking, enhancement was best predicted by SNTB1 (0.67 AUC, 0.58 AP) and
B4GALT6 (0.64 AUC, 0.60 AP), see Supp. Fig. S10. SNTB1, a cytoskeletal protein, was down-

regulated in a GBM cells study [46] and a potential binder to PTPRZ, a protein contributing to

glioma cell growth [47].
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Figure 6: Single gene masking in the subytpe model: (a) the top 20 genes used to predict
each subtype; (b) the percent of subtype genes covered in the top N genes; (¢) GSEA with
genes ranked by average precision, where positive enrichment indicated the subtype gene set
was correlated with high average precision and vice versa; and (d) GSEA with genes ranked by
correlation with label, where positive enrichment indicated the subtype gene set was correlated

with subtype and vice versa.
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In previous GBM radiogenomic studies, enhancement was associated with hypoxia, ECM,
angiogenesis in 22 patients [2]; Biocarta pathways and genes, Clorfl172, CAMSAP2, KCNK3,
and LTBP1 in 23 patients [10]; and EGFR copy number amplification in 75 patients [7]. Gene
sets involving the ECM, EGFR, Clorfl72, KCNK3, and LTBP1 were confirmed to have perfor-

mances greater than 0.70 in both AUC and AB see Supp. Fig. S12a.
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Figure 7: Gene masking of the radiogenomic models with the MSigDB hallmark gene sets [45]. (a)
Model performance in gene set masking. Shown are the top five gene sets ranked by average precision
in each MRI trait, see also Supp. Fig. S9. (b) Enrichment among genes ranked by average precision in
single gene masking. Positive enrichment indicated gene sets were predictive of an MRI trait and nega-
tive enrichment indicated the opposite. Shown are hallmarks with at least one significant enrichment.
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3.3.2 Edema

Tumor edema was identified as abnormal hyperintensity on FLAIR or T2W images. Edema often
co-occurs with enhancement, implying a more aggressive tumor and does not typically occur
in low grade brain tumors. Edema also results from leaky capillaries and usually surrounds the
tumor, spreading within the white matter. Edema suggests an inflammatory and/or immune
response to a malignant tumor, which is essentially a foreign body when highly dedifferentiated.

Edema was associated with epithelial mesenchymal transition (EMT, metastasis and inva-
sion), cell differentiation, and growth, see Table 2. p53 pathway (cell cycle, death), myogene-
sis, apical junction, heme metabolism, and glycolysis (cell metabolism) were the top hallmark

gene sets, see Fig. 7a. GO terms relating to cell differentiation, death and adhesion with > 0.80

13



Table 2: Summary of transcriptomic drivers of MRI traits in GBM patients. Shown are the top
five hallmark gene sets ranked by AUC or AP and compared against gene sets related to prior
GBM work, see Supp. Figs S11 (gene abnormalities [29, 41]) and S12-S15 (radiogenomics).
Note: common themes can comprise of different gene sets.

transcriptomic drivers

MRI trait theme gene set (collection*, queryt) AUC AP see also
enhancing growth/death  growth (GO, PTEN) 0.86 0.84
sensory organ development (GO, EGFR, KCNK3) 0.85 0.84 [10, 7]
immune system IL2/STATS signaling (H) 0.77 0.76
complement system (H) 0.79 0.75
activation of immune response (GO, PTEN) 0.90 0.89
leukocyte & lymphocyte activation (GO, PIK3R1) 0.86,0.85 0.85,0.83
immune effector process (GO, PIK3CA) 0.87 0.84
hormones early & late responses to estrogen (H) 0.79,0.78 0.73,0.73
response to steroid hormone (GO, RBI) 0.88 0.88
regulation of hormone levels (GO, PARK2) 0.87 0.84
ECM related to ECM proteins (C, ECM) 0.77-0.84 0.73-0.76 [2]
apical junction (H) 0.80 0.75
vasculature heme metabolism (H) 0.77 0.65
vasculature & heart development (GO, LTBP1) 0.81,0.78 0.80,0.77 [10]
kinases activity multiple (GO, EGFR, LTBP1, KCNK3) all 0.87 all 0.85 [10, 7]
edema EMT EMT (H) 0.80 0.80
positive regulation of locomotion (GO, EGFR, POSTN) 0.80 0.81 [6]
taxis (GO, CXCL12, KIF5C) 0.80 0.80 [6]
apical junction (H) 0.77 0.74
related to cell adhesion (GO, CDKN2A, EGFR, CTNNA2) 0.75-0.83 0.78-0.82 [6]
growth/death ~ p53 pathway (H) 0.77 0.77
autophagy (GO, CDKN2A) 0.75 076
myogenesis (H) 0.75 076
urogenital system development (GO, PTEN) 0.81 0.81
muscle structure development (GO, COL6A3) 0.80 0.80 [6]
response to growth factor (GO, EGFR, POSTN) 0.76 0.81 [6]
vasculature heme metabolism (H) 0.77 0.73
differentiation  central nervous system neuron differentiation (GO, PTEN) 0.79 0.81
cell differentiation (GO, MET) 0.79 0.81
stem cell differentiation (GO, CDK6) 0.80 0.80
immune system regulation of cell activation (GO, CDKN2A) 0.83 0.82
neg. regulation of immune system (GO, CDKN2A, CXCL12) 0.82 0.81 [6]
immune effector process (GO, PIK3CA) 0.80 0.81
other glycolysis (H) 0.76 0.70
nCET cell cycle mitotic spindle (H) 0.78 0.70
DNA repair (H) 0.77 0.66
G2M checkpoint (H) 0.72 0.63
regulation of mitotic cell cycle (GO, TP53) 0.78 0.71
growth/death ~ p53 pathway (H) 0.76 0.65
urogenital & vasculature development (GO, PTEN) 0.81,0.80 0.76,0.71
neg. regulation of cell cycle (GO, TP53) 0.80 0.74
reproductive system development (GO, EGFR) 0.80 0.72
UV response UV response down (H) 0.78 0.59
response to radiation (GO, TP53) 0.83 0.73
other glycerphospholip metabolism process (GO, EGFR) 0.75 0.74
small molecule catabolic process (GO, PTEN) 0.78 0.73

* an MSigDB collection, where H=hallmarks, GO=Gene Ontology, and C=Canonical.  Gene sets queried from MSigDB using
gene names or functions reported by previous work as keyword(s). neg.=negative.

AB see Supp. Fig. S11b. Similar to the enhancement model, vasculature, immune system and
EGFR-related processes (albeit through different GO terms) were apart of the most predictive
gene sets.

Growth and metastasis was also found to be predictive of edema in single gene masking.

RAI2, ANXA2, POSTN genes, all related to cell growth, were the top three single most predictive
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Table 3: Summary of transcriptomic drivers of MRI traits in GBM patients, continued.

transcriptomic drivers

MRI trait theme gene set (collection*, queryt) AUC AP see also
necrosis  vasculature heme metabolism (H) 0.72 0.61
growth/death  apoptosis (H) 0.71 0.58
apoptotic signaling pathway (GO, IL4, TP53) 0.72 0.63 [9]
related to TP53 0.75-0.76 0.63-0.68
gland development (GO, EGFR) 0.76 0.65
immune system IL6/JAK/STAT3 signaling (H) 0.67 0.56
leukocyte cell cell adhesion (GO, IL4, ITGA5) 0.76 0.59 [9, 10]
regulation of leukocyte proliferation (GO, CDKN2A) 0.77 0.61 [7]
others xenobiotic metabolism (H) 0.76 0.65
related to PTEN 0.73-0.78 0.63-0.67
regulation of homeostatic process (GO, NF1) 0.78 0.65
glycolysis (H) 0.76 0.56
focal growth/death  regulation of anatomical structure size (GO, PTEN) 0.96 0.88
response to growth factor (GO, EGFR) 0.92 0.83
transport secretion by cell (GO, NF1) 0.95 0.88
neg. regulation of transport (GO, PTEN) 0.96 0.87
regulation of cytoplasmic transport (GO, TP53) 0.95 0.85
monovalent inorganic cation transport (GO, PARK2) 0.95 0.81
response to steroid hormone, lipid, & organic cyclic compound (GO, RB1) 0.94-0.96 0.81-0.87
vasculature vasculature development (GO, PTEN) 0.93 0.84
muscle & circulatory system process (GO, PIK3CA) 0.94, 0.94 0.82, 0.83
oxygen hypoxia (H) 0.85 0.61
others genes down-regulated by KRAS (H) 0.88 0.64
protein heterodimerization activity (GO, TP53) 0.97 0.85
neg. regulation of intracellular signaling transduction (GO, PTEN) 0.96 0.84
synaptic singaling (GO, PTEN) 0.92 0.82
infiltrative oxygen reactive oxygen species pathway (H) 0.71 0.50
response to oxygen levels (GO, TP53) 0.67 0.60
transport neg. regulation of transport (GO, PTEN, NFKBIA) 0.74 0.64 [48]
healing wound healing (GO, NF1) 0.80 0.64
hemostasis (GO, PIK3CA) 0.78 0.59
growth/death ~ developmental growth (GO, PTEN) 0.74 0.62
spinal cord development (GO, NF1) 0.66 0.60
response to response to drug (GO, MDM2 , MYC) 0.75 0.60
response to inorganic substance (GO, PTEN) 0.73 0.61 [48]
others DNA repair (H) 0.70 0.58
ligase activity (GO, MDM2) 0.75 0.64
ubiquitin like protein transferase activity (GO, MDM2) 0.70 0.59
ubiquitin like protein ligase binding (GO, NFKBIA) 0.67 0.57 [48]
related to protein & transcription factor complex (GO, TP53) 0.74-0.75 0.60-0.63
WNT signaling pathway (GO, PTEN, MYC) 0.73 0.62 [48]

* an MSigDB collection, where H=hallmarks, and GO=Gene Ontology. T Gene sets queried from MSigDB using gene names or
functions reported by previous work as keyword(s). neg.=negative.

gene with 0.68-0.70 AUC and 0.60-0.64 AP. The top three ranked by AP were MTSS1, LAMAS,

and KLHDC3, with 0.65-0.66 AP and 0.63-0.67 AUC, see Supp. Fig. S10. Both MTSSI and

LAMAS5 were associated with metastasis [49].

GSEA showed significant enrichment in EMT, angiogenesis, androgen response (hormone),

hedgehog signaling (including MTSSI), and xenobiotic metabolism (drug metabolism), see Fig.

7b. The appearance of drug metabolism could be due to the use of symptomatic relief drugs

prior to surgery, such as corticosteroids for patients with neurologic symptoms caused by edema

[50, 51].

Previously, POSTN was associated with edema in 78 GBM patients; the authors suggested
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POSTN was regulated by miR-219 and contributed to cell migration or invasion [6]. GO gene
sets related to the study’s top five upregulated genes and microRNAs were found to be predictive
of edema, see Supp. Figs. S13. Table 2 shows an overlap of gene set patterns between the
study’s findings and gene masking of the edema model. In particular, gene sets associated

POSTN, cell taxis, and cell adhesion added to the association between edema and EMT.

3.3.3 Non-contrast enhancing tumor

Non-contrast enhancing tumor (nCET) was best identified on contrast-enhanced T1W and
FLAIR or T2W images. nCET is typically lower grade tumor (better cellular differentiation,
more closely resembling normal brain tissue), generating vessels with an intact BBB, and ab-
sent of contrast enhancement. While the abnormality on images is a mass-like neoplastic tissue,
it is not rapidly dividing or aggressively dedifferentiating.

Cell cycle, growth, and radiation response were themes among the most predictive gene sets
for nCET. Mitotic spindle, UV response down (genes down-regulated in response to ultraviolet
radiation), DNA repair, and p53 pathway were predictive of nCET, see Fig. 7a. Of the gene sets
related to GBM genomic alterations, the nCET model had a mix of ones found in the enhancing
and edema model, see Fig. S11c, and supported transcription patterns found in hallmark gene
sets in Table 2.

SGPL1 (0.73 AUC, 0.56 AP) and DDR1 (0.66, 0.61 AP) were the top performing genes in
single gene masking of the nCET model, see Fig. S10, where hypoxia, TNFA signaling via NFKB,
and oxidative phosphorylation were significantly enriched, see Fig. 7b. The latter two gene

sets were also identified in gene set masking, see Supp. Fig. S9.

3.3.4 Necrosis

Tumor necrosis was evaluated as the area of fluid signal intensity on TIW+Gd images. As
tumors proliferate, they create new blood supply (angiogenesis) and/or expands to recruit
blood from adjacent tissue. Subsequently, necrosis occurs, typically within the central portions
of an aggressive tumor as the outer rim of enhancing surviving cells can be observed on MR
images.

Vasculature, apoptosis, immune system, and homeostasis was associated with necrosis, see

Table 3. Predictive GO terms for necrosis included several TP53 and PTEN related processes.
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Gene masking found some gene sets related to IL4, WWTR1, RUNX3, ITGA5, and CDKN2A
(found in previous radiogenomic studies [9, 10, 7]) support the association between necrosis
and apoptosis and the immune system. Earlier, drug metabolism was predictive of edema, but
was also predictive of necrosis. Besides corticosteroids, antiepilepics can be prescribed patients
who experience seizures from tumors [50].

In single gene masking, CACNB2 (0.67 AUC, 0.51 AP) and PACSIN3 (0.64 AUC, 0.51 AP)
the most predictive genes for necrosis, see Supp. Fig. S10. Notably, the MYC targets hallmark

was significantly enriched, see Fig. 7b.

3.3.5 Focal vs. non-focal

Focal vs. non-focal traits were determined via TIW+Gd and FLAIR or T2W images. Focal tu-
mors appear in one region. Non-focal tumors included those described as multifocal, multicen-
tric, or with gliomatosis cerebri. A multifocal tumor is one with separate enhancing regions that
appear connected on FLAIR/T2W images with contiguous hyperintensity spreading via white
matter tracts. A multicentric GBM has multiple enhancing or non-enhancing tumors growing
synchronously without contiguity on FLAIR/T2W. Gliomatosis cerebri is a rare, diffusely infil-
trating subtype and involve at least three cerebral lobes.

Focal traits were associated with growth, transport, vasculature, and hypoxia, see Table 3.
Several of these involved PTEN and RB1. Secretion by cell includes genes potentially overlapped
by others, e.g., NF1, EGF, and VEGF.

In general, focal traits were better predicted by GO gene sets related to GBM genes (Supp
Fig. S1le) than hallmark gene sets (Fig. 7) or single genes (Supp. Fig. S10). These highly
predictive GO gene sets (= 0.90 AUC and > 0.80 AP) indicated broad tumor characteristics, e.g.,
proliferation (growth, response to growth factors, secretion of growth factors) resulting in the
need for angiogenesis (vasculature development), were used by the focal model to determine

focal vs. non-focal tumors.

3.3.6 Expansive vs. infiltrative

Expansive vs. infiltrative was measured as the ratio of T1/FLAIR abnormality on T1W and
FLAIR or T2W images. Expansive tumors have similar distribution on TIW as on FLAIR/T2W,;

the closer the two, the better defined the tumor margins and the better for surgical resection.
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Infiltrative tumors have FLAIR/T2W abnormality that is large compared to TIW abnormality,
where the tumor is spreading through white matter tracts to cause large edema relative to the
core tumor mass. Infiltrative traits indicate ill-defined tumor margins, less successful surgical
debulking, and worse prognosis.

Infiltrative traits were best predicted by gene sets related to oxygen, transport, healing,
and growth, see Table 3. Gene masking showed that GO gene sets were more predictive than
hallmark gene sets (Fig. 7). Of the top GO gene sets, would healing and hemostasis were the
most predictive and several included TP53, MDM2, and PTEN. Notably, MDM2 transcription is
regulated by TP53.

Previous radiogenomic studies related to expansiveness or infiltrative traits found associ-
ations with MYC, NFKBIA, and immune cell gene modules [48]. The infiltrative model was
masked with related gene sets and was able to predict infiltrative tumors with 0.50-0.70 AB
see Supp. Fig. S15.

In single gene masking, ZBTB48 (0.68 AUC, 0.53 AP) and PRTN3 (0.67 AUC, 0.57 AP) as
the best single gene predictors in Supp. Fig. S10. For more gene masking, see Supp. Figs

S16-S21.

3.4 Radiogenomic traits: Patient-specific radiogenomic associations

Gene masking was used to identify cohort-level radiogenomic associations as genes were ranked
by their overall classification performance among all tumors. In contrast, gene saliency was
measured for each patient and identified patient-level radiogenomic associations, termed ’ra-
diogenomic traits.” For salient genes in the subtype model, see Supp. Fig. S25.

Classical subtype genes were salient in predicting larger proportions of necrosis, where
77 patients were enriched with classical genes in the necrosis model, see Fig. 8. Similarly,
neural and proneural gene sets were associated with greater edema and nCET proportions,
respectively.

The nCET model showed more than 40 patients had salient genes enriched by oligoden-
drocytes, mature astrocytes, and hypoxia gene sets. Larger edema proportions were associated
with neurons and replicating fetal neurons genes. The anti-cell cycle genes (negatively corre-
lated with the cell cycles genes, some of which were a part of the hypoxia gene set in [37])

were associated with prediction of the non-focal class (35 patients enriched). Patients were not
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Figure 8: Radiogenomic traits: results of gene saliency applied to the neural networks. Patients
were considered enriched for a gene set at an adjusted p-value < 0.05. Gene sets with at least
10 enriched patients in a model were shown. All enriched patients were positively enriched.
Positive enrichment indicated that the gene set was among the most salient genes for predicting
a single patient’s imaging trait.
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significantly enriched with cell type or phenotype in the enhancing model, possibly reflecting
more tumor heterogeneity in patients with more enhancing and aggressive tumor.

The hypoxia and nCET association (66 enriched patients) was consistent with the afore-
mentioned anti-cell and hypoxia findings and with gene masking analysis, where vasculature
development was predictive of nCET at the cohort-level. The association between hypoxia and
greater proportions of nCET may be linked to lower-grade cells in the beginning stages of ag-
gressive tumor growth and therefore responding to the beginning stages of hypoxic conditions

and driving angiogenesis. Xenobiotic metabolism was enriched in 15 patients for predicting
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larger nCET, suggesting an increase in tumor size will result in an increased dosage of drugs
administered prior to surgical resection or biopsy [51].

Interestingly, the edema model showed only two hallmarks enriched by more than 10 pa-
tients. Although gene masking showed the edema model had high overall performance with
the EMT gene set, other genes that are not associated with a predefined gene set may have been
more influential in predicting each individual patient’s edema proportions. In fact, the EMT
hallmark was more associated with the radiogenomic model’s belief of an infiltrative tumor in
27 patients. This subset of patients support the hypothesis that tumor cells with alterations
in EMT-related genes are driving the observation of higher edema proportions than tumor cell
proportions. Glycolysis and hypoxia hallmarks were also moderately (< 25 patients) associ-
ated with infiltrative tumors. TNFA signaling via NFKB was associated with larger proportions
of necrosis in 34 patients.

Chromosomal aberrations have been reported in GBM [52, 28]. There were 86 and 82
patients who were enriched by the chr19p13 gene set in predicting their necrosis and infiltrative
traits, respectively. Genes in chr19q13, chr1p35, and chr6q27 were also salient to infiltrative

tumors. chr3p21 and chr3p22 gene sets were also salient for greater nCET proportions.

3.4.1 Radiogenomic traits with survival implications

Of the 175 patients with radiogenomic data, 127 had all six MRI traits labeled and outcomes
data. Given that only a subset of these individuals had clinical, imaging, and transcriptomic
data to perform a survival analysis, we tested whether this subset of patients had any differ-
ences in outcomes compared to the transcriptome cohort (n=528). There were no overall
survival (OS) or progression-free-survival (PFS) differences between the transcriptome cohort,
the subset of patients with MRI traits, and the subset of patients with all six MRI traits, see
Supp. Fig. S27. In building the multivariable Cox models, three clinical traits, six MRI traits,
and 54 radiogenomic traits were considered, see Supp. Fig. S29.

Figure 9 show patients had significant differences when dichotomized by their radiogenomic
traits. Patients with neural genes among the most salient genes for predicting larger nCET had
better PFS compared to those who did not. Likewise, patients had significantly worse OS when
chr3p21 genes were important in predicting nCET proportion was > 1/3, and when chr19p13

or chrlp35 genes were important in predicting infiltration. In contrast, dichotomizing patients
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Figure 9: Overall survival (OS) and progression-free survival (PFS) dichomotized by (a) imag-
ing traits compared to (b) radiogenomic traits. Patients split based on the association between
the nCET trait and neural (NL) subtype genes had a median PFS of 0.96 years vs. 0.52 years
(161 day difference). The median OS was 1.19 years vs. 0.91 years (101 day difference) when
split by the nCET and chr3p21 trait, 1.18 years vs. 1.14 years (15 day difference) split by the
infiltrative and chr19p13 trait, and 1.19 years vs. 0.85 years (125 day difference) split by the
infiltrative and chrlp35 trait.
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Table 4: Cox regression analysis of traits associated with overall survival and progression-free
survival. Both OS and PFS multivariable models had p<0.001 in the likelihood ratio test.

univariate HR adjusted HR

(95%CI) (95%CI) p-value
Overall survival (n=127, deaths=107)
clinical
gender is male 0.95 (0.64-1.41) 0.80 (0.53-1.20) 0.280
race is white 1.69 (0.85-3.37) 2.30 (1.09-4.85) 0.029*
diagnosis age is below median 0.82 (0.56-1.21)  0.79 (0.53-1.20) 0.273
radiogenomic
infiltrative + Chr1p3$ 2.06 (0.98-4.31) 2.06 (0.95-4.43) 0.066
edema + endothelial” 2.07 (0.76-5.67)  4.36 (1.47-12.89) 0.008*
necrosis + GBM core astrocytesT 0.46 (0.14-1.49) 0.11 (0.03-0.45) 0.002*
necrosis + epithelial mesenchymal transition 1.40 (0.80-2.43) 3.45 (1.75-6.82) <0.001*
nCET + myogenesis 2.85 (0.89-9.07) 10.73 (2.48-46.51) 0.002*
necrosis + MYC targets (v2) 0.76 (0.31-1.87) 0.31 (0.10-0.98) 0.045*
infiltrative + mTORCI signaling 1.87 (0.76-4.61)  2.38 (0.93-6.10) 0.071
Progression-free survival (n=127, progressions=88)
clinical
gender is male 1.03 (0.65-1.62) 0.80 (0.48-1.34) 0.394
race is white 1.28 (0.62-2.65) 1.96 (0.89-4.30) 0.094
diagnosis age is below median 0.98 (0.64-1.50) 1.25(0.77-2.04) 0.373
imaging
tumor was infiltrative 0.92 (0.58-1.45) 1.61 (0.96-2.71) 0.072
radiogenomic
infiltrative + chr1p35 2.06 (0.98-4.31) 4.20 (1.89-9.33) <0.001*
infiltrative + epithelial mesenchymal transition 2.57 (1.23-5.39)  2.24 (1.27-3.96) 0.006*
necrosis + MYC targets (v2) 0.21 (0.03-1.49) 0.06 (0.01-0.47) 0.008*
edema + fetal neurons replicatingTT 1.48 (0.93-2.35)  2.50 (1.44-4.33) 0.001*
infiltrative + TGF-f3 signaling 1.51 (0.80-2.86) 1.91 (0.94-3.92) 0.076
edema + chr18pll 2.22 (0.80-6.15) 5.79 (1.87-17.99) 0.002*
edema + G2M checkpoint 0.75 (0.36-1.56)  0.46 (0.20-1.05) 0.066
nCET + chr22q13 0.35 (0.09-1.42)  0.36 (0.08-1.60) 0.180
infiltrative + chr6q27 1.33 (0.76-2.33) 1.79 (0.98-3.30) 0.060
necrosis + p53 pathway 1.06 (0.39-2.91) 2.44 (0.81-7.39) 0.114

*p<0.05, Tgene set from [39], T gene set [38]

based solely on individual MRI traits had no OS or PFS differences, except in the counterintu-
itive case of expansive vs. infiltrative, see Supp. Fig. S28. Infiltrative tumors had a univariate
HR of 0.92 when estimating PFS, see Table 4. However, after adjusting for patient covariates
and radiogenomic traits, infiltrative tumors had an adjusted HR of 1.61 and correctly follows
the intuition that infiltrative tumors would have a higher probability of progression than ex-
pansive tumors.

Males and non-white races had better OS and PFS, while patients diagnosed below the
median age had better OS, but worse PFS. The final Cox model consisted of six significant
traits, five radiogenomic traits and race when estimating OS, see Table 4. The final PFS model
had five significant radiogenomic traits. In comparison, a Cox model with clinical and imaging
traits had no significant factors in estimating OS or PFS. The survival analyses suggest that

radiogenomic traits extracted from neural network models have prognostic value.
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4 Discussion

We demonstrate how deep neural networks can be used to discover radiogenomic associa-
tions. First, we predict imaging traits using gene expression profiles, showing that our neu-
ral network-based approaches outperforms other classifiers. We also illustrate the benefit of
transfer learning to train radiogenomic neural networks using a transcriptomic autoencoder
modeled on a much larger cohort to address the impedance of relatively small radiogenomic
datasets. Second, we present methods based on input masking and class saliency that facili-
tate interpretation of radiogenomic associations, providing a way to understand the results of
an otherwise “black box" method, which is the main criticism against neural networks. Third,
using our network analysis techniques, we identify pertinent gene expressions that may act as
transcriptomic drivers for each imaging trait. We put forth a set of potential imaging surrogates
that provide a clearer biological basis of commonly assessed imaging phenotypes in GBM and
relate them to trends in patients’ overall and progression-free survival.

Gene masking identifies cohort-level radiogenomic associations, where the strength of as-
sociation was measured by the model’s classification when only a subset or one gene was used.
Radiogenomic associations have common themes related to major GBM candidate driver genes
and terms, e.g., cell growth and vasculature. However, each MRI trait also show specificity to-
wards components of these general themes, e.g., different functionalities of EGFR or cell death
by autophagy in the edema model compared to apoptosis in the necrosis model. We identify
unique associations between imaging traits and different themes: edema is associated with
cell invasion and differentiation; enhancement is associated with immune system processes
and hormones; nCET is associated with cell cycle and UV response; necrosis is associated with
apoptosis; and focal is associated with cell transport and response to certain compounds.

Prior radiogenomic studies have mainly reported cohort-level associations. In reality, mul-
tiple gene expression profiles, when influenced by different environmental factors, may lead to
the same observed imaging trait. Towards this end, gene saliency was used to identify patient-
level radiogenomic traits.

With gene saliency, each patient has his/her own list of relevant genes for each imaging
trait; it is then determined if the patient’s salient genes are significantly associated with a
gene set. We describe subsets of patients with common radiogenomic associations that are

not apparent in gene masking, such as the association between infiltrative traits and epithelial-
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mesenchymal transition genes or larger nCET proportions and drug metabolism. Some of these
radiogenomic traits are significant factors in predicting patient survival.

Furthermore, we validate our modeling approach by training a neural network to predict
molecular subtypes. We report an experiment that evaluates model’s ability to learn mean-
ingful relationships. Not only does the subtype model achieve near-perfect classification, the
model is able to select genes relevant to each subtype among 12,042 genes. In the radio-
genomic models, we validate our radiogenomic associations with prior GBM studies in radio-
genomics and genomics and found corresponding relationships. We also identify new findings
that have not been widely reported in radiogenomics due to the ability of gene saliency to
provide patient-specific radiogenomic traits and the inclusion of the entire gene profile in our
models. These results support the neural network’s abilities to identify associations with exist-
ing domain knowledge and to suggest potential starting points for further investigation.

We recognize the limits of radiogenomic analysis, particularly in terms of small sample size,
limited tissue sampling of a heterogeneous tumor, and limited follow-up information. Sample
size is an inherent challenge in radiogenomics. TCGA tends to have the most radiogenomic
data, but lacks detailed clinical data. While larger cohorts do exist, tumors are across multiple
grades [8] and do not use molecular profiling [5]. These limitations may be addressed as
the cost of high-throughput platforms decreases and multiple tumor regions are sampled [40].
With 528 gene expression profiles and a radiogenomic subset of 175, we show that neural
networks can model transcriptomic heterogeneity to reflect phenotypic differences in imaging.
The VASARI feature set is also limited in that it provides a gross categorization of imaging
features and only one experienced reader’s annotations of the imaging data is used. A more
comprehensive analysis that includes quantitative (radiomic) traits may be warranted. Finally,
the radiogenomic associations are only hypothesized and not proven through experimentation,
though we attempt to compare our discovered associations with those that have been previously
reported in literature. To validate the identified associations, cell and animal studies would

allow controlled experiments between genes and imaging phenotypes [53].

5 Conclusion

Using a neural network-based approach to radiogenomic mapping, we highlight the represen-

tational and discriminative capacity of neural networks to model the high-dimensional, non-
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linear, and correlative nature of gene expressions to predict typical GBM imaging traits. We
demonstrate the use of neural network interpretation techniques, e.g., input masking and class
saliency to understand what the model has learned and to extract relevant radiogenomic asso-
ciations. The learned radiogenomic associations may point to potential transcriptomic drivers
of imaging traits and could further clarify the understanding of the relationship between two
often disjoint datasets, gene expression profiling and medical imaging. As such, prognostica-
tion and treatment options may be further individualized, where a targeted pathway could be

considered in the selection of an appropriately tailored chemotherapeutic agent.
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Supplemental data

Dataset

Supplemental Materials contains the following data used in this study:
* gene_expression.txt - Affymetrix transcriptomes
* gene_expression_ids.txt - patients’ TCGA barcodes
* TCGA_clinical_data - TCGA-GBM clinical data

* TCGA_unified_CORE_C1aNC840.txt - molecular subtype and gene sets from Verhaak
et al.

e vasari_annotations.csv - MRI traits

Generated data and models can be found in the paper’s source code on Github.



Table S1: Patient characteristics with transcriptomes. Transcriptomes were analyzed with
Affymetrix HT Human Genome U133 Arrays by the Broad Institute. The quantile normalized
and background corrected (GenePattern platform; Level 3) data were downloaded from the
Genomic Data Commons using the legacy data portal at https://gdc.cancer.gov/ . The radio-
genomic subset is based on patients with any pre-op MRI study. The Verhaak et al. study was
based on unified gene expressions from multiple platforms. Here, we took gene expression
profiles measured on the same an Affymetrix platform as the radiogenomic models to create
the subtype subset.

modeling datasets

total autoencoder radiogenomic subtype

number of patients 528 353 175 171
diagnosis age (years) min. 10 10 14 17
mean 579 57.1 59.4 56.3
med. 59 58 60.5 57.5
max. 89 89 86 86
vital status deceased 388 250 138 146
alive 113 85 28 8
n/a 27 18 9 17
gender female 196 134 62 56
male 306 202 104 98
n/a 26 17 9 17
race white 443 302 141 135
african 29 17 12 6
asian 11 7 4 S5
n/a 45 27 18 25
ethnicity hispanic 12 9 3 5
not hispanic 415 278 137 141
n/a 101 66 35 25
KPS min. 20 20 40 40
mean 77 76 78 82
med. 80 80 80 80
max. 100 100 100 100
diagnosis method biopsy 63 46 17 6
resection 435 288 147 147
other 2 1 1 0
n/a 28 18 10 18
molecular subtype classical 38 23 15 38
mesenchymal 54 26 28 54
neural 26 12 14 26
proneural 53 30 23 53
n/a 357 262 95 0

KPS (Karnofsky Performance Score), n/a (not available)



Table S2: Classification labels in the radiogenomic and subtype datasets. Based on personal
communication with TCIA, the most recent imaging studies without signs of surgery or biopsy
were estimated to be images closely associated with time of tissue sampling, as pre-op imag-
ing was necessary for surgical planning. (GBM patients usually undergo surgical resection to
remove the bulk of the tumor.) Proportion labels were binarized using > !/3 as the threshold
due to small numbers in other categories. Likewise, subcategories of multifocal or multicentric
(24 patients) and gliomatosis (2 patients) were combined into one class, non-focal.

n trait description values # (%)
175 surgical evidence of prior surgery or biopsy in the pre-op 175 (100%)
earliest imaging study post-op 0 (0%)
166 f5 proportion of tumor estimated to be enhancing < 1/3 95 (57%)
>1/3 71 (43%)
156 f6 proportion of tumor estimated to be <1/3 99 (63%)
non-contrast enhancing and not edema >1/3 57 (37%)
167 {7 proportion of tumor estimated to be necrosis < !/3 116 (70%)
>1/s 51 (30%)
161 9 lesions outside of main tumor and its edema:
a) none focal 135 (84%)
b) spread via dissemination non-focal 26 (16%)
or in majority of a hemisphere
159 f10 ratio of abnormality sizes in T1 and FLAIR:
a) T1 ~ FLAIR expansive 103 (65%)
b) T1 < FLAIR or T1 << FLAIR infiltrative 56 (35%)
162 f14 proportion of tumor estimated to be edema <1/ 86 (53%)
>1/s 76 (47%)
171 subtype molecular subtypes defined by Verhaak et al. classical 38 (22%)
mesenchymal 54 (32%)
neural 26 (15%)
proneural 53 (31%)




Figure S1: Label association testing with Fisher’s exact test (a) within labels and (b) with
clinical traits in R using fisher.test. P-values were adjusted using Bonferroni correction in
p.adjust. Multi-class labels do not have estimates, i.e, odds ratios. For binary labels, labels
“< 1/3", “focal", and “expansive" were class 1 and “> 1/3", “non-focal", “infiltrative" were
class 2. Rows are the explanatory variable. E.g., the odds of nCET < 1/3 and an expansive
tumor were 3.353 times higher than nCET > 1/3 and an expansive tumor. Estimates above 1
indicated positive correlations, and vice versa. The traits infiltrative was positively correlated
with the traits focal and nCET proportions. nCET was negatively correlated with edema and
necrosis. No other associations were significant. Diagnosis age was dichotomized based on the
mean diagnosis age of 58, a value calculated from all patients whose diagnosis age was known.
Patients with MRI traits had tissue samples obtained from eight different sites (site codes: 02,
06, 08, 14, 19, 27, and 76). Karnofksy performance scores included 40, 60, 80, and 100; the
higher the better.

a
edema 0.48 edema
infiltrative 1 1 infiltrative
focal focal
. necrosis
necrosis
nCET 3.353 3.31
nCET
enhancing
enhancing 0.556
subtype edema infiltrative focal necrosis nCET
subtype edema infiltrative focal necrosis nCET
timat -I
adjusted p-value < 0.05 D no . yes estimate 01 5
subtype 1 1 1 1 subtype
necrosis 1 1 1 0.763 necrosis
nCET 1 1 1 1 nCET
infiltrative 1 1 1 1 infiltrative
focal
focal 1 1 0.317 1
enhancing
enhancing 1 1 1 1
edema
edema 1 1 1 1
diagnosis gender Karnofsky race
diagnosis gender Karnofsky race age performance
age performance score
score
timat I-I
adjusted p-value < 0.05 D no estimate 0 1 2



Models

Radiogenomic neural networks were fully connected, had a batch size of ten. Regularization
with dropout was used, where the same dropout rate was applied across the input and all
hidden layers. For binary classes, 0 and 1 labels, binary cross-entropy loss and sigmoid acti-
vation in the prediction layer was used. Since subtypes were multi-classes, the subtype neural
networks instead used categorical cross-entropy loss and softmax activation in the prediction
layer.

Transcriptomic autoencoders considered five different architectures of three encoding lay-
ers: the first hidden layer was either 1000, 2000, 3000, or 4000, where subsequent encoding
layers decreased by half each time. The autoencoder used mean absolute error as the loss
function, a batch size of 50, a patience of 200 epochs while monitoring validation R?, and no
dropout.

All neural networks used batch normalization in each hidden layer and a maximum of 500
epochs was set. Due to the inherent class imbalance of imaging traits, sample weighting based
on class size and stratified fold splitting were used.

Table S3: Radiogenomic models and hyperparameters.

model type no. models hyperparameter values

logistic regression 4000 penalty type L1,L2
C penalty log(3) - log(1)
solver liblinear, newton-cg,

Ibfgs, sag, saga

support vector machines 4000 kernel linear, poly, rbf, sigmoid
C penalty log(-6)-log(1)
random forest 1200 trees [50: 50: 2000]
split criterion Gini, entropy
max. features G, VG,log,(G)
max. depth None, [1-4]
gradient boosted trees 760 trees [50: 50: 1000)
max. depth [1-4]
learning rate [0.01: 0.05: 0.50]
neural network, 40 hidden layers 3
autoencoder hidden nodes [4000-250]
architectures 4
optimizer Nadam, Adadelta
activation sigmoid, tanh, relu
dropout [0.0:0.2:0.6]
loss binary cross-entropy, mean absolute error
epochs 200, 500
patience 200 epochs
batch 10, 50

weight initializer Glorot normal, autoencoder
no. layers frozen 0, 1, 2

G: number of genes



Table S4: Subtype neural network hyperparameters.

model no. models hyperparameter values

neural network 90 hidden layers 3
hidden nodes [4000-125]
architectures 5
optimizer Nadam, Adadelta
activation sigmoid, tanh, relu
dropout [0.4:0.2:0.8]
loss categorical cross-entropy
epochs 200
batch 10

weight initializer

Glorot normal




Model performance

Autoencoder

Figure S2: Performance of transcriptomic autoencoder in (top) 10-fold cross-validation grid
search, and (bottom) R? distribution after retraining. Architecture refers to the hidden nodes
in the three encoding layers.
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Radiogenomic models

Table S5: Radiogenomic model performances. For each model, the best performing hyperpa-
rameters were selected based on cross-validation AUC, and their results are shown here.

label name nn gbt rf svm logit
f5 enhancing 0.722 0.511 0.542 0.571 0.538
f6 nCET 0.826 0.722 0.721 0.667 0.617
AUC f7 necrosis 0.751 0.638 0.627 0.607 0.553
f14 edema 0.784 0.673 0.647 0.613 0.517
f10 infiltrative 0.780 0.492 0.545 0.617 0.573
9 focal 0.849 0.728 0.697 0.694 0.650
f5 enhancing - 0.211 0.180 0.151 0.184
f6 nCET - 0.104 0.105 0.159 0.209
f7 necrosis - 0.113 0.124 0.144 0.198
AAUC (nn - another model) ¢\ 40 - 0.111 0.137 0.171 0.267
f10 infiltrative - 0.288 0.235 0.163 0.207
o focal - 0.121 0.152 0.155 0.199

nCET (non-contrast enhancing tumor), neural network (nn), gradient boosted trees (gbt), random forest (rf), support
vector machines (svm), logistic regression (logit)



Subtype neural network

Table S6: Cross-validation results of selected hyperparameters for subtype neural network.
Values are in AUC and averaged over 10 folds. Individual subtype AUCs were calculated based
on one-versus-others.

classical mesenchymal neural proneural micro-averaged macro-averaged

training 0.9965 0.9980 1 0.9974 0.9964 0.9983
validation 0.9841 0.9974 1 0.9910 0.9938 0.9956

Table S7: Performance scores of subtype model in gene masking with various gene sets, corre-
sponds to Fig. 5 in main text. Subtype gene sets were defined by [28]. Random gene sets were
obtained by random sampling of genes, excluding subtypes genes. The fully trained subtype
model had perfect classification, as expected. The model was able to retain high performance
scores when only using subtype genes.

gene set gene size AUC fl-score average precision
random 100 0.741 0.485 0.528
random 200 0.829 0.643 0.676
mesenchymal 216 0.897 0.725 0.789
all subtypes 840 0.994 0.930 0.984




Bootstrapped performances

Figure S3: Comparison of neural network performance compared to other models in 100 boot-
strapped datasets. Points centered below the diagonal line indicate cases where neural net-
works had better 10-fold cross-validation performance, and was the case for all bootstrapped
datasets. For each bootstrap, the difference was equal to the neural network performance mi-
nus another model’s performance. Notation - gbt: gradient boosted trees, rf: random forest,
svm: support vector machines, logit: logistic regression.
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Figure S4: Distribution of 10-fold cross-validation performances in 100 bootstrapped datasets
across models. Dashed vertical lines represent 95% confidence intervals (CI). Solid vertical
lines indicate 0.5 AUC - classification was as good as random. Confidence intervals did not

overlap between neural networks and any other model and suggested neural networks were
better models.
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Figure S5: Distribution of training and validation of neural networks in the 100 bootstrapped
datasets. The 10-fold cross-validation means: (a) number of epochs (b) loss, (¢) AUC, (d)
average precision. Values were recorded at the epoch where highest performance was reached
in early stopping. Grey intervals show the standard deviation of a value within a 10-fold cross-
validation. Bootstraps were sorted by validation values for visualization purposes.

11
0.9
0.7
0.5

11
0.9
0.7
0.5

11

07 /f,f,—/—/—/_/—// label

>
] )
505 enhancing
3 nCET
® 44 — necrosis
s — edema
© 09 /\/WW»\W/W infiltrative
£ focal

07 _,_/_/—/—/’/—F/

0.5

1.1

0.9

0.7

0.5

1.1

0.9

0.7

0.5

0 25 50 75 100 0 25 50 75 100

bootstraps

12



Gene masking

As gene set size increased, both AP and AUC increased. Although the full input, i.e., 12,042
gene expressions, was much larger, the models mapped multiple subsets of the input without
losing a large proportion of classification performance. This was likely reflected the correlative
nature between gene expressions, e.g., previous work with neural networks from Chen et al.
was able to use landmark genes to predict another 9520 target genes [25].

Subtype neural network

Figure S6: Subtype gene set masking with subytpe model. (top) Model’s probabilities and,
(bottom) model performances. Subtypes and their gene sets were taken from [28]. Random
genes were randomly sampled and did not overlap with subtype genes.
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Figure S7: Perturbation of the subtype model with gene sets describing cell types and pheno-
types [39, 38, 37], downloaded from Puchalski et al. [40]. (top) Model performance in gene
set masking and (bottom) gene set enrichment in genes ranked by single gene masking. For
comparison, see the paper’s Fig. S6. Neither rows nor columns were clustered in order mtach
the order in the paper. Cell type enrichment for subtypes are similar to the gene masking scores
for neural, proneural and mesenchymal findings in the paper. A major difference includes the
subtype neural network’s ability to predict with high AUC and precision the mesenchymal sub-
type with the GBM core astrocyte gene set, but this was not shown in the paper. The study
found neural and proneural subtypes are often enriched by astroctye gene sets; mesenchymal
associated with endothelial cells; and proneural with oligodendrocytes and quiescent fetal neu-
rons. However, the associations between the study’s and the neural network’s gene masking do
not completely agree. This disagreement was likely due to different goals: the study measures
gene set associations based on single sample gene set enrichment analysis and gene masking
was based on classification performance. Although, the overlap does show consistency between
GBM subtypes and brain cell types, suggested that cell types were both enriched and predictive
of the subtypes.

average precision
1

Zhang matureastrocytes Zhang matureastrocytes gene set
09| | puchalski

Zhang neuron Zhang neuron

Zhang oligodendrocytes Zhang oligodendrocytes 0.8 num. genes

Darmanis astrocytes Darmanis astrocytes 0.7/ (10,20]

Darmanis mixOPCOligNeurons Darmanis mixOPCOligNeurons 06 (zgigl

Zhang endothelial Zhang endothelial 05 vasoi
_ Patel immune Patel immune 04 (50:601

Zhang microgliamacrophages
Patel anticellcycle

Patel hypoxia

I zhang GBMcoreastrocytes
Zhang fetalastrocytes

Darmanis Endothelial

Darmanis FetalNeuronsquiescent
Darmanis FetalNeuronsreplicating
Darmanis Neurons

Darmanis OPCs

Darmanis Oligodendrocytes
Darmanis microglia

Darmanis mixNeuronsAstrocytes
Patel cellcycle

Zhang microgliamacrophages 030
Patel anticellcycle -3 % coverage
(30,40]

; 0.2
Patel hypoxia I (60,70]

Zhang GBMcoreastrocytes 0.1 (70,80]
Zhang fetalastrocytes 0 (80,90]
Darmanis Endothelial (90,100]
Darmanis FetalNeuronsquiescent

Darmanis FetalNeuronsreplicating

Darmanis Neurons

Darmanis OPCs

Darmanis Oligodendrocytes

Darmanis microglia

Darmanis mixNeuronsAstrocytes

Patel cellcycle

>
c
%o

j9s auab

sousbrwnu[ | | | | [ | | | WEEE | WECWN | S
jos auab

sousbrwnu[ | | | | | | | | WENE_| W NN S

2 Z o o = R Z o (@) =
a @ 3 o @ o @ 3 o @
g £ > @ a e £ > 173 @
3 o @ @, ol 3 o @ @, ol
8 s 3 3 8 s 8 2
® L - \3 ® L - 3
3 3
58 58
normalized enrichment score adjusted p-value
- 6 gene set - p<0.05
Zhang microgliamacrophages [ puchaisk Zhang microgliamacrophages
Darmanis microglia 4 Darmanis microglia
% coverage
Zhang GBMcoreastrocytes (60,70] Zhang GBMcoreastrocytes
Darmanis Endothelial 2 (70,80] Darmanis Endothelial
Patel immune o I (e0.80] Patel immune
Darmanis OPCs num. genes Darmanis OPCs
. ) 10,20 . .
Darmanis FetalNeuronsquiescent -2 220’30} Darmanis FetalNeuronsquiescent
Darmanis FetalNeuronsreplicating (30,40] Darmanis FetalNeuronsreplicating
-4
Zhang neuron (40,50] Zhang neuron
50,60
Zhang matureastrocytes ¢ ! Zhang matureastrocytes p>=0.05
Zhang oligodendrocytes Zhang oligodendrocytes
Darmanis Oligodendrocytes Darmanis Oligodendrocytes
exR3 T T O Z zZ 1 O Z
igi g s g ¢ g 5 8 &
2 3 =3 g = 3 > g =
82 5 2 & 8 s 2 P
-~ i= [+] i= Q
83 S 3 o S 5 ©®
o0 < = - 2 =8 =
3 3
L o



Figure S8: Perturbation of the subtype model with hallmark gene sets [45]. Model perfor-
mance in gene set masking. Shown are the top 20 hallmarks for each subtype ranked by average

precision, totaling 32 gene sets.
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Radiogenomic neural networks

The 22 queried GBM genes from [29, 41] were AKT3, CCND2, CDK4, CDK6, CDKN2A, CDKN2B,
CDKN2C, EGFR, ERBB2, IDH1, MDM2, MDM4, MET, MYCN, NF1, PARK2, PDGFRA, PIK3CA,
PIK3R1, PTEN, RB1, TP53.

Figure S9: Hallmark gene set masking in radiogenomic models ranked by AUC with corre-
sponding average precision. Shown are the top 10 genes per label.
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Figure S10: Single gene masking in radiogenomic models ranked by (top) AUC with corre-
sponding average precision values on the right and (bottom) average precision with corre-
sponding AUC values on the right. Shown are the top 10 genes per label.
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Figure S11: Gene masking using gene sets associated with GBM genomic abnormalities [29, 41]. Shown
are the top 15 gene sets ranked by average precision (AP) for (a) enhancing, (b) edema, (c) nCET,
(d) necrosis, (e) focal, and (f) infiltrative neural networks. Only the collections from GO, motif, and
canonical pathways were considered. There were 22 genes queried, where gene sets may involve more
than one of the queried genes.
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Figure S12: Comparison of enhancement associations found in previous studies. Radiogenomic mod-
els were masked with gene sets queried from the Molecular Signature Database (MSigDB) based on
key words from published findings. (a) Enhancement was found to be associated with hypoxia, ECM,
and angiogenesis gene modules from Diehn et al. (n=22) [2]. There were 15 gene sets returned from
querying hypoxia, ECM, and angiogenesis. (b) Jamshidi et al. found associations between 17 Biocarta
pathways and enhancement [n=23] [10]. (c¢) Jamshidi et al. also stated Clorf172, CAMSAP2, KCNK3,
LTBP1 genes were related to enhancement. There were 114 gene sets containing the four genes (d)
Gutman et al. found a non-significant correlation between EGFR copy number amplification and en-
hancement (n=75) [7]. Querying MSigDB for EGFR resulted in 257 gene sets. The top ten gene sets
ranked by the average precision (AP) in predicting enhancement were kept for (b-c).
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Figure S13: Comparison of edema associations found in Zinn et al. [n=78] [6]. Radiogenomic models
were masked with gene sets queried from the MSigDB based on key words from published findings. Zinn
et al. found concordant changes in mRNA and microRNA fold changes for patients with high edema
or invasive traits: (a) The top five upregulated microRNA and their associated genes and (b) top five
upregulated genes in patients with high FLAIR volumes, see Table 4 of the authors’ paper. This resulted
in 343 and 160 related MSigDB gene sets, respectively. Shown are the top ten gene sets ranked by

average precision (AP) in predicting edema in our study.
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Figure S14: Comparison of necrosis associations found in previous studies. Radiogenomic models were
masked with gene sets queried from the MSigDB based on key words from published findings. (a)
Gevaert et al. reported the boundary sharpness of necrosis region was associated with GAP43, WWTRI,
IL4 pathway, and cell membrane genes [n=55][9]. This returned 378 gene sets from MSigDB. (b)
Jamshidi et al. found four Biocarta pathways (named gene sets) and (c) two genes associated with
necrosis [10]. (d) Gutman et al. found necrosis was correlated with the deletion of CDKN2A, but was
not significant [7]. An MSigDB query for the gene returned 183 gene sets. The top ten gene sets ranked
by the average precision in predicting necrosis were kept in (a,b,d).
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Figure S15: Comparison of expansiveness versus infiltrative associations found in previous studies.
Radiogenomic models were masked with gene sets queried from the MSigDB based on key words from
published findings. (a) Colen et al. found invasive tumors to be associated with MYC, leading to NFKBIA
inhibition [n=104] [48]. Querying MSigDB for MYC and NFKBIA resulted in 316 gene sets. (b) Diehn
et al. looked at infiltrative vs. edematous T2 abnormality and found an association with an immune cell
gene module [2]. An MSigDB query for ‘immune’ returned 87 gene sets. Shown are the top ten gene
sets ranked by average precision (AP) in predicting infiltrative tumors in our study.
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Figure S16: Perturbation of radiogenomic models with subtype gene sets from [28]. (top)
Model performance in gene set masking, and (bottom) gene set enrichment in ranked genes
after single gene masking. The authors found mesenchymal tumors had less nCET and proneu-
ral tumors had less enhancement. However, the radiogenomic models found neural genes were
more predictive of nCET than mesenchymal genes (0.64 vs. 0.55 AUC, 0.52 vs. 0.46 AP) and
other subtype genes were more predictive than proneural genes in predicting enhancement.
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Figure S17: Perturbation of radiogenomic models with gene sets from brain cell types and
phenotypes [39, 38, 37], downloaded from Puchalski et al. [40]. (top) Gene set masking,
where the top 20 ranked by average precision were kept; shown are 21 gene sets. (bottom)
GSEA of genes ranked in single gene masking. Shown are gene sets with at least one significant

enrichment.
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Figure S18: Gene masking in radiogenomic models with canonical gene sets from MSigDB.
(top) Gene set masking, where the top 5 ranked by average precision were kept; shown are 21
gene sets. (bottom) GSEA of genes ranked in single gene masking. Shown are gene sets with
at least one significant enrichment.
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Figure S19: Gene masking in radiogenomic models with motif gene sets from MSigDB. (top)
Gene set masking, where the top 5 ranked by average precision were kept; shown are 29 gene
sets. (bottom) GSEA of genes ranked in single gene masking. Shown are gene sets with at
least one significant enrichment.
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Figure S20: Gene masking in radiogenomic models with chromosome gene sets from MSigDB.
(top) Gene set masking, where the top 5 ranked by average precision were kept; shown are 25
gene sets. (bottom) GSEA of genes ranked in single gene masking. Shown are gene sets with
at least one significant enrichment.
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Figure S21: Gene masking in radiogenomic models with oncogenic signatures gene sets from
MSigDB. (top) Gene set masking, where the top 5 ranked by average precision were kept;
shown are 25 gene sets. (bottom) GSEA of genes ranked in single gene masking. Shown are
gene sets with at least one significant enrichment.
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Figure S22: Gene masking performance compared to (top) gene set size and (bottom) cov-
erage. Coverage was the percent of genes in the gene set that was in input gene expressions.
Average precision (left column) and AUC (right column) were used.
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Figure S23: The trend between gene masking performance and gene set size broken down by
gene set category: (top) average precision and (bottom) AUC.
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Figure S24: The trend between gene masking performance and gene set coverage broken down
by gene set category: (top) average precision and (bottom) AUC.
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Gene saliency

Subtype neural network

Figure S25: Gene saliency in the subtype neural network. (a) Clustering of the enrichment
scores between each patients (columns) and each subtype gene set (rows). Enrichments were
significant at an adjusted p-value < 0.05. (b) The number of patients with significant enrich-
ment in each subtype gene set based on the bottom heatmap in (a) and broken down by their
true subtypes. Of the patients with the mesenchymal subtype, more patients (33 patients) were
enriched with mesenchymal genes than any other subtype genes. To a lesser degree, the same
was seen among patients with the classical subtype, where 32 patients were enriched with
classical genes. In contrast, 49 patients in the proneural subtype were enriched with classical
genes while 48 were enriched with proneural genes. These aforementioned associations be-
tween gene saliency and subtype overlap with the associations from single gene masking in Fig.
6b. As was seen in gene masking, genes from other subtypes were influential in predicting any
individual subtype. In particular, neural patients’ salient genes were enriched more often with
mesenchymal genes (22 patients) than with neural genes (14 patients). Likewise, proneural
patients were similarly enriched with both classical and proneural genes.
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Radiogenomic neural networks

Figure S26: Patients with significant enrichment radiogenomic models based on gene saliency.
Shown are other MSigDB gene set collections with at least 10 enriched patients. The chemical
and genetic perturbations and computational collections were thresholded at 20 patients; all
others were thresholded at 10 patients.
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Survival

Ethnicity was removed since 98% of patients with radiogenomic data were non-Hispanic.

Overall survival (OS) was defined in ’patient’ file. For patients without death events, days-
to-last-followup were obtained by finding the maximum day among any reported days-to-event
in the ‘patient’, ‘radiation’, ‘drug’, and ‘followup’ files.

Progression-free survival (PFS) outcomes were defined by the ‘followup’ file, which included
the event types: locoregional disease, metastatic, progression of disease, or recurrence. Un-
known event types with days-to-event data were also removed unless other files stated patients
had therapy regimes treated for progression, e.g., an unknown progression event type on day
554 and received radiation on day 576 to treat progression. For these cases (n=3), days-to-
event data was kept, while event types were set to progression.

Figure S27: Survival estimates between TCGA-GBM (patients with transcriptome data),
VASARI subset (patients with at least one MRI trait), and radiogenomic subset (patients with
all MRI traits) in (a) overall survival (OS) and (b) progression-free survival (PFS). There were
no differences in OS or PFS, see Supp. Table S8. Note: 27 of the overall cohort of 528 patients
had missing survival and/or progression data, see Supp. Table S1. Similarly, 166 of 175 patient

with any MRI trait also had survival information. Of the 166 patients, only 127 had all six MRI
traits.
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Table S8: Summary measures of survival curves corresponding to cohorts in Supp. Figure S27.

cohort n events median (years) 95% CI (years)

Overall survival

TCGA-GBM 501 388 1.16 1.05, 1.24
VASARI subset 166 138 1.16 0.94,1.26
radiogenomic 127 107 1.05 0.90, 1.27
Progression-free survival

TCGA-GBM 502 331 0.70 0.64, 0.77
VASARI subset 166 115 0.66 0.52, 0.85
radiogenomic 127 88 0.54 0.46, 0.73
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Figure S28: Survival estimates between patients split by their MRI traits. (a) Overall survival
(0S) and (b) progression-free survival (PFS) differences.
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Frequency of enriched patients in each of the 54 radiogenomic traits. n = number

of enriched patients

Figure S29
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