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Abstract
Let T be a positive closed current of bidegree (1, 1) on a multiprojective space X = P

n1 ×
· · · × P

nk . For certain values of α, which depend on the cohomology class of T , we show
that the set of points of X where the Lelong numbers of T exceed α have certain geometric
properties. We also describe the currents T that have the largest possible Lelong number in
a given cohomology class, and the set of points where this number is assumed.
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1570 D. Coman, J. Heffers

1 Introduction

LetM be a complexmanifold of dimensionn andT be apositive closed current of bidimension
(p, p) (or bidegree (n − p, n − p)) on M . Consider the upper level sets

Eα(T ) := {x ∈ M : ν(T , x) ≥ α} , E+
α (T ) := {x ∈ M : ν(T , x) > α} ,

where ν(T , x) is the Lelong number of T at x ∈ M and α ≥ 0 (see [5,11] for the definition
and properties of Lelong numbers). A fundamental theorem of Siu [13] states that for α > 0,
Eα(T ) is an analytic subvariety of M of dimension at most p. It follows that E+

0 (T ) is an at
most countable union of analytic subvarieties of M of dimension at most p.

In the case of the projective space M = P
n , explicit geometric descriptions of the sets

E+
α (T ) are obtained in [1,3]. Further results in this direction are given in [9,10]. We also

note that the case of currents of bidimension (1, 1) on multiprojective spaces is studied in [3,
Section 4].

Our goal here is to study the geometric properties of the sets E+
α (T ) for positive closed

currents T of bidegree (1, 1) on multiprojective spaces. Throughout the paper we let

X := P
n1 × · · · × P

nk = P
n1
[z1] × · · · × P

nk
[zk ] , n := n1 + · · · + nk , (1.1)

where z j = (z j0, . . . , z
j
n j ) ∈ C

n j+1 and [z j ] = [z j0 : · · · : z jn j ] denote the homogeneous
coordinates on Pn j . Let

� j : Cn j+1\{0} → P
n j , � j (z

j ) = [z j ] , π j : X → P
n j , (1.2)

be the canonical projection, and respectively the projection onto the j-th factor. Set

ω j = π�
jωFS , 1 ≤ j ≤ k ,

where ωFS denotes the Fubini-Study Kähler form on a projective space Pn j . The Dolbeault
cohomology group H1,1(X ,R) is generated by the forms ω1, . . . , ωk .

We let

(a1, . . . , ak) ∈ (0,+∞)k , a := a1 + · · · + ak , ω = ωa1,...,ak = a1ω1 + · · · + akωk,

(1.3)

and we denote by

T = Ta1,...,ak (X) (1.4)

the space of positive closed currents T of bidegree (1, 1) on X in the cohomology class of ω

(i.e. T ∼ ω).
In the above setting, our first result gives a description of the currents in T with the largest

possible Lelong number. It is the analogue of [2, Proposition 2.3] to the case ofmultiprojective
spaces (see also Proposition 2.1 in the following section). The case of bidegree (1, 1) currents
on P

1 × P
1 was treated in [2, Proposition 4.1].

Theorem 1.1 If T ∈ T then ν(T , x) ≤ a for all x ∈ X. If Ea(T ) �= ∅ then there exist proper
linear subspaces L j ⊂ P

n j of dimension � j , and surjective linear maps η j : C
n j+1 →

C
n j−� j , 1 ≤ j ≤ k, such that

Ea(T ) = L1 × · · · × Lk , L j = � j (ker η j\{0}) , T = ℘�S ,

where ℘ = [η1] × · · · × [ηk] : X ��� Y := P
n1−�1−1 × · · · × P

nk−�k−1, [η j ] : Pn j ���
P
n j−� j−1 is the projection induced by η j , and S ∈ Ta1,...,ak (Y ) is a current with Ea(S) = ∅.
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Lelong numbers of bidegree (1, 1) currents on multiprojective spaces 1571

Our next result extends [2, Proposition 2.2] to the case of multiprojective spaces (see also
[3, Theorem 1.1] for the case of currents of arbitrary bidegree on projective space).

Theorem 1.2 If T ∈ T , ν j = a − a j
n j+1 and ν0 = max{ν1, . . . , νk}, then the following hold:

(i) There exist proper linear subspaces Vj ⊂ P
n j such that π j

(
E+

ν j
(T )

) ⊂ Vj , for 1 ≤
j ≤ k.

(ii) E+
ν0

(T ) ⊂ V1 × · · · × Vk.

The following result is a version of [3, Theorem 1.2] for currents of bidegree (1, 1) on
multiprojective spaces. If A ⊂ P

N we denote by Span A the smallest linear subspace of PN

containing A.

Theorem 1.3 Let T ∈ T and set ν j = a− a j
n j

, ν0 = max{ν1, . . . , νk}. We have the following:
(i) If n j ≥ 2 for some 1 ≤ j ≤ k, then the set π j

(
E+

ν j
(T )

)
is either contained in a

hyperplane Hj of Pn j , or else it is a finite set and π j
(
E+

ν j
(T )

)\L j = A j , for some line L j

and set A j with |A j | = n j − 1 and Span(L j ∪ A j ) = P
n j .

(ii) If n j ≥ 2 for all 1 ≤ j ≤ k, then E+
ν0

(T ) ⊂ W1 × · · · × Wk, where for each j ,
W j = Hj or W j = L j ∪ A j . Moreover, if W j = L j ∪ A j for all 1 ≤ j ≤ k, then E+

ν0
(T ) is

a finite set.

One can also obtain a version of [10, Theorem 1.1] in the case of multiprojective spaces. It
strengthens the conclusion of Theorem 1.3 under the additional assumption on the existence
of two points where T has large Lelong number.

Theorem 1.4 Let T ∈ T and set ν j = a − a j
n j

, ν0 = max{ν1, . . . , νk}. Furthermore, let

β j = β j (α j ) = an2j − a jn j − α j

n2j − 1
, where ν j < α j ≤ a ,

and set β0 = max{β1, . . . , βk}, α0 = max{α1, . . . , αk}. Let p = (p1, . . . , pk) ∈ X, q =
(q1, . . . , qk) ∈ X. Then the following hold:

(i) If n j ≥ 2, p j �= q j , ν(T , p) ≥ α j , ν(T , q) ≥ α j , for some 1 ≤ j ≤ k, then the set
π j

(
E+

β j
(T )

)
is either contained in a hyperplane Hj of Pn j , or else π j

(
E+

β j
(T )

)\L j = A j ,
for some line L j and set A j with |A j | = n j − 1 and Span(L j ∪ A j ) = P

n j .
(ii) If n j ≥ 2, p j �= q j , for all 1 ≤ j ≤ k, and if ν(T , p) ≥ α0, ν(T , q) ≥ α0, then

E+
β0

(T ) ⊂ W1 × · · · × Wk, where for each j , W j = Hj or W j = L j ∪ A j .

It is worth noting that β j (ν j ) = ν j , and that β j decreases as α j increases.
The paper is organized as follows. In Sect. 2 we recall results about the structure of positive

closed currents of bidegree (1, 1) on multiprojective spaces. In Sect. 3 we develop some of
the tools needed for the proof of our results; see Proposition 3.1 and Theorem 3.2, which deal
with growth properties of entire plurisubharmonic (psh) functions in certain Lelong classes
on C

n that have a large Lelong number at the origin. Theorems 1.1, 1.2, 1.3, and 1.4 are
proved in Sect. 4. We also give there examples showing that these results are sharp. In Sect. 5
we consider positive closed currents of bidegree (1, 1) on a projective space, and we obtain
in Theorem 5.1 a more precise version of [2, Proposition 2.2].

2 Preliminaries

Positive closed currents of bidegree (1, 1) on a projective space P
m can be described via

their logarithmically homogeneous plurisubharmonic (psh) potentials on C
m+1 or via psh
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1572 D. Coman, J. Heffers

functions in the Lelong class onCm ↪→ P
m (see [7,8,12]). Recall that the Lelong classL(Cm)

is the class of psh functions u on C
m that satisfy u(z) ≤ log+ |z| + Cu for all z ∈ C

m , with
some constant Cu depending on u. A similar description holds in the case of multiprojective
spaces and we recall it in this section (see also [6, Section 2]). If M is a complex manifold
and 
 is a smooth real (1, 1)-form on M , an 
-plurisubharmonic (
-psh) function on M is
a function ψ which is locally the sum of a psh function and a smooth one, and which verifies

 + ddcψ ≥ 0 in the sense of currents. Here d = ∂ + ∂ , dc = 1

2π i (∂ − ∂).
Let X be the multiprojective space defined in (1.1) endowed with the Kähler form ω from

(1.3). Recall the definition (1.2) of the projections � j and π j , and set

� = �1 × · · · × �k : (Cn1+1\{0}) × · · · × (Cnk+1\{0}) → X . (2.1)

Consider the standard embeddings

C
n j ↪→ P

n j , ζ j = (ζ
j
1 , . . . , ζ

j
n j ) ∈ C

n j → [1 : ζ j ] := [1 : ζ
j
1 : · · · : ζ

j
n j ] ∈ P

n j ,

C
n = C

n1 × · · · × C
nk ↪→ X , (ζ 1, . . . , ζ k) → ([1 : ζ 1], . . . , [1 : ζ k]) .

(2.2)

Let T ∈ T , where T is defined in (1.4). Then

T = ω + ddcϕ , (2.3)

where ϕ = ϕT is an ω-psh function on X , unique up to additive constants. We define the
function U = UT by

U (z1, . . . , zk) =
k∑

j=1

a j log |z j | + ϕ([z1], . . . , [zk]) . (2.4)

Then U extends to a psh function on C
n1+1 × · · · × C

nk+1, ��T = ddcU , and U satisfies
the logarithmic homogeneity condition

U (t1z
1, . . . , tk z

k) =
k∑

j=1

a j log |t j | +U (z1, . . . , zk), ∀ t j ∈ C\{0}, 1 ≤ j ≤ k . (2.5)

Set u = uT ∈ PSH(Cn), u(ζ 1, . . . , ζ k) = U (1, ζ 1, . . . , 1, ζ k). Then it is easy to see
that T |Cn= ddcu and that the function u ∈ aL(Cn) (where a is defined in (1.3)) satisfies
the special growth condition

u(ζ 1, . . . , ζ k) ≤
k∑

j=1

a j log
+ |ζ j | + C , for some constant C . (2.6)

Conversely, if u ∈ PSH(Cn) satisfies (2.6) then the function

U (t1, ζ
1, . . . , tk, ζ

k) =
k∑

j=1

a j log |t j | + u(ζ 1/t1, . . . , ζ
k/tk) , t j ∈ C\{0} , ζ j ∈ C

n j ,

(2.7)

extends to a psh function on C
n1+1 × · · · × C

nk+1 which satisfies (2.5). Thus u determines
a current in T .

We will need the following result which is contained in [2, Propositions 2.1 and 2.3]. It
gives a description of positive closed currents of bidegree (1, 1) on P

m with highest Lelong
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number. Recall that if T is a positive closed current of bidegree (1, 1) on Pm its mass is given
by

‖T ‖ =
∫

Pm
T ∧ ωm−1

FS .

Moreover, if ‖T ‖ = 1 then T = ωFS + ddcϕ for some ωFS-psh function ϕ on P
m . Let

� : Cm+1\{0} → P
m be the canonical projection, set z = (z0, . . . , zm) ∈ C

m+1, �(z) :=
[z] = [z0 : · · · : zm] ∈ P

m .

Proposition 2.1 Let T be a positive closed current of bidegree (1, 1) on Pm with ‖T ‖ = 1.
(i) We have ν(T , x) ≤ 1 for all x ∈ P

m.
(ii) If E1(T ) �= ∅ then E1(T ) is a proper linear subspace of Pm.
(iii) Let L ⊂ E1(T ) be a linear subspace of dimension � and η : Cm+1 → C

m−� be a
surjective linear map such that L = �(ker η\{0}). Then

T = ωFS + ddc
(
log

|η(z)|
|z| + h([η(z)])

)
,

where h is an ωFS-psh function on P
m−�−1, [η(z)] = [η]([z]), and [η] : Pm ��� P

m−�−1 is
the projection induced by η.

(iv) If dim E1(T ) = � and η : C
m+1 → C

m−� is a surjective linear map such that
E1(T ) = �(ker η\{0}), then T = [η]�S, where S is a positive closed current of bidegree
(1, 1) on P

m−�−1 with ‖S‖ = 1 and E1(S) = ∅.
Proof Assertion (i) is contained in [2, Proposition 2.1], while (ii), (iv) in [2, Proposition 2.3].
For (iii), write T = ωFS + ddcϕ, where ϕ is an ωFS-psh function on P

m . Since η is linear
and surjective, there exists a linear isomorphism A : Cm+1 → C

m+1 such that η ◦ A(t) =
(t�+1, . . . , tm), where t = (t0, . . . , tm). Hence A(V ) = ker η, where V = {t�+1 = · · · =
tm = 0}. Let [A(t)] = [A]([t]), where [A] : Pm ��� P

m is the automorphism of Pm induced
by A. If

S = [A]�T = ωFS + ddc
(
log

|A(t)|
|t | + ϕ([A(t)])

)
,

then �(V \{0}) ⊂ E1(S). By Proposition 2.3 in [2] and its proof we infer that

log
|A(t)|

|t | + ϕ([A(t)]) = log
|t�+1|2 + · · · + |tm |2
|t0|2 + · · · + |tm |2 + h([t�+1 : · · · : tm]) ,

for some ωFS-psh function h on Pm−�−1. Thus

T = [A−1]�S = [A−1]�ωFS + ddc
(
log

|η(z)|
|A−1(z)| + h([η(z)])

)

= ωFS + ddc
(
log

|η(z)|
|z| + h([η(z)])

)
.

��

3 Plurisubharmonic functions in special Lelong classes

We study here entire psh functions that satisfy certain growth conditions. The results will
be used in the proofs of our main theorems. The first proposition deals with the case of psh
functions in certain Lelong classes, with the largest possible Lelong number at the origin.
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1574 D. Coman, J. Heffers

Proposition 3.1 Let u be a psh function on C
n = C

n1 × · · · × C
nk verifying (2.6). Then

ν(u, 0) ≤ a = a1 + · · · + ak. Moreover, if ν(u, 0) = a then

u(ζ 1, . . . , ζ k) ≤
k∑

j=1

a j log |ζ j | + C on C
n ,

with the same constant C as in (2.6). In particular, ν(u, x) ≥ a j for all x ∈ {ζ j = 0}.
Proof By (2.6) we have that u ∈ aL(Cn). Let R be the trivial extension to P

n of the cur-
rent ddcu. Then ‖R‖ ≤ a, so ν(u, 0) ≤ a by Proposition 2.1. If ν(u, 0) = a then [2,
Proposition 2.1] implies that

u(ζ 1, . . . , ζ k) = a

2
log(|ζ 1|2 + · · · + |ζ k |2) + h([ζ 1 : · · · : ζ k]) ,

for some aωFS-psh function h on P
n−1. If ζ j �= 0 for all 1 ≤ j ≤ k and t ∈ C is such that

|tζ j | ≥ 1 for all 1 ≤ j ≤ k, we obtain using (2.6) that

h([ζ 1 : · · · : ζ k]) = h([tζ 1 : · · · : tζ k]) = u(tζ 1, . . . , tζ k) − a

2
log(|tζ 1|2 + · · · + |tζ k |2)

≤
k∑

j=1

a j log |tζ j | + C − a

2
log(|tζ 1|2 + · · · + |tζ k |2)

=
k∑

j=1

a j log |ζ j | + C − a

2
log(|ζ 1|2 + · · · + |ζ k |2) .

This yields the conclusion. ��
Our next result is a refinement of Proposition 3.1 and it deals with the case of psh functions

u that have a sufficiently large Lelong number at the origin.

Theorem 3.2 Let u be a psh function on C
n = C

n1 × · · · × C
nk verifying (2.6) and set

ν := ν(u, 0).
(i) If ν ≥ a − a j , for some 1 ≤ j ≤ k, then

u(ζ 1, . . . , ζ k)≤(ν + a j − a) log |ζ j |+(a−ν) log+ |ζ j |+
k∑

�=1,��= j

a� log
+ |ζ �|+C on C

n ,

with the same constant C as in (2.6).
(ii) If ν ≥ max{a − a1, . . . , a − ak} then

u(ζ 1, . . . , ζ k) ≤
k∑

j=1

(ν + a j − a) log |ζ j | + (a − ν)

k∑

j=1

log+ |ζ j | + C on Cn ,

with the same constant C as in (2.6)

Proof By Proposition 3.1 we have that ν ≤ a. We divide the proof in three steps.
Step 1.We assume here that n1 = · · · = nk = 1 and v is a psh function on Ck such that

v(t1, . . . , tk) ≤
k∑

j=1

a j log
+ |t j | + C , ∀ (t1, . . . , tk) ∈ C

k , (3.1)
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for some constant C , and ν := ν(v, 0) ≥ a − a j for some j . We show that (i) holds for v.
Assume without loss of generality that j = 1 and let α1 denote the generic Lelong number

of v along {t1 = 0}. Then α1 ≤ ν. Moreover, if t ′ := (t2, . . . , tk) is such that the function
v(·, t ′) �≡ −∞, then by (3.1), v(·, t ′) ∈ a1L(C). Using Proposition 2.1 we infer that

ν(v, (0, t ′)) ≤ ν(v(·, t ′), 0) ≤ a1, so α1 ≤ a1.

By Siu’s decomposition theorem [13], ddcv = α1[t1 = 0] + R, where [t1 = 0] denotes
the current of integration along the hyperplane {t1 = 0} and R is a positive closed current
of bidegree (1, 1) on C

k , with generic Lelong number 0 along {t1 = 0}. Hence w :=
v − α1 log |t1| extends to a psh function on Ck , which satisfies ddcw = R and

w(t1, . . . , tk) ≤ (a1 − α1) log
+ |t1| +

k∑

j=2

a j log
+ |t j | + C , ∀ (t1, . . . , tk) ∈ C

k, (3.2)

where C is the constant from (3.1). Indeed, this clearly holds if |t1| ≥ 1. Applying the
maximum principle for w(·, t ′), with t ′ fixed, then shows that (3.2) holds everywhere.

We now estimate α1. Consider the current S on (P1)k determined by w, so S |Ck= R (see
(2.6) and (2.7)). By (3.2) we have

S ∼ (a1 − α1)ωt1 +
k∑

j=2

a jωt j ,

whereωt j = π�
jωFS andπ j is the projection onto the j-th factor.ByDemailly’s regularization

theorem [4, Proposition 3.7], there exists, for every ε > 0, a positive closed current Sε of
bidegree (1, 1) on (P1)k , with analytic singularities and such that

Sε ∼ (a1−α1+ε)ωt1 +
k∑

j=2

(a j + ε)ωt j , ν(S, x) − ε ≤ ν(Sε, x) ≤ ν(S, x), ∀ x ∈ (P1)k .

Thus Sε is smooth near all points where ν(S, x) = 0, and in particular near the generic point
of {t1 = 0}. Let wε be the psh potential of Sε on Ck defined in (2.6). Then

wε(t1, . . . , tk) ≤ (a1 − α1 + ε) log+ |t1| +
k∑

j=2

(a j + ε) log+ |t j | + Cε , ∀ (t1, . . . , tk) ∈ C
k,

for some constant Cε. Moreover, ν(wε, 0) ≥ ν(w, 0) − ε = ν − α1 − ε, and wε is smooth
near the generic point of {t1 = 0}. Thus wε(0, ·) is psh on C

k−1 and satisfies

wε(0, t
′) ≤

⎛

⎝
k∑

j=2

a j + (k − 1)ε

⎞

⎠ log+ |t ′| + Cε .

We infer by Proposition 2.1 that ν −α1−ε ≤ ν(wε, 0) ≤ ν(wε(0, ·), 0) ≤ a−a1+(k−1)ε.
Letting ε ↘ 0 yields that α1 ≥ ν + a1 − a.

By (3.2),

v(t1, . . . , tk) ≤ α1 log |t1| + (a1 − α1) log
+ |t1| +

k∑

j=2

a j log
+ |t j | + C .
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1576 D. Coman, J. Heffers

Since α1 ≥ ν + a1 − a it follows that

v(t1, . . . , tk) ≤ (ν + a1 − a) log |t1| + (a − ν) log+ |t1| +
k∑

j=2

a j log
+ |t j | + C ,

for all (t1, . . . , tk) ∈ C
k . This concludes Step 1.

Step 2. We show here that assertion (ii) of Theorem 3.2 holds for functions v that verify
(3.1), if ν := ν(v, 0) ≥ max{a − a1, . . . , a − ak}. Let α j denote the generic Lelong number
of v along {t j = 0}. Then α j ≤ ν and by Step 1, ν + a j − a ≤ α j ≤ a j for all 1 ≤ j ≤ k.
By Siu’s decomposition theorem [13], the function

w(t1, . . . , tk) := v(t1, . . . , tk) −
k∑

j=1

α j log |t j |

extends to a psh function on Ck , which satisfies

w(t1, . . . , tk) ≤
k∑

j=1

(a j − α j ) log
+ |t j | + C , ∀ (t1, . . . , tk) ∈ C

k,

where C is the constant from (3.1). Hence

v(t1, . . . , tk) ≤
k∑

j=1

(
α j log |t j | + (a j − α j ) log

+ |t j |
) + C

≤
k∑

j=1

(
(ν + a j − a) log |t j | + (a − ν) log+ |t j |

) + C ,

which is the desired conclusion.
Step 3.We complete the proof of the theorem, for the case of arbitrary dimensions n j ≥ 1.

This follows immediately from Steps 1 and 2 by using k-dimensional slices ofCn as we now
indicate. Fix ζ j �= 0, 1 ≤ j ≤ k, and consider the function

v(t1, . . . , tk) = u

(
t1

ζ 1

|ζ 1| , . . . , tk
ζ k

|ζ k |
)

, (t1, . . . , tk) ∈ C
k .

Since u satisfies (2.6), we have that v is psh onCk and verifies (3.1) with the constantC from
(2.6). Moreover ν(u, 0) ≤ ν(v, 0). The conclusions of the theorem now follow from the Ck

case, since u(ζ 1, . . . , ζ k) = v(|ζ 1|, . . . , |ζ k |). ��

4 Proofs of themain results

In this section we give the proofs of Theorems 1.1–1.4.

Proof of Theorem 1.1 Let x ∈ X . We may assume that x = 0 ∈ C
n . We have T |Cn= ddcu

for a psh function u satisfying (2.6), so by Proposition 3.1, ν(T , x) = ν(u, 0) ≤ a.
Assume now that Ea(T ) �= ∅. By (2.3), T = ω + ddcϕ for an ω-psh function ϕ on X .

For 1 ≤ j ≤ k we define
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L j = Span π j (Ea(T )) ⊂ P
n j , � j = dim L j .

Let η j : Cn j+1 → C
n j−� j be a surjective linear map such that L j = � j (ker η j\{0}).

For 1 ≤ j ≤ k we will prove that � j ≤ n j − 1 and

∃ ψ jω -psh on Y j := P
n1−�1−1 × · · · × P

n j−� j−1 × P
n j+1 × · · · × P

nk such that, on X ,

ϕ([z1], . . . , [zk]) =
j∑

m=1

am log
|ηm(zm)|

|zm | + ψ j ([η1(z1)], . . . , [η j (z
j )], [z j+1], . . . , [zk]),

(4.1)

where, by abuse of notation, ω = ∑k
m=1 amπ�

mωFS and πm is the projection of Y j onto
its m-th factor. Moreover, [ηm(zm)] = [ηm]([zm]), where [ηm] : Pnm ��� P

nm−�m−1 is the
projection induced by ηm . The proof is by induction on j = 1, . . . , k.

Let j = 1 and fix x ′ ∈ P
n2 × · · · × P

nk such that ϕ(·, x ′) �≡ −∞. We claim that
π1(Ea(T )) ⊂ Ea1(R), where R is the positive closed current on P

n1 defined by R =
a1ωFS + ddcϕ(·, x ′). Indeed, let p ∈ π1(Ea(T )) and fix q ∈ P

n2 × · · · × P
nk such that

(p, q) ∈ Ea(T ). Without loss of generality we may assume that (p, q) = 0 ∈ C
n and

x ′ ∈ C
n2 × · · · × C

nk . Proposition 3.1 applied to the psh function

u(ζ 1, . . . , ζ k) =
k∑

m=1

am log
√
1 + |ζm |2 + ϕ([1 : ζ 1], . . . , [1 : ζ k]) (4.2)

shows that

u(ζ 1, . . . , ζ k) ≤
k∑

m=1

am log |ζm | + C on C
n ,

for some constantC . Since u(·, x ′) �≡ −∞ this implies that ν(u(·, x ′), 0) ≥ a1. As u(·, x ′) ∈
a1L(C) it follows by Proposition 2.1 that ν(u(·, x ′), 0) = a1. Hence p ∈ Ea1(R), which
proves our claim.

By Proposition 2.1, Ea1(R) is a proper linear subspace of Pn1 , so L1 ⊂ Ea1(R) and
�1 ≤ n1 − 1. Moreover

ϕ([z1], x ′) = a1 log
|η1(z1)|

|z1| + ψ1([η1(z1)], x ′) , (4.3)

whereψ1(·, x ′) is a1ωFS-psh onPn1−�1−1. Defineψ1(·, x ′) ≡ −∞ for x ′ such thatϕ(·, x ′) ≡
−∞. We conclude that (4.3) holds on X and ψ1 is ω-psh on Y1. Hence (4.1) holds for j = 1.

We assume next that (4.1) holds for j − 1 < k and prove it for j . Then

ϕ([z1], . . . , [zk]) =
j−1∑

m=1

am log
|ηm(zm)|

|zm | + ψ j−1[η1(z1)],

. . . , [η j−1(z
j−1)], [z j ], . . . , [zk]), (4.4)

holds on X , where ψ j−1 is ω-psh on Y j−1. Fix y = (y1, . . . , y j−1) ∈ P
n1−�1−1 × · · · ×

P
n j−1−� j−1−1 and x ′ ∈ P

n j+1 × · · · × P
nk such that ψ j−1(y, ·, x ′) �≡ −∞. Note that if

x ′′ = (x1, . . . , x j−1) is such that xm ∈ P
nm\Lm and [ηm](xm) = ym , 1 ≤ m ≤ j − 1, then

by (4.4), ϕ(x ′′, ·, x ′) �≡ −∞. We claim that π j (Ea(T )) ⊂ Ea j (R), where R is the positive
closed current onPn j defined by R = a jωFS+ddcψ j−1(y, ·, x ′). Indeed, let p ∈ π j (Ea(T ))

and fix q ′′ ∈ P
n1 ×· · ·×P

n j−1 , q ′ ∈ P
n j+1 ×· · ·×P

nk such that (q ′′, p, q ′) ∈ Ea(T ).Without
loss of generality we may assume that (q ′′, p, q ′) = 0 ∈ C

n and x ′′ ∈ C
n1 × · · · × C

n j−1 ,
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x ′ ∈ C
n j+1 × · · · × C

nk . Applying Propositions 3.1 and 2.1 to the psh function u from
(4.2), we infer that ν(u(x ′′, ·, x ′), 0) = a j . By (4.4) and the choice of x ′′ this implies that
ν(ψ j−1(y, ·, x ′), 0) = a j . So p ∈ Ea j (R), and our claim is proved.

By Proposition 2.1, Ea j (R) is a proper linear subspace of Pn j , so L j ⊂ Ea j (R) and
� j ≤ n j − 1. Moreover

ψ j−1(y, [z j ], x ′) = a j log
|η j (z j )|

|z j | + ψ j (y, [η j (z
j )], x ′) , (4.5)

where ψ j (y, ·, x ′) is a jωFS-psh on Pn j−� j−1. Define ψ j (y, ·, x ′) ≡ −∞ for y, x ′ such that
ψ j−1(y, ·, x ′) ≡ −∞. By (4.4) and (4.5) we conclude that

ϕ([z1], . . . , [zk]) =
j∑

m=1

am log
|ηm(zm)|

|zm | + ψ j ([η1(z1)], . . . , [η j (z
j )], [z j+1], . . . , [zk])

holds on X , hence ψ j is ω-psh on Y j . This concludes the proof of (4.1) by induction on j .
By the definition of L j , we have π j (Ea(T )) ⊂ L j for 1 ≤ j ≤ k, so Ea(T ) ⊂ L1×· · ·×

Lk . On the other hand, formula (4.1) for j = k shows that Ea(T ) ⊃ L1 ×· · ·× Lk . Consider
the current S = ω + ddcψk on Y := Yk . Then S ∈ Ta1,...,ak (Y ) and by (4.1), T = ℘�S,
where ℘ = [η1] × · · · × [ηk] : X ��� Y . If y ∈ Ea(S) and x = (x1, . . . , xk) is such that
x j ∈ P

n j \L j for 1 ≤ j ≤ k, and ℘(x) = y, then ν(T , x) ≥ ν(S, y), so x ∈ Ea(T ), a
contradiction. Thus Ea(S) = ∅ and the proof is of Theorem 1.1 is complete. ��
Proof of Theorem 1.2 (i) We write T = ω+ddcϕ, where ϕ is anω-psh function on X , and we
assume without loss of generality that j = 1. Set X ′ = P

n2 × · · · × P
nk and E = {x ′ ∈ X ′ :

ϕ(·, x ′) ≡ −∞}. Note that E is locally pluripolar, since E ⊂ {x ′ ∈ X ′ : ϕ(x1, x ′) = −∞}
for some fixed x1 ∈ P

n1 such that ϕ(x1, ·) �≡ −∞.
For x ′ ∈ X ′\E define Tx ′ = a1ωFS + ddcϕ(·, x ′). Then Tx ′ is a positive closed current

of bidegree (1, 1) on P
n1 of mass ‖Tx ′ ‖ = a1. We claim that

π1
(
E+

ν1
(T )

) ⊂ E+
ν1+a1−a(Tx ′) .

Indeed, let p ∈ π1
(
E+

ν1
(T )

)
and fix q ∈ X ′ such that (p, q) ∈ E+

ν1
(T ). Without loss of

generality we may assume that (p, q) = 0 ∈ C
n and x ′ ∈ C

n2 × · · · × C
nk . Note that

ν := ν(T , (p, q)) > ν1 ≥ a − a1,

so Theorem 3.2 applied to the psh function u defined in (4.2) shows that

u(ζ 1, . . . , ζ k) ≤ (ν + a1 − a) log |ζ 1| + (a − ν) log+ |ζ1| +
k∑

�=2

a� log
+ |ζ �| + C on C

n,

for some constant C . Since u(·, x ′) �≡ −∞ this implies that

ν(u(·, x ′), 0) ≥ ν + a1 − a > ν1 + a1 − a = n1a1
n1 + 1

.

Thus p ∈ E+
ν1+a1−a(Tx ′), and our claim is proved.

Note that E+
ν1+a1−a(Tx ′) = E+

n1/(n1+1)(Tx ′/a1) and that the current Tx ′/a1 has unit mass.

We infer by [2, Proposition 2.2] that Span E+
ν1+a1−a(Tx ′) is a proper linear subspace of Pn1 .

It follows that

π1
(
E+

ν1
(T )

) ⊂ V1 :=
⋂

x ′∈X ′\E
Span E+

ν1+a1−a(Tx ′) .
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(ii) This follows from (i), since π j
(
E+

ν0
(T )

) ⊂ π j
(
E+

ν j
(T )

) ⊂ Vj for all 1 ≤ j ≤ k. ��
Proof of Theorem 1.3 (i) We assume without loss of generality that j = 1 and use the same
notation as in the proof of Theorem 1.2. Fix x ′ ∈ X ′\E . Since ν1 ≥ a − a1, it follows as in
the proof of Theorem 1.2 that π1

(
E+

ν1
(T )

) ⊂ E+
ν1+a1−a(Tx ′). Note that

ν1 + a1 − a = (n1 − 1)a1
n1

.

We infer by [3, Theorem 1.2] that the set E+
ν1+a1−a(Tx ′) is either contained in a hyperplane

of Pn1 , or else it is a finite set and |E+
ν1+a1−a(Tx ′)\L| = n1 − 1 for some line L .

If π1
(
E+

ν1
(T )

)
is not contained in a hyperplane, then neither is E+

ν1+a1−a(Tx ′). It follows
that π1

(
E+

ν1
(T )

)
is a finite set and π1

(
E+

ν1
(T )

)\L1 = A1 for some line L1 and set A1 with
|A1| ≤ n1 − 1. However since π1

(
E+

ν1
(T )

)
is not contained in a hyperplane, we must have

that |A1| = n1 − 1 and Span(L1 ∪ A1) = P
n1 .

(ii) This follows readily from (i). ��
Proof of Theorem 1.4 We recall [10, Theorem 1.1] for bidegree (1, 1) currents: Let S be a
positive closed current of bidegree (1, 1) on P

N , N ≥ 2, with mass ‖S‖ = b, and let

α >
b(N − 1)

N
, γ = γ (N , b, α) = bN (N − 1) − α

N 2 − 1
. (4.6)

If ν(S, p) ≥ α, ν(S, q) ≥ α, for some points p �= q , then either E+
γ (S) is contained in a

hyperplane or there exists a complex line L such that |E+
γ (S)\L| = N − 1.

(i) Following what was done in the proof of Theorem 1.3, we let j = 1, so p1 �= q1.
We have α1 > ν1 ≥ a − a1 and, since α1 ≤ a, we get β1 ≥ a − a1. We infer that
p1, q1 ∈ Eα1+a1−a(Tx ′) and π1

(
E+

β1
(T )

) ⊂ E+
β1+a1−a(Tx ′). Note that

α1 + a1 − a > ν1 + a1 − a = a1(n1 − 1)

n1
, β1 + a1 − a = γ (n1, a1, α1 + a1 − a) ,

where γ is defined in (4.6). Applying [10, Theorem 1.1] gives us that if E+
β1+a1−a(Tx ′) is not

contained in a hyperplane, then |E+
β1+a1−a(Tx ′)\L| = n1 − 1 for some line L . Thus E+

β1
(T )

satisfies the conclusion.
Assertion (ii) follows immediately from (i). ��
We conclude this section with a series of examples which show that our theorems are

sharp.

Example 4.1 We show here that the values ν j and ν0 from Theorem 1.2 are sharp for the
geometric properties of the corresponding upper level sets of Lelong numbers. Assume
without loss of generality that j = 1 and let S = {s0, . . . , sn1} ⊂ P

n1 such that Span S =
P
n1 . Consider the hyperplanes Hm

1 = Span(S\{sm}) ⊂ P
n1 , 0 ≤ m ≤ n1, and fix some

hyperplanes Hj ⊂ P
n j , 2 ≤ j ≤ k. We denote by [H ] the current of integration along a

hyperplane H ⊂ P
N and we let

T = a1
n1 + 1

n1∑

m=0

π�
1 [Hm

1 ] +
k∑

j=2

a jπ
�
j [Hj ] .

Then T ∈ T , E+
ν1

(T ) = ∅, and Eν1(T ) = S×H2×· · ·×Hk . So π1
(
Eν1(T )

)
is not contained

in any hyperplane of Pn1 .
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Assume without loss of generality that ν0 = ν1. Then the above current T shows that the
value ν0 is sharp with respect to the geometric property from Theorem 1.2 (ii).

Example 4.2 To show that the values ν j and ν0 from Theorem 1.3 are sharp we use a similar
idea as in the previous example. By [1, Examples 3.5, 3.6] and [3, Section 2.3], there exists,
for every N ≥ 2, a positive closed current RN on P

N of bidegree (1, 1) and unit mass
‖RN‖ = 1, such that the set E(N−1)/N (RN ) is not contained in any hyperplane of PN and
|E(N−1)/N (RN )\L| ≥ N for every line L ⊂ P

N . Assume without loss of generality that
j = 1 and fix some hyperplanes Hj ⊂ P

n j , 2 ≤ j ≤ k. We let

T = a1π
�
1 Rn1 +

k∑

j=2

a jπ
�
j [Hj ] .

Then T ∈ T and Eν1(T ) ⊃ E(n1−1)/n1(Rn1)×H2×· · ·×Hk . Soπ1
(
Eν1(T )

)
is not contained

in any hyperplane of Pn1 and |π1
(
Eν1(T )

)\L| ≥ n1 for every line L ⊂ P
n1 .

Example 4.3 In Theorem 1.4, we need to have two components p j �= q j , otherwise the
conclusion fails to hold. To see this, we use the current from the first example in [10, Section 3]
in the bidegree (1, 1) case. In particular we consider the hyperplanes Hm

1 , 1 ≤ m ≤ n1, from
Example 4.1, and notice s0 ∈ Hm

1 for all m. We consider the current R1 on P
n1 given by

R1 = 1

n1

n1∑

m=1

[Hm
1 ] .

Observe that ν(R1, s0) = 1, for any point x ∈ Lm
1 = Span{s0, sm}, ν(R1, x) = n1−1

n1
, and

⋃n1
m=1 L

m
1 is not contained in a hyperplane. Letting [Hj ] be as in the previous two examples,

we consider again the current

T = a1π
�
1 R1 +

k∑

j=2

a jπ
�
j [Hj ] .

Note that for ν1 < α1 ≤ a, Eα1(T ) = Ea(T ) = {s0}×H2×· · ·×Hk , so π1
(
Ea(T )

) = {s0}.
Moreover

⋃n1
m=1 L

m
1 ⊂ π1

(
E+

β1
(T )

)
, so assertion (i) of Theorem 1.4 does not hold for T .

5 Currents on projective spaces

If T is a positive closed current of bidegree (1, 1) on P
n with mass ‖T ‖ = 1, it is shown

in [2, Proposition 2.2] that E+
n/(n+1)(T ) is contained in a hyperplane of Pn (see also [3,

Theorem 1.1] for the case of currents of any bidegree (q, q)). The value n/(n + 1) is sharp,
as shown by the following example. Let S = {p0, . . . , pn} ⊂ P

n such that Span S = P
n , and

consider the hyperplanes Hj = Span(S\{p j }), 0 ≤ j ≤ n. If

T = 1

n + 1

n∑

j=0

[Hj ] , (5.1)

then En/(n+1)(T ) = S is not contained in any hyperplane. We show here that such currents
T provide the only examples:
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Theorem 5.1 If T is a positive closed current of bidegree (1, 1) on P
n and ‖T ‖ = 1, then

either En/(n+1)(T ) is contained in a hyperplane of Pn or else T is a current of form (5.1).

We start with the following lemma:

Lemma 5.2 Let T be a positive closed current of bidegree (1, 1) on P
n such that ‖T ‖ = 1.

Assume that, for some ν > 0, there exist linearly independent points p1, . . . , pn ∈ Eν(T ).
Then T ≥ (nν − n + 1)[H ], where H is the hyperplane spanned by p1, . . . , pn.

Proof The lemma is obviously true for n = 1, so we assume n ≥ 2. We write T = α[H ] +
(1 − α)R, where α is the generic Lelong number of T along H and R is a positive closed
current of bidegree (1, 1) on Pn such that ‖R‖ = 1. Using Demailly’s regularization theorem
[4] we infer that there exists, for each ε > 0, a positive closed current Rε = ωFS + ddcϕε

on P
n such that ν(Rε, p j ) > ν(R, p j ) − ε, 1 ≤ j ≤ n, and Rε is smooth near each point p

where ν(R, p) = 0, hence near the generic point of H . Therefore

S := Rε |H= ωFS + ddc(ϕε |H )

is a well defined positive closed current on H ≡ P
n−1 and

ν(S, p j ) ≥ ν(Rε, p j ) > ν(R, p j ) − ε ≥ ν − α

1 − α
− ε , 1 ≤ j ≤ n .

By [2, Proposition 2.2] we have that E+
(n−1)/n(S) is contained in a hyperplane of Pn−1.

Since the points p1, . . . , pn are in general position, it follows that p j /∈ E+
(n−1)/n(S) for

some j . Hence

n − 1

n
≥ ν(S, p j ) >

ν − α

1 − α
− ε .

Letting ε ↘ 0 this implies that α ≥ nν − n + 1, so T = α[H ] + (1 − α)R ≥ (nν − n + 1)
[H ]. ��
Proof of Theorem 5.1 Assume that En/(n+1)(T ) is not contained in any hyperplane of Pn .
Then there exists a set S = {p0, . . . , pn} ⊂ En/(n+1)(T ) such that Span S = P

n . If Hj =
Span(S\{p j }), then by Lemma 5.2,

T ≥
(
n

n

n + 1
− n + 1

)
[Hj ] = 1

n + 1
[Hj ] , 0 ≤ j ≤ n .

Hence by Siu’s decomposition theorem [13],

T ≥ T ′ := 1

n + 1

n∑

j=0

[Hj ] .

Since both currents T , T ′ have unit mass it follows that T = T ′. ��
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