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Evaluating and optimizing the design of built and yet-to-be-built environments, with respect to human
occupancy and behavior is both greatly beneficial and challenging. Crowd simulation can provide the
computational means to analyze a design through the movement of virtual occupants (agents). A range
of analytic information (metrics) can be computed from the simulated movement of the agents that offer
insights on the design. Crowd simulation and the related analysis can be part of interactive or offline
design optimization pipelines. Unfortunately, large scale crowd simulations are prohibitively expensive,
especially when used within iterative design and optimization loops, where hundreds of simulations often
need to be computed at interactive rates. We propose a machine learning framework that aims to solve
this problem by learning the relationship between a building design and the evaluation metrics extracted
from expensive simulations. We train an offline regression neural network using a synthetic training set
that we generate for this purpose. Once the network is trained it can evaluate new designs efficiently,
and approximate the corresponding analytic information with high accuracy. The proposed framework
can also be used to find an optimized layout. We demonstrate the effectiveness of the framework on a
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variety of real world case studies.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In architectural design, it is of primary importance to predict
the relationship between an environment and the movement of its
occupants at the time a building is designed rather than after it
is built and occupied. Crowd simulations have been developed for
such a purpose - to inform the decision-making process of archi-
tects and engineers so that they can test the implications of archi-
tectural design options before committing to their realization.

The application of crowd simulation for architectural design,
however, is mostly limited to the analysis of a reduced number
of design options generated by the architect [1]. Recent advance-
ments in Computer-Aided Design (CAD) have facilitated the devel-
opment of dynamic optimization tools that help architects explore
a vast range of design solutions and find the one(s) that best sat-
isfy different kinds of performance criteria. This is an iterative pro-
cess whereby design solutions are automatically synthesized by the
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computer, and then progressively tested and refined to maximize
a user-defined utility function. While this approach has been suc-
cessfully applied to optimize floor plans [2-5], HVAC systems [6],
thermal and lighting performance [7,8], acoustics [9] and building
energy consumption [8,10], fewer efforts have been directed to-
wards the optimization of architectural layouts for crowd behavior,
mostly because of the dynamic nature of human movement.

Some prior works [11,12] have utilized static models of human
movement for the optimization. However, these approaches rely on
mathematically-inclined analysis of geometric aspects of a build-
ing’s layouts, without considering crowd-oriented features such as
egress times, movement speeds, and distance traveled. A different
approach is thus needed, which incorporates dynamic aspects of
human crowd movement, while still supporting efficient calcula-
tions and optimization.

To address this issue, we propose a machine learning frame-
work to learn environment-crowd relationships from synthetic
(simulated) training data, which is then used as the basis for
crowd-aware building design optimization. Our approach involves
modeling the aggregate dynamics of a virtual crowd and their rela-
tionship to the environment by training a neural-network on simu-
lated crowd movement data. Specifically, we focus on crowd egress
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behavior, and how it is impacted by the environment. This data
is generated using agent-based crowd simulation techniques (e.g.,
Social Force [13] and ORCA [14]). In particular, we explore differ-
ent neural network (NN) architectures to systematically study their
ability to fit the training data, while generalizing to new situations.

Our experimental results demonstrate the potential utility of
neural networks to improve the prediction performance over the
baseline linear regression models. We also utilized this trained pre-
diction neural network to compute loss function for the building
design optimization framework. When applied for building design
optimization, it shows significant improvements compared to ex-
isting methods as demonstrated in the empirical results. We also
show how our optimization framework can help designers improve
their design solutions as far as crowd movement is concerned, in
a real environment.

Our contribution can be summarized as follows: (a) a novel
neural network-based framework to learn the relationship between
crowd movement and a building design in evacuation scenarios,
(b) an optimization algorithm that efficiently iterates a vast num-
ber of design solutions to generate crowd-aware environmental
layout design, and (c) a case study that involves optimizing a com-
plex, real-world built environment (Metropolitan museum) to min-
imize evacuation times and reduce congestion.

2. Related Work

Computer-aided design (CAD) methods have garnered increas-
ing attention in recent years, since they allow designers to effi-
ciently optimize a building layout with respect to a wide range of
design criteria, including crowd behavior considerations. In the fol-
lowing paragraphs, we report recent advances in the field.

2.1. Agent-based Crowd Simulation

There are three different categories of crowd simulation mod-
els: macroscopic (flow), mesoscopic (blob), and microscopic (indi-
vidual) approaches. Macroscopic approaches [15,16] model crowds
as a continuum in order to meet efficiency considerations, but are
unable to model the underlying characteristics of each individual.
While our work can certainly rely on macroscopic techniques, the
focus of this study is to use agent-based (microscopic) techniques
as the underlying simulator to support predictions.

Different approaches have been proposed for simulating micro-
scopic crowd behaviors (for a comprehensive summary of current
approaches please refer to [17]). Rule-based systems determine
steering behaviors of agents represented as particles [18,19]. Such
particle approaches have been further refined using social force
models [13,20]. Geometric algorithms are used [14,21] to deter-
mine collision-free paths by accounting for the predicted velocities
of neighbour agents. Agents have also used affordance fields [22] to
identify a path to a goal. Cognitive-based approaches were used
utility functions and an attentional system to define agents’ desires
and perception of the environment [20]. Different steering algo-
rithm have been proposed to better represent agents’ movements
[23]. Path-planning approaches have been employed to calculate
collision-free trajectories in complex environments [24,25]. Some
approach can solve path planning in dynamic environments [26-
28]. Parallelized approaches [29,30] have been used to accelerate
the path search.

Data-driven techniques use local-space samples generated from
real or simulated data to create steering policies. In [31] video
samples were compiled into a database based on which the agents
steer. The work of [32] focused more on recreating group dynamics
than individual steering. The work of [33] used a more constrained
state space of discretized slices around an agent.

There has been prior works using machine learning algorithms
to understand or learn crowd motion [34], including those us-
ing data-driven techniques, e.g., [35-40], or evaluation of these
approaches across different data and measures [41]. More recent
works propose a new semantic metric learned from data [42] or vi-
sualize the latent manifold relating crowd simulation instances and
environmental complexity [43]. However, most of these approaches
are focused on human movement without much consideration on
the relationship between the environment and the crowd motion.
In our work we tightly couple crowd movement with the environ-
ment in which it takes place.

Our work is complementary to the large body of work in de-
veloping computational models of crowd behavior, and takes ad-
vantage of these simulation models to generate synthetic train-
ing data to learn environment-crowd relationships. Specifically, we
have employed the social force (SF) [13] and the optimal recipro-
cal collision avoidance (ORCA) [44] to generate simulation data in
this work. Other simulation techniques can easily be incorporated
into our framework using the same general principles proposed
here.

2.2. Building design optimization tools

There is a growing interest in using optimization techniques
to explore architectural design options for near-optimal solutions
with respect to a given set of performance criteria [45-47]. Cas-
sol, et al. [48] proposed a framework to choose evacuation plans
based on quantitatively validated metric that captures time, speed,
and density of crowd. Galle [49] focused on exhaustively searching
possible space layout configurations for small-scale environments.
Evolutionary approaches [2], [50] have been used to overcome
the infeasibility of brute-force methods for larger design spaces.
Liu et al. [51] introduced functional design and fabrication con-
straints to guide the optimization process. Data-driven approaches
[52] learn layout configurations from existing databases. The re-
sults are thus used to automatically generate new layouts for com-
puter graphics applications. Design objectives have been modelled
as physical forces to generate layout designs automatically [53]. A
sophisticated optimization scheme accounts for the visibility, ac-
cessibility, and other spatial relationships between objects to pro-
duce interior design configurations [54].

Very few studies have incorporated crowd movement charac-
teristics when optimizing environments. For example, in a related
work, Feng, et al. [55] concentrated on synthesizing layout, opti-
mizing among different designs (with only outer boundary given)
to improve subjective crowd availability. A discrete random forest
method with annealing strategy was used in their approach in or-
der to explore different design options. However, this approach is
limited to small [56] and mid-scale [55] layouts, due to computa-
tional efficiency considerations.

A related family of works concentrate on outdoor layout de-
sign. For example, Matthew, et al. [57] proposed a parameterized
representation of outdoor environments, where instead of altering
the behavioral parameters of the crowd, they tuned the environ-
ment that will yield the desired crowd behavior. They provided
useful metrics to gauge the layout, with a specific focus on en-
vironments with larger scale. Moreover, they considered situations
when the crowd’s effort to find exits may be disturbed by obstacles
and other factors, e.g., lack of prior information about the envi-
ronment. While they relied on simulations to analyze environment
configurations, their work is complementary to our study, which
seeks to make predictions of simulation measures.

In a closely related recent work, Testa, et al. [58] proposed
a modular framework for architectural design using a neural
network-based evacuation time prediction. Their method thus en-
joys similar strength as ours, where one does not require ex-
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Fig. 1. Overview of the proposed framework for representation learning of the environment-crowd movement relationship. Please refer to the text for details of each step.

haustive computation to obtain evacuation time for a given envi-
ronment. Moreover, this method can aggregate smaller prediction
models to larger structure in a procedural way, formulating it as a
flow calculation problem.

The work in [59] presented an interactive tool for floorplan de-
sign optimization that considers static metrics such as accessibility,
visibility, and organization of space. Due to the practicality consid-
erations described above, it is unable to integrate human behavior
metrics extracted from simulations, as part of the design optimiza-
tion loop, while meeting the interactivity constraints.

2.3. Comparison to Prior Work

Our work strives to generate an efficient algorithm to accurately
simulate crowd behavior, and applying these results to optimize
a complex building layout in terms of evacuation time and con-
gestion patterns. Our work focuses on tuning basic layout with
respect to objective metrics to reduce crowd evacuation time in
emergency. To accomplish this, we employed a neural network
for speeding up online queries. We also propose an environment-
constrained back propagation-based optimization method for fine
layout tuning without changing functions of the building while im-
proving the evacuation time with a high accuracy competitive to
the full-blown simulations.

Our work is complementary to [59]. Specifically, the user in-
terface and diversity optimization approach can be combined with
machine-learning based prediction models proposed in this paper
to develop an interactive design tool that considers metrics related
to human crowd movement.

Our work shares conceptual similarities with Testa al. [58],
but we are tackling the problem from different perspectives, each
with their own strengths. We envision that future explorations and
practical deployments of such systems will stand to benefit from
the ideas presented in both papers. We summarize the main dif-
ferences below:

1. The work in [58] trains neural networks to predict crowd met-
rics at the room level, and uses heuristic approximations to ag-
gregate room-level metrics for an entire environment. Our work
trains a neural network for an entire environment, supporting
globally accurate predictions at an environment-scale.

2. The work in [58] predicts crowd metrics for axis-aligned rooms
which are parameterized using three factors (width, height,
door width). Our work supports predictions for arbitrarily com-
plex room structures within an environment, including non-
axis aligned walls, presence of pillars/obstacles, as well as
different crowd configurations. This significantly increases the
complexity of the parameter space for learning.

3. Our work proposes a general-purpose optimization framework
for automatically reconfiguring environments, using neural-
network predictions within the optimization loop.

The work in [58] supports the ability to make globally-
approximate predictions for different environment types, com-
posed of axis-aligned rooms. Our approach supports globally-
accurate predictions for arbitrarily complex room structures and
obstacle configurations, and different crowd types, for a given envi-
ronment layout, and proposes a method to optimize environments
using these learnt metrics as part of the objective formulation.

This paper is a significantly extended version of Liu, et al. [60].
We extend Liu, al. [60] along three major thrusts: (a) we propose
a new, integrated framework to optimize given built environment
layout, (b) we propose a new measure to gauge the variance of
the key metrics, and (c) we report experimental results on real,
complex built environment design (Metropolitan Museum of Art)
to demonstrate the utility of the proposed method.

3. Proposed Framework

In this section, we introduce our crowd-environment relation-
ship representation learning framework, and its two application
examples: (a) crowd evacuation time prediction and (b) automated
building design layout optimization. We first provide an overview
of the proposed framework and applications, followed by detailed
introduction of components consisting the framework.

3.1. Overview

Fig. 1 depicts the overall training procedure of our relation-
ship representation learning framework. Our framework learns the
environment-crowd relationship based on dataset generated from
simulations. To generate the data, we procedurally generate varia-
tions of a parameterized environment with permissible bounds of
environmental elements, and run crowd simulators to obtain per-
formance metric values (e.g. time to evacuate the building). Then,
we learn the relationship representation connecting the layout and
the performance metric values using the deep neural network.

Environment Parameterization. To train the deep neural net-
work, we parameterize the layout as a mixture of characteristic,
representative objects. For each scenario, a concrete outer frame is
placed in order to define the shape of the room. Several obstacles,
with difference setup of absolute or relative position, orientation,
and size in each instance, were carefully placed and bounded sepa-
rately. For example, for the synthetic dataset we used in this work,
our defined scenario layout parameter sets consist of the follow-
ing:

« Circle: With moving area restricted, generate three parameters
(x, z, r) control shape of circle, where (x, z) is the origin and r
is the radius of the environment object.

+ FinHorizon: Two obstacles with “|-" shape, generate two pa-
rameters (x, «) controls x position of horizontal shape & rotate
angle of verticle shape.
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Fig. 2. Two application of the trained representations.

FinVerticle: Same As FinHorizon except moving along z axis.
Horizontal Door: A gap between two horizontal aligned obsta-
cles (as open door), generate x coordinate of the middle point
of the door.

Verticle Door: Same As Horizontal Door except moving along z
axis

Rotate Box: With length of both side specified, generate (x, z)
controlling obstacle’s center, and () controlling obstacle’s ori-
entation.

Joint Walls (Misc A, B, C): In different set several amount of
walls connected heads-to-tails. With length of walls specified,
the first wall anchored to the outer frame with position speci-
fied in x, and position of rest walls specified by their orientation
o; where i denotes the index of obstacles that consist the joint
wall.

In the case study described in Section 5, we used slightly differ-
ent set of parameters because of the nature of the real world data
(Metropolitan Museum).

Crowd Motion Model. Within each scenario, we define par-
titioned areas, where different numbers of agents are randomly
placed at initial locations. All agents are instructed to evacuate
from the room to a single exit. To account for different types of
steering behaviors, we consider two commonly used approaches
in our simulations, a social-force based model (SF) and an opti-
mal reciprocal collision avoidance method (ORCA) to generate sim-
ulated data of crowd movement. However, our training procedure
is agnostic to the specific simulation technique, and can use other
crowd simulation models.

Crowd Behavior Evaluation Metrics. Lots of metrics evaluat-
ing the crowd behavior have been investigated in the past. In this
work, we study four metrics: (a) average time agent used (referred
as “time”), (b) average length agent need to travel (referred as
“length”), (c) average amount of each agent collided (referred as
“collision”), and (d) average estimated effort agent used (principle
of least effort [61,62], referred as “PLE”) in order to complete the
evacuation. Throughout the paper, we use y to denote this met-
ric. Our approach is capable of predicting any metric which can be
estimated from crowd movement trajectories.

Representation Learning and Applications. We designed sev-
eral scenario-wise neural network models which used to predict
one or multiple crowd behavior evaluation metric values from lay-
out parameters. Models were trained with a batch of data from
simulations. Different types of performance metrics can be used to
train the model.

Fig. 2 depicts two applications of the proposed learning frame-
work. After learning the environment-crowd motion relationship
representation, we first apply this learned network to predict the
crowd behavior evaluation metrics from a new environment as
shown in Fig. 2a. We also embedded the trained network to build
a meta-optimization framework, that can be used to find the opti-
mal configuration of the obstacles in the room, as shown in Fig. 2b.
Here, the environmental parameters that govern the location and
orientation of obstacles will be converged to the optimal loca-

tion and orientation that minimizes the difference between the
predicted and optimal crowd evaluation metrics given the current
configuration of the obstacles.

3.2. Environment-Crowd Relationship Parameters

We consider three kinds of parameters to describe an environ-
ment layout and its associated crowd behavior. The first part of the
parameters encodes “environments.” Each value in this part repre-
sents an x, z coordinates, or the orientation « of an obstacle. The
second part is for “crowd”, which indicates the number of agents
placed in each pre-defined area. The third part describes a set of
“agent” configuration parameters used for modeling agents’ steer-
ing strategy in the simulator. All these parameters will be stacked
together to construct the final input vector p to the neural net-
work. We also define P as the set of all possible scenario instances
(i.e., varying obstacle location/orientation, agent density, and steer-
ing configuration), for the given layout definition (i.e., fixed obsta-
cle type/count and agent steering model). We assume that all sam-
pled cases p € P can be represented as data points which are uni-
formly distributed within the space.

3.3. Extended artificial neural network

In a prior study [60], Liu et al. examined the possibility of utiliz-
ing machine learning methods to evaluate environment evacuation
scenarios. In this work, we applied deeper neural network archi-
tectures and Maxout activation function [63] to obtain better per-
formance by model averaging. This deep network structure has six
layers, with ten Maxout cells in each layer, formally defined as:

hk = fk(hkf]), kel.6 (1)

where h;, denotes the output of k-th layer, and hy € R? denotes the
input of the network with d features, i.e., an instance of p. Each k-
th layer f,( - ) consists of a linear weight matrix W, € R*™ followed
by a Maxout function g, as

8k.1 (thk—l )
82 (Wihy_q)
fie(hy_q) = ge(Wihy ) = . (2)

ZrioWihy_1) | 0.4

where g (-) for je1.10 is a max pooling for the j-th portion of
ten evenly divided partitions of the input vector Wyh,_;. Thus, m
is d for Wy and 10 for the others (W,---Wjg). We used [ = 1,000 in
this work. Output of the last layer is linearly combined to regress
against the performance metric y given input vector hg. This net-
work structure allows us to accelerate the training process by ap-
plying the batch gradient descent.

To evaluate the trained model, we computed the root-mean-
squared error (RMSE) on the test split of the dataset. By comparing
the predicted value y with the simulated value j, the predictive
deviations can be expressed as

RMSE(y.9) = /E[ (v — 9)2]- (3)
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Note that y,j can be vectors y, § when predicting multiple evalu-
ation metrics simultaneously. Rees; values in our results denote the
RMSE on the test split. Note that we are computing the empirical
mean of the sample deviations, not the full expected value in the
experiments.

3.4. Evaluating prediction robustness

Our crowd simulations include parameters that are randomly
chosen such as the agents initial conditions, or internal decision
by the agents such as the choice of steering strategy. These may
introduce source-based variance in the value of the predicted met-
rics. In other words, predicting the mean of such metrics may not
be enough to ensure the robustness of our trained model. To see
whether our model’s metric predictions are within the deviation
originated from the data source specified by the parameter p as
described in Sections 3.1 and 3.2, we propose a relative measure
that gauges this property.

First, we make an assumption that our data source (either
crowd simulator or real-world capturing device) has an indepen-
dent additive noise with a fixed, unknown variance o2 that varies
the metric we measure using the source. We model the distribu-
tion of the metric random variable Y given certain parameter set-
ting p as a Gaussian distribution with a fixed, unknown standard
deviation o independent of p, i.e.

p(Y[p) = N (itp, 02), (4)
where up denotes the mean of Y given p. The simplest way to es-
timate o is through empirical simulation trials that use the same

parameter configuration. Next, we consider another random vari-
able Y’ given the same parameter p as

p(Y'|p) = N (1tp.0?). (5)
Then, one can show that the difference between the two ran-
dom variables, ¥ =Y —Y’, will follow another Gaussian distribu-
tion with variance 202 as

p(Y|p) ~ N(0,207), (6)
because the means of Y and Y’ are the same. Let off be the variance
of Y. Naturally, 02 = 05/2. To this end, our idea is to estimate 0}3

instead of directly estimating 2. This can be done by collecting
Y over various parameter configurations p € P, by conducting two
simulation instances per each p. Once the empirical estimate for
05 is calculated, one can take a half of it to obtain the estimate of

o2,

To measure the robustness of the metric prediction relative to
the estimated data source variance o2, we propose the following
measure:

(7)

RMSE(y, y)
Rre = 2 - log, %

where j is a simulated metric value since

RMSE(y.9) = &[0 - 9)2] = \JE[(u —9?] = 0. (8)
we can see that R, will have the best value of zero when our
model prediction is perfect (RMSE(y,y) = RMSE(it,¥)), and will
become one when the RMSE(y,y) =0y = V20. Essentially, the
smaller R, is, the better the performance. In the supplementary
material, we provide additional test results on the dataset we gen-
erated to show that the Gaussianity assumption on the data source
noise is reasonable.

3.5. Built Environment Layout Optimization Algorithm

Our building layout optimization framework is summarized in
Algorithm 1 . Given a trained model M(-) and initial obstacle over-
lap counter C(-) for the initial layout parameter p, our goal is to

Algorithm 1: Batch gradient optimization algorithm for build-
ing layout optimization.

Data: Sample batch size b = 250;Total number of iterations T;
Trained model M;Obstacle overlap counter C;Layout
parameter p;
Result: Parameters for the optimized layout parameter p

1 Uniformly sample batch of size b, p©) from the parameter

space;
2 for t in 0 to (T-1):

3 | 0=c(p®);

4 | y=M.forward (p®);

5 let loss of y be y itself;

6 | PO = M.backward (loss);

7 | 0=c(d®);

8 for i in (all obstacles instances or all obstacle types):
9 if O~i < Oi:

0 ‘ plgm) _ ﬁlgt);

1 else:

2 ‘ plgm) _ plgt);

13 return p(» as the found p;

find the optimal p that minimizes both the desired performance
measure (e.g. evacuation time) and the number of collisions among
the obstacles in the given layout. The parameter p can be repre-
sented in one of the two formats of a set of obstacle parameters
{Po, P1,---» Po}. One is the rolled up format, where p; is the pa-
rameter vector describing object i, and o is the total number of
obstacles in the environment. In this format, we optimize parame-
ters for each obstacle in the layout, regardless of objects’ type. The
other is the group-by-obstacle format where each p; denotes pa-
rameters that controls all instances of object type i. The obstacle
overlap counter (( -) will return obstacle collision/overlap informa-
tion for individual obstacle basis (roll up) or obstacle type (group-
by-obstacle), and O; in algorithm denotes the overlap counter for
the obstacle instance or type i.

With these input and subroutine definitions, the algorithm
works as follows: (Line 2) Iterate lines 2-12 predefined maximum
number of iterations. (Lines 3) Count obstacle collisions/overlaps
based on the current parameter description. (Line 4) Using the pre-
trained metric prediction network, obtain current metric (e.g. evac-
uation time). (Lines 5 and 6) Compute the loss. Note that the loss
should be carefully determined for the Algorithm 1 to work prop-
erly. If the desirable layout is to minimize the evacuation time,
the loss should be the prediction output y itself because its lower
limit is zero. (Line 6) Backpropagate the loss to obtain new pa-
rameter values. To compute the gradient in each layer, one can use
the standard back propagation algorithm [64]. (Line 7) Counts ob-
stacle collision/overlaps based on the new parameter description.
(Line 8-12) For each obstacle instance (or obstacle type, depending
on the input parameter format), choose the parameter that yielded
less collisions or overlaps. (Line 13) Return the last parameter vec-
tor.

3.6. Sensitivity on Network Model Hyperparameters

To find the best combination of model hyperparameters
(number of layers), we conducted extensive experiments with
the varying number of layers on all 64 configurations, shown
in Table 5. We ran for number of layers in the range of
1.10, and found that with an exception of the 1-layer case,
the number of layers does not impact our framework's per-
formance significantly. It is reasonable to see that the 1-
layer case performs poorly since the model cannot learn ade-
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Fig. 3. Two synthetic layouts designed for training. Please refer the text for details.
These designs were also used in [60].

quate representations with such a shallow network. Detailed re-
sults of these experiments are included in the supplementary
materials.

4. Experiments

In this section, we present our experimental results on the syn-
thetic layout dataset, for crowd behavior evaluation metric predic-
tion and layout optimization. We start our discussion with descrip-
tion on our synthetic dataset generation procedure.

4.1. Dataset Generation

Generating appropriate, and realistic dataset is both essential
and critical part of the framework. As we are targeting at evalu-
ations to the crowd evacuation cases, we first prepared two sim-
plified, synthetic environment layout designs which meet our re-
quirements. In each layout design, there is a fixed boundary around
the room. Several movable obstacles are placed within the bound-
ary, of which movements are restricted by the range of location,
or pinned in a joint with another obstacle. Agents are randomly
placed in several pre-defined areas before a simulation instance
starts. Gray areas shown in Fig. 3 are pre-defined agent areas
where agents are placed at the beginning of the simulation and
the number of agents within each region is counted separately;
blue obstacles (lines and shapes) can only perform translation; red
obstacles are allowed to be moved or rotated; green obstacles are
anchored on fixed or translatable obstacles, and are only allowed
to rotate along with their joint points. There are in total of 10 sep-
arate areas in the Map A and 27 areas in the Map B. The default
number of generated agent in total are 250 in Map A and 239 in

Table 1

Map B. For Cwd dataset (where we can have random number of
agents in the scene), in all cases, agents between 0 and double of
the default number are generated, following a uniform distribution.
Train, validation, and test splits were: 65%, 20%, 15%, respectively.
Gathering sufficient amount of large scale data is critical for the
data-driven neural network model training. However, obtaining a
large set of records from real human experiments is very challeng-
ing. Thus, we utilize a crowd simulator [65] to produce more sys-
tematic result for the research. The simulator uses A* algorithm
to find initial global path guidance for agents using SF and ORCA.
We generated 40,000 different scenarios for each combinations of
Map, steering algorithm, and factors, totaling 960,000 instances.
After eliminating scenarios which agents failed to evacuated from
the map, we collected dataset as their size summarized in Table 1.
In this work, several synthetic designs and one real-world de-
sign are used for the experiments and demonstrations. We used
following notation to distinguish designs throughout the rest of
paper: In synthetic case, two maps were created either room-
oriented (Map A) or screen-partitioned (Map B) as depicted in
Fig. 3. Different factors are considered to link the synthetic de-
sign to the practical applications. Environment (Env) factors are
about different obstacle placement. Crowd (Cwd) factors respond
to different cases of agent density in building, Agent (Agt) factors
considered that people may have different characteristic in their
moving ability, and abstracted those abilities into model specified
parameters. When all factors are considered, we referred it to All
These are the same conditions used to generate dataset in [60].

4.2. Results on Metric Prediction

We used Tensorflow [66] to implement our training framework.
The neural network model consists of five layers of Maxout 10-unit
output with 100 nodes in each unit, followed by a fully-connected
layer linked to the output. We used 256 for the random mini-
batch for the training, with the ADAM stochastic gradient algo-
rithm [67] for the optimization. L2 regularization is used in order
to suppress overfit, as well as to improve performance on valida-
tion and test splits of the dataset. Regularization parameter A is set
to be linearly increased with a very small step (0.0001 ~0.001 per
epoch), and we determined this by conducting experiments on val-
idation set. We stopped the iterative optimization when the cross-
validation error does not decrease any further. This practically hap-
pens around after 20,000 iterations. We used the following loss
function during training, where N is the batch size:

N
> - g2+ AW (9)
n=1

To obtain oy for each configuration, we sampled another 5000
points and run simulation twice for each point. After all failed sim-

Number of scenarios and dimensions of parameters in our synthetic dataset. We also report amount of computation time to
run these simulations. Numbers in the every other row shows mean and standard deviation of the amount of hours needed
for simulation, with 100 batch jobs running simultaneously. Each job will simulate 400 scenarios. Overall, we ran 960,000
simulations in total and it took a little more than 3 hours using HPC.

Map Environment (Env) Crowd (Cwd) Agent (Agt) All

Scenarios Parameters Scenarios Parameters Scenarios Parameters Scenarios Parameters
A - SF 39,891 31 39,999 10 39,539 12 37,589 53
Time 1.26 + 0.05 1.84 + 0.37 2.22 + 0.04 1.59 + 0.04
B - ORCA 34,450 22 38,711 27 27,961 4 25,261 53
Time 1.30 + 0.32 0.79 + 0.01 0.85 + 0.01 0.86 + 0.02
A -ORCA 25,265 31 39,989 10 38,652 4 23,766 45
Time 0.58 + 0.01 0.54 + 0.01 0.62 + 0.01 0.67 + 0.02
B - SF 36,043 22 38,535 27 28,469 12 27,030 61
Time 1.79 + 0.10 1.50 + 0.09 1.50 + 0.12 1.83 + 0.09
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Table 2

Training time (in hours) for the prediction network of particular metric. Note that this time includes
both the training and cross validation time needed to find the best parameter value A in Eq. 9, thus it
is the total amount of time needed for training the network.

SF ORCA
Time  Collision  Length  PLE Time  Collision  Length  PLE
Map A Env 2.75 3.06 3.01 3.02 195 0.03 0.10 1.79
Cwd 271 0.01 2.90 0.01 295 2.86 2.97 0.02
Agt 0.51 0.22 0.30 032 131 0.84 0.34 1.18
All 0.89 2.07 0.11 024 175 0.02 1.82 1.82
Map B Env 3.12 1.96 3.35 344 324 3.29 2.81 0.05
Cwd 3.72 1.63 3.65 371  3.66 3.70 3.66 2.75
Agt 0.60 0.54 0.32 044  0.50 0.08 1.03 0.53
All 1.02 1.75 1.46 279 234 0.01 2.67 2.33

Table 3 Table 4

Dataset generated for repeated test; in this type of dataset, each
layout were simulated exactly twice. These are selected based on
two-step pre-processing on the generated simulations: (Step 1) For
every simulation instance, mark if all agent within the instance suc-
cessfully reached the target within set max number of frames. (Step
2) For each pair of two-trial pairs, take all simulation pairs if both
instances are marked success in Step 1.

Map Env Cwd Agt All

A - SF 9 955 9 999 9 861 9 359
B - ORCA 8 249 9 468 6 704 6 053
A - ORCA 5 807 9 996 9 563 5531
B - SF 8 968 9 317 6 638 6 646

ulations filtered out, the size of each simulation outputs are sum-
marized in Table. 3. W is the weights of the network that we im-
pose regularization constraint.

Training Results. We present our evaluation results in Table 5.
In the case of single configuration learning, cases in Env have a
moderate to well performance based on our evaluation on R,,. Val-
ues near to 1 suggests that our framework’s prediction variance is
as good as one instance of simulation from the simulator would
yield. In Cwd cases, the proposed method performance well based
on our evaluation on R,;. Values near to 0 suggests that our pre-
dictions are close to the mean of the simulations. In Agt config-
uration, results indicate that our framework struggled on learning
patterns from SF model using the parameter configuration, but in-
dicates a good performance in ORCA model. In this case, the R,
went down to negatives values. We believe that the neural net-
work found the statistical means from parameter-dependent vari-
ance which breaks our parameter-independent variance assump-
tion, due to the extremely small parameter space of ORCA-Cwd
configuration which has only four dimensions. Refer Table 1 for
numbers of parameters in all configurations.

The accuracy of predictions is relatively lower when using the
PLE metric. This may mean that the network did not learn the
agent speeds correctly which has a significant influence on the re-
sults. While the incorrect velocity estimate can affect the time and
length metrics as well, given the definition of PLE [61], large speed
variation will introduce more PLE error than the other metrics.

In the cases of A-SF-All and B-SF-All cases, the results were
not as good as the individual configurations. We posit that this
can be the case both due to the difficulty to learn social force
model and the lack of data due to its relatively high number of
parameters. To prove this hypothesis, we conducted additional ex-
periments with the expanded dataset of size 68K instead of 30K,
and observed a significant performance improvement as shown in
Table 4. We also conducted experiments using increasing data set
size for an easy case (A-SF-Env), in order to see the performance
changes relative to the amount of input data fed into the neural
network. Table 4 and Fig 4 summarize this result. It shows that,

Comparison of results on A-SF-All configuration using datasets with dif-
ferent sizes. Numbers in parenthesis indicate the size of the dataset. Unit
for each measure is indicated within the parenthesis.

Dataset Time (s)  Collision (#) Length (m)  PLE (J/Kg/s)
Reest (30k)  3.23 11.57 3.56 13.18
Reest (68k)  2.77 9.43 3.23 10.75
Ry (30K) 1.6 35 2.0 1.9
Ryer (68K) 1.1 2.9 1.7 13
12 1 — Time
Length
~— Collision
104 — PLE
8 -
j2
[- 4
6 R
4 4
2 -
T T T T T T T
2700 4500 7000 12000 19000 27000 ideal
Dataset Size

Fig. 4. R, performance as a function of increasing the dataset size on A-SF-Env
configuration, using different metrics.

with an exception of PLE, our model is insensitive to the amount
of training data.

Multi-output prediction. In addition to the application for a
specific evaluation metric prediction, we also investigated potential
of the proposed framework in making multiple predictions simul-
taneously. The neural network structure is mostly the same as in
the single output value setup, but now we have a structured out-
put of four values stacked as a vector y. We tested two types of
optimization strategies with respect to use of the gradient descent
algorithm. The first one is the same gradient descent algorithm we
used before. The other one scaled backward gradient flow from
four targets with the inverse of their own oy. This is to let gra-
dient descent algorithm equally weigh contributions of the losses
among all prediction outcomes. We present additional discussions
in the supplementary material.
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Table 5
Prediction results of combined configuration set.
Map A-ORCA Map A-SF Map B-ORCA Map B-SF
Metric oy Reest Rrel oy Reest Rret oy Reest Ryel gy Riest Rrel
Env Time 2.61 2.20 0.50 240  2.06 055 138 141 1.06 091 1.61 265
Collision  3.57 3.27 0.74 1.81 236 1.76 145 145 101 036 121 453
Length 2.68 2.20 0.43 246  1.96 034 128 140 126 1.03 147 202
PLE 9.94 8.49 0.54 891 745 048 567 599 116 3.60 565 230
Cwd Time 2.32 1.68 0.07 234 172 012 133 097 010 084 0.65 025
Collision ~ 3.01 2.17 0.05 1.81 1.35 015 154 111 005 011 0.08 0.11
Length 2.39 1.74 0.08 241 1.78 012 125 091 009 1.00 076 0.23
PLE 9.05 6.52 0.09 871 6.57 0.19 545 423 026 343 292 053
Agt Time 2.43 1.73 0.02 278 214 025 123 0.89 007 084 071 053
Collision ~ 2.98 2.09 -0.02 3.86 4.03 112 142 1.05 013 028 054 294
Length 2.34 1.67 0.02 257 191 0.14 124 090 007 099 074 0.16
PLE 9.25 6.57 0.01 967 7.14 012 533 425 035 344 263 022
All Time 2.67 2.74 1.07 265 291 126 124 187 219 091 201 3.29
Collision  3.74 4.26 1.38 488 853 2.61 143 240 249 076 264 457
Length 2.65 2.59 0.93 259 277 120 128 217 252 105 177 251
PLE 1036 1037  1.00 959 1050 126 541 928 256 366 7.55 3.09
Table 7
Evacuation time in seconds per agent. For each optimized layout,
a5 4 we ran evacuation time prediction as well as a simulation. For com-
parison, predicted and simulated evacuation time for the original
expert layout as well as additional 100 random layouts are shown.
v The results indicate that the optimized trajectories have competitive
E 804 evacuation time compared to that of expert layout, significantly bet-
§ ter than random case. In addition, large variance in random cases
'4§ indicate that the obtained result is not a coincidental outcome.
é 754 #Layouts Prediction Simulation
v A 2 66.49 + 0.00 68.78 + 0.41
o B 22 66.45 + 0.02 66.92 + 0.71
® 704 C 40 66.25 + 0.03 66.90 + 0.92
e D 14 66.24 + 0.01 67.13 + 0.80
Expert 1 71.07 7091 + 1.44
- Random 100 72.50 + 6.49 7236 + 7.75

40000 60000 80000 100000

Optimization Steps

0 20000

Fig. 5. Evacuation time-based Optimization of A-SF-ENV environment layout. Each
line indicates an initial configuration of obstacles. Average evacuation time of agents
is the loss used to optimize the environment because the smaller the time, the
better the output.

Table 6

Results on constrained layout optimization. Num-
bers are statistics of predicted evacuation time over
different initial crowd configurations. It is clear that
the layout optimization made the prediction robust.

Mean  Std. Dev.  Min Max
Before 78.68 4.34 68.82 86.87
After 63.85 0.46 63.16 65.34

4.3. Results on Layout Optimization

For the layout optimization experiments, we selected the model
for A-SF-Env as the test model for this application. Other configu-
rations should work equally well. The goal of this demonstration is
to show that, our optimization will find the layout that will mini-
mizes the evacuation time as well as improve the robustness of the
evacuation time predictions. Fig. 5 shows the convergence trend
of the predicted evacuation time (in seconds) averaged over all
agents. The plot shows optimization trend for all 50 independent
initial configurations of obstacles. After 20,000 or so iterations, the
layout optimization converged. Table 6 summarizes the statistics
of predicted evacuation time over different initial crowd configu-

rations. In Fig. 6, some sample snapshots during the optimization
experiments are provided as qualitative results.

5. Case Study: Metropolitan Museum

In this section, we show that our framework can be applied to a
real world built environment design. We trained the proposed neu-
ral network with a new dataset generated from a more complex
built environment layout design using a quarter of expert-designed
blueprint (Metropolitan museum) as the base structure. We show
that the artificial neural network framework is not only able to
estimate crowd behavior evaluation metric for an input layout in
milliseconds with high accuracy, but also can be a part of any op-
timization (and advising) system in lieu of a more computationally
expensive crowd simulator.

5.1. Parameterization of Layout

First, we designed the parametric layout from the expert-
designed layout of Metropolitan museum to generate the dataset.
The Metropolitan layout is very large so applying our framework to
the whole environment would be infeasible due to computational
cost. Therefore, a quarter part of the Metropolitan was used in our
study. The complete design of Metropolitan shown in Fig. 7.

Next, we made a relaxed design of a portion of the original lay-
out. With several anchors set on different group of obstacles or
walls, we can make a more complex design from this relaxed de-
sign. Here, in order to move around each obstacle as we desired,
we set up several reference points. Moreover, the position of each
obstacle or joint of walls are movable with respect to the motion
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Fig. 6. Snapshots of the layout optimization and overall crowd movement heat map on the synthetic layout. Hot color indicates high density of the agents. Each row depicts
a different initial configuration. Numbers in white indicate the predicted metric (evacuation time in seconds) at that state of obstacles. Note the changes of location and
angle of obstacles and the metric as the optimization progresses. Black disc indicates a round-shaped table furniture. Note that the heatmaps were generated by separate
simulations on the layouts, independent from optimization progress.
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Fig. 7. Complete layout of Metropolitan Museum of Art. We focus on the top-right
corner of the whole environment in this study.

of reference points. Thus, the parameter space becomes a span of
constrained position of reference points. In addition, we used the
notion of a set of obstacles as a group, which can be moved with
respect to an invisible reference point. The X, Y positions of the
reference point are recorded and aligned, shown as another input
dimension to the simulator. The final layout we used is shown in
Fig. 8 (Top).

For the evacuation simulation, we also redefined the areas
where agents are placed initially. The whole building layout was
divided into seven areas. In each area, the number of agents placed
is proportionally determined relative to the area of region. Total
number of agents was predefined as 240, equally, for each of the
sample cases. Target of each agent is assigned so that to encourage
the agent leave the building using the nearest gate. Fig. 8 (Bottom)
depicts this agent and goal location setup.

5.2. Results on Metric Prediction

We now present our results on metric prediction experiments
on the Metropolitan layout. First, we generated the dataset with
randomly generated layout designs based on the parametric rep-
resentation of the layout described earlier. About 122,000 random
layout samples were generated and each layout was simulated to
obtain the evacuation performance metric (in seconds) using an
open source crowd simulator [68]. We split the 122,000 samples
into train, validation, and test set following the same split distri-
butions (65%, 20%, 15%, respectively) as we did in the synthetic ex-
periments. Then, we trained our metric prediction neural network,
using the proposed framework. After the training, we obtained re-
sults of oy is 2.76, Ryygin is 2.84, and Ry is 1.1. The loss of the train-
ing, cross validation, and test dataset as a function of number of
training iterations is shown in Fig. 9.

5.3. Results on Layout Optimization

Using the trained crowd-environment relationship represen-
tation network, we evaluated the proposed layout optimization
algorithm on the Metropolitan museum layout. Our goal here is
to see whether the proposed optimization algorithm can find an
optimized layout that has similar property as the expert-designed
original layout. As an example of such properties, congested region
during evacuation is depicted as hot colored pixels in Fig. 11.
As it can be seen, expert layout has distinctive heatmap pattern
different from an arbitrary random layout. Thus, one can utilize
this congested region heat map visualization as good qualitative
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Fig. 8. (Top) Relaxed layout design of the selected area of the Metropolitan mu-
seum. Green arrows indicate the possible variations of the environmental struc-
tures. Circles indicate the location of invisible reference points. (Bottom) Definition
of agent areas. Note that the map has two exits where agents can choose the best
option for evacuation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article).
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Fig. 9. Loss value (evacuation time difference compared to the simulation output,
in seconds) change over iterations during the training process. We stop training
when the cross validation performance does not improve further. Near the end of
the plot, one can see that the cross validation error increases.
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Fig. 10. Batch gradient optimization of Metropolitan layout. Each line represents
one optimization instance of a random layout, thus 100 lines are plotted in the fig-
ure. The standalone blue plot indicates an outlier case when the particular obsta-
cles are initialized in a way that can block the entire flow during the optimization,
which is a very rare case. This can be easily avoided either by sampling or carefully
chosen initialization. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article).
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Fig. 11. Top-Left: Heatmap (crowd density) snapshot of expert design; Top-Right:
Heatmap of an arbitrary random layout; Bottom: Comparison between the simu-
lated densities between expert and random layout. Blue indicates false positive (ex-
ists in compared target but missing in expert layout) and red indicates false nega-
tive (exists in expert but missing in the compared target) (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.) (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article).
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Fig. 12. Snapshots during the process of optimization and heat map of the final, optimized layouts. Plots of insets show neural network estimated evacuation time (in
seconds) along with optimization steps (vertical axis), and the vertical red line indicates when the snapshot was taken throughout the iteration of the optimization (horizontal
axis). Heat map shows that the final optimized layout makes reasonable design showing jammed area is limited around the exit (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article).
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Fig. 13. Simulated density differences between expert and optimized layouts (A-D from left to right). It is clearly visible that the density difference has been reduced
compared to the random situation shown in Fig. 11, i.e. optimization has found layouts that are closer to the expert layout. One can also observe that the crowd occupancy
density pattern is distinct between the two optimized layouts. Each of these optimized layouts yielded better predicted average evacuation time than the predictions on

corresponding initial states, as shown in Fig. 12 and Table 7.

evidence that our optimized layout has similar characteristic to
that of the expert-designed layout.

To achieve this goal, we first generated 100 random layouts as
sub-optimal layout samples. For each run, our optimization algo-
rithm is initialized with one of the random layouts, and then start
the layout optimization. When optimizing the layouts, we used the
metric prediction network to predict the evacuation time for in-
terim layout during the optimization. The network was pretrained
using the training sample layouts described in the previous section.

Fig. 10 shows the average evacuation time trend for all 100
newly generated layouts as a function of optimization progress.
Since the layout optimization task is non-convex, there are a few
cases when the algorithm converged to sub-optimum solutions. To
obtain further in-depth understanding of the optimized layouts, we
first applied mean shift [69] algorithm on the layout parameters
to identify clusters of layout samples that share the similar latent
property. The mean shift algorithm applied on the 100 samples
yielded four clusters.

Fig. 12 shows the progress of the optimization as well as the
centroid within each cluster of the sample initial layouts we used
to test our optimization framework. We randomly selected lay-
outs with a random set of parameters, e.g. the one shown in the
top-right of Fig. 11, which is obviously distinct from the expert-
designed layout. The neural network is able to efficiently obtain
layouts comparable in evacuation time and the flow patterns to the
expert design in only 22 seconds. Four final, optimized layouts in
clusters A-D all yielded better predicted average evacuation times
than the predictions on corresponding initial states as shown in
Fig. 12. Inset plots within layout images show the progress of evac-
uation time improvement as the optimization progresses. Fig. 13
shows the visual similarity between the expert layout and each of
the four optimized layouts. It is clear that the extreme differences
between the expert and the sample layout that exist in Fig. 11 have
been removed.

We also verified the accuracy of the evacuation time predictions
by running simulator-based simulations on each of these layouts.
Table 7 summarizes the result comparing the predicted evacuation
time versus the actual evacuation time obtained by the simulation
using SF as the steering algorithm. We also report the predicted
and simulated evacuation times of the original, expert-designed
layout and the random, arbitrary layout to show that the optimized
layout has either better or competitive property than the two. It is
clear that our optimization framework can not only accurately pre-
dict the simulated evacuation time but also find optimal layouts
that are either competitive or even better evacuation time perfor-
mance without resorting to exhaustive simulations.

6. Conclusion

In this paper, we proposed (a) a novel neural network-based
framework to learn the relationship between crowd movement and

a building design in evacuation scenarios, (b) an optimization algo-
rithm that efficiently iterates a vast number of design solutions to
generate crowd-aware environmental layout design, and conducted
(c) a case study that involves optimizing a complex, real-world
built environment (Metropolitan museum) to minimize evacuation
times and reduce congestion.

We showed that our framework can predict crowd-related fac-
tors from given building layout. Moreover, the proposed framework
can evaluate the precision of predictions. The test cases result in-
dicate predictive models have comparative precision in given met-
rics evaluation tasks against the tradition approach - simulations.
We also showed that our framework can be used for performing
building layout optimization from random initialization. A batch
of optimization result can be obtained within only a half minute,
and outcome layouts are significantly better performed compared
to the origin non-optimized layout. In the case study using real
world data, we showed that our model can be applied to a practi-
cal layout, tested utilization of our model out of synthetic experi-
ments.

Limitations. As noted in experimental result section, the pro-
posed measure R,,; may have negatives values when the dimen-
sion of the input parameters is extremely small (less than 10 in
our experiments). We believe that such small dimension may cause
the issue, because it might have been possible that the train-
ing set happens to encompass all possible variations of the small
parameter space, making the neural network possible to memo-
rize all instances, yielding smaller empirical variance. Moreover,
if our key assumption on independence of the metric variance
over environment/crowd/agent-configuration parameter configura-
tion breaks, then applicability of the proposed method is limited.
In such situations, additional consideration may need to be taken
into account.

Future Works. Our work demonstrates a novel way of develop-
ing computer assisted layout design tools. Based on existing result
up to this work, we can still improve its effectiveness by creat-
ing new models which can find optimal layouts based on the basic
design. The models can also make comprehensive predictions on
various performance measures.

Several aspects can be considered to further generalize the
framework. First, the model can consider dynamic structural
changes affected by problems that induce the evacuation (e.g., fire).
Optimized layout may show how robust the estimated measures
are, as a function of the changing environmental structures. Sec-
ond, factors related to neuro-cognitive aspects (preference, stress
level) or human-made objects (signage, lighting conditions) that
may affect the agent steering can be factored into the model. Third,
one can consider ways to lift the Gaussianity assumption on the
noise model. Fourth, we can integrate our prediction-based opti-
mization pipeline into interactive design optimization tools, e.g.,
IDOME [59] and use our approach to study larger environments
at urban scales.
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