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Abstract

Let T be a positive closed current of bidegree (1, 1) on a multiprojective space X = P! x
- x P For certain values of «, which depend on the cohomology class of T, we show

that the set of points of X where the Lelong numbers of T exceed « have certain geometric

properties. We also describe the currents 7' that have the largest possible Lelong number in

a given cohomology class, and the set of points where this number is assumed.
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1 Introduction

Let M be acomplex manifold of dimension n and T be a positive closed current of bidimension
(p, p) (or bidegree (n — p,n — p)) on M. Consider the upper level sets

Eo(T):={xeM: v(T,x)>a}, EJ(T):={xeM: v(T,x)>a},

where v(T, x) is the Lelong number of T at x € M and @ > 0 (see [5,11] for the definition
and properties of Lelong numbers). A fundamental theorem of Siu [13] states that for « > 0,
E,(T) is an analytic subvariety of M of dimension at most p. It follows that Ear (T) is an at
most countable union of analytic subvarieties of M of dimension at most p.

In the case of the projective space M = P, explicit geometric descriptions of the sets
E(;" (T) are obtained in [1,3]. Further results in this direction are given in [9,10]. We also
note that the case of currents of bidimension (1, 1) on multiprojective spaces is studied in [3,
Section 4].

Our goal here is to study the geometric properties of the sets EJ (T) for positive closed
currents 7 of bidegree (1, 1) on multiprojective spaces. Throughout the paper we let

X :=P" x...xP% :IP";Z‘IJ x~-~><IP>;'Z"k], ni=ny+---+ng, (1.1)
where z/ = (zé, R z,],‘j) e Citland [7/] = [zé e z{;_i] denote the homogeneous
coordinates on P/ . Let

I : CHIN(0) — P, T1;(z)) = [2/], mj:X — P, (1.2)

be the canonical projection, and respectively the projection onto the j-th factor. Set
wj Zﬂ;wps, 1<j<k,

where wrgs denotes the Fubini-Study Kéhler form on a projective space P"J. The Dolbeault

cohomology group H'! (X, R) is generated by the forms w;, . . ., wy.
We let
(@i, ....a) € (0,400)*, a:=a+-- +a, W =wq, g =ai01 + -+ arowg,
(1.3)
and we denote by
T ="Ta,...ar(X) (1.4)

the space of positive closed currents 7' of bidegree (1, 1) on X in the cohomology class of @
(.e. T ~ w).

In the above setting, our first result gives a description of the currents in 7" with the largest
possible Lelong number. It is the analogue of [2, Proposition 2.3] to the case of multiprojective
spaces (see also Proposition 2.1 in the following section). The case of bidegree (1, 1) currents
on P! x P! was treated in [2, Proposition 4.1].

Theorem 1.1 IfT € T then v(T,x) < aforallx € X.If E,(T) # () then there exist proper
linear subspaces L; C P" of dimension £;, and surjective linear maps n; : crtl
cri—ti 1< Jj <k, such that

Eq(T) =Ly x - xLg, Ly =Tjkern;\{0}), T =p*S,
where = [m] x -+ x [m] 0 X == ¥ := P70 Pt ] PYo--s
P"i =t~V is the projection induced by nj,and S € 1y, .. 4 (Y) is a current with E4(S) = @.

.....
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Our next result extends [2, Proposition 2.2] to the case of multiprojective spaces (see also
[3, Theorem 1.1] for the case of currents of arbitrary bidegree on projective space).
Theorem1.2 If T € 7,vj =a— njaﬁ and vo = max{vy, ..., v}, then the following hold:

(i) There exist proper linear subspaces V; C P"J such that (Ej; (T)) C Vj, forl <

Dk
! _(iik)EjO(T) CVix-x Vi
The following result is a version of [3, Theorem 1.2] for currents of bidegree (1, 1) on

multiprojective spaces. If A C PV we denote by Span A the smallest linear subspace of PV
containing A.

Theorem 1.3 LetT € T andsetv; = a— Z—’] vo = max{vy, ..., vg}. We have the following:
(i) Ifnj > 2 for some 1 < j < k, then the set 7 (E;t,(T)) is either contained in a
hyperplane H; of P"'J, or else it is a finite set and 7 (E;’; (T))\Lj = Aj, for some line L
and set Aj with |Aj| =nj — 1 and Span(L; U A;) = P"J.
(i) If nj = 2 forall 1 < j < k, then E“,;(T) C Wi x --- x Wi, where for each j,
Wij=HjorW;=L;UAj Moreover,if W =L;jUAj forall1 < j <k, then E;’;)(T) is
a finite set.

One can also obtain a version of [10, Theorem 1.1] in the case of multiprojective spaces. It
strengthens the conclusion of Theorem 1.3 under the additional assumption on the existence
of two points where T has large Lelong number.

Theorem 1.4 LetT € T and setv; = a — Z—f vo = max{vy, ..., vk}. Furthermore, let
J

2 e — oy
;T ajnj —aj

anj
Bj = Bjlaj) =

n?—l , wherev; <aj <a,
and set By = max{fy, ..., Br}, 0 = max{oy,...,ar}. Let p = (p1,...,px) € X, g =
(q1s---,qk) € X. Then the following hold:

@ Ifnj>2 p; #qj,v(T,p) > aj, v(T,q) > aj, for some 1 < j <k, then the set
T (E;j (T)) is either contained in a hyperplane H; of P"'J, or else 7 (E;{] (T))\Lj =Aj
for some line L and set Aj with |Aj| =nj — 1 and Span(L; U A;) =P".

() Ifn; =2, pj #qj, foralll < j <k, and if v(T, p) = ap, v(T,q) = oy, then
E;O(T) C Wi x -« x Wi, where for each j, W; = Hj or W; = L; UAj.

It is worth noting that 8;(v;) = v}, and that 8; decreases as «; increases.

The paper is organized as follows. In Sect. 2 we recall results about the structure of positive
closed currents of bidegree (1, 1) on multiprojective spaces. In Sect. 3 we develop some of
the tools needed for the proof of our results; see Proposition 3.1 and Theorem 3.2, which deal
with growth properties of entire plurisubharmonic (psh) functions in certain Lelong classes
on C”" that have a large Lelong number at the origin. Theorems 1.1, 1.2, 1.3, and 1.4 are
proved in Sect. 4. We also give there examples showing that these results are sharp. In Sect. 5
we consider positive closed currents of bidegree (1, 1) on a projective space, and we obtain
in Theorem 5.1 a more precise version of [2, Proposition 2.2].

2 Preliminaries

Positive closed currents of bidegree (1, 1) on a projective space P can be described via
their logarithmically homogeneous plurisubharmonic (psh) potentials on C™*! or via psh
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1572 D. Coman, J. Heffers

functions in the Lelong class on C" < P (see [7,8,12]). Recall that the Lelong class £(C™)
is the class of psh functions # on C™ that satisfy u(z) < log™ |z| + C, for all z € C™, with
some constant C,, depending on u. A similar description holds in the case of multiprojective
spaces and we recall it in this section (see also [6, Section 2]). If M is a complex manifold
and 2 is a smooth real (1, 1)-form on M, an Q-plurisubharmonic (2-psh) function on M is
a function v which is locally the sum of a psh function and a smooth one, and which verifies
Q + dd“y > 0in the sense of currents. Here d = 9 + 9, d¢ = %(8 —9).

Let X be the multiprojective space defined in (1.1) endowed with the Kihler form o from
(1.3). Recall the definition (1.2) of the projections IT; and 7, and set

D=1 x - x g : (C"HN{0}) x -+ x (C*TI\{0}) — X. 2.1
Consider the standard embeddings
CY s P, =, ) eCY > [1ig =[] oo gl 1 € P 0
C"=C"x---xC*eX, " .... 0> q1:c",....[1: 4.

Let T € 7, where 7 is defined in (1.4). Then
T=w+dd, (2.3)
where ¢ = ¢r is an w-psh function on X, unique up to additive constants. We define the
function U = Ur by

k

UG'....25 =) ajlogld |+ ('], ... [ (2.4)
j=1

Then U extends to a psh function on C"+! x ... x C**! [T*T = dd°U, and U satisfies
the logarithmic homogeneity condition

k
Uhz', ... 0= ajlogltj| + UG, ....2N, Yt e C\[0), 1 <j <k. 25)
Jj=1
Set u = ur € PSH(C"), u(g’l, ce, ;'k) =U(, ;1, R ;‘k). Then it is easy to see
that 7 |cn= dd“u and that the function u € aL(C") (where a is defined in (1.3)) satisfies
the special growth condition
k

u({l, ce ;“k) < Zaj log™ |§j| + C, for some constant C. (2.6)
j=1

Conversely, if u € PSH(C") satisfies (2.6) then the function

k
U, ¢, e =) ajlogll +u@'/n, ..., t%/w), 1; € C\{0}, ¢/ e T,
j=1
2.7

extends to a psh function on Cmt+l x .. x €t which satisfies (2.5). Thus u determines
acurrentin 7.

We will need the following result which is contained in [2, Propositions 2.1 and 2.3]. It
gives a description of positive closed currents of bidegree (1, 1) on P with highest Lelong
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number. Recall that if 7 is a positive closed current of bidegree (1, 1) on P its mass is given

by
1Tl :/ T Aalst
]Pm
Moreover, if [|T|| = 1 then T = wrs + dd“p for some wrg-psh function ¢ on P™. Let
I : C"*t1\{0} — P be the canonical projection, set z = (o, ..., zm) € C"T1 TI(z) =
[zl =1lz0:--:zm] € P,

Proposition 2.1 Let T be a positive closed current of bidegree (1, 1) on P™ with |T| = 1.
(i) We have v(T , x) < 1 for all x € P™.
(i) If E1(T) # O then E|(T) is a proper linear subspace of P".
(iii) Let L C E(T) be a linear subspace of dimension £ and n : cmtl 5 ¢t pe a
surjective linear map such that L = Tl(ker n\{0}). Then

In(z)l

|z]

T = wps +dd° (105% + h([n(z)])) ;
where h is an wps-psh function on P~ [n(2)] = [n1(z]), and [n] : P™ —-» P—t=1 g
the projection induced by .

@v) If dim E((T) = £ and n : C"t' — C"~ ¢ is a surjective linear map such that
E\(T) = T(ker n\{0}), then T = [n]*S, where S is a positive closed current of bidegree
(1, D) on PtV with ||S|| = 1 and E((S) = @.

Proof Assertion (i) is contained in [2, Proposition 2.1], while (ii), (iv) in [2, Proposition 2.3].
For (iii), write T = wrs + dd ¢, where ¢ is an wrg-psh function on P”*. Since 7 is linear
and surjective, there exists a linear isomorphism A : C"+! — C™*! such that § o A(r) =
(to41, ..., ty), where t = (to, ..., t,). Hence A(V) = kern, where V. = {tp4| = --- =
tm = 0}. Let [A(r)] = [A]([t]), where [A] : P --» P™ is the automorphism of P”* induced
by A. If

[A(D)]
It
then IT(V\{0}) C E(S). By Proposition 2.3 in [2] and its proof we infer that

[A@)] lter1]? + -+ - + |t |?
log 20 4 oA =1o
ST S+ ltm?

§=[APT = wps +dd* (10g + w([A(t)])) ;

+h(ter1 - tm]),

for some wFg-psh function 4 on P"—t=1 Thus

[n(2)]

T=[A"'TS=[A" T —l—ddC(lo e
[AT'*S = [A T wrs Syerey

[n(2)|

|z]

+ h([ﬂ(z)]))

= wrs +dd* (log + h([’?(Z)])) .

3 Plurisubharmonic functions in special Lelong classes
We study here entire psh functions that satisfy certain growth conditions. The results will

be used in the proofs of our main theorems. The first proposition deals with the case of psh
functions in certain Lelong classes, with the largest possible Lelong number at the origin.
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Proposition 3.1 Let u be a psh function on C" = C" x ... x C"™ verifying (2.6). Then
v(u,0) <a=aj+---+ ar. Moreover, if v(u,0) = a then

k

u@', .. g%y <> ajlogled |+ C onC",
j=1

with the same constant C as in (2.6). In particular, v(u, x) > a; for all x € {¢/ =0}

Proof By (2.6) we have that u € a£(C"). Let R be the trivial extension to P" of the cur-
rent ddu. Then ||R|| < a, so v(u,0) < a by Proposition 2.1. If v(u,0) = a then [2,
Proposition 2.1] implies that

w6y = 3 log(g P 1) AL 1 5D,

for some awrs-psh function 7 on P"~1. If ¢/ £ Oforall 1 < j < k and ¢ € C is such that
|t§j| > 1forall 1 < j <k, we obtain using (2.6) that

lﬂﬂ:~w&b=hmﬂ:~wmﬁw=mmkuww%—§hgwﬂﬁ+~~ﬂmﬂ%

=

-

. a
ajloglic/| +C — 2 log(ltc > + - - + 1tk %)
1

J

Il
M~

; a
ajlog|c/|+C = 2 log(g '[P 4 +1¢" ).

~.
Il
—

This yields the conclusion. O

Our next result is a refinement of Proposition 3.1 and it deals with the case of psh functions
u that have a sufficiently large Lelong number at the origin.

Theorem 3.2 Let u be a psh function on C* = C" x --- x C" verifying (2.6) and set
v :=v(u,0).
(i) Ifv > a — aj, for some 1 < j <k, then

k
u@', < +a; —a)logled [+@—v)logh ¢/ [+ Y aglogh |¢f|+C onC",
0=1,0#)

with the same constant C as in (2.6).
(i) Ifv > max{a — ay, ...,a — ai} then

k k
u@!, g =)y wtaj—a)logltd|+ (@ —v) ) logh [t/ +C onC",
j=1 j=1

with the same constant C as in (2.6)

Proof By Proposition 3.1 we have that v < a. We divide the proof in three steps.

Step 1. We assume here that ny = --- = ng = 1 and v is a psh function on Ck such that
k

vt ... ) < Y ajlogh ||+ C. V(. ....n) e Ch (3.1)
j=1
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for some constant C, and v := v(v, 0) > a — a; for some j. We show that (i) holds for v.

Assume without loss of generality that j = 1 and let o; denote the generic Lelong number
of v along {r; = 0}. Then @; < v. Moreover, if t' := (t2, ..., f) is such that the function
v(-, ') # —oo, then by (3.1), v(-, t') € a; L(C). Using Proposition 2.1 we infer that

v(v, (0,1)) < v((,1),0) <aj, soa; <a.

By Siu’s decomposition theorem [13], dd“v = «1[t; = 0] + R, where [#; = 0] denotes
the current of integration along the hyperplane {f; = 0} and R is a positive closed current
of bidegree (1, 1) on C*, with generic Lelong number 0 along {r; = 0}. Hence w :=
v — ap log |#1| extends to a psh function on CK, which satisfies dd“w = R and

k
w(ty, ..., ) < (ai —ozl)log+ |t ] + Zaj log+ £l +C,VY(t,.... 1) € Ck, (3.2)
j=2
where C is the constant from (3.1). Indeed, this clearly holds if |#1| > 1. Applying the
maximum principle for w(-, ), with ¢’ fixed, then shows that (3.2) holds everywhere.

We now estimate «1. Consider the current S on (P')* determined by w,s0 S |ck= R (see
(2.6) and (2.7)). By (3.2) we have

k

S~ (a1 —anw, + Y _ajo,
j=2

where w;; = nj‘fa) Fs and 7 is the projection onto the j-thfactor. By Demailly’s regularization
theorem [4, Proposition 3.7], there exists, for every ¢ > 0, a positive closed current S, of
bidegree (1, 1) on (PHY*, with analytic singularities and such that

k
Se ~ (a1 —a1+&)w, + Y _(aj +&)wy;, v(S,x)—e < (S, x) < (S, x), Vx € (PHE.
j=2
Thus S, is smooth near all points where v(S, x) = 0, and in particular near the generic point
of {#; = 0}. Let w, be the psh potential of S, on Ck defined in (2.6). Then

k
we(tr, ... 1) < (a1 — oy +e)logh 0]+ Y (aj +e)logh |tj| + Ce, V(1. ..., 1) € CF,
j=2
for some constant C,. Moreover, v(wg, 0) > v(w,0) — & = v — ] — &, and w, is smooth
near the generic point of {t; = 0}. Thus w, (0, -) is psh on Ck=1 and satisfies

k
we (0, 1) < | Y aj+ (k= e | log* || + Ce .
j=2
We infer by Proposition 2.1 that v —a; —e < v(wg, 0) < v(w:(0, -),0) <a—a;+(k—1)e.
Letting ¢ \( O yields that @y > v +a; — a.
By (3.2),
k

v(ty, ..., 1) < arlog|t| + (a1 —ar) log* |1 +Z“/ log® |tj|+ C.
j=2
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Since a; > v + a; — a it follows that

k
vt ... 1) < (vt —a)logln| + (@ —v)log™ |+ Y ajlogh |1+ C.
j=2
forall (71, ..., f) € Ck. This concludes Step 1.
Step 2. We show here that assertion (ii) of Theorem 3.2 holds for functions v that verify
3.1, ifv :=v(v,0) > max{a —ay, ..., a — a;}. Let o; denote the generic Lelong number

of valong {t; = 0}. Thena; < vandbyStepl,v+a; —a <a; <ajforalll < j <k.
By Siu’s decomposition theorem [13], the function

k
w(tn, ... 0) = vt ... 0) — Y ajloglt]
j=1
extends to a psh function on Ck, which satisfies
k
w(t, ..., 1) < Y (aj —aploghltj|+C, ¥(,...,u) € C,
j=1

where C is the constant from (3.1). Hence

v(ty, ..., ) <

M~

(ajlogltjl + (aj —aj)logt|tj]) + C
|

~.
Il

M~

<> (v+aj—a)logltj| + (@ —v)log* |tj]) + C,

1

~.
Il

which is the desired conclusion.

Step 3. We complete the proof of the theorem, for the case of arbitrary dimensions n; > 1.
This follows immediately from Steps 1 and 2 by using k-dimensional slices of C" as we now
indicate. Fix {j # 0,1 < j <k, and consider the function

1 k

¢ ¢
U(tl,...,tk)zu(l]m,..‘,tkkikl) s (tl,...,tk)e(ck.

Since u satisfies (2.6), we have that v is psh on Ck and verifies (3.1) with the constant C from
(2.6). Moreover v(u, 0) < v(v, 0). The conclusions of the theorem now follow from the C*
case, since u(z!, ..., %) = v(cl, ..., |2¥)). s

4 Proofs of the main results

In this section we give the proofs of Theorems 1.1-1.4.

Proof of Theorem 1.1 Let x € X. We may assume that x = 0 € C". We have T |cn= ddu
for a psh function u satisfying (2.6), so by Proposition 3.1, v(T, x) = v(u, 0) < a.

Assume now that E,(T) # ¢. By (2.3), T = w + dd¢p for an w-psh function ¢ on X.
For 1 < j < k we define
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Lj =Spanm;(E,(T)) C PP, £; =dimL;.

Letn; : C"it! — C"~Y be a surjective linear map such that L; =TII;(ker n;\{0}).
For 1 < j < k we will prove that £; <n; — 1 and

3¢jw-pshonY; := pr—b-b o PTGl P x L. x P such that, on X,

1 ky / [7m (2™)] o j+1 k(4.1)
ez, 15D =) anlog = o TV EDL Iy L 1D,
m=1

where, by abuse of notation, w = an:l ammywps and 7, is the projection of Y; onto
its m-th factor. Moreover, [, (z")] = [n,1(z"*]), where [n,] : P -5 Pm—tn=1 i the
projection induced by n,,. The proof is by inductionon j =1, ..., k.

Let j = 1 and fix x’ € P" x --. x P" guch that ¢(-, x’) # —oo. We claim that
m(Eq(T)) C Eg4 (R), where R is the positive closed current on P! defined by R =
aiwps +dd°e(-, x'). Indeed, let p € w1 (E,(T)) and fix ¢ € P" x --- x P such that
(p,q) € E,(T). Without loss of generality we may assume that (p,g) = 0 € C" and
x' € C" x ... x C". Proposition 3.1 applied to the psh function

k
w@' . 8 = anlog V141" + o1 :¢", . 11085 4.2)
m=1

shows that
k
u(;l,...,;“k) < Zamlog|§m|—|—C on C",
m=1

for some constant C. Since u(-, x") # —oo this implies that v(u(-, x"),0) > a;. Asu(-,x') €
a1 L(C) it follows by Proposition 2.1 that v(u(-, x"),0) = a;. Hence p € E4 (R), which
proves our claim.

By Proposition 2.1, E4 (R) is a proper linear subspace of P"!, so L1 C E,4 (R) and
1 < ny — 1. Moreover

Im&h|
2!
where /1 (-, x') is ajwps-pshon P =61~ Define v/ (-, x’) = —oo for x’ such that (-, x') =

—00. We conclude that (4.3) holds on X and v/ is w-psh on Y;. Hence (4.1) holds for j = 1.
We assume next that (4.1) holds for j — 1 < k and prove it for j. Then

¢([z'1,x") = ai log +Y1(m EH1L X, (4.3)

o[z, D) = Zam InGOL e,

2]
i@ 1D, 4.4)
holds on X, where lﬁ/ jis @-pshon Y;_1. Fix y = (y1,...,yj—1) € P=0-1 x ... x
Pri-1=ti-1=1 and x’ € P+ x ... IP”k such that ¥;_1(y, -, x’) # —ooc. Note that if
= (x1,...,Xj_1) is such that x,, € P"*\L,, and [1,,](x;s) = ym. 1 <m < j — 1, then

by (4.4), p(x", -, x") # —o00. We claim that 77; (E4(T)) C Eg;(R), where R is the positive
closed current on P/ definedby R = ajwrs+dd“yrj_1(y, -, x").Indeed, let p € ;(Eq(T))
andfixg” € P" x ... xP"i-1, g € P"i+! x...xP" suchthat (¢”, p, q") € E,(T). Without
loss of generality we may assume that (¢”, p,q’) =0 € C" and x” € C" x --- x C"i-1,
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1578 D. Coman, J. Heffers

x' e C"i+l x ... x C", Applying Propositions 3.1 and 2.1 to the psh function u from
(4.2), we infer that v(u(x”, -, x"),0) = a;. By (4.4) and the choice of x” this implies that
vy, - x"),0) = aj.Sop € Eaj (R), and our claim is proved.

By Proposition 2.1, Eaj(R) is a proper linear subspace of P/, so L; C Eaj(R) and
£j <nj— 1. Moreover

: Inj(z))] ;
Ym0 11 x) = ajlog == + 95 (0. Iy 1. 1), 4.5)
where ¥/ (y, -, x') is ajops-psh on P* =4~ Define ¥/ (y, -, x') = —oo for y, x’ such that

Yi—1(y, -, x’) = —oco. By (4.4) and (4.5) we conclude that

J m
o'l ... [ D) =) anlog % + i (ImEHL - D)L 1D
m=1

holds on X, hence v/; is w-psh on Y;. This concludes the proof of (4.1) by induction on ;.

By the definition of L j, we have 7w ; (E,(T)) C Ljforl < j <k,so E,(T) C Ly x---Xx
L. On the other hand, formula (4.1) for j = k shows that E,(T) D Lj X - - - x L. Consider
the current S = @ +dd“yY on Y := Yi. Then § € 7, . 4 (Y) and by (4.1), T = p*S,
where o =[] x - x[g] : X -—» Y. If y € E,(S) and x = (x1, ..., xx) is such that
xj € PP\Ljforl < j < k,and p(x) =y, then v(T,x) > v(S,y),s0x € E4(T), a
contradiction. Thus E,(S) = ) and the proof is of Theorem 1.1 is complete. O

Proof of Theorem 1.2 (i) We write T = w+dd°¢p, where ¢ is an w-psh function on X, and we
assume without loss of generality that j = 1. Set X’ =P"2 x ... x P and E = {x’ € X’ :
@(-, x") = —oo}. Note that E is locally pluripolar, since E C {x" € X' : ¢(x],x’) = —o0}
for some fixed x; € P"*! such that p(x1, -) # —o0.

For x’ € X'\E define Ty = ajwrps + dd ¢(-, x"). Then T,/ is a positive closed current
of bidegree (1, 1) on P"! of mass || T/ || = a;. We claim that

11 (E5 (D)) € Efppay-o(To).

1

Indeed, let p € m(E;} (T)) and fix g € X’ such that (p,q) € E;(T). Without loss of
generality we may assume that (p, ¢) =0 € C" and x’ € C"2 x ... x C", Note that

v:=v(T,(p,q)) >vi >a—a,

so Theorem 3.2 applied to the psh function u defined in (4.2) shows that

k
u@', . = wta—a)log|t!|+ (a—v)logh|ai| + Y arlogh ¢t + C onC",
=2
for some constant C. Since u(-, x") # —oo this implies that
niap
np+1 '

v(u(,x),0)>v+a —a>vi+a —a=

Thus p € ijal_a(Tx/), and our claim is proved.
Note that EIM]_H (Ty) = E"Jrl/(nlJrl)(Tx//al) and that the current 7,/ /a; has unit mass.

We infer by [2, Proposition 2.2] that Span E:rl +ay—a(Ty) is a proper linear subspace of P'!.
It follows that

T (Ef(T) c V= ﬂ Span Ef , _(Ty).
x'eX'\E
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(i) This follows from (i), since 7; (E}} (T)) C 7;(E,} (T)) C Vjforalll < j <k. O

Proof of Theorem 1.3 (i) We assume without loss of generality that j = 1 and use the same
notation as in the proof of Theorem 1.2. Fix x’ € X'\ E. Since v| > a — ay, it follows as in
the proof of Theorem 1.2 that 71 (E;f (T)) C E;, (Ty"). Note that

vi+ay—a
-1
oba —a= LT DA
ni
We infer by [3, Theorem 1.2] that the set E:r] +a,—a(Tx) is either contained in a hyperplane
of P!, or else it is a finite set and |Ev+1+a17a(TX’)\L| = ny — 1 for some line L.
If my (Ejl (T)) is not contained in a hyperplane, then neither is EI'HH _a(Ty). It follows

that 71 (Ef (T)) is a finite set and 71 (E;} (T))\L; = A; for some line L; and set A; with
|A1] < n; — 1. However since 71 (Ej'] (T)) is not contained in a hyperplane, we must have
that |A;| = n; — 1 and Span(L; U A|) = P"!.

(i1) This follows readily from (i). ]

Proof of Theorem 1.4 We recall [10, Theorem 1.1] for bidegree (1, 1) currents: Let S be a
positive closed current of bidegree (1, 1) on PN, N > 2, with mass ||S|| = b, and let
b(N — 1) bN(N — 1) —«
> — " =

, ¥v=yYWN,b,a)

4.
N N2 -1 (4-6)

If v(S, p) > a, v(S, q) > a, for some points p # ¢, then either E;(S) is contained in a
hyperplane or there exists a complex line L such that IEJJ,r S\L| =N —1.

(i) Following what was done in the proof of Theorem 1.3, we let j = 1, so p; # qi.
We have o1 > v; > a — aj and, since o1 < a, we get f1 > a — a;. We infer that
P1sq1 € Egypay—a(Tw) and 71 (Eg, (T)) C Eg, 1, _o(Tw). Note that

_ai(m =1
i

ay+a—a>vi+a —a s Brrar—a=yn,a,0 +ar—a),
where y is defined in (4.6). Applying [10, Theorem 1.1] gives us that if E;l +ay—a(Tw) is not
contained in a hyperplane, then |E;3r1 +a|_a(Tx/)\L| =ny — 1 for some line L. Thus E;rl (T)
satisfies the conclusion.

Assertion (ii) follows immediately from (i). ]

We conclude this section with a series of examples which show that our theorems are
sharp.

Example 4.1 We show here that the values v; and vy from Theorem 1.2 are sharp for the
geometric properties of the corresponding upper level sets of Lelong numbers. Assume
without loss of generality that j = 1 and let S = {s¢, ..., s,,} C P"! such that Span § =
P"t. Consider the hyperplanes H{" = Span(S\{s;;}) C P"', 0 < m < nj, and fix some
hyperplanes H; C P"/,2 < j < k. We denote by [H] the current of integration along a
hyperplane H C PV and we let

ny k
aj * *
T= = Do {lH+ Y ).

n
1+ m=0 j=2

ThenT € T,E} (T) = @,and E, (T) = S x Hy x - - - X Hy. So 1 (E,, (T)) is not contained

in any hyperplane of P"!.
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Assume without loss of generality that vy = v;. Then the above current 7 shows that the
value vy is sharp with respect to the geometric property from Theorem 1.2 (ii).

Example 4.2 To show that the values v; and vy from Theorem 1.3 are sharp we use a similar
idea as in the previous example. By [1, Examples 3.5, 3.6] and [3, Section 2.3], there exists,
for every N > 2, a positive closed current Ry on PN of bidegree (1, 1) and unit mass
IRyl = 1, such that the set E(y—1),n(Ry) is not contained in any hyperplane of PN and
|[Ev—1),N(RN)\L| > N for every line L C PV . Assume without loss of generality that
J = 1 and fix some hyperplanes H; C P"/,2 < j < k. We let

k
T =a\w} Ry, + Y a;w}[H;].
j=2

ThenT € T and Ey (T) D E(uy—1y/n; (Rn,) X Hy X+ - - x Hy. So i (Ey, (T)) is not contained
in any hyperplane of P"! and |7 (Ew (T))\L| > n for every line L C P!,

Example 4.3 In Theorem 1.4, we need to have two components p; # q;, otherwise the
conclusion fails to hold. To see this, we use the current from the first example in [ 10, Section 3]
in the bidegree (1, 1) case. In particular we consider the hyperplanes Hlm, 1 <m < ny, from
Example 4.1, and notice so € H{" for all m. We consider the current Ry on IP"! given by

ny

1
Ri= - > LH!.
m=1

ni—1
ni

Observe that v(R1, so) = 1, for any point x € L' = Span{so, su}, V(R1,x) = , and
U;;‘: | LT is not contained in a hyperplane. Letting [ H;] be as in the previous two examples,

we consider again the current

k
T=awiR + Y a;jn}[H;].
j=2

Note that for v; < &y < a, Eq,(T) = Eq(T) = {so} x Hy x - - - x Hy,s0 1 (Ea(T)) = {s0}.
Moreover | JI'_, LT C m; (Eg1 (T)), so assertion (i) of Theorem 1.4 does not hold for 7.

m=1

5 Currents on projective spaces

If T is a positive closed current of bidegree (1, 1) on P" with mass ||7T'|| = 1, it is shown
in [2, Proposition 2.2] that E:[/(HD(T) is contained in a hyperplane of P" (see also [3,
Theorem 1.1] for the case of currents of any bidegree (¢, ¢)). The value n/(n + 1) is sharp,
as shown by the following example. Let S = {po, ..., pn} C P" such that Span § = P, and

consider the hyperplanes H; = Span(S\{p;}),0 < j <n.If

1 n
T=-7 ;[H,], (5.1)

then Ej;,/(;4+1)(T) = § is not contained in any hyperplane. We show here that such currents
T provide the only examples:
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Theorem 5.1 If T is a positive closed current of bidegree (1, 1) on P" and ||T|| = 1, then
either Ey /(n41)(T) is contained in a hyperplane of P" or else T is a current of form (5.1).

We start with the following lemma:

Lemma5.2 Let T be a positive closed current of bidegree (1, 1) on P" such that ||T| = 1.
Assume that, for some v > 0, there exist linearly independent points py, ..., pp € E,(T).
Then T > (nv —n + 1)[H], where H is the hyperplane spanned by py, ..., pn.

Proof The lemma is obviously true for n = 1, so we assume n > 2. We write T = «[H] +
(1 — @)R, where « is the generic Lelong number of T along H and R is a positive closed
current of bidegree (1, 1) on P” such that || R|| = 1. Using Demailly’s regularization theorem
[4] we infer that there exists, for each ¢ > 0, a positive closed current R, = wrs + dd ¢,
on P" such that v(Rg, p;) > v(R, pj) —¢,1 < j < n, and R, is smooth near each point p
where v(R, p) = 0, hence near the generic point of H. Therefore

S:=R; |g= wps +dd(¢: 1)

is a well defined positive closed current on H = P"~! and

V—a
V(8. pj) Z v(Re. pj) > V(R pj) —& = 5

— &, 1 =< ] =n.
-«

By [2, Proposition 2.2] we have that E(;_l)/n (8) is contained in a hyperplane of P"~!.
Since the points py, ..., p, are in general position, it follows that p; ¢ E(J;_l)/n(S) for
some j. Hence

n—1 V—ao
— 2>, pj))>— —¢.
n l—«

Letting ¢ N\ O this implies thatoo > nv —n+1,s0 T = «¢[H]+ (1 —a)R > (nv —n+1)
[H]. o

Proof of Theorem 5.1 Assume that E,/,+1)(T) is not contained in any hyperplane of P".
Then there exists a set S = {po, ..., pu} C Eu/u+1)(T) such that Span § = P". If H; =
Span(S\{p;}), then by Lemma 5.2,

n 1
T > - 1)[Hi]=——[Hi], 0<j <n.
_(nn+1 ”l"‘)[ j] n+1[]] =Jj=n

Hence by Siu’s decomposition theorem [13],

1
T > T/ = — H
n+1 Z[ i
j=0
Since both currents 7', 77 have unit mass it follows that T = 7". O
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