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a b s t r a c t 

Evaluating and optimizing the design of built and yet-to-be-built environments, with respect to human 

occupancy and behavior is both greatly beneficial and challenging. Crowd simulation can provide the 

computational means to analyze a design through the movement of virtual occupants (agents). A range 

of analytic information (metrics) can be computed from the simulated movement of the agents that offer 

insights on the design. Crowd simulation and the related analysis can be part of interactive or offline 

design optimization pipelines. Unfortunately, large scale crowd simulations are prohibitively expensive, 

especially when used within iterative design and optimization loops, where hundreds of simulations often 

need to be computed at interactive rates. We propose a machine learning framework that aims to solve 

this problem by learning the relationship between a building design and the evaluation metrics extracted 

from expensive simulations. We train an offline regression neural network using a synthetic training set 

that we generate for this purpose. Once the network is trained it can evaluate new designs efficiently, 

and approximate the corresponding analytic information with high accuracy. The proposed framework 

can also be used to find an optimized layout. We demonstrate the effectiveness of the framework on a 

variety of real world case studies. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

In architectural design, it is of primary importance to predict

he relationship between an environment and the movement of its

ccupants at the time a building is designed rather than after it

s built and occupied. Crowd simulations have been developed for

uch a purpose – to inform the decision-making process of archi-

ects and engineers so that they can test the implications of archi-

ectural design options before committing to their realization. 

The application of crowd simulation for architectural design,

owever, is mostly limited to the analysis of a reduced number

f design options generated by the architect [1] . Recent advance-

ents in Computer-Aided Design (CAD) have facilitated the devel-

pment of dynamic optimization tools that help architects explore

 vast range of design solutions and find the one(s) that best sat-

sfy different kinds of performance criteria. This is an iterative pro-

ess whereby design solutions are automatically synthesized by the
✩ This article was recommended for publication by R Boulic. 
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omputer, and then progressively tested and refined to maximize

 user-defined utility function. While this approach has been suc-

essfully applied to optimize floor plans [2–5] , HVAC systems [6] ,

hermal and lighting performance [7,8] , acoustics [9] and building

nergy consumption [8,10] , fewer efforts have been directed to-

ards the optimization of architectural layouts for crowd behavior,

ostly because of the dynamic nature of human movement. 

Some prior works [11,12] have utilized static models of human

ovement for the optimization. However, these approaches rely on

athematically-inclined analysis of geometric aspects of a build-

ng’s layouts, without considering crowd-oriented features such as

gress times, movement speeds, and distance traveled. A different

pproach is thus needed, which incorporates dynamic aspects of

uman crowd movement, while still supporting efficient calcula-

ions and optimization. 

To address this issue, we propose a machine learning frame-

ork to learn environment-crowd relationships from synthetic

simulated) training data, which is then used as the basis for

rowd-aware building design optimization. Our approach involves

odeling the aggregate dynamics of a virtual crowd and their rela-

ionship to the environment by training a neural-network on simu-

ated crowd movement data. Specifically, we focus on crowd egress

https://doi.org/10.1016/j.cag.2020.03.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.03.005&domain=pdf
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behavior, and how it is impacted by the environment. This data

is generated using agent-based crowd simulation techniques (e.g.,

Social Force [13] and ORCA [14] ). In particular, we explore differ-

ent neural network (NN) architectures to systematically study their

ability to fit the training data, while generalizing to new situations.

Our experimental results demonstrate the potential utility of

neural networks to improve the prediction performance over the

baseline linear regression models. We also utilized this trained pre-

diction neural network to compute loss function for the building

design optimization framework. When applied for building design

optimization, it shows significant improvements compared to ex-

isting methods as demonstrated in the empirical results. We also

show how our optimization framework can help designers improve

their design solutions as far as crowd movement is concerned, in

a real environment. 

Our contribution can be summarized as follows: (a) a novel

neural network-based framework to learn the relationship between

crowd movement and a building design in evacuation scenarios,

(b) an optimization algorithm that efficiently iterates a vast num-

ber of design solutions to generate crowd-aware environmental

layout design, and (c) a case study that involves optimizing a com-

plex, real-world built environment (Metropolitan museum) to min-

imize evacuation times and reduce congestion. 

2. Related Work 

Computer-aided design (CAD) methods have garnered increas-

ing attention in recent years, since they allow designers to effi-

ciently optimize a building layout with respect to a wide range of

design criteria, including crowd behavior considerations. In the fol-

lowing paragraphs, we report recent advances in the field. 

2.1. Agent-based Crowd Simulation 

There are three different categories of crowd simulation mod-

els: macroscopic (flow), mesoscopic (blob), and microscopic (indi-

vidual) approaches. Macroscopic approaches [15,16] model crowds

as a continuum in order to meet efficiency considerations, but are

unable to model the underlying characteristics of each individual.

While our work can certainly rely on macroscopic techniques, the

focus of this study is to use agent-based (microscopic) techniques

as the underlying simulator to support predictions. 

Different approaches have been proposed for simulating micro-

scopic crowd behaviors (for a comprehensive summary of current

approaches please refer to [17] ). Rule-based systems determine

steering behaviors of agents represented as particles [18,19] . Such

particle approaches have been further refined using social force

models [13,20] . Geometric algorithms are used [14,21] to deter-

mine collision-free paths by accounting for the predicted velocities

of neighbour agents. Agents have also used affordance fields [22] to

identify a path to a goal. Cognitive-based approaches were used

utility functions and an attentional system to define agents’ desires

and perception of the environment [20] . Different steering algo-

rithm have been proposed to better represent agents’ movements

[23] . Path-planning approaches have been employed to calculate

collision-free trajectories in complex environments [24,25] . Some

approach can solve path planning in dynamic environments [26–

28] . Parallelized approaches [29,30] have been used to accelerate

the path search. 

Data-driven techniques use local-space samples generated from

real or simulated data to create steering policies. In [31] video

samples were compiled into a database based on which the agents

steer. The work of [32] focused more on recreating group dynamics

than individual steering. The work of [33] used a more constrained

state space of discretized slices around an agent. 
There has been prior works using machine learning algorithms

o understand or learn crowd motion [34] , including those us-

ng data-driven techniques, e.g., [35–40] , or evaluation of these

pproaches across different data and measures [41] . More recent

orks propose a new semantic metric learned from data [42] or vi-

ualize the latent manifold relating crowd simulation instances and

nvironmental complexity [43] . However, most of these approaches

re focused on human movement without much consideration on

he relationship between the environment and the crowd motion.

n our work we tightly couple crowd movement with the environ-

ent in which it takes place. 

Our work is complementary to the large body of work in de-

eloping computational models of crowd behavior, and takes ad-

antage of these simulation models to generate synthetic train-

ng data to learn environment-crowd relationships. Specifically, we

ave employed the social force (SF) [13] and the optimal recipro-

al collision avoidance (ORCA) [44] to generate simulation data in

his work. Other simulation techniques can easily be incorporated

nto our framework using the same general principles proposed

ere. 

.2. Building design optimization tools 

There is a growing interest in using optimization techniques

o explore architectural design options for near-optimal solutions

ith respect to a given set of performance criteria [45–47] . Cas-

ol, et al. [48] proposed a framework to choose evacuation plans

ased on quantitatively validated metric that captures time, speed,

nd density of crowd. Galle [49] focused on exhaustively searching

ossible space layout configurations for small-scale environments.

volutionary approaches [2] , [50] have been used to overcome

he infeasibility of brute-force methods for larger design spaces.

iu et al. [51] introduced functional design and fabrication con-

traints to guide the optimization process. Data-driven approaches

52] learn layout configurations from existing databases. The re-

ults are thus used to automatically generate new layouts for com-

uter graphics applications. Design objectives have been modelled

s physical forces to generate layout designs automatically [53] . A

ophisticated optimization scheme accounts for the visibility, ac-

essibility, and other spatial relationships between objects to pro-

uce interior design configurations [54] . 

Very few studies have incorporated crowd movement charac-

eristics when optimizing environments. For example, in a related

ork, Feng, et al. [55] concentrated on synthesizing layout, opti-

izing among different designs (with only outer boundary given)

o improve subjective crowd availability. A discrete random forest

ethod with annealing strategy was used in their approach in or-

er to explore different design options. However, this approach is

imited to small [56] and mid-scale [55] layouts, due to computa-

ional efficiency considerations. 

A related family of works concentrate on outdoor layout de-

ign. For example, Matthew, et al. [57] proposed a parameterized

epresentation of outdoor environments, where instead of altering

he behavioral parameters of the crowd, they tuned the environ-

ent that will yield the desired crowd behavior. They provided

seful metrics to gauge the layout, with a specific focus on en-

ironments with larger scale. Moreover, they considered situations

hen the crowd’s effort to find exits may be disturbed by obstacles

nd other factors, e.g., lack of prior information about the envi-

onment. While they relied on simulations to analyze environment

onfigurations, their work is complementary to our study, which

eeks to make predictions of simulation measures. 

In a closely related recent work, Testa, et al. [58] proposed

 modular framework for architectural design using a neural

etwork-based evacuation time prediction. Their method thus en-

oys similar strength as ours, where one does not require ex-
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a u sti v e  c o m p ut ati o n  t o o bt ai n  e v a c u ati o n  ti m e f o r a  gi v e n  e n vi -

o n m e nt.  M o r e o v e r,  t hi s m et h o d  c a n  a g g r e g at e  s m all e r  p r e di cti o n

o d el s  t o l a r g e r st r u ct u r e  i n a  p r o c e d u r al  w a y,  f o r m ul ati n g it a s  a

o w  c al c ul ati o n  p r o bl e m.  

T h e  w o r k  i n [ 5 9] p r e s e nt e d  a n  i nt e r a cti v e t o ol f o r fl o o r pl a n  d e -

i g n  o pti mi z ati o n  t h at c o n si d e r s  st ati c  m et ri c s  s u c h  a s  a c c e s si bilit y,

i si bilit y,  a n d  o r g a ni z ati o n  of  s p a c e.  D u e  t o t h e p r a cti c alit y  c o n si d -

r ati o n s  d e s c ri b e d  a b o v e,  it i s u n a bl e  t o i nt e g r at e h u m a n  b e h a vi o r

et ri c s  e xt r a ct e d  f r o m si m ul ati o n s,  a s  p a rt  of  t h e d e si g n  o pti mi z a -

i o n l o o p, w hil e  m e eti n g  t h e i nt e r a cti vit y c o n st r ai nt s.  

. 3.  C o m p a ri s o n  t o P ri o r  W o r k  

O u r  w o r k  st ri v e s  t o g e n e r at e  a n  e ffi ci e nt  al g o rit h m  t o a c c u r at el y

i m ul at e  c r o w d  b e h a vi o r,  a n d  a p pl yi n g  t h e s e r e s ult s  t o o pti mi z e

 c o m pl e x  b uil di n g  l a y o ut i n t e r m s of  e v a c u ati o n  ti m e a n d  c o n -

e sti o n  p att e r n s.  O u r  w o r k  f o c u s e s o n  t u ni n g b a si c  l a y o ut wit h

e s p e ct  t o o bj e cti v e  m et ri c s  t o r e d u c e  c r o w d  e v a c u ati o n  ti m e i n

m e r g e n c y.  T o  a c c o m pli s h  t hi s, w e  e m pl o y e d  a  n e u r al  n et w o r k

o r s p e e di n g  u p  o nli n e  q u e ri e s.  W e  al s o  p r o p o s e  a n  e n vi r o n m e nt -

o n st r ai n e d  b a c k  p r o p a g ati o n - b a s e d  o pti mi z ati o n  m et h o d  f o r fi n e

a y o ut t u ni n g wit h o ut  c h a n gi n g  f u n cti o n s of  t h e b uil di n g  w hil e  i m -

r o vi n g  t h e e v a c u ati o n  ti m e wit h  a  hi g h  a c c u r a c y  c o m p etiti v e  t o

h e f ull - bl o w n si m ul ati o n s.  

O u r  w o r k  i s c o m pl e m e nt a r y  t o [ 5 9] . S p e ci fi c all y,  t h e u s e r  i n -

e rf a c e a n d  di v e r sit y  o pti mi z ati o n  a p p r o a c h  c a n  b e  c o m bi n e d  wit h

a c hi n e -l e a r ni n g  b a s e d  p r e di cti o n  m o d el s  p r o p o s e d  i n t hi s p a p e r

o d e v el o p  a n  i nt e r a cti v e d e si g n  t o ol t h at c o n si d e r s  m et ri c s  r el at e d

o h u m a n  c r o w d  m o v e m e nt.  

O u r  w o r k  s h a r e s  c o n c e pt u al  si mil a riti e s  wit h  T e st a  al.  [ 5 8] ,

ut  w e  a r e  t a c kli n g t h e p r o bl e m  f r o m diff e r e nt  p e r s p e cti v e s,  e a c h

it h  t h ei r o w n  st r e n gt h s.  W e  e n vi si o n  t h at f ut u r e e x pl o r ati o n s  a n d

r a cti c al  d e pl o y m e nt s  of  s u c h  s y st e m s  will  st a n d  t o b e n e fit  f r o m

h e i d e a s p r e s e nt e d  i n b ot h  p a p e r s.  W e  s u m m a ri z e  t h e m ai n  dif -

e r e n c e s b el o w:  

1.  T h e  w o r k  i n [ 5 8] t r ai n s n e u r al  n et w o r k s  t o p r e di ct  c r o w d  m et -

ri c s  at  t h e r o o m  l e v el, a n d  u s e s  h e u ri sti c  a p p r o xi m ati o n s  t o a g -

g r e g at e  r o o m -l e v el  m et ri c s  f o r a n  e nti r e  e n vi r o n m e nt.  O u r  w o r k

t r ai n s a  n e u r al  n et w o r k  f o r a n  e nti r e  e n vi r o n m e nt,  s u p p o rti n g

gl o b all y  a c c u r at e  p r e di cti o n s  at  a n  e n vi r o n m e nt - s c al e.  

2.  T h e  w o r k  i n [ 5 8] p r e di ct s  c r o w d  m et ri c s  f o r a xi s - ali g n e d  r o o m s

w hi c h  a r e  p a r a m et e ri z e d  u si n g  t h r e e f a ct o r s ( wi dt h, h ei g ht,

d o o r  wi dt h).  O u r  w o r k  s u p p o rt s  p r e di cti o n s  f o r a r bit r a ril y  c o m -

pl e x  r o o m  st r u ct u r e s  wit hi n  a n  e n vi r o n m e nt,  i n cl u di n g n o n -

a xi s  ali g n e d  w all s,  p r e s e n c e  of  pill a r s/ o b st a cl e s,  a s  w ell  a s

diff e r e nt  c r o w d  c o n fi g u r ati o n s.  T hi s  si g ni fi c a ntl y  i n c r e a s e s t h e

c o m pl e xit y  of  t h e p a r a m et e r  s p a c e  f o r l e a r ni n g. 

3.  O u r  w o r k  p r o p o s e s  a  g e n e r al - p u r p o s e  o pti mi z ati o n  f r a m e w o r k

f o r a ut o m ati c all y  r e c o n fi g u ri n g  e n vi r o n m e nt s,  u si n g  n e u r al -
n et w o r k  p r e di cti o n s  wit hi n  t h e o pti mi z ati o n  l o o p. 
T h e  w o r k  i n [ 5 8] s u p p o rt s  t h e a bilit y  t o m a k e  gl o b all y -

p p r o xi m at e  p r e di cti o n s  f o r diff e r e nt  e n vi r o n m e nt  t y p e s, c o m -

o s e d  of  a xi s - ali g n e d  r o o m s.  O u r  a p p r o a c h  s u p p o rt s  gl o b all y -

c c u r at e  p r e di cti o n s  f o r a r bit r a ril y  c o m pl e x  r o o m  st r u ct u r e s  a n d

b st a cl e  c o n fi g u r ati o n s,  a n d  diff e r e nt  c r o w d  t y p e s, f o r a  gi v e n  e n vi -

o n m e nt  l a y o ut, a n d  p r o p o s e s  a  m et h o d  t o o pti mi z e  e n vi r o n m e nt s

si n g  t h e s e l e a r nt m et ri c s  a s  p a rt  of  t h e o bj e cti v e  f o r m ul ati o n. 

T hi s  p a p e r  i s a  si g ni fi c a ntl y  e xt e n d e d  v e r si o n  of  Li u,  et  al.  [ 6 0] .

e  e xt e n d  Li u,  al.  [ 6 0] al o n g  t h r e e m aj o r  t h r u st s: ( a) w e  p r o p o s e

 n e w,  i nt e g r at e d f r a m e w o r k t o o pti mi z e  gi v e n  b uilt  e n vi r o n m e nt

a y o ut, ( b) w e  p r o p o s e  a  n e w  m e a s u r e  t o g a u g e  t h e v a ri a n c e  of

h e k e y  m et ri c s,  a n d  ( c) w e  r e p o rt  e x p e ri m e nt al  r e s ult s  o n  r e al,

o m pl e x  b uilt  e n vi r o n m e nt  d e si g n  ( M et r o p olit a n  M u s e u m  of  A rt)

o d e m o n st r at e  t h e utilit y  of  t h e p r o p o s e d  m et h o d.  

.  P r o p o s e d  F r a m e w o r k  

I n t hi s s e cti o n,  w e  i nt r o d u c e o u r  c r o w d - e n vi r o n m e nt  r el ati o n -

hi p  r e p r e s e nt ati o n  l e a r ni n g f r a m e w o r k, a n d  it s t w o a p pli c ati o n

x a m pl e s:  ( a) c r o w d  e v a c u ati o n  ti m e p r e di cti o n  a n d  ( b) a ut o m at e d

uil di n g  d e si g n  l a y o ut o pti mi z ati o n.  W e  fi r st  p r o vi d e  a n  o v e r vi e w

f  t h e p r o p o s e d  f r a m e w o r k a n d  a p pli c ati o n s,  f oll o w e d b y  d et ail e d

nt r o d u cti o n of  c o m p o n e nt s  c o n si sti n g  t h e f r a m e w o r k. 

. 1.  O v e r vi e w  

Fi g.  1  d e pi ct s  t h e o v e r all  t r ai ni n g p r o c e d u r e  of  o u r  r el ati o n -

hi p  r e p r e s e nt ati o n  l e a r ni n g f r a m e w o r k. O u r  f r a m e w o r k l e a r n s t h e

n vi r o n m e nt - c r o w d  r el ati o n s hi p  b a s e d  o n  d at a s et  g e n e r at e d  f r o m

i m ul ati o n s.  T o  g e n e r at e  t h e d at a,  w e  p r o c e d u r all y  g e n e r at e  v a ri a -

i o n s of  a  p a r a m et e ri z e d  e n vi r o n m e nt  wit h  p e r mi s si bl e  b o u n d s  of

n vi r o n m e nt al  el e m e nt s,  a n d  r u n  c r o w d  si m ul at o r s  t o o bt ai n  p e r-

o r m a n c e m et ri c  v al u e s  ( e. g. ti m e t o e v a c u at e  t h e b uil di n g).  T h e n,

e  l e a r n t h e r el ati o n s hi p  r e p r e s e nt ati o n  c o n n e cti n g  t h e l a y o ut a n d

h e p e rf o r m a n c e  m et ri c  v al u e s  u si n g  t h e d e e p  n e u r al  n et w o r k.  

E n vi r o n m e n t  P a r a m et e ri z a ti o n.  T o  t r ai n t h e d e e p  n e u r al  n et -

o r k,  w e  p a r a m et e ri z e  t h e l a y o ut a s  a  mi xt u r e  of  c h a r a ct e ri sti c,

e p r e s e nt ati v e  o bj e ct s.  F o r  e a c h  s c e n a ri o,  a  c o n c r et e  o ut e r  f r a m e i s

l a c e d  i n o r d e r  t o d e fi n e  t h e s h a p e  of  t h e r o o m.  S e v e r al  o b st a cl e s,

it h  diff e r e n c e  s et u p  of  a b s ol ut e  o r  r el ati v e  p o siti o n,  o ri e nt ati o n,

n d  si z e  i n e a c h  i n st a n c e, w e r e  c a r ef ull y  pl a c e d  a n d  b o u n d e d  s e p a -

at el y.  F o r  e x a m pl e,  f o r t h e s y nt h eti c  d at a s et  w e  u s e d  i n t hi s w o r k,

u r  d e fi n e d  s c e n a ri o  l a y o ut p a r a m et e r  s et s  c o n si st  of  t h e f oll o w -

n g: 

• Ci r cl e:  Wit h  m o vi n g  a r e a  r e st ri ct e d,  g e n e r at e  t h r e e p a r a m et e r s

( x  , z  , r  ) c o nt r ol  s h a p e  of  ci r cl e,  w h e r e  ( x  , z  ) i s t h e o ri gi n  a n d  r

i s t h e r a di u s  of  t h e e n vi r o n m e nt  o bj e ct.  

• Fi n H o ri z o n:  T w o  o b st a cl e s  wit h  “| – ” s h a p e,  g e n e r at e  t w o p a -

r a m et e r s  ( x  , α ) c o nt r ol s  x  p o siti o n  of  h o ri z o nt al  s h a p e  &  r ot at e

a n gl e  of  v e rti cl e  s h a p e.  
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Fig. 2. Two application of the trained representations. 
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• FinVerticle: Same As FinHorizon except moving along z axis. 
• Horizontal Door: A gap between two horizontal aligned obsta-

cles (as open door), generate x coordinate of the middle point

of the door. 
• Verticle Door: Same As Horizontal Door except moving along z

axis 
• Rotate Box: With length of both side specified, generate ( x , z )

controlling obstacle’s center, and ( α) controlling obstacle’s ori-

entation. 
• Joint Walls (Misc A, B, C): In different set several amount of

walls connected heads-to-tails. With length of walls specified,

the first wall anchored to the outer frame with position speci-

fied in x , and position of rest walls specified by their orientation

αi where i denotes the index of obstacles that consist the joint

wall. 

In the case study described in Section 5 , we used slightly differ-

ent set of parameters because of the nature of the real world data

(Metropolitan Museum). 

Crowd Motion Model. Within each scenario, we define par-

titioned areas, where different numbers of agents are randomly

placed at initial locations. All agents are instructed to evacuate

from the room to a single exit. To account for different types of

steering behaviors, we consider two commonly used approaches

in our simulations, a social-force based model ( SF ) and an opti-

mal reciprocal collision avoidance method ( ORCA ) to generate sim-

ulated data of crowd movement. However, our training procedure

is agnostic to the specific simulation technique, and can use other

crowd simulation models. 

Crowd Behavior Evaluation Metrics. Lots of metrics evaluat-

ing the crowd behavior have been investigated in the past. In this

work, we study four metrics: (a) average time agent used (referred

as “time”), (b) average length agent need to travel (referred as

“length”), (c) average amount of each agent collided (referred as

“collision”), and (d) average estimated effort agent used (principle

of least effort [61,62] , referred as “PLE”) in order to complete the

evacuation. Throughout the paper, we use y to denote this met-

ric. Our approach is capable of predicting any metric which can be

estimated from crowd movement trajectories. 

Representation Learning and Applications. We designed sev-

eral scenario-wise neural network models which used to predict

one or multiple crowd behavior evaluation metric values from lay-

out parameters. Models were trained with a batch of data from

simulations. Different types of performance metrics can be used to

train the model. 

Fig. 2 depicts two applications of the proposed learning frame-

work. After learning the environment-crowd motion relationship

representation, we first apply this learned network to predict the

crowd behavior evaluation metrics from a new environment as

shown in Fig. 2 a. We also embedded the trained network to build

a meta-optimization framework, that can be used to find the opti-

mal configuration of the obstacles in the room, as shown in Fig. 2 b.

Here, the environmental parameters that govern the location and

orientation of obstacles will be converged to the optimal loca-
ion and orientation that minimizes the difference between the

redicted and optimal crowd evaluation metrics given the current

onfiguration of the obstacles. 

.2. Environment-Crowd Relationship Parameters 

We consider three kinds of parameters to describe an environ-

ent layout and its associated crowd behavior. The first part of the

arameters encodes “environments.” Each value in this part repre-

ents an x , z coordinates, or the orientation α of an obstacle. The

econd part is for “crowd”, which indicates the number of agents

laced in each pre-defined area. The third part describes a set of

agent” configuration parameters used for modeling agents’ steer-

ng strategy in the simulator. All these parameters will be stacked

ogether to construct the final input vector p to the neural net-

ork. We also define P as the set of all possible scenario instances

i.e., varying obstacle location/orientation, agent density, and steer-

ng configuration), for the given layout definition (i.e., fixed obsta-

le type/count and agent steering model). We assume that all sam-

led cases p ∈ P can be represented as data points which are uni-

ormly distributed within the space. 

.3. Extended artificial neural network 

In a prior study [60] , Liu et al. examined the possibility of utiliz-

ng machine learning methods to evaluate environment evacuation

cenarios. In this work, we applied deeper neural network archi-

ectures and Maxout activation function [63] to obtain better per-

ormance by model averaging. This deep network structure has six

ayers, with ten Maxout cells in each layer, formally defined as: 

 k = f k (h k −1 ) , k ∈ 1 .. 6 (1)

here h k denotes the output of k -th layer, and h 0 ∈ R 
d denotes the

nput of the network with d features, i.e., an instance of p . Each k -

h layer f k ( · ) consists of a linear weight matrix W k ∈ R 
l×m followed

y a Maxout function g k as 

f k (h k −1 ) = g k (W k h k −1 ) = 

⎡ 

⎢ ⎢ ⎣ 

g k, 1 (W k h k −1 ) 
g k, 2 (W k h k −1 ) 

. . . 
g k, 10 (W k h k −1 ) 

⎤ 

⎥ ⎥ ⎦ 

10 ×1 

(2)

here g k , j ( · ) for j ∈ 1..10 is a max pooling for the j -th portion of

en evenly divided partitions of the input vector W k h k −1 . Thus, m

s d for W 1 and 10 for the others ( W 2 ���W 6 ). We used l = 1 , 0 0 0 in

his work. Output of the last layer is linearly combined to regress

gainst the performance metric y given input vector h 0 . This net-

ork structure allows us to accelerate the training process by ap-

lying the batch gradient descent. 

To evaluate the trained model, we computed the root-mean-

quared error (RMSE) on the test split of the dataset. By comparing

he predicted value y with the simulated value ˆ y , the predictive

eviations can be expressed as 

MSE (y, ̂  y ) = 

√ 

E 

[
(y − ˆ y ) 2 

]
. (3)
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Algorithm 1: Batch gradient optimization algorithm for build- 

ing layout optimization. 

Data : Sample batch size b = 250 ;Total number of iterations T ; 

Trained model M ;Obstacle overlap counter C;Layout 
parameter p ; 

Result : Parameters for the optimized layout parameter ˆ p 

1 Uniformly sample batch of size b, p (0) from the parameter 

space; 

2 for t in 0 to (T-1) : 

3 O = C(p (t) ) ; 

4 y = M . f orward (p (t) ) ; 

5 let loss of y be y itself; 

6 ˜ p (t) = M .backward ( loss ) ; 

7 ˜ O = C( ̃ p (t) ) ; 

8 for i in (all obstacles instances or all obstacle types) : 

9 if ˜ O i ≤ O i : 

10 p (t+1) 
i 

= ˜ p (t) 
i 

; 

11 else: 

12 p (t+1) 
i 

= p (t) 
i 

; 

13 return p (T ) as the found ˆ p ; 

fi  

m  

t  

s  

{  

r  

o  
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o  
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ote that y, ̂  y can be vectors y , ̂  y when predicting multiple evalu-

tion metrics simultaneously. R test values in our results denote the

MSE on the test split. Note that we are computing the empirical

ean of the sample deviations, not the full expected value in the

xperiments. 

.4. Evaluating prediction robustness 

Our crowd simulations include parameters that are randomly

hosen such as the agents initial conditions, or internal decision

y the agents such as the choice of steering strategy. These may

ntroduce source-based variance in the value of the predicted met-

ics. In other words, predicting the mean of such metrics may not

e enough to ensure the robustness of our trained model. To see

hether our model’s metric predictions are within the deviation

riginated from the data source specified by the parameter p as

escribed in Sections 3.1 and 3.2 , we propose a relative measure

hat gauges this property. 

First, we make an assumption that our data source (either

rowd simulator or real-world capturing device) has an indepen-

ent additive noise with a fixed, unknown variance σ 2 that varies

he metric we measure using the source. We model the distribu-

ion of the metric random variable Y given certain parameter set-

ing p as a Gaussian distribution with a fixed, unknown standard

eviation σ independent of p , i.e. 

p(Y | p ) = N (μp , σ
2 ) , (4) 

here μp denotes the mean of Y given p . The simplest way to es-

imate σ is through empirical simulation trials that use the same

arameter configuration. Next, we consider another random vari-

ble Y ′ given the same parameter p as 

p(Y ′ | p ) = N (μp , σ
2 ) . (5) 

hen, one can show that the difference between the two ran-

om variables, ˜ Y = Y − Y ′ , will follow another Gaussian distribu-

ion with variance 2 σ 2 as 

p( ̃  Y | p ) ∼ N (0 , 2 σ 2 ) , (6) 

ecause the means of Y and Y ′ are the same. Let σ 2 
˜ Y 
be the variance

f ˜ Y . Naturally, σ 2 = σ 2 
˜ Y 
/ 2 . To this end, our idea is to estimate σ 2 

˜ Y 

nstead of directly estimating σ 2 . This can be done by collecting
˜  over various parameter configurations p ∈ P, by conducting two

imulation instances per each p . Once the empirical estimate for
2 
˜ Y 
is calculated, one can take a half of it to obtain the estimate of

2 . 

To measure the robustness of the metric prediction relative to

he estimated data source variance σ 2 , we propose the following

easure: 

 rel = 2 · log 2 
RMSE(y, ̂  y ) 

σ
. (7) 

here ˆ y is a simulated metric value since 

MSE (y, ̂  y ) = 

√ 

E 

[
(y − ˆ y ) 2 

]
≥

√ 

E 

[
(μ − ˆ y ) 2 

]
= σ, (8) 

e can see that R rel will have the best value of zero when our

odel prediction is perfect ( RMSE(y, ̂  y ) = RMSE(μ, ̂  y ) ), and will

ecome one when the RMSE(y, ̂  y ) = σ ˆ Y 
= 

√ 

2 σ . Essentially, the

maller R rel is, the better the performance. In the supplementary

aterial, we provide additional test results on the dataset we gen-

rated to show that the Gaussianity assumption on the data source

oise is reasonable. 

.5. Built Environment Layout Optimization Algorithm 

Our building layout optimization framework is summarized in

lgorithm 1 . Given a trained model M (·) and initial obstacle over-
ap counter C(·) for the initial layout parameter p , our goal is to
nd the optimal ˆ p that minimizes both the desired performance

easure (e.g. evacuation time) and the number of collisions among

he obstacles in the given layout. The parameter p can be repre-

ented in one of the two formats of a set of obstacle parameters

 p 0 , p 1 ,…, p o }. One is the rolled up format, where p i is the pa-

ameter vector describing object i , and o is the total number of

bstacles in the environment. In this format, we optimize parame-

ers for each obstacle in the layout, regardless of objects’ type. The

ther is the group-by-obstacle format where each p i denotes pa-

ameters that controls all instances of object type i . The obstacle

verlap counter C ( · ) will return obstacle collision/overlap informa-

ion for individual obstacle basis (roll up) or obstacle type (group-

y-obstacle), and O i in algorithm denotes the overlap counter for

he obstacle instance or type i . 

With these input and subroutine definitions, the algorithm

orks as follows: (Line 2) Iterate lines 2–12 predefined maximum

umber of iterations. (Lines 3) Count obstacle collisions/overlaps

ased on the current parameter description. (Line 4) Using the pre-

rained metric prediction network, obtain current metric (e.g. evac-

ation time). (Lines 5 and 6) Compute the loss. Note that the loss

hould be carefully determined for the Algorithm 1 to work prop-

rly. If the desirable layout is to minimize the evacuation time,

he loss should be the prediction output y itself because its lower

imit is zero. (Line 6) Backpropagate the loss to obtain new pa-

ameter values. To compute the gradient in each layer, one can use

he standard back propagation algorithm [64] . (Line 7) Counts ob-

tacle collision/overlaps based on the new parameter description.

Line 8–12) For each obstacle instance (or obstacle type, depending

n the input parameter format), choose the parameter that yielded

ess collisions or overlaps. (Line 13) Return the last parameter vec-

or. 

.6. Sensitivity on Network Model Hyperparameters 

To find the best combination of model hyperparameters

number of layers), we conducted extensive experiments with

he varying number of layers on all 64 configurations, shown

n Table 5 . We ran for number of layers in the range of

..10, and found that with an exception of the 1-layer case,

he number of layers does not impact our framework’s per-

ormance significantly. It is reasonable to see that the 1-

ayer case performs poorly since the model cannot learn ade-
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Fig. 3. Two synthetic layouts designed for training. Please refer the text for details. 

These designs were also used in [60] . 
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quate representations with such a shallow network. Detailed re-

sults of these experiments are included in the supplementary

materials. 

4. Experiments 

In this section, we present our experimental results on the syn-

thetic layout dataset, for crowd behavior evaluation metric predic-

tion and layout optimization. We start our discussion with descrip-

tion on our synthetic dataset generation procedure. 

4.1. Dataset Generation 

Generating appropriate, and realistic dataset is both essential

and critical part of the framework. As we are targeting at evalu-

ations to the crowd evacuation cases, we first prepared two sim-

plified, synthetic environment layout designs which meet our re-

quirements. In each layout design, there is a fixed boundary around

the room. Several movable obstacles are placed within the bound-

ary, of which movements are restricted by the range of location,

or pinned in a joint with another obstacle. Agents are randomly

placed in several pre-defined areas before a simulation instance

starts. Gray areas shown in Fig. 3 are pre-defined agent areas

where agents are placed at the beginning of the simulation and

the number of agents within each region is counted separately;

blue obstacles (lines and shapes) can only perform translation; red

obstacles are allowed to be moved or rotated; green obstacles are

anchored on fixed or translatable obstacles, and are only allowed

to rotate along with their joint points. There are in total of 10 sep-

arate areas in the Map A and 27 areas in the Map B. The default

number of generated agent in total are 250 in Map A and 239 in
Table 1 

Number of scenarios and dimensions of parameters in our synthe

run these simulations. Numbers in the every other row shows m

for simulation, with 100 batch jobs running simultaneously. Each

simulations in total and it took a little more than 3 hours using H

Map Environment ( Env ) Crowd ( Cwd ) 

Scenarios Parameters Scenarios Parameter

A - SF 39,891 31 39,999 10 

Time 1.26 ± 0.05 1.84 ± 0.3

B - ORCA 34,450 22 38,711 27 

Time 1.30 ± 0.32 0.79 ± 0.0

A - ORCA 25,265 31 39,989 10 

Time 0.58 ± 0.01 0.54 ± 0.0

B - SF 36,043 22 38,535 27 

Time 1.79 ± 0.10 1.50 ± 0.0
ap B. For Cwd dataset (where we can have random number of

gents in the scene), in all cases, agents between 0 and double of

he default number are generated, following a uniform distribution.

rain, validation, and test splits were: 65%, 20%, 15%, respectively. 

Gathering sufficient amount of large scale data is critical for the

ata-driven neural network model training. However, obtaining a

arge set of records from real human experiments is very challeng-

ng. Thus, we utilize a crowd simulator [65] to produce more sys-

ematic result for the research. The simulator uses A 
∗ algorithm

o find initial global path guidance for agents using SF and ORCA.

e generated 40,0 0 0 different scenarios for each combinations of

ap, steering algorithm, and factors, totaling 960,0 0 0 instances.

fter eliminating scenarios which agents failed to evacuated from

he map, we collected dataset as their size summarized in Table 1 .

In this work, several synthetic designs and one real-world de-

ign are used for the experiments and demonstrations. We used

ollowing notation to distinguish designs throughout the rest of

aper: In synthetic case, two maps were created either room-

riented (Map A) or screen-partitioned (Map B) as depicted in

ig. 3 . Different factors are considered to link the synthetic de-

ign to the practical applications. Environment ( Env ) factors are

bout different obstacle placement. Crowd ( Cwd ) factors respond

o different cases of agent density in building, Agent ( Agt ) factors

onsidered that people may have different characteristic in their

oving ability, and abstracted those abilities into model specified

arameters. When all factors are considered, we referred it to All .

hese are the same conditions used to generate dataset in [60] . 

.2. Results on Metric Prediction 

We used Tensorflow [66] to implement our training framework.

he neural network model consists of five layers of Maxout 10-unit

utput with 100 nodes in each unit, followed by a fully-connected

ayer linked to the output. We used 256 for the random mini-

atch for the training, with the ADAM stochastic gradient algo-

ithm [67] for the optimization. L2 regularization is used in order

o suppress overfit, as well as to improve performance on valida-

ion and test splits of the dataset. Regularization parameter λ is set

o be linearly increased with a very small step (0.0 0 01 ≈0.001 per

poch), and we determined this by conducting experiments on val-

dation set. We stopped the iterative optimization when the cross-

alidation error does not decrease any further. This practically hap-

ens around after 20,0 0 0 iterations. We used the following loss

unction during training, where N is the batch size: 

 = 

√ 

1 

N 

N ∑ 

n =1 

(y n − ˆ y n ) 2 + λ|| W || (9)

To obtain σ ˜ Y for each configuration, we sampled another 50 0 0

oints and run simulation twice for each point. After all failed sim-
tic dataset. We also report amount of computation time to 

ean and standard deviation of the amount of hours needed 

 job will simulate 400 scenarios. Overall, we ran 960,0 0 0 

PC. 

Agent ( Agt ) All 

s Scenarios Parameters Scenarios Parameters 

39,539 12 37,589 53 

7 2.22 ± 0.04 1.59 ± 0.04 

27,961 4 25,261 53 

1 0.85 ± 0.01 0.86 ± 0.02 

38,652 4 23,766 45 

1 0.62 ± 0.01 0.67 ± 0.02 

28,469 12 27,030 61 

9 1.50 ± 0.12 1.83 ± 0.09 
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Table 2 

Training time (in hours) for the prediction network of particular metric. Note that this time includes 

both the training and cross validation time needed to find the best parameter value λ in Eq. 9 , thus it 

is the total amount of time needed for training the network. 

SF ORCA 

Time Collision Length PLE Time Collision Length PLE 

Map A Env 2.75 3.06 3.01 3.02 1.95 0.03 0.10 1.79 

Cwd 2.71 0.01 2.90 0.01 2.95 2.86 2.97 0.02 

Agt 0.51 0.22 0.30 0.32 1.31 0.84 0.34 1.18 

All 0.89 2.07 0.11 0.24 1.75 0.02 1.82 1.82 

Map B Env 3.12 1.96 3.35 3.44 3.24 3.29 2.81 0.05 

Cwd 3.72 1.63 3.65 3.71 3.66 3.70 3.66 2.75 

Agt 0.60 0.54 0.32 0.44 0.50 0.08 1.03 0.53 

All 1.02 1.75 1.46 2.79 2.34 0.01 2.67 2.33 

Table 3 

Dataset generated for repeated test; in this type of dataset, each 

layout were simulated exactly twice. These are selected based on 

two-step pre-processing on the generated simulations: (Step 1) For 

every simulation instance, mark if all agent within the instance suc- 

cessfully reached the target within set max number of frames. (Step 

2) For each pair of two-trial pairs, take all simulation pairs if both 

instances are marked success in Step 1. 

Map Env Cwd Agt All 

A - SF 9 955 9 999 9 861 9 359 

B - ORCA 8 249 9 468 6 704 6 053 

A - ORCA 5 807 9 996 9 563 5 531 

B - SF 8 968 9 317 6 638 6 646 
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Table 4 

Comparison of results on A-SF-All configuration using datasets with dif- 

ferent sizes. Numbers in parenthesis indicate the size of the dataset. Unit 

for each measure is indicated within the parenthesis. 

Dataset Time (s) Collision (#) Length (m) PLE (J/Kg/s) 

R test (30k) 3.23 11.57 3.56 13.18 

R test (68k) 2.77 9.43 3.23 10.75 

R rel (30k) 1.6 3.5 2.0 1.9 

R rel (68k) 1.1 2.9 1.7 1.3 

Fig. 4. R rel performance as a function of increasing the dataset size on A-SF-Env 

configuration, using different metrics. 
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lations filtered out, the size of each simulation outputs are sum-

arized in Table. 3 . W is the weights of the network that we im-

ose regularization constraint. 

Training Results. We present our evaluation results in Table 5 .

n the case of single configuration learning, cases in Env have a

oderate to well performance based on our evaluation on R rel . Val-

es near to 1 suggests that our framework’s prediction variance is

s good as one instance of simulation from the simulator would

ield. In Cwd cases, the proposed method performance well based

n our evaluation on R rel . Values near to 0 suggests that our pre-

ictions are close to the mean of the simulations. In Agt config-

ration, results indicate that our framework struggled on learning

atterns from SF model using the parameter configuration, but in-

icates a good performance in ORCA model. In this case, the R rel 
ent down to negatives values. We believe that the neural net-

ork found the statistical means from parameter-dependent vari-

nce which breaks our parameter-independent variance assump-

ion, due to the extremely small parameter space of ORCA-Cwd

onfiguration which has only four dimensions. Refer Table 1 for

umbers of parameters in all configurations. 

The accuracy of predictions is relatively lower when using the

LE metric. This may mean that the network did not learn the

gent speeds correctly which has a significant influence on the re-

ults. While the incorrect velocity estimate can affect the time and

ength metrics as well, given the definition of PLE [61] , large speed

ariation will introduce more PLE error than the other metrics. 

In the cases of A-SF-All and B-SF-All cases, the results were

ot as good as the individual configurations. We posit that this

an be the case both due to the difficulty to learn social force

odel and the lack of data due to its relatively high number of

arameters. To prove this hypothesis, we conducted additional ex-

eriments with the expanded dataset of size 68K instead of 30K,

nd observed a significant performance improvement as shown in

able 4 . We also conducted experiments using increasing data set

ize for an easy case ( A-SF-Env ), in order to see the performance

hanges relative to the amount of input data fed into the neural

etwork. Table 4 and Fig 4 summarize this result. It shows that,
ith an exception of PLE, our model is insensitive to the amount

f training data. 

Multi-output prediction. In addition to the application for a

pecific evaluation metric prediction, we also investigated potential

f the proposed framework in making multiple predictions simul-

aneously. The neural network structure is mostly the same as in

he single output value setup, but now we have a structured out-

ut of four values stacked as a vector y . We tested two types of

ptimization strategies with respect to use of the gradient descent

lgorithm. The first one is the same gradient descent algorithm we

sed before. The other one scaled backward gradient flow from

our targets with the inverse of their own σ ˜ Y . This is to let gra-

ient descent algorithm equally weigh contributions of the losses

mong all prediction outcomes. We present additional discussions

n the supplementary material. 
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Table 5 

Prediction results of combined configuration set. 

Map A-ORCA Map A-SF Map B-ORCA Map B-SF 

Metric σ ˜ Y R test R rel σ ˜ Y R test R rel σ ˜ Y R test R rel σ ˜ Y R test R rel 

Env Time 2.61 2.20 0.50 2.40 2.06 0.55 1.38 1.41 1.06 0.91 1.61 2.65 

Collision 3.57 3.27 0.74 1.81 2.36 1.76 1.45 1.45 1.01 0.36 1.21 4.53 

Length 2.68 2.20 0.43 2.46 1.96 0.34 1.28 1.40 1.26 1.03 1.47 2.02 

PLE 9.94 8.49 0.54 8.91 7.45 0.48 5.67 5.99 1.16 3.60 5.65 2.30 

Cwd Time 2.32 1.68 0.07 2.34 1.72 0.12 1.33 0.97 0.10 0.84 0.65 0.25 

Collision 3.01 2.17 0.05 1.81 1.35 0.15 1.54 1.11 0.05 0.11 0.08 0.11 

Length 2.39 1.74 0.08 2.41 1.78 0.12 1.25 0.91 0.09 1.00 0.76 0.23 

PLE 9.05 6.52 0.09 8.71 6.57 0.19 5.45 4.23 0.26 3.43 2.92 0.53 

Agt Time 2.43 1.73 0.02 2.78 2.14 0.25 1.23 0.89 0.07 0.84 0.71 0.53 

Collision 2.98 2.09 -0.02 3.86 4.03 1.12 1.42 1.05 0.13 0.28 0.54 2.94 

Length 2.34 1.67 0.02 2.57 1.91 0.14 1.24 0.90 0.07 0.99 0.74 0.16 

PLE 9.25 6.57 0.01 9.67 7.14 0.12 5.33 4.25 0.35 3.44 2.63 0.22 

All Time 2.67 2.74 1.07 2.65 2.91 1.26 1.24 1.87 2.19 0.91 2.01 3.29 

Collision 3.74 4.26 1.38 4.88 8.53 2.61 1.43 2.40 2.49 0.76 2.64 4.57 

Length 2.65 2.59 0.93 2.59 2.77 1.20 1.28 2.17 2.52 1.05 1.77 2.51 

PLE 10.36 10.37 1.00 9.59 10.50 1.26 5.41 9.28 2.56 3.66 7.55 3.09 

Fig. 5. Evacuation time-based Optimization of A-SF-ENV environment layout. Each 

line indicates an initial configuration of obstacles. Average evacuation time of agents 

is the loss used to optimize the environment because the smaller the time, the 

better the output. 

Table 6 

Results on constrained layout optimization. Num- 

bers are statistics of predicted evacuation time over 

different initial crowd configurations. It is clear that 

the layout optimization made the prediction robust. 

Mean Std. Dev. Min Max 

Before 78.68 4.34 68.82 86.87 

After 63.85 0.46 63.16 65.34 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

Evacuation time in seconds per agent. For each optimized layout, 

we ran evacuation time prediction as well as a simulation. For com- 

parison, predicted and simulated evacuation time for the original 

expert layout as well as additional 100 random layouts are shown. 

The results indicate that the optimized trajectories have competitive 

evacuation time compared to that of expert layout, significantly bet- 

ter than random case. In addition, large variance in random cases 

indicate that the obtained result is not a coincidental outcome. 

#Layouts Prediction Simulation 

A 2 66.49 ± 0.00 68.78 ± 0.41 

B 22 66.45 ± 0.02 66.92 ± 0.71 

C 40 66.25 ± 0.03 66.90 ± 0.92 

D 14 66.24 ± 0.01 67.13 ± 0.80 

Expert 1 71.07 70.91 ± 1.44 

Random 100 72.50 ± 6.49 72.36 ± 7.75 
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4.3. Results on Layout Optimization 

For the layout optimization experiments, we selected the model

for A-SF-Env as the test model for this application. Other configu-

rations should work equally well. The goal of this demonstration is

to show that, our optimization will find the layout that will mini-

mizes the evacuation time as well as improve the robustness of the

evacuation time predictions. Fig. 5 shows the convergence trend

of the predicted evacuation time (in seconds) averaged over all

agents. The plot shows optimization trend for all 50 independent

initial configurations of obstacles. After 20,0 0 0 or so iterations, the

layout optimization converged. Table 6 summarizes the statistics

of predicted evacuation time over different initial crowd configu-
ations. In Fig. 6 , some sample snapshots during the optimization

xperiments are provided as qualitative results. 

. Case Study: Metropolitan Museum 

In this section, we show that our framework can be applied to a

eal world built environment design. We trained the proposed neu-

al network with a new dataset generated from a more complex

uilt environment layout design using a quarter of expert-designed

lueprint (Metropolitan museum) as the base structure. We show

hat the artificial neural network framework is not only able to

stimate crowd behavior evaluation metric for an input layout in

illiseconds with high accuracy, but also can be a part of any op-

imization (and advising) system in lieu of a more computationally

xpensive crowd simulator. 

.1. Parameterization of Layout 

First, we designed the parametric layout from the expert-

esigned layout of Metropolitan museum to generate the dataset.

he Metropolitan layout is very large so applying our framework to

he whole environment would be infeasible due to computational

ost. Therefore, a quarter part of the Metropolitan was used in our

tudy. The complete design of Metropolitan shown in Fig. 7 . 

Next, we made a relaxed design of a portion of the original lay-

ut. With several anchors set on different group of obstacles or

alls, we can make a more complex design from this relaxed de-

ign. Here, in order to move around each obstacle as we desired,

e set up several reference points. Moreover, the position of each

bstacle or joint of walls are movable with respect to the motion
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Fig. 6. Snapshots of the layout optimization and overall crowd movement heat map on the synthetic layout. Hot color indicates high density of the agents. Each row depicts 

a different initial configuration. Numbers in white indicate the predicted metric (evacuation time in seconds) at that state of obstacles. Note the changes of location and 

angle of obstacles and the metric as the optimization progresses. Black disc indicates a round-shaped table furniture. Note that the heatmaps were generated by separate 

simulations on the layouts, independent from optimization progress. 
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Fig. 7. Complete layout of Metropolitan Museum of Art. We focus on the top-right 

corner of the whole environment in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. (Top) Relaxed layout design of the selected area of the Metropolitan mu- 

seum. Green arrows indicate the possible variations of the environmental struc- 

tures. Circles indicate the location of invisible reference points. (Bottom) Definition 

of agent areas. Note that the map has two exits where agents can choose the best 

option for evacuation. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article). 

Fig. 9. Loss value (evacuation time difference compared to the simulation output, 

in seconds) change over iterations during the training process. We stop training 

when the cross validation performance does not improve further. Near the end of 

the plot, one can see that the cross validation error increases. 
of reference points. Thus, the parameter space becomes a span of

constrained position of reference points. In addition, we used the

notion of a set of obstacles as a group, which can be moved with

respect to an invisible reference point. The X , Y positions of the

reference point are recorded and aligned, shown as another input

dimension to the simulator. The final layout we used is shown in

Fig. 8 (Top). 

For the evacuation simulation, we also redefined the areas

where agents are placed initially. The whole building layout was

divided into seven areas. In each area, the number of agents placed

is proportionally determined relative to the area of region. Total

number of agents was predefined as 240, equally, for each of the

sample cases. Target of each agent is assigned so that to encourage

the agent leave the building using the nearest gate. Fig. 8 (Bottom)

depicts this agent and goal location setup. 

5.2. Results on Metric Prediction 

We now present our results on metric prediction experiments

on the Metropolitan layout. First, we generated the dataset with

randomly generated layout designs based on the parametric rep-

resentation of the layout described earlier. About 122,0 0 0 random

layout samples were generated and each layout was simulated to

obtain the evacuation performance metric (in seconds) using an

open source crowd simulator [68] . We split the 122,0 0 0 samples

into train, validation, and test set following the same split distri-

butions (65%, 20%, 15%, respectively) as we did in the synthetic ex-

periments. Then, we trained our metric prediction neural network,

using the proposed framework. After the training, we obtained re-

sults of σ ˜ Y is 2.76, R train is 2.84, and R rel is 1.1. The loss of the train-

ing, cross validation, and test dataset as a function of number of

training iterations is shown in Fig. 9 . 

5.3. Results on Layout Optimization 

Using the trained crowd-environment relationship represen-

tation network, we evaluated the proposed layout optimization

algorithm on the Metropolitan museum layout. Our goal here is

to see whether the proposed optimization algorithm can find an

optimized layout that has similar property as the expert-designed

original layout. As an example of such properties, congested region

during evacuation is depicted as hot colored pixels in Fig. 11 .

As it can be seen, expert layout has distinctive heatmap pattern

different from an arbitrary random layout. Thus, one can utilize

this congested region heat map visualization as good qualitative
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Fig. 10. Batch gradient optimization of Metropolitan layout. Each line represents 

one optimization instance of a random layout, thus 100 lines are plotted in the fig- 

ure. The standalone blue plot indicates an outlier case when the particular obsta- 

cles are initialized in a way that can block the entire flow during the optimization, 

which is a very rare case. This can be easily avoided either by sampling or carefully 

chosen initialization. (For interpretation of the references to color in this figure leg- 

end, the reader is referred to the web version of this article). 
Fig. 11. Top-Left: Heatmap (crowd density) snapshot of expert design; Top-Right: 

Heatmap of an arbitrary random layout; Bottom: Comparison between the simu- 

lated densities between expert and random layout. Blue indicates false positive (ex- 

ists in compared target but missing in expert layout) and red indicates false nega- 

tive (exists in expert but missing in the compared target) (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of 

this article.) (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article). 

F

s

a

i

ig. 12. Snapshots during the process of optimization and heat map of the final, optimized layouts. Plots of insets show neural network estimated evacuation time (in 

econds) along with optimization steps (vertical axis), and the vertical red line indicates when the snapshot was taken throughout the iteration of the optimization (horizontal 

xis). Heat map shows that the final optimized layout makes reasonable design showing jammed area is limited around the exit (For interpretation of the references to color 

n this figure legend, the reader is referred to the web version of this article). 
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Fig. 13. Simulated density differences between expert and optimized layouts (A–D from left to right). It is clearly visible that the density difference has been reduced 

compared to the random situation shown in Fig. 11 , i.e. optimization has found layouts that are closer to the expert layout. One can also observe that the crowd occupancy 

density pattern is distinct between the two optimized layouts. Each of these optimized layouts yielded better predicted average evacuation time than the predictions on 

corresponding initial states, as shown in Fig. 12 and Table 7 . 
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evidence that our optimized layout has similar characteristic to

that of the expert-designed layout. 

To achieve this goal, we first generated 100 random layouts as

sub-optimal layout samples. For each run, our optimization algo-

rithm is initialized with one of the random layouts, and then start

the layout optimization. When optimizing the layouts, we used the

metric prediction network to predict the evacuation time for in-

terim layout during the optimization. The network was pretrained

using the training sample layouts described in the previous section.

Fig. 10 shows the average evacuation time trend for all 100

newly generated layouts as a function of optimization progress.

Since the layout optimization task is non-convex, there are a few

cases when the algorithm converged to sub-optimum solutions. To

obtain further in-depth understanding of the optimized layouts, we

first applied mean shift [69] algorithm on the layout parameters

to identify clusters of layout samples that share the similar latent

property. The mean shift algorithm applied on the 100 samples

yielded four clusters. 

Fig. 12 shows the progress of the optimization as well as the

centroid within each cluster of the sample initial layouts we used

to test our optimization framework. We randomly selected lay-

outs with a random set of parameters, e.g. the one shown in the

top-right of Fig. 11 , which is obviously distinct from the expert-

designed layout. The neural network is able to efficiently obtain

layouts comparable in evacuation time and the flow patterns to the

expert design in only 22 seconds. Four final, optimized layouts in

clusters A-D all yielded better predicted average evacuation times

than the predictions on corresponding initial states as shown in

Fig. 12 . Inset plots within layout images show the progress of evac-

uation time improvement as the optimization progresses. Fig. 13

shows the visual similarity between the expert layout and each of

the four optimized layouts. It is clear that the extreme differences

between the expert and the sample layout that exist in Fig. 11 have

been removed. 

We also verified the accuracy of the evacuation time predictions

by running simulator-based simulations on each of these layouts.

Table 7 summarizes the result comparing the predicted evacuation

time versus the actual evacuation time obtained by the simulation

using SF as the steering algorithm. We also report the predicted

and simulated evacuation times of the original, expert-designed

layout and the random, arbitrary layout to show that the optimized

layout has either better or competitive property than the two. It is

clear that our optimization framework can not only accurately pre-

dict the simulated evacuation time but also find optimal layouts

that are either competitive or even better evacuation time perfor-

mance without resorting to exhaustive simulations. 

6. Conclusion 

In this paper, we proposed (a) a novel neural network-based

framework to learn the relationship between crowd movement and
 building design in evacuation scenarios, (b) an optimization algo-

ithm that efficiently iterates a vast number of design solutions to

enerate crowd-aware environmental layout design, and conducted

c) a case study that involves optimizing a complex, real-world

uilt environment (Metropolitan museum) to minimize evacuation

imes and reduce congestion. 

We showed that our framework can predict crowd-related fac-

ors from given building layout. Moreover, the proposed framework

an evaluate the precision of predictions. The test cases result in-

icate predictive models have comparative precision in given met-

ics evaluation tasks against the tradition approach - simulations.

e also showed that our framework can be used for performing

uilding layout optimization from random initialization. A batch

f optimization result can be obtained within only a half minute,

nd outcome layouts are significantly better performed compared

o the origin non-optimized layout. In the case study using real

orld data, we showed that our model can be applied to a practi-

al layout, tested utilization of our model out of synthetic experi-

ents. 

Limitations. As noted in experimental result section, the pro-

osed measure R rel may have negatives values when the dimen-

ion of the input parameters is extremely small (less than 10 in

ur experiments). We believe that such small dimension may cause

he issue, because it might have been possible that the train-

ng set happens to encompass all possible variations of the small

arameter space, making the neural network possible to memo-

ize all instances, yielding smaller empirical variance. Moreover,

f our key assumption on independence of the metric variance

ver environment/crowd/agent-configuration parameter configura-

ion breaks, then applicability of the proposed method is limited.

n such situations, additional consideration may need to be taken

nto account. 

Future Works. Our work demonstrates a novel way of develop-

ng computer assisted layout design tools. Based on existing result

p to this work, we can still improve its effectiveness by creat-

ng new models which can find optimal layouts based on the basic

esign. The models can also make comprehensive predictions on

arious performance measures. 

Several aspects can be considered to further generalize the

ramework. First, the model can consider dynamic structural

hanges affected by problems that induce the evacuation (e.g., fire).

ptimized layout may show how robust the estimated measures

re, as a function of the changing environmental structures. Sec-

nd, factors related to neuro-cognitive aspects (preference, stress

evel) or human-made objects (signage, lighting conditions) that

ay affect the agent steering can be factored into the model. Third,

ne can consider ways to lift the Gaussianity assumption on the

oise model. Fourth, we can integrate our prediction-based opti-

ization pipeline into interactive design optimization tools, e.g.,

DOME [59] and use our approach to study larger environments

t urban scales. 
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