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Abstract—It is common practice for developers of user-facing software to transform a mock-up of a graphical user interface (GUI) into
code. This process takes place both at an application’s inception and in an evolutionary context as GUI changes keep pace with
evolving features. Unfortunately, this practice is challenging and time-consuming. In this paper, we present an approach that automates
this process by enabling accurate prototyping of GUIs via three tasks: detection, classification, and assembly. First, logical components
of a GUI are detected from a mock-up artifact using either computer vision techniques or mock-up metadata. Then, software repository
mining, automated dynamic analysis, and deep convolutional neural networks are utilized to accurately classify GUl-components into
domain-specific types (e.g., toggle-button). Finally, a data-driven, K-nearest-neighbors algorithm generates a suitable hierarchical GUI
structure from which a prototype application can be automatically assembled. We implemented this approach for Android in a system

called REDraw. Our evaluation illustrates that REDRAw achieves an average GUI-component classification accuracy of 91% and
assembles prototype applications that closely mirror target mock-ups in terms of visual affinity while exhibiting reasonable code
structure. Interviews with industrial practitioners illustrate ReDraw’s potential to improve real development workflows.

Index Terms—GUI, CNN, Mobile, Prototyping, Machine-Learning, Mining Software Repositories.

1 INTRODUCTION

OST modern user-facing software applications are

GUI-centric, and rely on attractive user interfaces (UI)
and intuitive user experiences (UX) to attract customers,
facilitate the effective completion of computing tasks, and
engage users. Software with cumbersome or aesthetically
displeasing Uls are far less likely to succeed, particularly
as companies look to differentiate their applications from
competitors with similar functionality. This phenomena can
be readily observed in mobile application marketplaces such
as the App Store [1], or Google Play [2], where many
competing applications (also known as apps) offering similar
functionality (e.g., task managers, weather apps) largely
distinguish themselves via UI/UX [3]. Thus, an important
step in developing any GUI-based application is drafting
and prototyping design mock-ups, which facilitates the in-
stantiation and experimentation of Uls in order to evaluate
or prove-out abstract design concepts. In industrial settings
with larger teams, this process is typically carried out by
dedicated designers who hold domain specific expertise
in crafting attractive, intuitive GUIs using image-editing
software such as Photoshop [4] or Sketch [5]. These design
teams are often responsible for expressing a coherent design
language across the many facets of a company’s digital pres-
ence, including websites, applications and digital marketing
materials. Some components of this design process also tend
to carry over to smaller independent development teams
who practice design or prototyping processes by creating
wireframes or mock-ups to judge design ideas before com-
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mitting to spending development resources implementing
them. After these initial design drafts are created it is critical
that they are faithfully translated into code in order for the
end-user to experience the design and user interface in its
intended form.

This process (which often involves multiple iterations)
has been shown by past work and empirical studies to be
challenging, time-consuming, and error prone [6], [7], [8],
[9], [10] particularly if the design and implementation are
carried out by different teams (which is often the case in
industrial settings [10]). Additionally, UI/UX teams often
practice an iterative design process, where feedback is col-
lected regarding the effectiveness of GUIs at early stages.
Using prototypes would be preferred, as more detailed
feedback could be collected; however, with current practices
and tools this is typically too costly [11], [12]. Furthermore,
past work on detecting GUI design violations in mobile apps
highlights the importance of this problem from an indus-
trial viewpoint [10]. According to a study conducted with
Huawei, a major telecommunications company, 71 unique
application screens containing 82 design violations resulting
from the company’s iterative design and development pro-
cess were empirically categorized using a grounded-theory
approach. This resulted in a taxonomy of mobile design vio-
lations spanning three major categories and 14 subcategories
and illustrates the difficulties developers can have faithfully
implementing GUIs for mobile apps as well as the burden
that design violations introduced by developers can place
on the overarching development process.

Many fast-moving startups and fledgling companies at-
tempting to create software prototypes in order to demon-
strate ideas and secure investor support would also greatly
benefit from rapid application prototyping. Rather than
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spending scarce time and resources on iteratively designing
and coding user interfaces, an accurate automated approach
would likely be preferred. This would allow smaller com-
panies to put more focus on features and value and less on
translating designs into workable application code. Given
the frustrations that front-end developers and designers face
with constructing accurate GUISs, there is a clear need for
automated support.

To help mitigate the difficulty of this process, some
modern IDEs, such as XCode [13], Visual Studio [14], and
Android Studio [15], offer built-in GUI editors. However,
recent research suggests that using these editors to create
complex, high-fidelity GUIs is cumbersome and difficult
[11], as users are prone to introducing bugs and presen-
tation failures even for simple tasks [16]. Other commer-
cial solutions include offerings for collaborative GUI-design
and for interactive previewing of designs on target devices
or browsers (displayed using a custom framework, with
limited functionality) [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], but none offer an end-to-end
solution capable of automatically translating a mock-up into
accurate native code for a target platform. It is clear that an
automated tool capable of even partially automating this
process could significantly reduce the burden on the design
and development processes.

Unfortunately, automating the prototyping process for
GUIs is a difficult task. At the core of this difficulty is the
need to bridge a broad abstraction gap that necessitates
reasoning accurate user interface code from either pixel-
based, graphical representations of GUIs or digital design
sketches. Typically, this abstraction gap is bridged by a
developer’s domain knowledge. For example, a developer
is capable of recognizing discrete objects in a mock-up
that should be instantiated as components on the screen,
categorizing them into proper categories based on their
intended functionalities, and arranging them in a suitable
hierarchical structure such that they display properly on a
range of screen sizes. However, even for a skilled developer,
this process can be time-consuming and prone to errors
[10]. Thus, it follows that an approach which automates
the GUI prototyping process must bridge the image-to-
code abstraction gap. This, in turn, requires the creation
of a model capable of representing the domain knowledge
typically held by a developer, and applying this knowledge
to create accurate prototypes.

Given that, within a single software domain, the de-
sign and functionality of GUIs can vary dramatically, it
is unlikely that manually encoded information or heuris-
tics would be capable of fully supporting such complex
tasks. Furthermore, creating, updating, and maintaining
such heuristics manually is a daunting task. Thus, we pro-
pose to learn this domain knowledge using a data-driven
approach that leverages machine learning (ML) techniques
and the GUI information already present in existing apps
(specifically screenshots and GUI metadata) acquired via
mining software repositories (MSR).

More specifically, we present an approach that decon-
structs the prototyping process into the tasks of: detection,
classification, and assembly. The first task involves detect-
ing the bounding boxes of atomic elements (e.g., GUI-
components which cannot be further decomposed) of a user
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interface from a mock-up design artifact, such as pixel-based
images. This challenge can be solved either by parsing in-
formation regarding objects representing GUI-components
directly from mock-up artifacts (e.g., parsing exported meta-
data from Photoshop), or using CV techniques to infer
objects [8]. Once the GUI-components from a design artifact
have been identified, they need to be classified into their
proper domain-specific types (e.g., button, dropdown menu,
progress bar). This is, in essence, an image classification
task, and research on this topic has shown tremendous
progress in recent years, mainly due to advancements in
deep convolutional neural networks (CNNs) [29], [30], [31],
[32], [33]. However, because CNNs are a supervised learning
technique, they typically require a large amount of training
data, such as the ILSVRC dataset [34], to be effective. We as-
sert that automated dynamic analysis of applications mined
from software repositories can be applied to collect screen-
shots and GUI metadata that can be used to automatically
derive labeled training data. Using this data, a CNN can be
effectively trained to classify images of GUI-Components
from a mock-up (extracted using the detected bounding
boxes) into their domain specific GUI-component types.
However, classified images of components are not enough to
assemble effective GUI code. GUIs are typically represented
in code as hierarchal trees, where logical groups of compo-
nents are bundled together in containers. We illustrate that
an iterative K-nearest-neighbors (KNN) algorithm and CV
techniques operating on mined GUI metadata and screen-
shots can construct realistic hierarchies of GUI-components
that can be translated into code.

We have implemented the approach described above
in a system called REDRAW for the Android platform.
We mined 8,667 of the top-rated apps from the Google
Play, executed these apps using a fully automated input
generation approach (e.g., GUI-ripping) derived from our
prior work on mobile testing [35], [36], and extracted the
GUI-hierarchies for the most popular screens from each
app. We then trained a CNN on the most popular native
Android GUI-component types as observed in the mined
screens. REDRAW uses this classifier in combination with
an iterative KNN algorithm and additional CV techniques
to translate different types of mock-up artifacts into pro-
totype Android apps. We performed a comprehensive set
of three studies evaluating REDRAW aimed at measuring (i)
the accuracy of the CNN-based classifier (measured against
a baseline feature descriptor and Support Vector Machine
based technique), (ii) the similarity of generated apps to
the mock-up artifacts (both visually and structurally), and
(iii) the potential industrial applicability of our system,
through semi-structured interviews with mobile designers
and developers at Google, Huawei and Facebook. Our re-
sults show that our CNN-based GUI-component classifier
achieves a top-1 average precision of 91% (i.e., when the
top class predicted by the CNN is correct), our generated
applications share high visual similarity to their mock-up
artifacts, the code structure for generated apps is similar
to that of real applications, and REDRAW has the potential
to improve and facilitate the prototyping and development
of mobile apps with some practical extensions. Our evalua-
tion also illustrates how REDRAW outperforms other related
approaches for mobile application prototyping, REMAUTI [8]
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and pix2code [37]. Finally, we provide a detailed discussion
of the limitations of our approach and promising avenues
for future research that build upon the core ideas presented.

In summary, our paper makes the following noteworthy
contributions:

o The introduction of a novel approach for prototyping
software GUIs rooted in a combination of techniques
drawn from program analysis, MSR, ML, and CV; and
an implementation of this approach in a tool called
REDRAW for the Android platform;

e A comprehensive empirical evaluation of REDRAW,
measuring several complimentary quality metrics, of-
fering comparison to related work, and describing feed-
back from industry professionals regarding its utility;

e An online appendix [38] showcasing screenshots of
generated apps and study replication information;

o As part of implementing REDRAW we collected the
largest known dataset of mobile application GUI data
containing screenshots and GUI related metadata for
over 14k screens and over 190k GUI-components.

o Publicly available open source versions of the REDRAW
code, datasets, and trained ML models [38]".

2 BACKGROUND & RELATED WORK

In this section we introduce concepts related to the mock-
up driven development process referenced throughout the
paper and survey related work, distilling the novelty of our
approach in context.

2.1

The first concept of a mock-up driven development practice
we reference in this paper is that of mock-up artifacts, which
we define as:

Background & Problem Statement

Definition 1 - Mock-Up Artifact: An artifact of the software de-
sign and development process which stipulates design guidelines
for GUIs and its content.

In industrial mobile app development, mock-up artifacts
typically come in the form of high fidelity images (with
or without meta-data) created by designers using software
such as Photoshop [4] or Sketch [5]. In this scenario, de-
pending on design and development workflows, metadata
containing information about the constituent parts of the
mock-up images can be exported and parsed from these arti-
facts 2. Independent developers may also use screenshots of
existing apps to prototype their own apps. In this scenario,
in addition to screenshots of running applications, runtime
GUI-information (such as the html DOM-tree of a web app
or the GUI-hierarchy of a mobile app) can be extracted
to further aid in the prototyping process. However, this
is typically not possible in the context of mock-up driven
development (which our approach aims to support), as
executable apps do not exist.

The second concept we define is that of GUI-components
(also commonly called GUI-widgets). In this paper, we use
the terms GUI-component and component interchangeably. We
define these as:

1. Made available upon acceptance of the paper
2. For example, by exporting Scalable Vector Graphics (.svg) or
html formats from Photoshop.
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Definition 2 - GUI-Component: Atomic graphical elements
with pre-defined functionality, displayed within a GUI of a soft-
ware application.

GUI-components have one of several domain dependent
types, with each distinct type serving a different functional
or aesthetic purpose. For example, in web apps common
component types include dropdown menus and check-
boxes, just to name a few.

The notion of atomicity is important in this definition, as
it differentiates GUI-components from containers. The third
concept we define is that of a GUI-container:

Definition 3 - GUI-Container: A logical construct that groups
member GUI-components and typically defines spatial display
properties of its members.

In modern GUlI-centric apps, GUI-components are rarely
rendered on the screen using pre-defined coordinates. In-
stead, logical groupings of containers form hierarchical
structures (or GUI-hierarchies). These hierarchies typically
define spatial information about their constituent compo-
nents, and in many cases react to changes in the size of the
display area (i.e., reactive design) [39]. For instance, a GUI-
component that displays text may span the text according
to the dimensions of its container.

Given these definitions, the problem that we aim to solve
in this paper is the following:

Problem Statement: Given a mock-up artifact, generate a pro-
totype application that closely resembles the mock-up GUI both
visually, and in terms of expected structure of the GUI-hierarchy.

As we describe in Sec. 3, this problem can be broken down
into three distinct tasks including the detection and classi-
fication of GUI-components, and the assembly of a realistic
GUlI-hierarchy and related code. In the scope of this paper,
we focus on automatically generating GUIs for mobile apps
that are visually and structurally similar (in terms of their
GUI hierarchy). We leave the prototyping of interactive
behaviors as future work and discuss this in Sec. 7.

2.2 Related Work
2.2.1 Reverse Engineering Mobile User Interfaces:

The most closely related research to the approach proposed
in this paper is REMAUI, which aims to reverse engineer
mobile app GUIs [8]. REMAUI uses a combination of Opti-
cal Character Recognition (OCR), CV, and mobile specific
heuristics to detect components and generate a static app.
The CV techniques utilized in REMAUI are powerful, and
we build upon these innovations. However, REMAUI has
key limitations compared to our work including: (i) it does
not support the classification of detected components into
their native component types and instead uses a binary
classification of either text or images, limiting the real-world
applicability of the approach, and (ii) it is unclear if the GUI-
hierarchies generated by REMAUI are realistic or useful from
a developer’s point of view, as the GUI-hierarchies of the
approach were not evaluated.

In comparison, the approach presented in this paper
(i) is not specific to any particular domain (although we
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implement our approach for the Android platform as well)
as we take a data-driven approach for classifying and gen-
erating GUI-hierarchies, (ii) is capable of classifying GUI-
components into their respective types using CNNs, and
(iii) is able to produce realistic GUI-hierarchies using a data-
driven, iterative KNN algorithm in combination with CV
techniques. In our evaluation, we offer a comparison of
REDRAW to the REMAUI approach according to different
quality attributes.

In addition to REMAUI, an open access paper (i.e., non-
peer-reviewed) was recently posted that implements an
approach called pix2code [37], which shares common goals
with the research we present in this paper. Namely, the
authors implement an encoder/decoder model that they
trained on information from ui-metadata and screenshots
to translate target screenshots first into a domain specific
language (DSL) and then into Ul code. However, this ap-
proach exhibits several shortcomings that call into question
the real-world applicability of the approach: (i) the approach
was only validated on a small set of synthetically generated
applications, and no large-scale user interface mining was
performed; (ii) the approach requires a DSL which will need
to be maintained and updated over time, adding to the
complexity and effort required to utilize the approach in
practice. Thus, it is difficult to judge how well the approach
would perform on real Ul data. In contrast, REDRAW is
trained off a large scale dataset collected through a novel
application of automated dynamic analysis for user inter-
face mining. The data-collection and training process can
be performed completely automatically and iteratively over
time, helping to ease the burden of use for developers.
To make for a complete comparison to current research-
oriented approaches, we also include a comparison of the
prototyping capability for real applications between RE-
DRAW to the pix2code approach in Sections 4 & 5.

2.2.2 Other GUI-Design and Reverse Engineering Tools:

Given the prevalence of GUI-centric software, there has been
a large body of work dedicated to building advanced tools
to aid in the construction of GUIs and related code [40],
[41], [42], [43], [44], [45], [46] and to reverse engineer GUIs
[47], [48], [49], [50], [51], [52]. While these approaches are
aimed at various goals, they all attempt to reason logical, or
programatic info from graphical representations of GUIs.
However, these solutions exhibit one or more of the
following shortcomings: (i) they rely on predefined models
of GUIs to detect varying types of Ul elements [48], [49],
[50], [51], [52], (ii) they force designers or developers to
compromise their workflow by imposing restrictions on
how applications are designed or coded [40], [41], [42], [43],
[44], [45] or (iii) they rely purely on reverse engineering
existing apps using runtime information, which is not pos-
sible in the context of mock-up driven development. [45],
[47]. These shortcomings can severely limit the applicability
of such approaches. Given the large number of different
types and styles of GUIs today, approaches requiring pre-
defined models of GUI elements would be expensive to
create and maintain, and will not scale or gain adoption
across domains. Approaches that tie developers or designers
into strict workflows (such as restricting the ways mock-ups
are created or coded) struggle to gain adoption due to the
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competing flexibility of established image-editing software
and coding platforms. Finally, approaches requiring runtime
information of a target app cannot be used in a typical mock-
up driven development scenario, as implementations do not
exist yet. While our approach relies on runtime data, it is
collected and processed independently of the target app or
mock-up artifact. Our approach aims to overcome this list
of shortcomings by leveraging MSR and ML techniques to
automatically infer models of GUIs for different domains,
and has the potential of integrating into current design and
development workflows as illustrated in Sec. 5.4.

In addition to research on this topic, there are several
commercial solutions which aim to improve the mock-up
and prototyping process for different types of applications
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28].
These approaches allow for better collaboration among de-
signers, and some more advanced offerings enable limited-
functionality prototypes to be displayed on a target platform
with support of a software framework. For instance, some
tools will display screenshots of mock-ups on a mobile
device through a preinstalled app, and allow designers to
preview designs. However, these techniques are not capable
of translating mock-up artifacts into GUI code, and tie
designers into a specific, potentially less flexible software
or service.

2.2.3 Image Classification using CNNs:

Large scale image recognition and classification has seen
tremendous progress mainly due to advances in CNNs [29],
[30], [31], [32], [33], [53]. These supervised ML approaches
are capable of automatically learning robust, salient features
of image categories from large numbers of labeled training
images such as the ILSVRC dataset [34]. Building on top of
LeCun’s pioneering work [53], the first approach to see a sig-
nificant performance improvement over existing techniques
(that utilized predefined feature extraction) was AlexNet
[29], which achieved a top-5 mean average error (MAE)
of ~ 15% on ILSVRC12. The architecture for this network
was relatively shallow, but later work would show the
benefits and tradeoffs of using deeper architectures. Zeiler
and Fergus developed the ZFNet [30] architecture which
was able to achieve a lower MAE than AlexNet (=~ 11%) and
devised a methodology for visualizing the hidden layers
(or activation maps) of CNNs. More recent approaches such
as GoogLeNet [32] and Microsoft’s ResNet [33] use deeper
architectures (e.g., 22 and 152 layers respectively) and have
managed to surpass human levels of accuracy on image
classification tasks. However, the gains in network learning
capacity afforded by deeper architectures come with a trade
off in terms of training data requirements and training
time. In this paper, we show that a relatively simple CNN
architecture can be trained in a reasonable amount of time
on popular classes of Android GUI-components, achieving
a top-1 average classification accuracy of 91%.

3 APPROACH DESCRIPTION

We describe our approach for GUI prototyping around the
three major phases of the process: detection, classification, &
assembly. Fig. 1 illustrates an overview of the process that
we will refer to throughout the description of the approach.
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Fig. 1: Overview of Proposed Approach for Automated GUI-Prototyping

At a high-level, our approach first detects GUI-components
from a mock-up artifact by either utilizing CV techniques or
parsing meta-data directly from mock-up artifacts generated
using professional photo-editing software. Second, to classify
the detected GUI-components into proper types, we propose
to train a CNN using GUI data gleaned from large-scale
automated dynamic analysis of applications extracted by
mining software repositories. The trained CNN can then
be applied to mock-up artifacts to classify detected com-
ponents. Finally, to construct a suitable GUI-hierarchy (e.g.,
proper groupings of GUI-components in GUI-containers)
we utilize a KNN-based algorithm that leverages the GUI-
information extracted from the large-scale dynamic analysis
to assemble a realistic nested hierarchy of GUI-components
and GUI-containers. It is important to note that while we
implement REDRAW for the Android platform, there are no
fundamental engineering limitations that prevent our pro-
posed methodology from being adapted to other platforms,
such as the web or iOS. Thus, to illustrate our general
approach, for each phase we first describe the proposed
methodology and design decisions at high level and then
discuss the implementation details specific to our instantia-
tion of REDRAW for the Android platform.

3.1

The first task required of a GUI-prototyping approach is
detecting the GUI-components that exist in a mock-up ar-
tifact. The main goal of this phase is to accurately infer
the bounding boxes of atomic GUI-component elements (in
terms of pixel-based coordinates) from a mock-up artifact.
This allows for the cropping and extracting of individual
images of GUI-components that will be utilized in the
later stages of the prototyping process. This phase can be
accomplished via one of two methodologies: (i) parsing data
from mock-up artifacts, or (ii) using CV techniques to detect
GUI-components. A visualization of this phase is illustrated
in Fig. 1<D. In the following subsections we describe the
detection procedure for both of these methodologies as well
as our specific implementation within REDRAW.

Phase 1 - Detection of GUI-Components

3.1.1 Parsing Data from Design Mockups

The first method for detecting the GUI-components that
exist in a mock-up artifact, shown in the bottom portion of
Fig. 1D, is to utilize the information encoded into mock-
up artifacts. Given the importance of UI/UX in today’s
consumer facing software, many designers and small teams
of developers work with professional grade image editing
software, such as Photoshop [4] or Sketch [5] to create
either wireframe or pixel perfect static images of GUIs
that comprise mock-up artifacts. During this process photo-
editing or design software is typically used to create a blank
canvas with dimensions that match a target device screen or
display area (with some design software facilitating scaling
to multiple screen sizes [4], [5]). Then, images representing
GUI-components are placed as editable objects on top of this
canvas to construct the mock-up. Most of these tools are
capable of exporting the mock-up artifacts in formats that
encode spatial information about the objects on the canvas,
such as using the Scalable Vector Graphics (. svg) format or
html output [54]. Information about the layouts of objects,
including the bounding boxes of these objects, can be parsed
from these output formats, resulting in highly accurate
detection of components. Therefore, if this metadata for the
mock-up artifacts is available, it can be parsed to obtain
extremely accurate bounding boxes for GUI-components
that exist in a mock-up artifact which can then be utilized in
the remainder of the prototyping process.

Given the spatial information encoded in metadata that
is sometimes available in mock-up artifacts, one may ques-
tion whether this information can also be used to reconstruct
a hierarchical representation of GUI-components that could
later aid in the code conversion process. Unfortunately,
realistic GUI-hierarchies typically cannot be feasibly parsed
from such artifacts for at least the following two reasons:
(i) designers using photo-editing software to create mock-
ups tend to encode a different hierarchal structure than
a developer would, due to a designer lacking knowledge
regarding the best manner in which to programmatically
arrange GUI-components on a screen [10]; (ii) limitations
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in photo-editing software can prohibit the creation of pro-
grammatically proper spatial layouts. Thus, any hierarchical
structure parsed out of such artifacts is likely to be specific
to designers’ preferences, or restricted based on the capa-
bilities of photo-editing software, limiting applicability in
our prototyping scenario. For example, a designer might
not provide enough GUI-containers to create an effective
reactive mobile layout, or photo-editing software might not
allow for relative positioning of GUI-components that scale
across different screen sizes.

3.1.2 Using CV Techniques for GUI-component Detection:

While parsing information from mock-ups results in highly
accurate bounding boxes for GUI-components this info
may not always be available, either due to limitations in
the photo-editing software being used or differing design
practices, such as digitally or physically sketching mockups
using pen displays, tablets, or paper. In these cases, a mock-
up artifact may consist only of an image, and thus CV tech-
niques are needed to identify relevant GUI-component info.
To support these scenarios, our approach builds upon the
CV techniques from [8] to detect GUI-component bounding
boxes. This process uses a series of different CV techniques
(Fig. 1<D) to infer bounding boxes around objects corre-
sponding to GUI components in an image. First, Canny’s
edge detection algorithm [55] is used to detect the edges of
objects in an image. Then these edges are dilated to merge
edges close to one another. Finally, the contours of those
edges are used to derive bounding boxes around atomic
GUI-components. Other heuristics for merging text-based
components using Optical Character Recognition (OCR) are
used to merge the bounding boxes of logical blocks of text
(e.g., rather than detecting each word as its own component,
sentences and paragraphs of text are merged).

3.1.3 ReDraw Implementation - GUI Component Detection

In implementing REDRAW, to support the scenario where
metadata can be gleaned from mock-ups for Android appli-
cations we target artifacts created using the Marketch [54]
plugin for Sketch [5], which exports mock-ups as a combina-
tion of html & javascript. Sketch is popular among mo-
bile developers and offers extensive customization through
a large library of plugins [56]. REDRAW parses the bounding
boxes of GUI-components contained within the exported
Marketch files. To support the scenario where meta-data
related to mock-ups is not available, REDRAW uses CV
techniques to automatically infer the bounding boxes of
components from a static image. To accomplish this, we re-
implemented the approach described in [8]. Thus, the input
to the GUI-component detection phase of REDRAW is either
a screenshot and corresponding marketch file (to which
the marketch parsing procedure is applied), or a single
screenshot (to which CV-based techniques are applied). The
end result of the GUI-component detection process is a set
of bounding box coordinates situated within the original
input screenshot and a collection of images cropped from
the original screenshot according to the derived bounding
boxes that depict atomic GUI-components. This information
is later fed into a CNN to be classified into Android specific
component types in Phase 2.2. It should be noted that
only GUI-components are detected during this process. On
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the other hand GUI-containers and the corresponding GUI-
hierarchy are constructed in the assembly phase described in
Sec. 3.3.

3.2 Phase 2 - GUI-component Classification

Once the bounding boxes of atomic GUI-component ele-
ments have been detected from a mock-up artifact, the next
step in the prototyping process is to classify cropped im-
ages of specific GUI components into their domain specific
types. To do this, we propose a data-driven and ML-based
approach that utilizes CNNs. As illustrated in Fig. 1@ and
Fig. 1- @, this phase has two major parts: (i) large scale
software repository mining and automated dynamic analy-
sis, and (ii) the training and application of a CNN to classify
images of GUI-components. In the following subsections
we first discuss the motivation and implementation of the
repository mining and dynamic analysis processes before
discussing the rationale for using a CNN and our specific
architecture and implementation within REDRAW.

3.2.1 Phase 2.1 - Large-Scale Software Repository Mining
and Dynamic Analysis

Given their supervised nature and deep architectures, CNNs
aimed at the image classification task require a large amount
of training data to achieve precise classification. Training
data for traditional CNN image classification networks typ-
ically consists of a large set of images labeled with their
corresponding classes, where labels correspond to the pri-
mary subject in the image. Traditionally, such datasets have
to be manually procured, wherein humans painstakingly
label each image in the dataset. However, we propose a
methodology that automates the creation of labeled train-
ing data consisting of images of specific GUI-components
cropped from full screenshots and labels corresponding to
their domain specific type (e.g., Buttons, or Spinners in
Android) using fully-automated dynamic program analysis.

Our key insight for this automated dynamic analysis
process is the following: during automated exploration of soft-
ware mined from large repositories platform specific frameworks
can be utilized to extract meta-data describing the GUI, which
can then be transformed into a large labeled training set suitable
for a CNN. As illustrated in Fig. 1@, this process can
be automated by mining software repositories to extract
executables. Then a wealth of research in automated input
generation for GUI-based testing of applications can be used
to automatically execute mined apps by simulating user-
input. For instance, if the target is a mobile app, input
generation techniques relying on random-based [57], [58],
[59], [60], [61], systematic [35], [62], [63], [64], [65], model-
based [36], [62], [64], [66], [67], [68], [69], or evolutionary
[70], [71] strategies could be adopted for this task. As the
app is executed, screenshots and GUI-related metadata can
be automatically extracted for each unique observed screen
or layout of an app. Other similar automated GUI-ripping or
crawling approaches can also be adapted for other platforms
such as the web [72], [73], [74], [75], [76]. Screenshots can
be captured using third party software or utilities included
with a target operating system. GUI-related metadata can
be collected from a variety of sources including accessibility
services [77], html DOM information, or Ul-frameworks
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such as the uiautomator [78]. The GUI-metadata and
screenshots can then be used to extract sub-images of GUI-
components with their labeled types parsed from the related
metadata describing each screen. The underlying quality of
the resulting dataset relates to how well the labels describe
the type of GUI-components displayed on a screen. Given 02 46
that many of the software Ul-frameworks that would be
utilized to mine such data pull their information directly
from utilities that render application GUI-components on
the screen, this information is likely to be highly accurate.
However, there are certain situations where the information
gleaned from these frameworks contains minor inaccuracies
or irrelevant cases. We discuss these cases and steps that can
be taken to mitigate them in Sec. 3.2.4.
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3.2.2 ReDraw Implementation - Software Repository Min-
ing and Automated Dynamic Analysis

To procure a large set of Android apps to construct our
training, validation, and test corpora for our CNN we mined
free apps from Google Play at scale. To ensure the repre-
sentativeness and quality of the apps mined, we extracted
all categories from the Google Play store as of June 2017.
Then we filtered out any category that primarily consisted
of games, as games tend to use non-standard types of GUI-
components that cannot be automatically extracted. This left
us with a total of 39 categories. We then used a Google Play
API library [79] to download the top 240 APKs from each
category, excluding duplicates that existed in more than one
category. This resulted in a total of 8,667 unique APKs after
accounting for duplicates cross-listed across categories.

To extract information from the mined APKs, we im-
plemented a large-scale dynamic analysis engine, called
the Execution Engine that utilizes a systematic automated
input generation approach based on our prior work on
CRASHSCOPE and MONKEYLAB [35], [36], [65], [80] to ex-
plore the apps and extract screenshots and GUI-related
information for visited screens. More specifically, our sys-
tematic GUI-exploration navigates a target apps’s GUI in
a Depth-First-Search (DFS) manner to exercise tappable,
long-tappable, and type-able (e.g., capable of accepting text
input) components. During the systematic exploration we
used Android’s uiautomator [78] to extract GUI-related
info as xml files that describe the hierarchy and various
properties of components displayed on a given screen,
and the Android screencap utility to collect screenshots.
The uiautomator xml files contain various attributes and
properties of each GUI-component displayed on an An-
droid application screen, including the bounding boxes (e.g.,
precise location and area within the screen) and compo-
nent types (e.g., EditText, Toggle Button). These attributes
allow for individual sub-images for each GUI-component
displayed on a given screen to be extracted from the cor-
responding screenshot and automatically labeled with their
proper type.

The implementation of our DFS exploration strategy
utilizes a state machine model where states are considered
unique app screens, as indicated by their activity name
and displayed window (e.g., dialog box) extracted using
the adb shell dumpsys window command. To allow for
feasible execution times across the more than 8.6k apps in
our dataset while still exploring several app screens, we
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Fig. 2: Heat-map of GUI Components by Category

limited our exploration strategy to exercising 50 actions per
app. Prior studies have shown that most automated input
generation approaches for Android tend to reach near-peak
coverage after 5 minutes of exploration [81]. While different
input generation approaches tend to exhibit different num-
bers of actions per given unit of time, our past work shows
that our automated input generation approach achieves
competitive coverage to similar approaches [35], and our
stipulation of 50 actions comfortably exceeds 5 minutes per
app. Furthermore, our goal with this large scale analysis
was not to completely explore each application, but rather
ensure a diverse set of screens and GUI-Component types.
For each app the Execution Engine extracted uiautomator
files and screenshot pairs for the top six unique screens
of each app based on the number of times the screen was
visited. If fewer than six screens were collected for given
app, then the information for all screens was collected. Our
large scale Execution Engine operates in a parallel fashion,
where a centralized dispatcher allocated jobs to workers,
where each worker is connected to one physical Nexus 7
tablet and is responsible for coordinating the execution of
incoming jobs. During the dynamic analysis process, each
job consists of the systematic execution of a single app from
our dataset. When a worker finished with a job, it then
notified the dispatcher which in turn allocates a new job.
This process proceeded in parallel across 5 workers until all
applications in our dataset had been explored. Since Ads
are popular in free apps [82], [83], and are typically made
up of dynamic WebViews and not native components, we
used Xposed [84] to block Ads in apps that might otherwise
obscure other types of native components.

This process resulted in a dataset of GUI-information
and screenshots for 19,786 unique app screens containing
over 431,734 native Android GUI-components and contain-
ers which, to the best of the authors knowledge, is the
largest such dataset of mobile application GUI information
ever collected. In Fig. 2 we illustrate the frequency in
logarithmic-scale of the top-19 observed components by app
category using a heat-map based on the frequency of com-
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Fig. 3: Typical Components of CNN Architecture

ponents appearing from apps within a particular category
(excluding TextViews as they are, unsurprisingly, the most
popular type of component observed, comprising ~ 25%
of components). The distributions of components in this
dataset illustrate two major points. First, while ImageViews
and TextViews tend to comprise a large number of the
components observed in practice, developers also heavily
rely on other types of native Android components to imple-
ment key pieces of app functionality. For instance, Buttons,
CheckedTextViews, and RadioButtons combined were
used over 20k times across the apps in our dataset. Second,
we observed certain types of components may be more
popular for different categories of apps. For instance, apps
from the category of “MUSIC_AND_AUDIO” tend to make
much higher use of SeekBar and ToggleButton components
to implement the expected functionalities of a media player,
such as scrubbing through music and video files. These find-
ings illustrate that for an approach to be able to effectively
generate prototypes for a diverse set of mobile apps, it must
be capable of correctly detecting and classifying popular
types of GUI-components to support varying functionality.

3.2.3 Phase 2.2 - CNN Classification of GUI-Components

Once the labeled training data set has been collected, we
need to train a ML approach to extract salient features
from the GUI-component images, and classify incoming
images based upon these extracted features. To accomplish
this our approach leverages recent advances in CNNs. The
main advantage of CNNs over other image classification
approaches is that the architecture allows for automated ex-
traction of abstract features from image data, approximation
of non-linear relationships, application of the principle of
data-locality, and classification in an end-to-end trainable
architecture.

For the reminder of this sub-section we give an overview
of a typical CNN architecture, explaining elements of the
architecture that enable accurate image classification. How-
ever, for more comprehensive descriptions of CNNs, we
refer readers to [29] & [85]. Fig. 3 illustrates the basic compo-
nents of a traditional CNN architecture. As with most types
of artificial neural networks, CNNs typically encompass
several different layers starting with an input layer where
an image is passed into the network, then to hidden layers
where abstract features, and weights representing the “im-
portance” of features for a target task are learned. CNNs de-
rive their name from unique “convolutional” layers which
operate upon the mathematical principle of a convolution
[86]. The purpose of the convolutional layers, shown in
blue in Figure 3, are to extract features from images. Most
images are stored as a three (or four) dimensional matrix
of numbers, where each dimension of the matrix represents
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the intensity of a color channel (e.g., RGB). Convolutional
layers operate upon these matrices using a filter (also called
kernel, or feature detector), which can be thought of as
a sliding window of size n by m that slides across an
set of matricies representing an image. This window ap-
plies a convolution operation (i.e., an element-wise matrix
multiplication) creating a feature map, which represents ex-
tracted image features. As convolution layers are applied
in succession, more abstract features are learned from the
original image. Max Pooling layers also operate as a sliding
window, pooling maximum values in the feature maps to
reduce dimensionality. Finally, fully-connected layers and a
softmax classifier act as a multi-layer perceptron to perform
classification. CNN training is typically performed using
gradient descent, and back-propagation of error gradients.

The size of the resulting feature map results from three
parameters: (i) the number of filters used, (ii) the stride
of the sliding window, and (iii) whether or not padding
is applied. Leveraging multiple filters allows for multi-
dimensional feature maps, the stride corresponds to the
distance the sliding window moves during each iteration,
and padding can be applied to learn features from the
borders of an input image. These feature maps are intended
to represent abstract features from images, which inform
the prediction process. Traditionally, an element of non-
linearity is introduced after each convolutional layer, as the
convolution operator is linear in nature, which may not
correspond to non-linear nature of data being learned. The
typical manner in which this non-linearity is introduced is
through Rectified Linear Units (ReLUs). The operation these
units perform is simple in nature, replacing all negative
values in a feature map with zeros. After the convolutions
and ReLU operations have been performed, the resulting
feature map is typically subjected to max pooling (Fig. 3).

Max pooling again operates as as sliding window, but
instead of performing a convolution, simply pools the max-
imum value from each step of the sliding window. This
allows for a reduction in the dimensionality of the data
while extracting salient features. The layers described thus
far in the network have been focused on deriving features
from images. Therefore, the final layers of the network must
utilize these features to compute predictions about classes
for classifications. This is accomplished via the fully con-
nected layers, which act as a multi-layer perceptron typically
utilizing a softmax activation function.

Training a CNN is accomplished through back-
propagation. After the initialization of all the network pa-
rameters, initial weights are set to random values. Then
input images are fed through the network layers in the
forward direction, and the total error across all output
classes is calculated. This error is back-propagated through
the network and gradient descent is used to calculate error
gradients for the network weights which are then updated
to minimize the output error. A learning rate controls the
degree to which weights are updated based on the gradient
calculations. This process is repeated over the entire training
image set, which allows for training both feature extraction
and classification in one automated process. After training
is complete, the network should be capable of effective
classification of input images.
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3.2.4 ReDraw Implementation - CNN Classifier

Once the GUI-components in a target mock-up artifact have
been detected using either mock-up meta-data or CV-based
techniques, REDRAW must effectively classify these compo-
nents. To accomplish this REDRAW implements a CNN ca-
pable of classifying a target image of a GUI-component into
one of the 15 most-popular types of components observed
in our dataset. In this subsection, we first describe the data-
cleaning process used to generate the training, validation,
and test datasets (examples of which are shown in Fig. 4)
before describing our CNN architecture and the training
procedure we employ.

Data Cleaning: We implemented several types of prepro-
cessing and filtering techniques to help reduce noise. More
specifically, we implemented filtering processes at three
differing levels of granularity: (i) application, (ii) screen &
(iif) GUI-component level.

While future versions of REDRAW may support non-
native apps, to provide an appropriate scope for rigorous
experimentation, we have implemented REDRAW with sup-
port for prototpying native Android applications. Thus, once
we collected the xml and screenshot files, it is important to
apply filters in order to discard applications that are non-
native, including games and hybrid applications. Thus, we
applied the following app-level filtering methodologies:

o Hybrid Applications: We filtered applications that uti-
lize Apache Cordova [87] to implement mobile apps us-
ing web-technologies such as html and css. To accom-
plish this we first decompiled the APKs using Apktool
[88] to get the resources used in the application. We then
discarded the applications that contained a www folder
with html code inside.

o Non-Standard GUI Frameworks: Some modern apps
utilize third party graphical frameworks or libraries
to create highly-customized GUIs. While such frame-
works tend to be used heavily for creating mo-
bile games, they can also be used to create Uls for
for more traditional applications. One such popu-
lar framework is the Unity [89] game engine. Thus,
to avoid applications that utilize this engine we fil-
tered out applications that contain the folder structure
com/unity3d/player inside the code folder after de-
compilation with Apktool.

This resulted in a dataset of 8,655 apps to which we
then applied screen-level filtering. At the Screen-level, we
implemented the following pre-processing techniques:

o Filtering out Landscape screens: To keep the height and
width of all screens consistent, we only collected data
from screens that displayed in the portrait orientation.
Thus, we checked the size of the extracted screenshots
and verified that the width and the height correspond
to 1200x1920, the screen size used on our target Nexus
7 devices. However, there are some corner cases in
which the images had the correct portrait size but it
was on landscape. So, to overcome this we checked the
extracted uiautomator xml file and validated the size
of the screen to ensure a portrait orientation.

o Filtering Screens containing only Layout components:
In Android, Layout components are used as containers
that group together other types of functional compo-
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Fig. 4: Example of a subset of ReDraw’s training data
set consisting of GUI-Component sub-images and domain
(Android) specific labels. Images and corresponding Labels
are grouped according to the dashed-lines.

nents such as Buttons and Spinners. However, some
screens may only consist only of layout components,
thus to ensure variety in our dataset, we analyzed
the uiautomator xml files extracted during dynamic
analysis to discard screens that are only comprised of
Layout components such as LinearLayout, GridLayout,
and FrameLayout among others.

o Filtering WebViews: While many of the most popular
Android apps are native, some apps may be hybrid
in nature, that is utilizing web content within a native
app wrapper. Because such apps use components that
cannot be extracted via uiautomator we discard them
from our dataset by removing screens where a WebView
occupied more than 50% of the screen.

After these filtering techniques were applied the result-
ing dataset contained 14,382 unique screens. We used the
information in the uiautomator xml files to extract the
bounding boxes of leaf-level GUI-components in the GUI-
hierarchies. We only extract leaf-level components in order
to align our dataset with components detected from mock-
ups. Intuitively it is unlikely that container components (e.g.,
non-leaf nodes) would exhibit significant distinguishable
features that a ML approach would be able to derive in order
to perform accurate classification (hence, the use of our
KNN-based approach is described in Sec. 3.3). Furthermore,
it is unclear how such a GUI-container classification net-
work would be used to iteratively build a GUI-structure. We
performed a final filtering of the extracted leaf components:

o Filtering Noise: In our dataset, we observed that in rare
cases the bounds of components would not be valid
(e.g., extending beyond the borders of the screen, or
representing negative areas). Thus, we filter out these
cases.

o Filtering Solid Colors: We also observed that in certain
circumstances, extracted components were made up of
a single solid color, or in rarer cases two solid colors.
This typically occurred due to instances where the view
hierarchy of a screen had loaded, but the content was
still rendering on the page or being loaded over the
network, when a screenshot was captured. Thus, we
discarded such cases.
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e Filtering Rare GUI-Components: In our dataset we
found that some components only appeared very few
times, therefore, we filtered out any component with
less than 200 instances in the initial dataset, leading to
15 GUI-component types in our dataset.

The data-cleaning process described above resulted in
191,300 labeled images of GUI-components. To ensure the
integrity of our dataset, we randomly sampled a statis-
tically significant sample of 1,000 GUI-component images
(corresponding to confidence interval of £3.09 at a 95%
confidence level), and had one author manually inspect all
1,000 images and labels to ensure the dataset integrity.
Data Augmentation: Before segmenting the resulting data
into training, test, and validation sets, we followed proce-
dures from previous work [29] and applied data augmenta-
tion techniques to increase the size of our dataset in order to
ensure proper training support for underrepresented classes
and help to combat overfitting to the training set. Like
many datasets procured using “naturally” occurring data,
our dataset suffers from imbalanced classes. That is, the
number of labeled images in our training set are skewed
toward certain classes, resulting in certain classes that have
high support, and others that have low support. Thus, to
balance our dataset, we performed two types of data aug-
mentation: synthetic app generation and color perturbation. For
the sake of clarity, we will refer to data collected using our
automated dynamic analysis approach as organic data (i.e.,
the data extracted from Google Play) and data generated
via synthetic means as synthetic data (i.e., generated either
via synthetic app generation or color perturbation).

To generate synthetic data for underrepresented compo-
nents, we implemented an app synthesizer capable of gen-
erating Android apps consisting of only underrepresented
components. The app synthesizer is a Java application that is
capable of automatically generating single-screen Android
applications containing four instances of GUI-components
(with randomized attributes) for 12 GUI-component classes
in our dataset that had less than 10K observable instances.
The synthesizer places the four GUI-components of the
specified type on a single app screen with randomized sizes
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and values (e.g., numbers for a number picker, size and state
for a toggle button). Two screenshots of synthesized applica-
tions used to augment the Toggle button and Switch classes
are illustrated in Fig. 5. We ran these apps through our
Execution Engine, collecting the uiautomator xml files and
screenshots from the single generated screen for each app.
After the screenshots and uiautomator files were collected,
we extracted only the target underrepresented components
from each screenshot (note that in Fig. 5 there is a header ti-
tle and button generated when creating a standard Android
app), all other component types are ignored. 250 apps for
each underrepresented GUI-component were synthesized,
resulting in creating an extra 1K components for each class
and 12K total additional GUI-components.

While our application generator helps to rectify
the imbalanced class support to an extent, it does not
completely balance our classes and may be prone to
overfitting. Thus, to ensure proper support across all classes
and to combat overfitting, we follow the guidance outlined
in related work [29] to perform color perturbation on both
the organic and synthetic images in our dataset. More
specifically, our color perturbation procedure extracts the
RGB values for each pixel in an input image and converts
the values to the HSB (Hue, Saturation, Brightness) color
space. The HSB color space model represents colors as
part of a cylindrical or cone model where color hues are
represented by degrees. Thus, to shift the colors of a target
image, our perturbation approach randomly chooses a
degree value by which each pixel in the image is shifted.
This ensures that color hues that were the same in the
original image, all shift to the same new color hue in the
perturbed image, preserving the visual coherency of the
perturbed images. We applied color perturbation to the
training set of images until each class of GUI-component
had at least 5K labeled instances, as described below.

Data Segmentation: We created a the training, validation,
and test datasets for our CNN such that the training dataset
contained both organic and synthetic data, but the test and
validation datasets contained only organic data, unseen
in the training phase of the CNN. To accomplish this, we
randomly segmented our dataset of organic components
extracted from Google Play into training (75%), validation
(15%), and test (10%) sets. Then for the training set,
we added the synthetically generated components to
the set of organic GUI-component training images, and
performed color perturbation on only the training data
(after segmentation) until each class had at least 5K training
examples. Thus, the training set contained both organic
and synthetically generated data, and the validation and
test sets contained only organic data. This segmentation
methodology closely follows prior work on CNNs [29].

ReDraw’s CNN Architecture: Our CNN architecture is
illustrated in Fig. 6. Our network uses an architecture similar
to that of AlexNet [29], with two less convolutional layers (3
instead of 5), and is implemented in MATLAB using the Neu-
ral Network [90], Parallel Computing [91], and Computer
Vision [92] toolkits. While “deeper” architectures do exist
[30], [32], [33] and have been shown to achieve better per-
formance on large-scale image recognition benchmarks, this
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comes at the cost of dramatically longer training times and a
larger set of parameters to tune. Since our goal is to classify
15 classes of the most popular Android GUI-components,
we do not need the capacity of deeper networks aiming
to classify thousands of image categories. We leave deeper
architectures and larger numbers of image categories as
future work. Also, this allowed our CNN to converge in
a matter of hours rather than weeks, and as we illustrate,
still achieve high precision.

To tune our CNN, we performed small scale experiments
by randomly sampling 1K images from each class to build a
small training /validation/test set (75%, 15%, 10%) for faster
training times (Note these datasets are separate from the
full set used to train/validate/test the network described
earlier). During these experiments we iteratively recorded
the accuracy on our validation set, and recorded the final
accuracy on the test set. We tuned the location of layers
and parameters of the network until we achieved peak test
accuracy with our randomly sampled dataset.

Training the CNN: To train REDRAW’S network we utilized
our derived training set; we trained our CNN end-to-end
using back-propagation and stochastic gradient descent
with momentum (SGDM), in conjunction with a technique
to prevent our network from overfitting to our training
data. That is, every five epochs (e.g., entire training set
passing through the network once) we test the accuracy of
our CNN on the validation set, saving a copy of the learned
weights of the classifier at the same time. If we observe
our accuracy decrease for more than two checkpoints, we
terminate the training procedure. We varied our learning
rate from 0.001 to 1 x 10~° after 50 epochs, and then
dropped the rate again to 1 x 107% after 75 epochs until
training terminated. Gradually decreasing the learning rate
allows for the network to “fine-tune” the learned weights
over time, leading to an increase in overall classification
precision [29]. Our network training time was 17 hours, 12
minutes on a machine with a single Nvidia Tesla K40 GPU.

Using the CNN for Classification: Once the CNN has
been trained, new, unseen images can fed into the network
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Algorithm 1: Hierarchy Construction

Input: InputNodes // classified components from CNN
Output: HierarchyRoot // Root of the constructed
GUI-hierarchy
1 begin
// Find containers while there are still
components to be
// processed or until the desired hierarchy
depth is reached
2 while (InputNodes.size() > 1) A (count ; maxHierarchyDepth)
do
3 Containers = containerDetermination (InputNodes)
count = count +1.

'S

if InputNodes.size() == 1 then
RootNode = InputNode // if 1 node remains
// that is the root node

® 9 o w

else

// else, remaining nodes become children
of new root

9 RootNode = createNewRootNode()

10 RootNode.setChildren(Contaiers)

Algorithm 2: KNN Container Determination

Input: InputNodes // Either leaf components or other
containers
Output: Containers // Groupings of input components
1 while canGroupMoreNodes() // stop if no groupings possible
2 do
// For each container grouping in the mined data

foreach D € Data do
score — DNInputNodes

= DUInputNodes
if score > curmax then
curmax = score
Container = D
end
end
10 Container.setChildren(container N I)
InputNodes.remove(container N InputNodes)
Containers.addContainer(Container)

// intersection over union

© ® N U ok W

11 end

resulting a series of classification scores corresponding to
each class. In the case of ReDraw, the component class with
the highest confidence is assigned to be the label for a given
target image. We present an evaluation of the classification
accuracy of REDRAW’S CNN using the dataset described in
this subsection later in Sec. 4 & 5.

3.3 Phase 3 - Application Assembly

The final task of the prototyping process is to assemble
app GUI code, which involves three phases (Fig. 1<3): (i)
building a proper hierarchy of components and containers,
(ii) inferring stylistic details from a target mock-up artifact,
and (iii) assembling the app.

3.8.1 Deriving GUI-Hierarchies

In order to infer a realistic hierarchy from the classified set of
components, our approach utilizes a KNN technique (Alg.
1 & 2) for constructing the GUI hierarchy. This algorithm
takes the set of detected and classified GUI-components
represented as nodes in a single level tree (InputNodes)
as input. Starting with all components Alg. 1 starts with
the classified leaf nodes represented as output from the
CNN and passes them to Alg. 2 which finds component
groupings by matching the input leaf components to other
sets of leaf nodes observed in GUI-hierarchies collected
during automated dynamic analysis using an intersection
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Listing 1: ReDraw’s Skeleton Main Activity Class

1 public class MainActivity extends Activity {

2 @Override

3 protected void onCreate (Bundle
savedInstanceState) {

4 super.onCreate (savedInstanceState) ;

5 setContentView (R.layout.main_activity);

6 }

7 )

over union (IOU) of screen area occupied similarity metric
(Alg. 2 -line 4). Once a matching set of components from the
mined data has been found, all InputNodes that overlap
with the leaf nodes of the matched hierarchy are grouped
according to the container observed in the data, and re-
moved from collection of components to match. This process
is repeated for the remaining components. This procedure
is also applied iteratively (including grouping containers
in other containers) until a specified number of levels in
the hierarchy are built or all nodes have been grouped. The
result of this process is a hierarchy built according to its sim-
ilarity to existing GUI-hierarchies observed in data. Given
different types of containers may behave differently, this
technique has the advantage that, in addition to leaf level
GUI-components being properly classified by the CNN,
proper types of container components are built into the GUI-
hierarchy via this KNN-based approach.

3.3.2 Inferring Styles and Assembling a Target App

To infer stylistic details from the mock-up, our approach
employs the CV techniques of Color Quantization (CQ),
and Color Histogram Analysis (CHA). For GUI-components
whose type does not suggest that they are displaying an
image, our approach quantizes the color values of each
pixel and constructs a color histogram. The most popular
color values can then be used to inform style attributes of
components when code is generated. For example, for a
component displaying text, the most prevalent color can be
used as a background and the second most prevalent color
can be used for the font.

Target apps are assembled according to their specific do-
main. However, the process involves translating the derived
GUI-hierarchy of an app into the code required to display
the hierarchy on a screen. For example, printing formatted
html for web apps or xml layout in Android apps. This is
primarily an engineering effort.

3.3.3 ReDraw Implementation - App Assembly

ReDraw assemebles Android applications, using the KNN
approach for GUI-hierarchy construction (see Sec. 3.3.1) and
CV-based detection of color styles. The input to Alg. 1 is the
set of classified “leaf-node” components from the CNN, and
the output is a a GUI-hierarchy. To provide sufficient data
for the KNN-algorithm, a corpus including all of the info
from the “cleaned” screens of the mined GUI-hierarchies
mined from our large scale dynamic analysis process is con-
structed. This corpus forms the dataset which the target set
of input leaf node components are matched against during
hierarhcy construction. The GUI-hierarchy generated by the
KNN for the target “leaf-node” components is then used
to infer stylistic details from the original mock-up artifact.
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Listing 2: Snippet from layout.xml file generated by Re-
Draw for the Yelp Application

1 <LinearLayout android:id="@+id/LinearLayout452"
android:layout_height="127.80186dp"
android:layout_marginStart="0.0dp"
android:layout_marginTop="0.0dp"
android:layout_width="400.74304dp"
android:orientation="vertical" android:text=
"" android:textSize="8pt">
2 <Button android:id="@+id/Button454"
android:layout_height="58.45201dp"
android:layout_marginStart="0.0dp"
android:layout_marginTop="0.0dp"
android:layout_width="400.74304dp"
android:text="Sign up with Google"
android:textSize="8pt" style="Gstyle/
Style65"/>

3 <Button android:id="@+id/Button453"
android:layout_height="50.526318dp"
android:layout_marginStart="3.4674923dp"
android:layout_marginTop="18.82353dp"
android:layout_width="393.31268dp"
android:text="Sign up with Facebook"
android:textSize="8pt" style="lstyle/
Style66"/>

4 </LinearLayout>

Listing 3: Snippet from style.xml file generated by Re-
Draw for the Yelp Application

1 <style name="Style63" parent="AppTheme">

2 <item name="android:textColor">#FEFEFF</item>

3 </style>

4 <style name="Style64" parent="AppTheme">

5 <item name="android:textColor">#FEFEFF</item>

6 </style>

7 <style name="Style65" parent="AppTheme">

8 <item name="android:background">#DD4B39</item
>

9 <item name="android:textColor">#FEFEFF</item>

10 </style>

More specifically, for each component and container, we per-
form CQ and CHA to extract the dominant colors for each
component. For containers, the background color is set to
the dominant color, for text components, the dominant color
is used as the background and the second-most dominant
color is used as the font-color. For components which have
a text element, we apply optical character recognition (OCR)
using the open source Tesseract [93] library on the original
screenshot to obtain the text strings.

REDRAW encodes the information regarding the GUI-
hierarchy, stylistic details, and strings detected using OCR
into an intermediate representation (IR) before translating
it into code. This IR follows the format of uiautomator
xml files that describes dynamic information from an An-
droid screen. Thus, after REDRAW encodes the GUI in-
formation into the uiautomator-based IR, it then gener-
ates the necessary resource xml files (e.g., files in the res
folder of an Android app project directory) by parsing the
uiautomator-based IR xml file. This process generates the
following two types of resource code for the generated
app: (i) the layout.xml code describing the general GUI
structure complete with strings detected via OCR; and (ii)
a style.xml file that stipulates the color and style infor-
mation for each component gleaned via the CV techniques,
and ReDraw generates the xml source files following the
best practices stipulated in the Android developer guide-
lines [39], such as utilizing relative positioning, and proper



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018

padding and margins. In addition to these resource xm1 files
REDRAW also generates a skeleton Java class encompassing
the MainActivity which renders the GUI stipulated in the
resource xml files, as well as other various files required
to build and package the code into an apk. The Skeleton
MainActivity Java class is shown in Listing 1 and snippets
from generated layout.xml & style.xml files for a screen
from the Yelp application are shown in Listings 2 & 3.
The layout.xml snippet of code generated by ReDraw
illustrates the use of margins and relative dp values to
stipulate the spatial properties of GUI-containers and GUI-
components and references the style.xml file to stipulate
color information. Listing 3 illustrates the corresponding
styles and colors referenced by the layout .xml file.

4 EMPIRICAL STUDY DESIGN

The goal of our empirical study is to evaluate REDRAW
in terms of (i) the accuracy of the CNN GUI-component
classifier, (ii) the similarity of the generated GUI-hierarchies
to real hierarchies constructed by developers, (iii) the visual
similarity of generated apps compared to mock-ups, and
(iv) ReDraw’s suitability in an industrial context. The context
of this study consists of (i) a set of 191,300 labeled images
of Android GUI-components extracted from 14,382 unique
app screens mined from 8,655 APKs mined from the Google
Play store (top-240 rated apps in each category excluding
games and duplicates, see Sec. 3.2.2) to assess the accuracy
of the CNN-classifier, (ii) 83 additional screens (not included
in the dataset to train and test the CNN-classifier) extracted
from 32 of the highest rated apps on Google Play (top-3 in
each category), (iii) nine reverse engineered Sketch mockups
from eight randomly selected highly rated Google Play
Apps to serve as mock-up artifacts, and (iv) two additional
approaches for prototyping Android applications REMAUI
[8] and pix2code [37]. The quality focus of this study is the
effectiveness of REDRAW to generate prototype apps that
are both visually similar to target mock-up artifacts, with
GUI-hierarchies similar to those created by developers. To
aid in achieving the goals of our study we formulated the
following RQs:

e RQq: How accurate is the CNN-based image classification
for classifying Android GUI-components?

e RQ>: How similar are GUlI-hierarchies constructed us-
ing REDRAW’S KNN algorithm compared to real GUI-
hierarchies?

e RQs3: Are the prototype applications that REDRAW generates
visually similar to mock-up artifacts?

o RQy: Would actual mobile developers and designers consider
using REDRAW as part of their workflow?

4.1 RQ;: Effectiveness of the CNN

To answer RQj, as outlined in Sec. 3.2.4 we applied a large
scale automated dynamic analysis technique and various
data cleaning procedures which resulted in a total of 8,655
apps, 14,382 unique screens, and 191,300 labeled images of
GUI-components. To normalize support across classes and
prepare training, validation and test sets in order measure
the effectiveness of our CNN we applied data augmenta-
tion, and segmentation techniques also described in detail in
Sec. 3.2.4. The datasets utilized are illustrated, broken down
by class, in Table 1. We trained the CNN on the training
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TABLE 1: Labeled GUI-Component Image Datasets
GUI-C Type Total # (C) | Tr (O) Tr (O+S) | Valid | Test
TextView 99,200 74,087 74,087 15,236 | 9,877
ImageView 53,324 39,983 39,983 7,996 5,345
Button 16,007 12,007 12,007 2,400 1,600
ImageButton 8,693 6,521 6,521 1,306 866
EditText 5,643 4,230 5,000 846 567
CheckedTextView | 3,424 2,582 5,000 505 337
CheckBox 1,650 1,238 5,000 247 165
RadioButton 1,293 970 5,000 194 129
ProgressBar 406 307 5,000 60 39
SeekBar 405 304 5,000 61 40
NumberPicker 378 283 5,000 57 38
Switch 373 280 5,000 56 37
ToggleButton 265 199 5,000 40 26
RatingBar 219 164 5,000 33 22
Spinner 20 15 5,000 3 2
Total 191,300 143,170 | 187,598 29,040 | 19,090

Abbreviations for column headings: “Total#(C)”"=Total # of GUI-
components in each class after cleaning; “Valid”= Validation; “Tr(O)”=
Training Data (Organic Components Only); “Tr(O+S)”= Training Data
(Organic + Synthetic Components).
set of data, avoiding overfitting using a validation set as
described in Sec. 3.2.4. To reiterate, all of the images in the
test and validation sets were extracted from real applications
and were separate (e.g., unseen) from the training set. To
evaluate the effectiveness of our approach we measure the
average top-1 classification precision across all classes on
the Test set of data:

TP
P=———
TP+ FP

where T'P corresponds to true positives, or instances where
the top class predicted by the network is correct, and F'P
corresponds to false positives, or instances where the top
classification prediction of the network is not correct. To
illustrate the classification capabilities of our CNN, we
present a confusion matrix with precision across classes in
Sec. 5. The confusion matrix illustrates correct true posi-
tives across the highlighted diagonal, and false positives in
the other cells. To help justify the need and applicability
of a CNN-based approach, we measure the classification
performance of our CNN against a baseline technique, as
recent work has suggested that deep learning techniques
applied to SE tasks should be compared to simpler, less
computationally expensive alternatives [94]. To this end, we
implemented a baseline Support Vector Machine (SVM) for
classification based image classification approach [95] that
utilizes a "Bag of Visual Words” (BOVW). At a high level,
this approach extracts image features using the Speeded-Up
Robust Feature (SURF) detection algorithm [96], then uses
K-means clustering to cluster similar features together, and
utilizes an SVM trained on resulting feature clusters. We
utilized the same training/validation/test set of data used
to the train the CNN and followed the methodology in [95]
to vary the number of K-means clusters from & = 1,000 to
k = 5,000 in steps of 50, finding that k = 4,250 achieved
the best performance in terms of classification precision for
our dataset. We also report the confusion matrix of precision
values for this technique utilizing the same formulation of
the precision metric stated earlier.

4.2 RQ: GUI Hierarchy Construction

In order to answer RQ; we aim to measure the similar-
ity of the GUI-hierarchies in apps generated by REDRAW
compared to a ground truth set of hierarchies and a set
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of hierarchies generated by two baseline mobile app proto-
typing approaches, REMAUI and pix2code. To carry out this
portion of the study, we selected 32 apps from our cleaned
dataset of Apks by randomly selecting one of the top-10
apps from each category (grouping all “Family” categories
together). We then manually extracted 2-3 screenshots and
uiautomator xml files per app, which were not included
in the original dataset used to train, validate or test the
CNN. After discarding screens according to our filtering
techniques, this resulted in a set of 83 screens. Each of
these screens was used as input to REDRAW, REMAUI, and
pix2code from which a prototype application was gener-
ated. Ideally, a comparison would compare the GUI-related
source code of applications (e.g., xm1 files located in the res
folder of Android project) generated using various auto-
mated techniques however, the source code of many of the
subject Google Play applications is not available. Therefore,
to compare GUI-hierarchies, we compare the runtime GUI-
hierarchies extracted dynamically from the generated proto-
type apps for each approach using uiautomator to the set
of “ground truth” uiautomator xml files extracted from
the original applications. The uiautomator representation
of the GUI is a reflection of the constructed GUI-related
source code displayed at runtime on the device screen, al-
lowing us to make an accurate comparison of the hierarchal
representation of GUI-components and GUI-containers for
each approach.

To provide a performance comparison to REDRAW, we
selected the two most closely related approaches in related
research literature, REMAUI [8] and pix2code [37], to provide
a comparative baseline. To provide a comparison against
pix2code, we utilized the code provided by the authors of
the paper on GitHub [97] and the provided training dataset
of synthesized applications. We were not able to train the
pix2code approach on our mined dataset of Android ap-
plication screenshots for two reasons: (i) pix2code uses a
proprietary domain specific language (DSL) that training
examples must be translated to and the authors do not pro-
vide transformation code or specifications for the DSL, (ii)
the pix2code approach requires the GUI-related source code
of the applications for training, which would have needed
to be reverse engineered from the Android apps in our
dataset from Google Play. To provide a comparison against
REMAUI [8], we re-implemented the approach based on the
details provided in the paper, as the tool was not available
as of the time of writing this paper®.

As stated in Sec. 3.1 REDRAW enables two different
methodologies for for detecting GUI-components from a
mock-up artifact: (i) CV-based techniques and (ii) parsing
information directly from mock-up artifacts. We consider
both of these variants in our evaluation which we will
refer to as REDRAW-CV (for the CV-based approach) and
REDRAW-Mockup (for the approach that parses mock-up
metadata). Our set of 83 applications from Google Play
does not contain traditional mock-up artifacts that would
arise as part of the app design and development process
(e.g., Photoshop or Sketch files) and reverse engineering
these artifacts is an extremely time-consuming task (see

3. REMAUI is partially available as a web-service [98], but it did not
work reliably and we could not generate apps using this interface.
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TABLE 2: Semi-Structured Interview Questions for Devel-
opers & Designers

Q# Question Text

Q1 | Given the scenario where you are creating a new user
interface, would you consider adopting ReDraw in your
design or development workflow? Please elaborate.

Q2 | What do you think of the visual similarity of the Re-
Draw applications compared to the original applications?
Please elaborate.

Q3 Do you think that the GUI-hierarchies (e.g., groupings of
components) generated by ReDraw are effective? Please
elaborate.

04 | What improvements to ReDraw would further aid the
mobile application prototyping process at your com-
pany? Please elaborate.

Sec. 4.4). Thus, because manually reverse-engineering mock-
ups from 83 screens is not practical, REDRAW-Mockup was
modified to parse only the bounding-box information of
leaf node GUI-components from uiautomator files as a
substitute for mock-up metadata.

We compared the runtime hierarchies of all generated
apps to the original, ground truth runtime hierarchies (ex-
tracted from the original uiautomator =xml files) by decon-
structing the trees using pre-order and using the Wagner-
Fischer [99] implementation of Levenshtein edit distance
for calculating similarity between the hierarchical (i.e., tree)
representations of the runtime GUIs. The hierarchies were
deconstructed such that the type and nested order of compo-
nents are included in the hierarchy deconstruction. We im-
plemented the pre-order traversal in this way to avoid small
deviations in other attributes included in the uiautomator
information, such as pixel values, given that the main goal
of this evaluation is to measure hierarchical similarities.

In our measurement of edit distance, we consider three
different types of traditional edit operations: insertion, dele-
tion, and substitution. In order to more completely measure
the similarity of the prototype app hierarchies to the ground
truth hierarchies, we introduced a weighting schema repre-
senting a “penalty” for each type of edit operation, wherein
the default case each operation carries an identical weight
of 1/3. We vary the weights of each edit and calculate a
distribution of edit distances which are dependent on the
fraction of the total penalty that a given operation (i.e.,
insertion, deletion, or substitution) occupies, and carry out
these calculations varying each operation separately. The
operations that are not under examination split the differ-
ence of the remaining weight of the total penalty equally.
For example, when insertions are given a penalty of 0.5, the
penalties for deletion and substitution are set to 0.25 each.
This helps to better visualize the minimum edit distance
required to transform a REDRAW, or REMAUI generated
hierarchy to the original hierarchy and also helps to to better
describe the nature of the inaccuracies of the hierarchies
generated by each method.

4.3 RQj;: Visual Similarity

One of REDRAW’S goals is to generate apps that are vi-
sually similar to target mock-ups. Thus to answer RQs,
we compared the visual similarity of apps generated by
REDRAW, and REMAUI, using the same set of 83 apps
from RQ,. The subjects of comparison for this section of
the study were screenshots collected from the prototype
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TABLE 3: Confusion Matrix for REDRAW

Total TV I\Y% Bt S ET IBt | CTV PB RB TB CB Sp SB NP RBt
TV 9877 | 94% 3% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
I\Y% 5345 5% | 93% 1% 0% 0% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Bt 1600 | 11% 6% | 81% 0% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0%
S 37 5% 3% 0% | 87% 0% 0% 5% 0% 0% 0% 0% 0% 0% 0% 0%
ET 567 | 14% 3% 2% 0% | 81% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
1Bt 866 4% | 23% 1% 0% 0% | 72% 0% 0% 0% 0% 0% 0% 0% 0% 0%
CTV 337 7% 0% 0% 0% 0% 0% 93% 0% 0% 0% 0% 0% 0% 0% 0%
PB 41 15% | 29% 0% 0% 0% 0% 0% | 56% 0% 0% 0% 0% 0% 0% 0%
RB 22 0% 0% 0% 0% 0% 0% 0% 0% | 100% 0% 0% 0% 0% 0% 0%
TBt 26 19% | 22% 7% 0% 0% 0% 0% 0% 0% | 52% 0% 0% 0% 0% 0%
CB 165 | 12% 7% 0% 0% 1% 0% 0% 0% 0% 0% | 81% 0% 0% 0% 0%
Sp 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 0% 0% 0%
SB 39 | 10% | 13% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% | 78% 0% 0%
NP 40 0% 5% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% | 95% 0%
RBt 129 4% 3% 2% 0% 0% 0% 1% 0% 0% 0% 1% 0% 0% 0% | 89%

TABLE 4: Confusion Matrix for BOVW Baseline

Total vV I\Y% Bt S ET IBt | CTV PB RB TB CB Sp SB NP RBt
vV 9877 | 59% 4% 9% 1% 6% 2% 8% 6% 0% 1% 2% 0% 1% 0% 2%
v 5345 4% | 51% 4% 1% 2% | 11% 2% | 18% 1% 1% 3% 0% 2% 0% 2%
Bt 1600 6% 6% | 59% 1% 5% 4% 7% 4% 0% 1% 1% 0% 0% 3% 1%
S 37 5% 0% 3% | 65% 0% 0% 5% | 22% 0% 0% 0% 0% 0% 0% 0%
ET 567 6% 2% 4% 1% | 62% 1% 4% 15% 0% 0% 1% 0% 0% 4% 1%
1Bt 866 2% | 16% 3% 0% 2% | 61% 1% 9% 1% 1% 2% 0% 2% 0% 3%
CTV 337 3% 1% 7% 1% 3% 0% 81% 1% 0% 0% 2% 0% 0% 0% 2%
PB 41 0% | 24% 2% 0% 2% 5% 2% | 54% 0% 0% 2% 2% 2% 0% 2%
RB 22 0% 5% 0% 0% 0% 0% 0% | 27% | 68% 0% 0% 0% 0% 0% 0%
TBt 26 7% 7% | 19% 0% 0% 0% 11% | 15% 0% | 33% 0% 0% 0% 0% 7%
CB 165 4% 2% 3% 1% 2% 1% 2% 12% 1% 0% | 72% 0% 0% 0% 1%
Sp 2 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% | 100% 0% 0% 0%
SB 39 0% 5% 0% 0% 0% 0% 0% | 18% 3% 0% 5% 0% | 68% 0% 3%
NP 40 3% 0% 5% 0% 3% 0% 5% 0% 0% 0% 0% 0% 0% | 84% 0%
RBt 129 6% 3% 5% 1% 3% 0% 6% 18% 0% 1% 1% 0% 1% 0% | 55%
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Abbreviations for column headings representing GUI-component types: TextView (TV), ImageView (IV), Button (Bt), Switch
(S), EditText (ET), ImageButton (IBt), CheckedTextView (CTV), ProgressBar (PB), RadioButton (RB), ToggleButton (TBt),

CheckBox (CB), Spinner (Sp), SeekBar (SB), NumberPicker (NP), RadioButton (RBt)

applications generated by REDRAW-CV, REDRAW-Mockup,
pix2code, and REMAUL Following the experimental settings
used to validate REMAUI [8], we used the open source
PhotoHawk [100] library to measure the mean squared error
(MSE) and mean average error (MAE) of screenshots from the
generated prototype apps from each approach compared to
the original app screenshots. To examine whether the MAE
and MSE varied to a statistically significant degree between
approaches, we compare the MAE & MSE distributions
for each possible pair of approaches using a two-tailed
Mann-Whitney test [101] (p-value). Results are declared as
statistically significant at a 0.05 significance level. We also
estimate the magnitude of the observed differences using
the Cliff’s Delta (d), which allows for a nonparametric effect
size measure for ordinal data [102].

4.4 RQq: Industrial Applicability

Ultimately, the goal of REDRAW is integration into real
application development workflows, thus as part of our
evaluation, we aim to investigate REDRAW’s applicability
in such contexts. To investigate RQ4 we conducted semi-
structured interviews with a front-end Android developer
at Google, an Android Ul designer from Huawei, and a
mobile researcher from Facebook. For each of these three
participants, we randomly selected nine screens from the
set of apps used in RQ2-RQ3 and manually reversed en-
gineered Sketch mock-ups of these apps. We verified the
visual fidelity of these mock-ups using the GVT tool [10],
which has been used in prior work to detect presentation

failures, ensuring that there were no reported design vi-
olations reported in the reverse-engineered mockups. This
process of reverse-engineering the mock-ups was extremely
time-consuming to reach acceptable levels, with well over
ten hours invested into each of the nine mock-ups. We
then used REDRAW to generate apps using both CV-based
detection and utilizing data from the mock-ups. Before the
interviews, we sent participants a package containing the
ReDraw generated apps, complete with screenshots and
source code, and the original app screenshots and Sketch
mock-ups. We then asked a series of questions (delineated
in Table 2) related to (i) the potential applicability of the
tool in their design/development workflows, (ii) aspects of
the tool they appreciated, and (iii) areas for improvement.
Our investigation into this research question is meant to
provide insight into the applicability of REDRAW to fit into
real design development workflows, however, we leave full-
scale user studies and trials as future work with industrial
collaborators. This study is not meant to be comparative,
but rather to help gauge REDRAW’S industrial applicability.

5 EXPERIMENTAL RESULTS
5.1 RQ; Results: Effectiveness of the CNN

The confusion matrices illustrating the classification preci-
sion across the 15 Android component classes for both the
CNN-classifier and the Baseline BOVW approach are shown
in Tables 3 & 4 respectively. The first column of the matrices
illustrate the number of components in the test set, and the
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Fig. 7: Hierarchy similarities based on edit distances

numbers in the matrix correspond to the percentage of each
class on the y-axis, that were classified as components on
the x-axis. Thus, the diagonal of the matrices (highlighted
in blue) corresponds to correct classifications. The overall
top-1 precision for the CNN (based on raw numbers of
components classified) is 91.1%, whereas for the BOVW
approach the overall top-1 precision is 64.7%. Hence, it is
clear that the CNN-based classifier that REDRAW employs
outperforms the baseline, illustrating the advantage of the
CNN architecture compared to a heuristic-based feature
extraction approach. In fact, REDRAW’S CNN outperforms
the baseline in classification precision across all classes.

It should be noted that REDRAW’S classification preci-
sion does suffer for certain classes, namely ProgressBars
and ToggleButtons. We found that the classification ac-
curacy of these component types was hindered due to
multiple existing styles of the components. For instance, the
ProgressBar had two primary styles, traditional progress
bars, which are short in the y-direction and long in the x-
direction, and square progress bars that rendered a progress
wheel. With two very distinct shapes, it was difficult for our
CNN to distinguish between the drastically different images
and learn a coherent set of features to differentiate the two.
While the CNN may occasionally misclassify components,
the confusion matrix illustrates that these misclassifications
are typically skewed toward similar classes. For example,
ImageButtons are primarily misclassified as ImageViews,
& EditTexts are misclassified as TextViews. Such mis-
classifications in the GUI-hierarchy would be trivial for
experienced Android developers to fix in the generated
app while the GUI-hierarchy and boilerplate code would
be automatically generated by ReDraw. The strong perfor-
mance of the CNN-based classifier provides a solid base for
the application generation procedure employed by ReDraw.
Based on these results, we answer RQs:

RQ;: ReDraw’s CNN-based GUI-component clas-
sifier was able to achieve a high average preci-
sion (91%) and outperform the baseline BOVW
approach’s average precision (65%).

5.2 RQ; Results: Hierarchy Construction

An important part of the app generation process is the
automated construction of a GUlI-hierarchy to allow for

the proper grouping, and thus proper displaying, of GUI-
components into GUI-containers. Our evaluation of Re-
Draw’s GUI-hierarchy construction compares against the
REMAUI and pix2code approaches by decomposing the run-
time GUI-hierarchies into trees and measuring the edit
distance between the generated trees (as described in Sec-
tion 4.2). By varying the penalty prescribed to each edit
operation, we can gain a more comprehensive understand-
ing of the similarity of the generated GUlI-hierarchies by
observing, for instance, whether certain hierarchies were
more or less shallow than real applications, by examining
the performance of insertion and deletion edits.

The results for our comparison based on Tree edit dis-
tance are illustrated in Fig. 7 A-C. Each graph illustrates
the results for a different edit operation and the lines delin-
eated by differing colors and shapes represent the studied
approaches (REDRAW Mock-Up or CV-based, REMAUI, or
pix2code) with the edit distance (e.g., closeness to the target
hierarchy) shown on the y-axis and the penalty prescribed
to the edit operation on the x-axis. For each of the graphs,
a lower point or line indicates that a given approach was
closer to the target mock-up hierarchy. The results indicate
that in general, across all three variations in edit distance
penalties, REDRAW-MockUp produces hierarchies that are
closer to the target hierarchies than REMAUI and pix2code.
Of particular note is that as the cost of insertion operations
rises both REDRAW-CV and REDRAW-MockUp outperform
REMAUL In general REDRAW-Mockup requires fewer than
ten edit operations across the three different types of opera-
tions to exactly match the target app’s GUI-hierarchy. While
REDRAW’S hierarchies require a few edit operations to
exactly match the target, this may be acceptable in practice,
as there may be more than one variation of an acceptable
hierarchy. Nevertheless, REDRAW-Mockup is closer than
other related approach in terms of similarity to real GUI-
hierarchies.

Another observable phenomena exhibited by this data
is the tendency for REMAUI and pix2code to generate rela-
tively shallow hierarchies. We see that as the penalty for in-
sertion increases, both REDRAW-CV and REDRAW-Mockup
outperform REMAUI and pix2code. This is because ReDraw
simply does not have to perform as many insertions into
the hierarchy to match the ground truth. Pix2code and
REMAUI are forced to add more inner nodes to the tree
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Fig. 8: Pixel-based mean average error and mean squared error of screenshots: REDRAW, REMAUI, and pix2code apps

TABLE 5: Pixel-based comparison by MAE: Mann-Whitney
test (p-value) and Cliff’s Delta (d).

TABLE 6: Pixel-based comparison by MSE: Mann-Whitney
test (p-value) and Cliff’s Delta (d).

Test p-value d Test p-value d
ReDrawMU vs ReDrawCV 0.835 0.02 (Small) ReDrawMU vs ReDrawCV 0.771 0.03 (Small)
ReDrawMU vs REMAUI 0.542 0.06 (Small) ReDrawMU vs REMAUI < 0.0001  0.45 (Medium)
ReDrawMU us pix2Code < 0.0002 -0.34 (Medium) ReDrawMU us pix2Code < 0.003 -0.27 (Small)
pix2Code vs ReDrawCV < 0.0001  0.35 Medium) pix2Code vs ReDrawCV < 0.002 0.28 (Small)
pix2Code vs REMAUI < 0.0001  0.39 (Medium) pix2Code vs REMAUI < 0.0001 0.61 (Large)
REMAUI vs ReDrawCV 0.687 -0.04 (Small) REMAUI vs ReDrawCV <0.0001 -0.42 (Medium)

because their generated hierarchies are too shallow (i.e.
lacking in inner nodes). From a development prototyping
point of view, it is more likely easier for a developer to
remove redundant nodes than it is to create new nodes,
requiring them reasoning what amounts to a new hierarchy
after the automated prototyping process. These results are
unsurprising for the REMAUT approach, as the authors used
shallowness as a proxy for suitable hierarchy construction.
However, this evaluation illustrates that the shallow hierar-
chies generated by REMAUI and pix2code do match the target
hierarchies as well as those generated by REDRAW-Mockup.
While minimal hierarchies are desirable from the point
of view of rendering content on the screen, we find that
REMAUI’s hierarchies tend to be dramatically more shallow
compared to REDRAW’S which exhibit higher similarity to
real hierarchies. Another important observation is that the
substitution graph illustrates the general advantage that
the CNN-classifier affords during hierarchy construction.
REDRAW-Mockup requires far fewer substitution operations
to match a given target hierarchy than REMAUI, which is at
least in part due to REDRAW’S ability to properly classify
GUI-components, compared to the text/image binary clas-
sification afforded by REMAUI From these results, we can
answer RQs:

RQs: REDRAW-MockUp is capable of generating
GUI-hierarchies closer in similarity to real hierar-
chies than REMAUI or pix2code, and these hierarchies
are typically less than ten edits away from target
hierarchies for a given edit operation.

5.3 RQj; Results: Visual Similarity

An effective GUI-prototyping approach should be capable
of generating apps that are visually similar to the target
mock-up artifacts. We measured this by calculating the
MAE and MSE across all pixels in screenshots for ReDraw-
MockUp, REDRAW-CV, REMAUI, and pix2code (Fig. 8.) com-
pared to the original app screenshots. This figure depicts
a box-and-whisker plot with points corresponding to a

measurement for each of the studied 83 subject applications.
The black bars indicate mean values. In general, the results
indicate that all approaches generated apps that exhibited
high overall pixel-based similarity to the target screenshots.
REDRAW-CV outperformed both REMAUI and pix2code in
MAE, whereas all approaches exhibited very low MSE. The
apps generated by pix2code exhibit a rather large variation
from the target screenshots used as input. This is mainly due
to the artificial nature of the training set utilized by pix2code
which in turn generates apps only with a relatively rigid,
pre-defined set of components. The results of the Mann-
Whitney test reported in Table 5 & 6 illustrate wether the
similarity between each combination of approaches was sta-
tistically significant. For MAE, we see that when REDRAW-
CV and REDRAW-Mockup are compared to REMAUI, the
results are not statistically significant, however, when exam-
ining the MSE for these same approaches the result is statis-
tically significant with a medium effect effect size according
to the Cliff’s delta measurement. Thus, it is clear that on
average REDRAW and REMAUI both generate prototype ap-
plications that are closely similar to a target visually, with
REDRAW outperforming REMAUI in terms of MSE. This is
encouraging, given that REMAUI simply copies images of all
component types into its mock-ups rather than generating
code with proper component types. When comparing both
variants of REDRAW and REMAUI to pix2code, the results are
all statistically significant, with ranging effect sizes. Thus,
both REDRAW and REMAUT outperform pix2code in terms of
generating prototypes that are visually similar to a target.

While in general the visual similarity for apps generated
by REDRAW is high, there are instances where REMAUI out-
performed our approach. Typically this is due to instances
where REDRAW misclassifies a small number of components
that cause visual differences. For example, a button may be
classified and rendered as a switch in rare cases. However,
REMAUI does not suffer from this issue as all components
deemed not to be text are copied to the generated app as an
image. While this occasionally leads to more visually similar
apps, the utility is dubious at best, as developers will be
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Fig. 9: Examples of apps generated with REDRAW exhibiting high visual and structural similarity to target apps

required to add proper component types, making extensive
edits to the GUI-code. Another instance that caused some
visual inconsistencies for REDRAW was text overlaid on top
of images. In many cases, a developer might overlay a
snippet of text over an image to create a striking effect (e.g.,
Netflix often overlays text across movie-related images).
However, this can cause an issue for REDRAW’S prototyping
methodology. During the detection process, REDRAW rec-
ognizes images and overlaid text in a mockup. However,
given the constraints of our evaluation, REDRAW simply re-
uses the images contained within screenshot as is, which
might include overlaid text. Then, ReDraw would render
a TextView or EditText over the image which already
includes the overlaid text causing duplicate lines of text to be
displayed. In a real-world prototyping scenario, such issues
can be mitigated by designers providing “clean” versions of
the images used in a mockup, so that they could be utilized
in place of “runtime” images that may have overlaid text.
Overall, the performance of REDRAW is quite promising in
terms of the visual fidelity of the prototype apps generated,
with the potential for improvement if adopted into real
workflows.

We illustrate some of the more successful generated apps
(in terms of visual similarity to a target screenshot) in Fig.
9; screenshots and hierarchies for all generated apps will
be available in a dataset in our online appendix [38]. In
summary, we can answer RQj3 as follows:

RQ3: The apps generated by ReDraw exhibit high
visual similarity compared to target screenshots.

5.4 RQq Results: Industrial Applicability

To understand the applicability of REDRAW from an in-
dustrial prospective we conducted a set of semi-structured
interviews with a front-end Android developer @Google, a
mobile designer @Huawei, and a mobile researcher @Face-

book. We asked them four questions (see Sec. 4) related to
(i) the applicability of REDRAW, (ii) aspects of REDRAW they
found beneficial, and (iii) areas for improvement.

5.4.1 Front End Android Developer @Google

The first individual works mostly on Google’s search prod-
ucts, and his team practices the process of mock-up driven
development, where developers work in tandem with a
dedicated UI/UX team. Overall, the developer was quite
positive about REDRAW explaining that it could help to
improve the process of writing a new Android app ac-
tivity from scratch, however, he noted that “It’s a good
starting point... From a development standpoint, the thing I
would appreciate most is getting a lot of the boilerplate code
done [automatically]”. In the “boilerplate” code statement,
the developer was referring to the large amount of layout
and style code that must be created when creating a new
activity or view. He also admitted that this code is typically
written by hand stating, “I write all my GUI-code in xml, I
don’t use the Android Studio editor, very few people use it”.
He also explained that this GUI-code is time-consuming
to write and debug stating, “If you are trying to create a
new activity with all its components, this can take hours”, in
addition to the time required for the UI/UX team to verify
proper implementation. The developer did state that some
GUI-hierarchies he examined tended to have redundant
containers, but that these can be easily fixed stating, “There
are going to be edge cases for different layouts, but these are easily
fixed after the fact”.

The aspect of REDRAW that this developer saw the
greatest potential for, is its use in an evolutionary context.
During the development cycle at Google, the UI/UX team
will often propose changes to existing apps, whose GUI-
code must be updated accordingly. The developer stated
that REDRAW had the potential to aid this process: “The key
thing is fast iteration. A developer could generate the initial view
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[using ReDraw], clean up the layouts, and have a working app.
If a designer could upload a screenshot, and without any other
intervention [ReDraw] could update the [existing] xml this would
be ideal.” The developer thought that if REDRAW was able
to detect existing GUI-components in a prior app version,
and update the layouts and styles of these components
according to a screenshot, generating new components as
necessary, this could greatly improve the turn around time
of GUI-changes and potentially increase quality. He even
expressed optimism that the approach could learn from
developer corrections on generated code over time, stating
“It would be great if you could give it [ReDraw] developer fixes
to the automatically generated xml and it could learn from this.”

5.4.2 Mobile UI/UX Designer @Huawei

We also interviewed a dedicated UI/UX designer at
Huawei, with limited programming experience. His pri-
mary job is to create mock-up artifacts that stipulate de-
signs of mobile apps, communicate these to developers,
and ensure they are implemented to spec. This interview
was translated from Chinese into English. This designer
also expressed interest in REDRAW, stating that the visual
similarity of the apps was impressive for an automated
approach, “Regarding visual, I feel that it’s very similar”, and
that such a solution would be sought after at Huawei, “If it
[a target app] can be automatically implemented after the design,
it should be the best design tool [we have]”. While this designer
does not have extensive development experience, he works
closely with developers and stated that the quality of the
reusability of the code is a key point for adoption, “In my
opinion, for the developers it would be ideal if the output code
can be reused”. This is promising as REDRAW was shown
to generate GUI-hierarchies that are comparatively more
similar to real apps than other approaches.
5.4.3 Mobile Researcher @Facebook
The last participant was a mobile systems researcher at
Facebook. This participant admitted that Facebook would
most likely not use REDRAW in its current state, as they are
heavily invested in the React Native ecosystem. However,
he saw the potential of the approach if it were adopted for
this domain, stating “I can see this as a possible tool to prototype
designs”. He was impressed by the visual similarity of the
apps, stating, “The visual similarity seems impressive”.

In the end, we can answer RQy:

RQ4: REDRAW has promise for application into in-
dustrial design and development workflows, partic-
ularly in an evolutionary context. However, modi-
fications would most likely have to be made to fit
specific workflows and prototyping toolchains.

6 LIMITATIONS & THREATS TO VALIDITY

In this section we describe some limitations and possible
routes for future research in automated software prototyp-
ing, along with potential threats to validity of our approach
and study.

6.1 Limitations and Avenues for Future Work

While REDRAW is a powerful approach for prototyping
GUIs of mobile apps, it is tied to certain practical limita-
tions, some of which represent promising avenues for future

19

work in automated software prototyping. First, REDRAW
is currently capable of prototyping a single screen for an
application, thus if multiple screens for a single app are
desired, they must be prototyped individually and then
manually combined into a single application. It would be
relatively trivial to modify the approach and allow for mul-
tiple screens within a single application with a simple swipe
gesture to switch between them for software demo pur-
poses however, we leave this a future work. Additionally,
future work might examine a learning-based approach for
prototyping and linking together multiple screens, learning
common app transitions via dynamic analysis and applying
the learned patterns during prototyping. Second, the current
implementation of KNN-hierarchy construction is tied to
the specific screen size of the devices used during the
data-mining and automated dynamic analysis. However,
it is possible to utilize display independent pixel (dp val-
ues) to generalize this algorithm to work independent of
screen size, however we leave this as future work. Our
current CNN classifier is capable of classifying incoming
images into one of 15 of the most popular Android GUI-
components. Thus, we do not currently support certain,
rarely used component types. Future work could investigate
network architectures with more capacity (e.g., deeper archi-
tectures) to classify larger numbers of component types, or
even investigate non-standard architectures such as Hierar-
chical CNNs [103]. Currently, REDRAW requires two steps
for detecting and classifying components, however, future
approaches could examine the applicability of CNN-based
object detection networks [104], [105] that may be capable of
performing these two steps in tandem.

6.2

Threats to internal validity correspond to unexpected factors
in the experiments that may contribute to observed results.
One such threat stems from our semi-structured interview
with industrial developers. While evaluating industrial ap-
plicability of REDRAW, threats may arise from our manual
reverse engineering of Sketch mock-ups. However, we ap-
plied a state of art tool for detecting design violations in
GUIs [10] in order to ensure their validity, sufficiently mit-
igating this threat. Another threat arises from using screen-
shots of existing apps as a proxy for design mockup artifacts
in our experimental procedure for RQ2-RQs. As stated
earlier, it was not practically feasible to reverse-engineer
mock-ups for all 83 applications utilized in our dataset
for these experiments. Furthermore, these screenshots rep-
resent production-grade app designs that are used daily
by millions of users, thus we assert that these screenshots
represent a reasonable evaluation set for REDRAW. We also
did not observe any confounding results when applying
REDRAW to our nine reverse engineered Sketch mock-ups,
thus we assert that this threat to validity is reasonably mit-
igated. Another potential confounding factor is our dataset
of labeled components used to train, validate, and test the
CNN. To help ensure a correct, coherent dataset, we applied
several different data filtering, cleaning, and augmentation
techniques, inspired by past work on image classification
using CNNs described in detail in Sec. 3.2.4. Furthermore,
we utilized the uiautomator tool included in the Android

Internal Validity
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SDK, which is responsible for reporting information about
runtime GUI-objects, and is generally accurate as it is tied
directly to Android sub-systems responsible for rendering
the GUL To further ensure the validity of our dataset, we
randomly sampled a statistically significant portion of our
dataset and manually inspected the labeled images after
our data-cleaning process was applied. We observed no
irregularities and thus mitigating a threat related to the
quality of the dataset. Furthermore, we will release our full
dataset and code for training the CNN upon acceptance of
this paper to promote reproducibility and transparency [38].

6.3 Construct Validity

Threats to construct validity concern the operationalization
of experimental artifacts. One potential threat to construct
validity lies in our reimplementation of the REMAUI tool.
As stated earlier, the original version of REMAUI's web
tool was not working at the time of writing this paper. We
reimplemented REMAUI according to the original descrip-
tion in the paper, however we excluded the list generation
feature, as we could not reliably re-create this feature based
on the provided description. While our version may vary
slightly from the original, it still represents an unsuper-
vised CV-based technique against which we can compare
REDRAW. Furthermore, we will offer our reimplementation
of REMAUI (a Java program with opencv [106] bindings) as
an open source project upon acceptance of this paper [38]
to facilitate reproducibility and transparency in our exper-
imentation. Another potential threat to construct validity
lies in our operationalization of the pix2code project. We
closely followed the instructions given in the README of the
pix2code project on GitHub to train the machine translation
model and generate prototype applications. Unfortunately,
the dataset used to train this model differs from the large
scale dataset used to train the REDRAW CNN and inform the
KNN-hierarchy construction, however, this is due to the fact
pix2code requires the source code of training applications
and employs a custom domain specific language, leading
to incompatibilities to our dataset. We include the pix2code
approach as a comparative baseline in this paper as it is one
of the few approaches aimed at utilizing ML to perform au-
tomated GUI prototyping, and utilizes an architecture based
purely upon neural machine translation, differing from our
architecture. However, it should be noted that if trained on
a proper dataset, with more advanced application assembly
techniques, future work on applying machine translation to
automated GUI-prototyping may present better results than
those reported in this paper for pix2code.

6.4 External Validity

Threats to external validity concern the generalization of the
results. While we implemented REDRAW for Android and
did not measure its generalization to other domains, we
assert that implementing our approach for other software
domains constitutes mainly engineering effort. This is tied to
the fact that other GUI-frameworks are typically comprised
sets of varying types of widgets, and GUI-related informa-
tion can be automatically extracted via dynamic analysis
using one of a variety of techniques including accessibility
services [77]. We leave the implementation of the approach
underlying REDRAW for other platforms as future work.
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7 CONCLUSION & FUTURE WORK

In this paper we have presented a data-driven approach
for automatically prototyping software GUIs, and an im-
plementation of this approach in a tool called REDRAW for
Android. A comprehensive evaluation of REDRAW demon-
strates that it is capable of (i) accurately detecting and classi-
fying GUI-components in a mock-up artifact, (ii) generating
hierarchies that are similar to those that a developer would
create, (iii) generating apps that are visually similar to mock-
up artifacts, and (iv) impacting industrial workflows. In the
future, we are planning on exploring CNN architectures
aimed at object detection and classification to better sup-
port the detection task. Additionally, we are planning on
working with industrial partners to integrate REDRAW, and
our broader prototyping approach, into their workflows.

REFERENCES

[1]  “Apple app store https:/ /www.apple.com/ios/app-store/.”

[2] “Google play store https://play.google.com/store?hl=en.”

[3] “Why your app’s ux is more important than you think http://
www.codemag.com/Article/1401041.”

[4] “Adobe photoshop http:/ /www.photoshop.com.”

[5] “The sketch design tool https://www.sketchapp.com.”

[6] A.B. Tucker, Computer Science Handbook, Second Edition.
man & Hall/CRC, 2004.

[71  B. Myers, “Challenges of hci design and implementation,”
Interactions, vol. 1, no. 1, pp. 73-83, Jan. 1994. [Online]. Available:
http:/ /doi.acm.org.proxy.wm.edu/10.1145/174800.174808

[8] T. A. Nguyen and C. Csallner, “Reverse engineering mobile
application user interfaces with remaui,” in Proceedings of
the 2015 30th IEEE/ACM International Conference on Automated
Software Engineering, ser. ASE’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 248-259. [Online]. Available:
http:/ /dx.doi.org/10.1109/ASE.2015.32

[9] V. Lelli, A. Blouin, and B. Baudry, “Classifying and qualifying

gui defects,” in 2015 IEEE 8th International Conference on Software

Testing, Verification and Validation (ICST), April 2015, pp. 1-10.

K. Moran, B. Li, C. Bernal-Cardenas, D. Jelf, and D. Poshyvanyk,

“Automated reporting of gui design violations in mobile apps,”

in Proceedings of the 40th International Conference on Software En-

gineering Companion, ser. ICSE "18.  Piscataway, NJ, USA: IEEE

Press, 2018, p. to appear.

J. A. Landay and B. A. Myers, “Interactive sketching for the

early stages of user interface design,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems,

ser. CHI '95. New York, NY, USA: ACM Press/Addison-

Wesley Publishing Co., 1995, pp. 43-50. [Online]. Available:

http://dx.doi.org/10.1145/223904.223910

B. Myers, S. Y. Park, Y. Nakano, G. Mueller, and A. Ko, “How

designers design and program interactive behaviors,” in 2008

IEEE Symposium on Visual Languages and Human-Centric Comput-

ing, Sept 2008, pp. 177-184.

Chap-

[10]

[11]

(12]

[13] “Xcode https://developer.apple.com/xcode/.”
[14] “Visual-studio https://www.visualstudio.com.”
[15] “Android-studio https://developer.android.com/studio/index.

html.”

C. Zeidler, C. Lutteroth, W. Stuerzlinger, and G. Weber,
Evaluating Direct Manipulation Operations for Constraint-Based
Layout. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp- 513-529. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-40480-1_35

[16]

[17] “Mockup.io https://mockup.io/about/.”

[18] “Proto.io https://proto.io.”

[19] “Fuild-ui https://www.fluidui.com.”

[20] “Marvelapp https://marvelapp.com/prototyping/.”
[21] “Pixate http://www.pixate.com.”

[22] “Xiffe http:/ /xiffe.com.”

[23] “Mockingbot https://mockingbot.com.”

[24] “Flinto https:/ /www.flinto.com.”

[25] “Justinmind https://www.justinmind.com.”

[26] “Protoapp https:/ /prottapp.com/features/.”


https://www.apple.com/ios/app-store/
https://play.google.com/store?hl=en
http://www.codemag.com/Article/1401041
http://www.codemag.com/Article/1401041
http://www.photoshop.com
https://www.sketchapp.com
http://doi.acm.org.proxy.wm.edu/10.1145/174800.174808
http://dx.doi.org/10.1109/ASE.2015.32
http://dx.doi.org/10.1145/223904.223910
https://developer.apple.com/xcode/
https://www.visualstudio.com
https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
http://dx.doi.org/10.1007/978-3-642-40480-1_35
http://dx.doi.org/10.1007/978-3-642-40480-1_35
https://mockup.io/about/
https://proto.io
https://www.fluidui.com
https://marvelapp.com/prototyping/
http://www.pixate.com
http://xiffe.com
https://mockingbot.com
https://www.flinto.com
https://www.justinmind.com
https://prottapp.com/features/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018

[27]
[28]
[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

(42]

[43]

[44]

[45]

“Irise https:/ /www.irise.com/mobile-prototyping/.”

“Appypie http:/ /www.appypie.com/app-prototype-builder.”
A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Advances in Neural Information Processing Systems 25,

E. Pereira, C. ]J. C. Burges, L. Bottou, and K .
Weinberger, Eds. Curran Associates, Inc., 2012, pp.
1097-1105. [Online]. Available: http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.
pdf

M. D. Zeiler and R. Fergus, Visualizing and Understanding
Convolutional ~ Networks. ~ Cham: Springer International
Publishing, 2014, 818-833.  [Online].  Awvailable:

PP-
https:/ /doi.org/10.1007 /978-3-319-10590-1_53
K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR, vol.
abs/1409.1556, 2014. [Online]. Available: http://arxiv.org/abs/
1409.1556

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in Computer Vision and Pattern Recognition (CVPR),
2015. [Online]. Available: http:/ /arxiv.org/abs/1409.4842

K. He, X. Zhang, S. Ren, and J. Sun, in 2016 IEEE Conference on
Computer Vision and Pattern Recognition, ser. CVPR’16.

O. Russakovsky, J. Deng, H. Su, ]. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei, “Imagenet large scale visual
recognition challenge,” Int. ]. Comput. Vision, vol. 115,
no. 3, pp. 211252, Dec. 2015. [Online]. Available: http:
//dx.doi.org/10.1007 /s11263-015-0816-y

K. Moran, M. Linares-Vasquez, C. Bernal-Cérdenas, C. Vendome,
and D. Poshyvanyk, “Automatically discovering, reporting and
reproducing android application crashes,” in Proceedings of the
IEEE International Conference on Software Testing, Verification and
Validation (ICST’16). IEEE, 2016, pp. 33-44.

M. Linares-Vasquez, M. White, C. Bernal-Cardenas, K. Moran,
and D. Poshyvanyk, “Mining android app usages for generat-
ing actionable gui-based execution scenarios,” in 12th Working
Conference on Mining Software Repositories (MSR’15), 2015, p. to
appear.

T. Beltramelli, “pix2code: Generating code from a graphical user
interface screenshot,” CoRR, vol. abs/1705.07962, 2017. [Online].
Available: http:/ /arxiv.org/abs/1705.07962

K. Moran, C. Bernal-Cirdenas, M. Curcio, R. Bonett, and
D. Poshyvanyk, “Redraw online appendix https://www.
android-dev-tools.com/redraw.”

“Android  ui-development https://developer.android.com/
guide/topics/ui/overview.html.”

A. Coyette, S. Kieffer, and ]. Vanderdonckt, “Multi-fidelity
prototyping of user interfaces,” in Proceedings of the 11th IFIP
TC 13 International Conference on Human-computer Interaction, ser.
INTERACT’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
150-164. [Online]. Available: http://dl.acm.org/ citation.cfm?id=
1776994.1777015

A. Caetano, N. Goulart, M. Fonseca, and J. Jorge, “Javasketchit:
Issues in sketching the look of user interfaces,” in AAAI Spring
Symposium on Sketch Understanding, ser. SSS’02, 2002, pp. 9-14.

J. A. Landay and B. A. Myers, “Sketching interfaces: toward more
human interface design,” Computer, vol. 34, no. 3, pp. 5664, Mar
2001.

S. Chatty, S. Sire, J.-L. Vinot, P. Lecoanet, A. Lemort,
and C. Mertz, “Revisiting visual interface programming:
Creating gui tools for designers and programmers,” in
Proceedings of the 17th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ‘04. New York,
NY, USA: ACM, 2004, . 267-276. [Online]. Available:
http://doi.acm.org/10.1145/1029632.1029678
J. Seifert, B. Pfleging, E. del Carmen Valderrama Bahamoéndez,
M. Hermes, E. Rukzio, and A. Schmidt, “Mobidev: A tool for
creating apps on mobile phones,” in Proceedings of the 13th
International Conference on Human Computer Interaction with Mobile
Devices and Services (MobileHCI'11), ser. MobileHCI "11. New
York, NY, USA: ACM, 2011, pp. 109-112. [Online]. Available:
http://doi.acm.org/10.1145/2037373.2037392

X. Meng, S. Zhao, Y. Huang, Z. Zhang, ]. Eagan, and
R. Subramanian, “Wade: Simplified gui add-on development
for third-party software,” in Proceedings of the 32Nd Annual

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]
[57]

(58]
[59]

[60]

[61]

21

ACM Conference on Human Factors in Computing Systems, ser.
CHI "14. New York, NY, USA: ACM, 2014, pp. 2221-2230.
[Online]. Available: http://doi.acm.org.proxy.wm.edu/10.1145/
2556288.2557349

W. S. Lasecki, J. Kim, N. Rafter, O. Sen, J. P. Bigham, and M. S.
Bernstein, “Apparition: Crowdsourced user interfaces that come
to life as you sketch them,” in Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, ser. CHI
"15.  New York, NY, USA: ACM, 2015, pp. 1925-1934. [Online].
Available: http:/ /doi.acm.org/10.1145/2702123.2702565

T-H. Chang, T. Yeh, and R. Miller, “Associating the visual
representation of user interfaces with their internal structures
and metadata,” in Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology, ser. UIST "11. New
York, NY, USA: ACM, 2011, pp. 245-256. [Online]. Available:
http://doi.acm.org/10.1145/2047196.2047228

M. Dixon, D. Leventhal, and ]. Fogarty, “Content and
hierarchy in pixel-based methods for reverse engineering
interface structure,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI "11. New
York, NY, USA: ACM, 2011, pp. 969-978. [Online]. Available:
http://doi.acm.org/10.1145/1978942.1979086

M. Dixon and ]. Fogarty, “Prefab: Implementing advanced
behaviors using pixel-based reverse engineering of interface
structure,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’10. New York,
NY, USA: ACM, 2010, pp. 1525-1534. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753554

A. Hinze, ]. Bowen, Y. Wang, and R. Malik, “Model-driven gui
& interaction design using emulation,” in Proceedings of the 2Nd
ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, ser. EICS ’10. New York, NY, USA: ACM, 2010,
pp- 273-278. [Online]. Available: http://doi.acm.org/10.1145/
1822018.1822061

E. Shah and E. Tilevich, “Reverse-engineering user interfaces to
facilitateporting to and across mobile devices and platforms,”
in Proceedings of the Compilation of the Co-located Workshops
on DSM’'11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11,
& VMIL'11, ser. SPLASH ’11 Workshops. New York,
NY, USA: ACM, 2011, pp. 255-260. [Online]. Available:
http://doi.acm.org/10.1145/2095050.2095093

H. Samir and A. Kamel, “Automated reverse engineering of
java graphical user interfaces for web migration,” in 2007 ITI
5th International Conference on Information and Communications
Technology, ser. ICICT’07, Dec 2007, pp. 157-162.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the
IEEE, vol. 86, no. 11, pp. 2278-2324, Nov 1998.

“The marketch plugin for sketch https:/ /github.com/tudou527/
marketch.”

J. Canny, “A computational approach to edge detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-8, no. 6, pp. 679-698, Nov 1986.

“Sketch extensions https:/ /www.sketchapp.com/extensions/.”

A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input
generation system for android apps,” in Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE’'13. New York, NY, USA: ACM, 2013, pp. 224-
234. [Online]. Available: http://doi.acm.org/10.1145/2491411.
2491450

“Android ui/application exerciser monkey http://developer.
android.com/tools/help/monkey.html.”

“Intent fuzzer https:/ /www.isecpartners.com/tools/
mobile-security /intent-fuzzer.aspx.”

R. Sasnauskas and J. Regehr, “Intent fuzzer: Crafting intents
of death,” in Proceedings of the 2014 Joint International Workshop
on Dynamic Analysis and Software and System Performance
Testing, Debugging, and Analytics, ser. WODA+PERTEA’14. New
York, NY, USA: ACM, 2014, pp. 1-5. [Online]. Available:
http://doi.acm.org/10.1145/2632168.2632169

H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing
the android apps with intent-filter tag,” in Proceedings of
International Conference on Advances in Mobile Computing &
Multimedia, ser. MoMM ’13. New York, NY, USA: ACM,
2013, pp. 68:68-68:74. [Online]. Available: http://doi.acm.org/
10.1145/2536853.2536881


https://www.irise.com/mobile-prototyping/
http://www.appypie.com/app-prototype-builder
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://doi.org/10.1007/978-3-319-10590-1_53
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.4842
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1705.07962
https://www.android-dev-tools.com/redraw
https://www.android-dev-tools.com/redraw
https://developer.android.com/guide/topics/ui/overview.html
https://developer.android.com/guide/topics/ui/overview.html
http://dl.acm.org/citation.cfm?id=1776994.1777015
http://dl.acm.org/citation.cfm?id=1776994.1777015
http://doi.acm.org/10.1145/1029632.1029678
http://doi.acm.org/10.1145/2037373.2037392
http://doi.acm.org.proxy.wm.edu/10.1145/2556288.2557349
http://doi.acm.org.proxy.wm.edu/10.1145/2556288.2557349
http://doi.acm.org/10.1145/2702123.2702565
http://doi.acm.org/10.1145/2047196.2047228
http://doi.acm.org/10.1145/1978942.1979086
http://doi.acm.org/10.1145/1753326.1753554
http://doi.acm.org/10.1145/1822018.1822061
http://doi.acm.org/10.1145/1822018.1822061
http://doi.acm.org/10.1145/2095050.2095093
https://github.com/tudou527/marketch
https://github.com/tudou527/marketch
https://www.sketchapp.com/extensions/
http://doi.acm.org/10.1145/2491411.2491450
http://doi.acm.org/10.1145/2491411.2491450
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html
https://www.isecpartners.com/tools/mobile-security/intent-fuzzer.aspx
https://www.isecpartners.com/tools/mobile-security/intent-fuzzer.aspx
http://doi.acm.org/10.1145/2632168.2632169
http://doi.acm.org/10.1145/2536853.2536881
http://doi.acm.org/10.1145/2536853.2536881

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

T. Azim and I. Neamtiu, “Targeted and depth-first exploration
for systematic testing of android apps,” in Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages &#38; Applications, ser. OOPSLA
"13.  New York, NY, USA: ACM, 2013, pp. 641-660. [Online].
Available: http:/ /doi.acm.org/10.1145/2509136.2509549

S. Anand, M. Naik, M. ]J. Harrold, and H. Yang, “Automated
concolic testing of smartphone apps,” in Proceedings of
the ACM SIGSOFT 20th International Symposium on the
Foundations of Software Engineering, ser. FSE'12. New York,
NY, USA: ACM, 2012, pp. 59:1-59:11. [Online]. Available:
http://doi.acm.org/10.1145/2393596.2393666

D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,
and A. M. Memon, “Using gui ripping for automated testing
of android applications,” in Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering, ser.
ASE’12. New York, NY, USA: ACM, 2012, pp. 258-261. [Online].
Available: http://doi.acm.org/10.1145/2351676.2351717

K. Moran, M. Linares-Vasquez, C. Bernal-Cérdenas, C. Vendome,
and D. Poshyvanyk, “Crashscope: A practical tool for automated
testing of android applications,” in Proceedings of the 39th
International Conference on Software Engineering Companion, ser.
ICSE-C "17. Piscataway, NJ, USA: IEEE Press, 2017, pp. 15-18.
[Online]. Available: https://doi.org/10.1109/ICSE-C.2017.16

W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach
for automated gui-model generation of mobile applications,”
in Proceedings of the 16th International Conference on Fundamental
Approaches to Software Engineering, ser. FASE’13.  Berlin,
Heidelberg: Springer-Verlag, 2013, pp. 250-265. [Online].
Available: http://dx.doi.org/10.1007 /978-3-642-37057-1_19

W. Choi, G. Necula, and K. Sen, “Guided gui testing
of android apps with minimal restart and approximate
learning,” in Proceedings of the 2013 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages
&#38;  Applications, ser. OOPSLA ’13. New York, NY,
USA: ACM, 2013, pp. 623-640. [Online]. Available: http:
//doi.acm.org/10.1145/2509136.2509552

S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan,
“Puma: Programmable ui-automation for large-scale dynamic
analysis of mobile apps,” in Proceedings of the 12th Annual
International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys “14. New York, NY, USA: ACM, 2014,
pp.- 204-217. [Online]. Available: http://doi.acm.org/10.1145/
2594368.2594390

R. N. Zaeem, M. R. Prasad, and S. Khurshid, “Automated
generation of oracles for testing user-interaction features of
mobile apps,” in Proceedings of the 2014 IEEE International
Conference on Software Testing, Verification, and Validation, ser. ICST
"14.  Washington, DC, USA: IEEE Computer Society, 2014, pp.
183-192. [Online]. Available: http://dx.doi.org/10.1109/ICST.
2014.31

K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective
automated testing for android applications,” in Proceedings of the
25th International Symposium on Software Testing and Analysis, ser.
ISSTA’16. New York, NY, USA: ACM, 2016, pp. 94-105. [Online].
Available: http://doi.acm.org/10.1145/2931037.2931054

R. Mahmood, N. Mirzaei, and S. Malek, “Evodroid: Segmented
evolutionary testing of android apps,” in Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. FSE'14. New York, NY, USA: ACM, 2014,
pp- 599-609. [Online]. Available: http://doi.acm.org/10.1145/
2635868.2635896

S. Roy Choudhary, M. R. Prasad, and A. Orso, “X-pert: A
web application testing tool for cross-browser inconsistency
detection,” in Proceedings of the 2014 International Symposium
on Software Testing and Analysis, ser. ISSTA 2014. New
York, NY, USA: ACM, 2014, pp. 417-420. [Online]. Available:
http://doi.acm.org/10.1145/2610384.2628057

J. Thomé, A. Gorla, and A. Zeller, “Search-based security testing
of web applications,” in Proceedings of the 7th International
Workshop on Search-Based Software Testing, ser. SBST 2014. New
York, NY, USA: ACM, 2014, pp. 5-14. [Online]. Available:
http://doi.acm.org/10.1145/2593833.2593835

S. Roy Choudhary, H. Versee, and A. Orso, “Webdiff: Automated
identification of cross-browser issues in web applications,”
in Proceedings of the 2010 IEEE International Conference on
Software Maintenance, ser. ICSM "10. Washington, DC, USA:

[75]

[76]

[77]

[78]

[79]
[80]

(81]

[82]

(83]

[84]
(85]
(86]
(87]
(88]
(89]
[90]
[91]
[92]
[93]

[94]

[95]

[96]

[97]

(98]
[99]

[100]
[101]

22

IEEE Computer Society, 2010, pp. 1-10. [Online]. Available:
http:/ /dx.doi.org/10.1109 /ICSM.2010.5609723

S. R. Choudhary, M. R. Prasad, and A. Orso, “Crosscheck:
Combining crawling and differencing to better detect cross-
browser incompatibilities in web applications,” in Proceedings of
the 2012 IEEE Fifth International Conference on Software Testing,
Verification and Validation, ser. ICST "12.  Washington, DC, USA:
IEEE Computer Society, 2012, pp. 171-180. [Online]. Available:
http://dx.doi.org/10.1109/ICST.2012.97

B. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “Guitar: an
innovative tool for automated testing of gui-driven software,”
Automated Software Engineering, pp. 1-41, 2013. [Online].
Available: http://dx.doi.org/10.1007 /s10515-013-0128-9

M. Grechanik, Q. Xie, and C. Fu, “Creating gui testing tools using
accessibility technologies,” in 2009 International Conference on Soft-
ware Testing, Verification, and Validation Workshops, ser. ICSTW’09,
April 2009, pp. 243-250.

“Android uiautomator http://developer.android.com/tools/
help/uiautomator/index.html.”

“Google-api https:/ /github.com/NeroBurner/googleplay-api.”
K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, and
D. Poshyvanyk, “Auto-completing bug reports for android ap-
plications,” in in Proceedings of 10th Joint Meeting of the European
Software Engineering Conference and the 23rd ACM SIGSOFT Sym-
posium on the Foundations of Software Engineering (ESEC/FSE’15),
Bergamo, Italy, Ausgust-September 2015 2015, p. to appear.

S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input
generation for android: Are we there yet?” in 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE
2015), 2015.

I. M. Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
A. Hassan, “On the relationship between the number of ad
libraries in an android app and its rating,” IEEE Software, no. 1,
pp. 1-1, 2014.

J. Gui, S. Mcilroy, M. Nagappan, and W. G. Halfond, “Truth in
advertising: The hidden cost of mobile ads for software develop-
ers,” in Proceedings of the 37th International Conference on Software
Engineering, ser. ICSE’15.  Florence, Italy: IEEE Press, 2015, pp.
100-110.

rovo89, “Xposed module repository http://repo.xposed.info/.”
U. Karn, “An intuitive explanation of convolu-
tional neural nets https:/ /ujjwalkarn.me/2016/08/11/
intuitive-explanation-convnets/.”

“Convolution  operator  http://mathworld.wolfram.com/
Convolution.html.”

“Apache cordova https://cordova.apache.org.”

“apktool https:/ /code.google.com/p/android-apktool/.”
“Unity game engine https://unity3d.com.”

“Matlab neural network toolboxhttps://www.mathworks.com/
products/neural-network.htm].”

“Tesseract ocr library https:/ /www.mathworks.com/products/
parallel-computing.html.”

“Tesseract ocr library https:/ /www.mathworks.com/products/
computer-vision.html.”

“Tesseract ocr library https://github.com/tesseract-ocr/
tesseract/wiki.”

W. Fu and T. Menzies, “Easy over hard: A case study on
deep learning,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE’17. New
York, NY, USA: ACM, 2017, pp. 49-60. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106256

G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, “Visual
categorization with bags of keypoints,” in Workshop on statistical
learning in computer vision, ser. ECCV’04, vol. 1, no. 1-22. Prague,
2004, pp. 1-2.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-
up robust features (surf),” Comput. Vis. Image Underst., vol.
110, no. 3, pp. 346-359, Jun. 2008. [Online]. Available:
http://dx.doi.org/10.1016 /j.cviu.2007.09.014

“Pix2code github repository https:/ /github.com/
tonybeltramelli/pix2code.”

“Remaui web version http://pixeltoapp.com.”

“Wagner-fischer  algorithm  https://en.wikipedia.org/wiki/
WagnerFischer_algorithm.”

“Photohawk library http://datascience.github.io/photohawk/.”
W. Conover, Practical Nonparametric Statistics. Wiley, 1998.


http://doi.acm.org/10.1145/2509136.2509549
http://doi.acm.org/10.1145/2393596.2393666
http://doi.acm.org/10.1145/2351676.2351717
https://doi.org/10.1109/ICSE-C.2017.16
http://dx.doi.org/10.1007/978-3-642-37057-1_19
http://doi.acm.org/10.1145/2509136.2509552
http://doi.acm.org/10.1145/2509136.2509552
http://doi.acm.org/10.1145/2594368.2594390
http://doi.acm.org/10.1145/2594368.2594390
http://dx.doi.org/10.1109/ICST.2014.31
http://dx.doi.org/10.1109/ICST.2014.31
http://doi.acm.org/10.1145/2931037.2931054
http://doi.acm.org/10.1145/2635868.2635896
http://doi.acm.org/10.1145/2635868.2635896
http://doi.acm.org/10.1145/2610384.2628057
http://doi.acm.org/10.1145/2593833.2593835
http://dx.doi.org/10.1109/ICSM.2010.5609723
http://dx.doi.org/10.1109/ICST.2012.97
http://dx.doi.org/10.1007/s10515-013-0128-9
http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/uiautomator/index.html
https://github.com/NeroBurner/googleplay-api
http://repo.xposed.info/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
http://mathworld.wolfram.com/Convolution.html
http://mathworld.wolfram.com/Convolution.html
https://cordova.apache.org
https://code.google.com/p/android-apktool/
https://unity3d.com
https://www.mathworks.com/products/neural-network.html
https://www.mathworks.com/products/neural-network.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/parallel-computing.html
https://www.mathworks.com/products/computer-vision.html
https://www.mathworks.com/products/computer-vision.html
https://github.com/tesseract-ocr/tesseract/wiki
https://github.com/tesseract-ocr/tesseract/wiki
http://doi.acm.org/10.1145/3106237.3106256
http://dx.doi.org/10.1016/j.cviu.2007.09.014
https://github.com/tonybeltramelli/pix2code
https://github.com/tonybeltramelli/pix2code
http://pixeltoapp.com
https://en.wikipedia.org/wiki/WagnerÃ¢Â�Â�Fischer_algorithm
https://en.wikipedia.org/wiki/WagnerÃ¢Â�Â�Fischer_algorithm
http://datascience.github.io/photohawk/

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. #, NO. #, 2018

[102] R.]J. Grissom and J. J. Kim, Effect sizes for research: A broad practical
approach. Lawrence Earlbaum Associates, 2005.

[103] Z. Wang, X. Wang, and G. Wang, “Learning fine-grained
features via a CNN tree for large-scale classification,”
CoRR, vol. abs/1511.04534, 2015. [Online]. Available: http:
//arxiv.org/abs/1511.04534

[104] S. Ren, K. He, R. Girshick, and J]. Sun, “Faster r-cnn:
Towards real-time object detection with region proposal
networks,” in Proceedings of the 28th International Conference on
Neural Information Processing Systems, ser. NIPS’15.  Cambridge,
MA, USA: MIT Press, 2015, pp. 91-99. [Online]. Available:
http:/ /dl.acm.org/ citation.cfm?id=2969239.2969250

[105] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” in Proceedings of the 2014 IEEE Conference
on Computer Vision and Pattern Recognition, ser. CVPR '14.
Washington, DC, USA: IEEE Computer Society, 2014, pp.
580-587. [Online]. Available: http://dx.doi.org/10.1109/CVPR.
2014.81

[106] “Opencv https://opencv.org.”

Kevin Moran is currently a Ph.D. candidate in
the Computer Science Department at the Col-
lege of William and Mary. He is a member of
the SEMERU research group and advised by Dr.
Denys Poshyvanyk. His main research interest
involves facilitating the processes of Software
Engineering, Maintenance, and Evolution with a
focus on mobile platforms. He graduated with a
M.S. degree from William and Mary in August of
2015 and his thesis focused on improving bug
reporting for mobile apps through novel appli-
cations of program analysis techniques. He has published in several
top peer-reviewed software engineering venues including: ICSE, ES-
EC/FSE, ICST, ICSME, and MSR. He was recognized as the second-
overall graduate winner in the ACM Student Research competition at
ESEC/FSE15. Moran is a student member of IEEE and ACM and has
served as an external reviewer for ICSE, ICSME, FSE, APSEC, and
SCAM. More information available at http://www.kpmoran.com.

Carlos Bernal-Cardenas received the BS de-
gree in systems engineering from the Univer-
sidad Nacional de Colombia in 2012 and his
M.E. in Systems and Computing Engineering in
2015. He is currently Ph.D. candidate in Com-
puter Science at the College of William and
Mary as a member of the SEMERU research
group advised by Dr Denys Poshyvanyk. His
research interests include software engineering,
software evolution and maintenance, information
retrieval, software reuse, mining software repos-
itories, mobile applications development, and user experience. He has
published in several top peer-reviewed software engineering venues
including: ICSE, ESEC/FSE, ICST, and MSR. He has also received
the ACM SigSoft Distinguished paper award at ESEC/FSE’15. Bernal-
Cardenas is a student member of IEEE and ACM and has served as
an external reviewer for ICSE, ICSME, FSE, APSEC, and SCAM. More
information is available at http://www.cs.wm.edu/~cebernal/.

Michael Curcio is an undergraduate student in
the Computer Science Department at the Col-
lege of William and Mary. He is currently a
member of the SEMERU research group and
is pursuing an undergraduate honors thesis on
the topic of automating software design work-
flows. His research interests lie in applications
of deep learning to software engineering and
design tasks. Curcio is an IEEE student member.

23

Richard Bonett is a MS/PhD student at The
College of Wiliam and Mary and a member
of the SEMERU research group. He graduated
from The College of Wiliam and Mary with a
B.S. in Computer Science in Spring 2017. His
primary research interests lie in Software Engi-
neering, particularly in the development and evo-
lution of mobile applications. Bonett has recently
published at MobileSoft'17. More information is
available at http://www.cs.wm.edu/~rfbonett/.

Denys Poshyvanyk is an Associate Professor
in the Computer Science Department at W&M
where he leads SEMERU research group. He
received his Ph.D. from Wayne State Univer-
sity, where he was advised by Dr. Andrian Mar-
cus. His current research is in the area of soft-
ware engineering, evolution and maintenance,
program comprehension, reverse engineering,
software privacy, repository mining, traceability,
performance testing, mobile app (Android) de-
velopment and testing, energy consumption, and
reuse. He has received several Best Paper Awards at ICPC’06, ICPC’07,
ICSM’10, SCAM'10, ICSM’13 and ACM SIGSOFT Distinguished Paper
Awards at ASE’'13, ICSE’15, ESEC/FSE’15, ICPC’16, and ASE’17. He
is also a recipient of the NSF CAREER award (2013) and the Plumeri
Award for Faculty Excellence (2016). More information available at:
http://www.cs.wm.edu/~denys.


http://arxiv.org/abs/1511.04534
http://arxiv.org/abs/1511.04534
http://dl.acm.org/citation.cfm?id=2969239.2969250
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2014.81
https://opencv.org
http://www.kpmoran.com
http://www.cs.wm.edu/~cebernal/
http://www.cs.wm.edu/~rfbonett/
http://www.cs.wm.edu/~denys

	Introduction
	Background & Related Work
	Background & Problem Statement
	Related Work
	Reverse Engineering Mobile User Interfaces:
	Other GUI-Design and Reverse Engineering Tools:
	Image Classification using CNNs: 


	Approach Description
	Phase 1 - Detection of GUI-Components
	Parsing Data from Design Mockups
	Using CV Techniques for GUI-component Detection:
	ReDraw Implementation - GUI Component Detection

	Phase 2 - GUI-component Classification
	Phase 2.1 - Large-Scale Software Repository Mining and Dynamic Analysis
	ReDraw Implementation - Software Repository Mining and Automated Dynamic Analysis
	Phase 2.2 - CNN Classification of GUI-Components
	ReDraw Implementation - CNN Classifier

	Phase 3 - Application Assembly
	Deriving GUI-Hierarchies
	Inferring Styles and Assembling a Target App
	ReDraw Implementation - App Assembly


	Empirical Study Design
	RQ1: Effectiveness of the CNN
	RQ2: GUI Hierarchy Construction
	RQ3: Visual Similarity
	RQ4: Industrial Applicability

	Experimental Results
	RQ1 Results: Effectiveness of the CNN
	RQ2 Results: Hierarchy Construction
	RQ3 Results: Visual Similarity
	RQ4 Results: Industrial Applicability
	Front End Android Developer @Google
	Mobile UI/UX Designer @Huawei
	Mobile Researcher @Facebook


	Limitations & Threats to Validity
	Limitations and Avenues for Future Work
	Internal Validity
	Construct Validity
	External Validity

	Conclusion & Future Work
	References
	Biographies
	Kevin Moran
	Carlos Bernal-Cárdenas
	Michael Curcio
	Richard Bonett
	Denys Poshyvanyk


