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UNIVERSALITY RESULTS FOR ZEROS OF RANDOM

HOLOMORPHIC SECTIONS

TURGAY BAYRAKTAR, DAN COMAN, AND GEORGE MARINESCU

Abstract. In this work we prove a universality result regarding the equidis-
tribution of zeros of random holomorphic sections associated to a sequence of
singular Hermitian holomorphic line bundles on a compact Kähler complex
space X. Namely, under mild moment assumptions, we show that the asymp-

totic distribution of zeros of random holomorphic sections is independent of
the choice of the probability measure on the space of holomorphic sections. In
the case when X is a compact Kähler manifold, we also prove an off-diagonal
exponential decay estimate for the Bergman kernels of a sequence of positive
line bundles on X.
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1. Introduction

In this paper we study the asymptotic distribution of zeros of random sequences
of holomorphic sections of singular Hermitian holomorphic line bundles. We gen-
eralize our previous results from [CM1, CM2, CM3, CMM, Ba1, Ba3, Ba2] in sev-
eral directions. We consider sequences (Lp, hp), p ≥ 1, of singular Hermitian
holomorphic line bundles over Kähler spaces instead of the sequence of powers
(Lp, hp) = (L⊗p, h⊗p) of a fixed line bundle (L, h). Moreover, we endow the vec-
tor space of holomorphic sections with wide classes of probability measures (see
condition (B) below and Section 4.2).
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Recall that by the results of [T] (see also [MM1, Section 5.3]), if (X,ω) is a
compact Kähler manifold and (L, h) is a line bundle such that the Chern curvature
form c1(L, h) equals ω, then the normalized Fubini-Study currents 1

pγp associated

to H0(X,Lp) (see (2.1)) are smooth for p sufficiently large and converge in the C 2

topology to ω. This result can be applied to describe the asymptotic distribution of
the zeros of sequences of Gaussian holomorphic sections. Indeed, it is shown in [SZ1]
(see also [NV,DS,SZ2,S,DMS]) that for almost all sequences {sp ∈ H0(X,Lp)}p≥1

the normalized zero-currents 1
p [sp = 0] converge weakly to ω on X. Thus ω can be

approximated by various algebraic or analytic objects in the semiclassical limit p →
∞ . Some important technical tools in higher dimensions were introduced in [FS].
Using these tools we generalized in [CM1,CM2,CM3,CMM,CMN1,CMN2,DMM]
the above results to the case of singular positively curved Hermitian metrics h. We
note that statistics of zeros of sections and hypersurfaces have been studied also in
the context of real manifolds and real vector bundles; see, e.g., [GW,NS].

In this paper we work in the following setting:
(A1) (X,ω) is a compact (reduced) normal Kähler space of pure dimension n,

Xreg denotes the set of regular points of X, and Xsing denotes the set of singular
points of X.

(A2) (Lp, hp), p ≥ 1, is a sequence of holomorphic line bundles onX with singular
Hermitian metrics hp whose curvature currents verify

(1.1) c1(Lp, hp) ≥ ap ω on X, where ap > 0 and lim
p→∞

ap = ∞.

Let Ap :=
∫
X
c1(Lp, hp) ∧ ωn−1. If Xsing �= ∅ we also assume that

(1.2) ∃T0 ∈ T (X) such that c1(Lp, hp) ≤ ApT0 ∀ p ≥ 1 .

Here T (X) denotes the space of positive closed currents of bidegree (1, 1) on X
with local plurisubharmonic potentials (see Section 2.1). We let H0

(2)(X,Lp) be the

Bergman space of L2-holomorphic sections of Lp relative to the metric hp and the
volume form ωn/n! on X,

(1.3) H0
(2)(X,Lp) =

{
S ∈ H0(X,Lp) : ‖S‖2p :=

∫
Xreg

|S|2hp

ωn

n!
< ∞

}
,

endowed with the obvious inner product. For p ≥ 1, let dp =dimH0
(2)(X,Lp) and

let Sp
1 , . . . , S

p
dp

be an orthonormal basis of H0
(2)(X,Lp).

Now, we describe the randomization on H0
(2)(X,Lp). Using the above orthonor-

mal bases we identify the spaces H0
(2)(X,Lp) 
 Cdp and endow them with proba-

bility measures σp verifying the following moment condition:
(B) There exist a constant ν ≥ 1 and for every p ≥ 1 constants Cp > 0 such that∫

C
dp

∣∣ log |〈a, u〉| ∣∣ν dσp(a) ≤ Cp, for any u ∈ C
dp with ‖u‖ = 1 .

We remark that the probability space (H0
(2)(X,Lp), σp) depends in general on

the choice of the orthonormal basis (used for the identification H0
(2)(X,Lp) 
 Cdp).

However, it follows from Theorem 1.1 below that the global distribution of zeros
of random holomorphic sections does not depend on the choice of the orthonormal
basis.
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General classes of measures σp that satisfy condition (B) are given in Section
4.2. Important examples are provided by the Gaussians (see Section 4.2.1) and the
Fubini-Study volumes (see Section 4.2.2), which verify (B) for every ν ≥ 1 with a
constant Cp = Γν independent of p. For such measures Theorem 1.1 below takes
a particularly nice form. We note that for the measures σp from Sections 4.2.1,
4.2.2, and 4.2.3 (area measure of spheres), the probability space (H0

(2)(X,Lp), σp)

does not depend on the choice of the orthonormal basis, since these measures are
unitary invariant. In Section 4.2.4 we show that measures with heavy tail probability
(see condition (B1) therein) and small ball probability (see condition (B2) therein)
verify assumption (B). We also stress that random holomorphic sections with i.i.d.
coefficients whose distribution has bounded density and logarithmically decaying
tails arise as a special case (cf. Lemma 4.15). Moreover, locally moderate measures
with compact support are also among the examples of such measures (cf. Lemma
4.16).

Given a section s ∈ H0(X,Lp) we denote by [s = 0] the current of integration
over the zero divisor of s. The expectation current E[sp = 0] of the current-valued
random variable H0

(2)(X,Lp) � sp �→ [sp = 0] is defined by

〈
E[sp = 0],Φ

〉
=

∫
H0

(2)
(X,Lp)

〈
[sp = 0],Φ

〉
dσp(sp),

where Φ is an (n− 1, n− 1) test form on X. We consider the product probability
space

(1.4) (H, σ) =

( ∞∏
p=1

H0
(2)(X,Lp),

∞∏
p=1

σp

)
.

The following result gives the distribution of the zeros of random sequences of
holomorphic sections of Lp, as well as the convergence in L1 of the logarithms of
their pointwise norms. Note that by the Lelong-Poincaré formula (see (2.4)) the
latter are the potentials of the currents of integration on the zero sets, thus their
convergence in L1 implies the weak convergence of the zero-currents.

Theorem 1.1. Assume that (X,ω), (Lp, hp), and σp verify the assumptions (A1),
(A2), and (B). Then the following hold:

(i) If limp→∞ CpA
−ν
p = 0, then 1

Ap

(
E[sp = 0] − c1(Lp, hp)

)
→ 0 , as p → ∞,

in the weak sense of currents on X.
(ii) If lim infp→∞ CpA

−ν
p = 0, then there exists a sequence of natural numbers

pj ↗ ∞ such that for σ-a. e. sequence {sp} ∈ H we have

1

Apj

log |spj
|hpj

→ 0 ,
1

Apj

(
[spj

= 0]− c1(Lpj
, hpj

)
)
→ 0 , as j → ∞,

in L1(X,ωn), respectively, in the weak sense of currents on X.
(iii) If

∑∞
p=1 CpA

−ν
p < ∞, then for σ-a. e. sequence {sp} ∈ H we have

1

Ap
log |sp|hp

→ 0 ,
1

Ap

(
[sp = 0]− c1(Lp, hp)

)
→ 0 , as p → ∞,

in L1(X,ωn), respectively, in the weak sense of currents on X.
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Remark 1.2. If the measures σp verify condition (B) with constants Cp = Γν inde-
pendent of p, then the hypothesis of (i) (and hence of (ii)), limp→∞ ΓνA

−ν
p = 0, is

automatically verified since by (1.1),

Ap ≥ ap

∫
X

ωn , so Ap → ∞ as p → ∞.

Moreover, the hypothesis of (iii) takes the simpler form
∑∞

p=1 A
−ν
p < ∞.

An important ingredient in the proof of Theorem 1.1 is the asymptotic behavior
of the Bergman kernel functions Pp of the spaces H0

(2)(X,Lp) (see (2.1) for the

definition) established in [CMM, Theorem 1.1]: namely, one has that

1

Ap
logPp → 0 as p → ∞ in L1(X,ωn).

Theorem 1.1 will follow from this using Theorem 4.1, which shows, under very gen-
eral assumptions, that the equidistribution of zeros of random holomorphic sections
is a consequence of the asymptotic behavior of the Bergman kernel (see (4.1)). A
similar approach was used in a different context in [CM1, Theorems 1.1 and 1.2].

If (Lp, hp) = (Lp, hp), where (L, h) is a fixed singular Hermitian holomorphic
line bundle, Theorem 1.1 gives analogues of the equidistribution results from [SZ1,
CM1, CM2, CM3, CMM] for Gaussian ensembles and [DS, Ba1, Ba3, BL] for non-
Gaussian ensembles on compact normal Kähler spaces. Note that in this case
hypothesis (1.2) is automatically verified as c1(L

p, hp) = p c1(L, h), so we can take
T0 = c1(L, h)/‖c1(L, h)‖, where ‖c1(L, h)‖ :=

∫
X
c1(L, h) ∧ ωn−1. We formulate

here a corollary in this situation; for further variations of Theorem 1.1 see Section 4.

Corollary 1.3. Let (X,ω) be a compact normal Kähler space and let (L, h) be a
singular Hermitian holomorphic line bundle on X such that c1(L, h) ≥ εω for some
ε > 0. For p ≥ 1 let σp be probability measures on H0

(2)(X,Lp) satisfying condition

(B). Then the following hold:

(i) If limp→∞ Cp p
−ν = 0, then 1

p E[sp = 0] → c1(L, h) , as p → ∞, weakly on

X.
(ii) If lim infp→∞ Cp p

−ν = 0, then there exists a sequence of natural numbers
pj ↗ ∞ such that for σ-a. e. sequence {sp} ∈ H we have as j → ∞,

1

pj
log |spj

|hpj → 0 in L1(X,ωn) ,
1

pj
[spj

= 0] → c1(L, h) , weakly on X.

(iii) If
∑∞

p=1 Cp p
−ν < ∞, then for σ-a. e. sequence {sp} ∈ H we have as p → ∞,

1

p
log |sp|hp → 0 in L1(X,ωn) ,

1

p
[sp = 0] → c1(L, h) , weakly on X.

It is by now well established that the off-diagonal decay of the Bergman/Szegő
kernel for powers Lp of a line bundle L implies the asymptotics of the variance
current and variance number for zeros of random holomorphic sections of Lp, cf.
[Ba2, ST, SZ2]. Note also that the Bergman kernel provides the 2-point correla-
tion function for the determinantal random point process defined by the Bergman
projection [Ber, §6.1].

We wish to consider here the off-diagonal decay for Bergman kernels of a sequence
Lp satisfying (1.1). We expect that this will have applications in obtaining a Central
Limit Theorem for smooth linear statistics of zero divisors. To state our result, let
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us introduce the relevant definitions. We consider the situation where X is smooth
and the Hermitian metrics hp on Lp are also smooth. Let L2(X,Lp) be the space
of L2 integrable sections of Lp with respect to the metric hp and the volume form
ωn/n! . We assume now that hp is smooth, hence H0

(2)(X,Lp) = H0(X,Lp). Let

Pp : L2(X,Lp) → H0(X,Lp) be the orthogonal projection. The Bergman kernel
Pp(x, y) is defined as the integral kernel of this projection; see [MM1, Definition

1.4.2]. Let dp = dimH0(X,Lp) and (Sp
j )

dp

j=1 be an orthonormal basis of H0(X,Lp).
We have

Pp(x, y) =

dp∑
j=1

Sp
j (x)⊗ Sp

j (y)
∗ ∈ Lp,x ⊗ L∗

p,y ,

where Sp
j (y)

∗ = 〈 · , Sp
j (y)〉hp

∈ L∗
p,y. We set Pp(x) := Pp(x, x).

The next result provides the exponential off-diagonal decay of the Bergman ker-
nels Pp(x, y) for sequences of positive line bundles (Lp, hp). Adapting methods from
[L,Be] we prove the following.

Theorem 1.4. Let (X,ω) be a compact Kähler manifold of dimension n and let
(Lp, hp), p ≥ 1, be a sequence of holomorphic line bundles on X with Hermitian
metrics hp of class C 3 whose curvature forms verify (1.1). Assume that

(1.5) εp := ‖hp‖1/33 a−1/2
p → 0 as p → ∞ .

Then there exist constants C, T > 0, p0 ≥ 1, such that for every x, y ∈ X and
p > p0 we have

(1.6)
∣∣Pp(x, y)

∣∣2
hp

≤ C exp
(
− T

√
ap d(x, y)

)c1(Lp, hp)
n
x

ωn
x

c1(Lp, hp)
n
y

ωn
y

·

Here ‖hp‖3 denotes the sup-norm of the derivatives of hp of order at most three
with respect to a reference cover of X as defined in Section 2.3, and d(x, y) de-
notes the distance on X induced by the Kähler metric ω. We also recall that, in
the hypotheses of Theorem 1.4, the first order asymptotics of the Bergman kernel
function Pp(x) = Pp(x, x) was obtained in [CMM, Theorem 1.3] (see Theorem 3.3
below).

The situation when (Lp, hp) = (Lp, hp) was intensively studied. Let (Lp, hp) =
(Lp, hp), such that there exists a constant ε > 0 with

(1.7) c1(L, h) � εω .

Then ap = pε and ‖hp‖3 � p so (1.1) and (1.5) are satisfied, thus (1.6) holds in this
case, and is a particular case of (1.8) below. Namely, by [MM2, Theorem 1], there
exist T > 0, p0 > 0 so that for any k ∈ N, there exists Ck > 0 such that for any
p � p0, x, y ∈ X, we have

(1.8) |Pp(x, y)|Ck � Ck p
n+ k

2 exp(−T
√
p d(x, y)) .

In [DLM, Theorem 4.18], [MM1, Theorem 4.2.9], a refined version of (1.8) was
obtained, i.e., the asymptotic expansion of Pp(x, y) for p → +∞ with an exponential
estimate of the remainder. The estimate (1.8) holds actually for complete Kähler
manifolds with bounded geometry and for the Bergman kernel of the bundle Lp⊗E,
where E is a fixed holomorphic Hermitian vector bundle.

Assume that X = Cn with the Euclidean metric, L = Cn+1, and h = e−ϕ where
ϕ : X → R is a smooth plurisubharmonic function such that (1.7) holds. Then
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the estimate (1.8) with k = 0 was obtained by [Ch1] for n = 1 and [De], [L] for
n � 1 (cf. also [Be]). In [Ba2, Theorem 2.4] the exponential decay was obtained for
a family of weights having super logarithmic growth at infinity.

Assume that X is a compact Kähler manifold, c1(L, h) = ω, and take k = 0 and
d(x, y) > δ > 0. Then (1.8) was obtained in [LZ, Theorem 2.1] (see also [Ber]) and
a sharper estimate than (1.8) is due to Christ [Ch2].

The paper is organized as follows. After introducing necessary notions in Section
2, we prove Theorem 1.4 in Section 3. In Section 4 we prove Theorem 1.1 and we
provide examples of measures satisfying condition (B) showing how Theorem 1.1
transforms in these cases.

2. Preliminaries

2.1. Plurisubharmonic functions and currents on analytic spaces. Let X
be a complex space. A chart (U, τ, V ) on X is a triple consisting of an open set
U ⊂ X, a closed complex space V ⊂ G ⊂ CN in an open set G of CN , and a
biholomorphic map τ : U → V (in the category of complex spaces). The map
τ : U → G ⊂ CN is called a local embedding of the complex space X. We write

X = Xreg ∪Xsing ,

where Xreg (resp., Xsing) is the set of regular (resp., singular) points of X. Recall
that a reduced complex space (X,O) is called normal if for every x ∈ X the local
ring Ox is integrally closed in its quotient field Mx. Every normal complex space
is locally irreducible and locally pure dimensional, cf. [GR2, p. 125], Xsing is a
closed complex subspace of X with codimXsing ≥ 2. Moreover, Riemann’s second
extension theorem holds on normal complex spaces [GR2, p. 143]. In particular,
every holomorphic function on Xreg extends uniquely to a holomorphic function
on X.

Let X be a complex space. A continuous (resp., smooth) function on X is a
function ϕ : X → C such that for every x ∈ X there exists a local embedding
τ : U → G ⊂ CN with x ∈ U and a continuous (resp., smooth) function ϕ̃ : G → C

such that ϕ|U = ϕ̃ ◦ τ .
A (strictly) plurisubharmonic (psh) function on X is a function ϕ : X →

[−∞,∞) such that for every x ∈ X there exists a local embedding τ : U → G ⊂ CN

with x ∈ U and a (strictly) psh function ϕ̃ : G → [−∞,∞) such that ϕ|U = ϕ̃ ◦ τ .
If ϕ̃ can be chosen continuous (resp., smooth), then ϕ is called a continuous (resp.,
smooth) psh function. The definition is independent of the chart, as is seen from
[N, Lemma4]. The analogue of Riemann’s second extension theorem for psh func-
tions holds on normal complex spaces [GR1, Satz 4]. In particular, every psh func-
tion on Xreg extends uniquely to a psh function on X. We let PSH(X) denote
the set of psh functions on X, and refer to [GR1], [N], [FN], [D2] for the prop-
erties of psh functions on X. We recall here that psh functions on X are locally
integrable with respect to the area measure on X given by any local embedding
τ : U → G ⊂ C

N [D2, Proposition 1.8].
Let X be a complex space of pure dimension n. We consider currents on X

as defined in [D2] and we denote by D′
p,q(X) the space of currents of bidimension

(p, q), or bidegree (n− p, n− q) on X. In particular, if v ∈ PSH(X), then ddcv ∈
D′

n−1,n−1(X) is positive and closed. Let T (X) be the space of positive closed
currents of bidegree (1, 1) on X which have local psh potentials: T ∈ T (X) if
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every x ∈ X has a neighborhood U (depending on T ) such that there exists a psh
function v on U with T = ddcv on U ∩Xreg. Most of the currents considered here,
such as the curvature currents c1(Lp, hp) and the Fubini-Study currents γp, belong
to T (X). A Kähler form on X is a current ω ∈ T (X) whose local potentials
extend to smooth strictly psh functions in local embeddings of X to Euclidean
spaces. We call X a Kähler space if X admits a Kähler form (see also [G, p. 346],
[O], [EGZ, Sec. 5]).

2.2. Singular Hermitian holomorphic line bundles on analytic spaces. Let
L be a holomorphic line bundle on a normal Kähler space (X,ω). The notion of
singular Hermitian metric h on L is defined exactly as in the smooth case (see
[D3], [MM1, p. 97])): if eα is a holomorphic frame of L over an open set Uα ⊂ X,
then |eα|2h = e−2ϕα where ϕα ∈ L1

loc(Uα, ω
n). If gαβ = eβ/eα ∈ O∗

X(Uα ∩ Uβ)
are the transition functions of L, then ϕα = ϕβ + log |gαβ |. The curvature current
c1(L, h) ∈ D′

n−1,n−1(X) of h is defined by c1(L, h) = ddcϕα on Uα ∩ Xreg. We

will denote by hp the singular Hermitian metric induced by h on Lp := L⊗p. If
c1(L, h) ≥ 0, then the weight ϕα is psh on Uα ∩ Xreg and since X is normal it
extends to a psh function on Uα [GR1, Satz 4], hence c1(L, h) ∈ T (X).

Let L be a holomorphic line bundle on a compact normal Kähler space (X,ω).
Then the space H0(X,L) of holomorphic sections of L is finite dimensional (see,
e.g., [A, Théorème 1, p. 27]). The space H0

(2)(X,L) defined as in (1.3) is therefore

also finite dimensional.
For p ≥ 1, we consider the space H0

(2)(X,Lp) defined in (1.3). Recall that

dp = dimH0
(2)(X,Lp) and Sp

1 , . . . , S
p
dp

is an orthonormal basis of H0
(2)(X,Lp). If

x ∈ X and ep is a local holomorphic frame of Lp in a neighborhood Up of x we
write Sp

j = spjep, where spj ∈ OX(Up). Then the Bergman kernel functions and the

Fubini-Study currents of the spaces H0
(2)(X,Lp) are defined as follows:

(2.1) Pp(x) =

dp∑
j=1

|Sp
j (x)|2hp

, γp|Up
=

1

2
ddc log

⎛⎝ dp∑
j=1

|spj |2
⎞⎠ ,

where d = ∂ + ∂ and dc = 1
2πi (∂ − ∂). Note that Pp, γp are independent of the

choice of basis Sp
1 , . . . , S

p
dp
. It follows from (2.1) that logPp ∈ L1(X,ωn) and

(2.2) γp − c1(Lp, hp) =
1

2
ddc logPp .

Moreover, as in [CM1,CM2], one has that

(2.3) Pp(x) = max
{
|S(x)|2hp

: S ∈ H0
(2)(X,Lp), ‖S‖p = 1

}
for all x ∈ X where |ep(x)|hp

< ∞.

We recall that if S ∈ H0(X,Lp) the Lelong-Poincaré formula shows that

(2.4) [S = 0] = c1(Lp, hp) + ddc log |S|hp
.

This follows exactly as in the case when X is smooth (see [MM1, Theorem 2.3.3]).
Indeed, if X is a compact (reduced) analytic space of pure dimension and S ∈
H0(X,Lp), the current of integration [S = 0] ∈ T (X) is defined as the current
with local psh potentials of the form log |s|, where S = sep, s ∈ OX(Up), and
ep is a holomorphic frame of Lp on the open set Up ⊂ X. If |ep|hp

= e−ϕ, then
log |S|hp

= log |s| − ϕ, which gives (2.4).
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2.3. Special weights of Hermitian metrics on reference covers. Let (X,ω)
be a compact Kähler manifold of dimension n. Let (U, z), z = (z1, . . . , zn), be local
coordinates centered at a point x ∈ X. For r > 0 and y ∈ U we denote by

Δn(y, r) = {z ∈ U : |zj − yj | ≤ r, j = 1, . . . , n}

the (closed) polydisk of polyradius (r, . . . , r) centered at y. The coordinates (U, z)
are called Kähler at y ∈ U if

(2.5) ωz =
i

2

n∑
j=1

dzj ∧ dzj +O(|z − y|2) on U.

Definition 2.1 ([CMM, Definition 2.6]). A reference cover of X consists of the
following data: for j = 1, . . . , N , a set of points xj ∈ X and

(1) Stein open simply connected coordinate neighborhoods (Uj , w
(j)) centered

at xj ≡ 0,
(2) Rj > 0 such that Δn(xj , 2Rj) � Uj and for every y ∈ Δn(xj , 2Rj) there

exist coordinates on Uj which are Kähler at y,

(3) X =
⋃N

j=1 Δ
n(xj , Rj).

Given the reference cover as above we set R = minRj .

We can construct a reference cover as in [CMM, Section 2.5]. On Uj we con-
sider the differential operators Dα

w , α ∈ N
2n, corresponding to the real coordinates

associated to w = w(j). For a function ϕ ∈ C k(Uj) we set

(2.6) ‖ϕ‖k = ‖ϕ‖k,w = sup
{
|Dα

wϕ(w)| : w ∈ Δn(xj , 2Rj), |α| ≤ k
}
.

Let (L, h) be a Hermitian holomorphic line bundle on X, where the metric h is of
class C �. Note that L|Uj

is trivial. For k ≤ � set

‖h‖k,Uj
= inf

{
‖ϕj‖k : ϕj ∈ C �(Uj) is a weight of h on Uj

}
,

‖h‖k = max
{
1, ‖h‖k,Uj

: 1 ≤ j ≤ N
}
.

(2.7)

Recall that ϕj is a weight of h on Uj if there exists a holomorphic frame ej of L on
Uj such that |ej |h = e−ϕj . We have the following.

Lemma 2.2 ([CMM, Lemma 2.7]). There exists a constant C > 1 (depending on
the reference cover) with the following property: Given any Hermitian holomorphic
line bundle (L, h) on X, where h is of class C 3, any j ∈ {1, . . . , N}, and any
x ∈ Δn(xj , Rj) there exist coordinates z = (z1, . . . , zn) on Δn(x,R) which are
centered at x ≡ 0 and Kähler coordinates for x such that

(i) n! dm ≤ (1 + Cr2)ωn and ωn ≤ (1 + Cr2)n! dm hold on Δn(x, r) for any
r < R where dm = dm(z) is the Euclidean volume relative to the coordinates
z ,

(ii) (L, h) has a weight ϕ on Δn(x,R) with ϕ(z) =
∑n

j=1 λj |zj |2 + ϕ̃(z), where

λj ∈ R and |ϕ̃(z)| ≤ C‖h‖3|z|3 for z ∈ Δn(x,R).
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3. Bergman kernel asymptotics

We prove in Section 3.1 an L2-estimate for the solution of the ∂-equation in the
spirit of Donnelly-Fefferman, which is used in Section 3.2 to prove Theorem 1.4.

3.1. L2-estimates for ∂. Let us recall the following version of Demailly’s estimates
for the ∂ operator [D1, Théorème 5.1].

Theorem 3.1 ([CMM, Theorem 2.5]). Let Y , dimY = n, be a complete Kähler
manifold and let Ω be a Kähler form on Y (not necessarily complete) such that its
Ricci form satisfies RicΩ ≥ −2πBΩ on Y for some constant B > 0. Let (Lp, hp)
be singular Hermitian holomorphic line bundles on Y such that c1(Lp, hp) ≥ 2apΩ,
where ap → ∞ as p → ∞, and fix p0 such that ap ≥ B for all p > p0. If p > p0
and g ∈ L2

0,1(Y, Lp, loc) verifies ∂g = 0 and
∫
Y
|g|2hp

Ωn < ∞, then there exists

u ∈ L2
0,0(Y, Lp, loc) such that ∂u = g and

∫
Y
|u|2hp

Ωn ≤ 1
ap

∫
Y
|g|2hp

Ωn.

The next result gives a weighted estimate for the solution of the ∂-equation which
goes back to Donnelly-Fefferman [DF]. The idea is to twist with a not necessarily
plurisubharmonic weight whose gradient is however controlled in terms of its com-
plex Hessian. We follow here [Ber, Theorem 4.3]; similar estimates were used for
Cn in [De,L].

Theorem 3.2. Let (X,ω) be a compact Kähler manifold, dimX = n, and let
(Lp, hp) be singular Hermitian holomorphic line bundles on X such that hp have
locally bounded weights and c1(Lp, hp) ≥ apω , where ap → ∞ as p → ∞. Then
there exists p0 ∈ N with the following property: If vp are real valued functions of
class C 2 on X such that

(3.1) ‖∂vp‖L∞(X) ≤
√
ap

8
, ddcvp ≥ −ap

2
ω ,

then ∫
X

|u|2hp
e2vp ωn ≤ 16

ap

∫
X

|∂u|2hp
e2vp ωn

holds for p > p0 and for every C 1-smooth section u of Lp which is orthogonal to
H0(X,Lp) with respect to the inner product induced by hp and ωn.

Proof. We fix a constant B > 0 such that Ricω ≥ −2πBω on X and p0 such that
ap ≥ 4B if p > p0. Consider the metric gp = hpe

−2vp on Lp. Then by (3.1),

c1(Lp, gp) = c1(Lp, hp) + ddcvp ≥ ap
2

ω.

Moreover,(
e2vpu, S

)
gp

:=

∫
X

〈e2vpu, S〉gp
ωn

n!
=

∫
X

〈u, S〉hp

ωn

n!
= 0 ∀S ∈ H0(X,Lp).

Let α = ∂
(
e2vpu

)
= e2vp(2∂vp ∧ u + ∂u). By Theorem 3.1 there exists a section

ũ ∈ L2
0,0(X,Lp) such that ∂ũ = α and∫

X

∣∣e2vpu∣∣2
gp

ωn ≤
∫
X

|ũ|2gp ω
n ≤ 4

ap

∫
X

|α|2gp ω
n,

where the first inequality follows since e2vpu is orthogonal toH0(X,Lp) with respect
to the inner product (·, ·)gp . Using (3.1) we obtain

|α|2gp = e2vp |2∂vp∧u+∂u|2hp
≤ 2e2vp(4|∂vp∧u|2hp

+|∂u|2hp
) ≤ 2e2vp

(ap
16

|u|2hp
+|∂u|2hp

)
.

Licensed to Syracuse Univ. Prepared on Sat Aug  1 15:54:17 EDT 2020 for download from IP 128.230.234.162.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3774 TURGAY BAYRAKTAR, DAN COMAN, AND GEORGE MARINESCU

It follows that∫
X

|u|2hp
e2vp ωn ≤ 1

2

∫
X

|u|2hp
e2vp ωn +

8

ap

∫
X

|∂u|2hp
e2vp ωn,

which implies the conclusion. �

3.2. Proof of Theorem 1.4. We recall the following result about the first term
asymptotic expansion of the Bergman kernel function Pp(x) = Pp(x, x) (see (2.1)).

Theorem 3.3 ([CMM, Theorem 1.3]). Let (X,ω) be a compact Kähler manifold
of dimension n. Let (Lp, hp), p ≥ 1, be a sequence of holomorphic line bundles on
X with Hermitian metrics hp of class C 3 whose curvature forms verify (1.1) and
such that (1.5) holds. Then there exist C > 0 depending only on (X,ω) and p0 ∈ N

such that

(3.2)

∣∣∣∣Pp(x)
ωn
x

c1(Lp, hp)nx
− 1

∣∣∣∣ ≤ Cε2/3p

holds for every x ∈ X and p > p0.

Recall that d(x, y), x, y ∈ X, denotes the distance induced by the Kähler met-
ric ω.

Proof of Theorem 1.4. We use ideas from the proof of [L, Proposition 9] together
with methods from [Be, Section 2] and [CMM, Theorem 1.3]. Let us consider a
reference cover of X as in Definition 2.1. Let p0 ∈ N be sufficiently large such that

rp := a−1/2
p < R/2

and the conclusions of Theorems 3.2 and 3.3 hold for p > p0. If y ∈ X and r > 0
we let B(y, r) := {ζ ∈ X : d(y, ζ) < r} and we fix a constant τ > 1 such that,
for every y ∈ X, Δn(y, rp) ⊂ B(y, τrp), where Δn(y, rp) is the (closed) polydisk
centered at y defined using the coordinates centered at y given by Lemma 2.2.

We show first that there exists a constant C ′ > 1 with the following property:
If y ∈ X, so y ∈ Δn(xj , Rj) for some j, and z are coordinates centered at y as in
Lemma 2.2, then

(3.3) |S(y)|2hp
≤ C ′ c1(Lp, hp)

n
y

ωn
y

∫
Δn(y,rp)

|S|2hp

ωn

n!
,

where Δn(y, rp) is the (closed) polydisk centered at y = 0 in the coordinates z and
S is any continuous section of Lp on X which is holomorphic on Δn(y, rp). Indeed,
let

ϕp(z) = ϕ′
p(z) + ϕ̃p(z) , ϕ′

p(z) =

n∑
l=1

λp
l |zl|2 ,

be a weight of hp on Δn(y,R) so that ϕ̃p verifies (ii) in Lemma 2.2 and let ep be a
frame of Lp on Uj with |ep|hp

= e−ϕp . Writing S = sep, where s ∈ O(Δn(y, rp)),
and using the sub-averaging inequality for psh functions we get

|S(y)|2hp
= |s(0)|2 ≤

∫
Δn(0,rp)

|s|2e−2ϕ′
p dm∫

Δn(0,rp)
e−2ϕ′

p dm
·
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If C > 1 is the constant from Lemma 2.2, then∫
Δn(0,rp)

|s|2e−2ϕ′
p dm ≤ (1 + Cr2p) exp

(
2 max
Δn(0,rp)

ϕ̃p

) ∫
Δn(0,rp)

|s|2e−2ϕp
ωn

n!

≤ (1 + Cr2p) exp
(
2C‖hp‖3 r3p

) ∫
Δn(0,rp)

|S|2hp

ωn

n!
.

Set

E(r) :=

∫
|ξ|≤r

e−2|ξ|2 dm(ξ) =
π

2

(
1− e−2r2

)
,

where dm is the Lebesgue measure on C. Since λp
j ≥ ap and E(1) > 1 we have∫

Δn(0,rp)

e−2ϕ′
p dm ≥

E(rp
√
ap )

n

λp
1 . . . λ

p
n

≥ 1

λp
1 . . . λ

p
n
·

Hence

|S(y)|2hp
≤ (1 + Cr2p) exp

(
2C‖hp‖3 r3p

)
λp
1 . . . λ

p
n

∫
Δn(0,rp)

|S|2hp

ωn

n!
·

Note that at y, ωy = i
2

∑n
j=1 dzj ∧ dz̄j , c1(Lp, hp)y = ddcϕp(0) =

i
π

∑n
j=1 λ

p
jdzj ∧

dz̄j , thus

λp
1 . . . λ

p
n =

(π
2

)n c1(Lp, hp)
n
y

ωn
y

·

Since rp → 0 and, by (1.5), ‖hp‖3 r3p = ε3p → 0, there exists a constant C ′ > 1 such
that (π

2

)n
(1 + Cr2p) exp

(
2C‖hp‖3 r3p

)
≤ C ′

for all p ≥ 1. This yields (3.3).
We continue now with the proof of the theorem. Fix x ∈ X. There exists a

section Sp = Sp,x ∈ H0(X,Lp) such that

|Sp(y)|2hp
= |Pp(x, y)|2hp

∀ y ∈ X.

Then

‖Sp‖2p =

∫
X

|Sp(y)|2hp

ωn
y

n!
=

∫
X

|Pp(x, y)|2hp

ωn
y

n!
= Pp(x).

By Theorem 3.3 there exists a constant C ′′ > 1 such that for all p ≥ 1 and y ∈ X,

(3.4) Pp(y) ≤ C ′′ c1(Lp, hp)
n
y

ωn
y

·

Assume first that y ∈ X and d(x, y) ≤ 4τrp = 4τa
−1/2
p . Using (2.3) and (3.4)

we obtain

|Pp(x, y)|2hp
= |Sp(y)|2hp

≤ Pp(y)‖Sp‖2p

= Pp(x)Pp(y) ≤ (C ′′)2
c1(Lp, hp)

n
x

ωn
x

c1(Lp, hp)
n
y

ωn
y

≤ e4τ (C ′′)2
c1(Lp, hp)

n
x

ωn
x

c1(Lp, hp)
n
y

ωn
y

e−
√
ap d(x,y) .
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We treat now the case when y ∈ X and δ := d(x, y) > 4τrp = 4τa
−1/2
p . By (3.3)

and the definition of Sp we have

(3.5) |Pp(x, y)|2hp
= |Sp(y)|2hp

≤ C ′ c1(Lp, hp)
n
y

ωn
y

∫
Δn(y,rp)

|Pp(x, ζ)|2hp

ωn
ζ

n!
.

Note that

Δn(x, rp) ⊂ B(x, δ/4) , Δn(y, rp) ⊂ {ζ ∈ X : d(x, ζ) > 3δ/4}.
Let χ be a non-negative smooth function on X such that
(3.6)

χ(ζ) = 1 if d(x, ζ) ≥ 3δ/4, χ(ζ) = 0 if d(x, ζ) ≤ δ/2, and |∂χ(ζ)|2 ≤ c

δ2
χ(ζ)

for some constant c > 0. Then we have∫
Δn(y,rp)

|Pp(x, ζ)|2hp

ωn
ζ

n!

≤
∫
X

|Pp(x, ζ)|2hp
χ(ζ)

ωn
ζ

n!

= max

{
|Pp(χS)(x)|2hp

: S ∈ H0(X,Lp),

∫
X

|S|2hp
χ
ωn

n!
= 1

}
,

where

Pp(χS)(x) =

∫
X

Pp(x, ζ)(χ(ζ)S(ζ))
ωn
ζ

n!

is the Bergman projection of the smooth section χS to H0(X,Lp).

It remains to estimate |Pp(χS)(x)|2hp
, where S ∈ H0(X,Lp) and

∫
X
|S|2hp

χ ωn

n! =

1. To this end we consider the smooth section u of Lp given by

u := χS − Pp(χS).

Note that u is orthogonal to H0(X,Lp) with respect to the inner product (·, ·)p
induced by hp and ωn/n!. Moreover, since χ(x) = 0, and since u is holomorphic in
the polydisk Δn(x, rp) centered at x and defined using the coordinates centered at
x given by Lemma 2.2, it follows by (3.3) that

(3.7) |Pp(χS)(x)|2hp
= |u(x)|2hp

≤ C ′ c1(Lp, hp)
n
x

ωn
x

∫
Δn(x,rp)

|u|2hp

ωn

n!
.

We will estimate the latter integral using Theorem 3.2. Let f : [0,∞) → (−∞, 0]
be a smooth function such that f(x) = 0 for x ≤ 1/4, f(x) = −x for x ≥ 1/2, and
set gδ(x) := δf(x/δ). There exists a constant M > 0 such that |g′δ(x)| ≤ M and
|g′′δ (x)| ≤ M/δ for all x ≥ 0. We define the function

vp(ζ) := ε
√
ap gδ(d(x, ζ)) , ζ ∈ X.

Then there exists a constant M ′ > 0 such that

‖∂vp‖L∞(X) ≤ M ′ε
√
ap , ddcvp ≥ −M ′ε

δ

√
ap ω ≥ −M ′εap

4τ
ω,

since δ > 4τa
−1/2
p . So vp satisfies (3.1) if we take ε = 1/(8M ′). We have that

vp = 0 in B(x, δ/4) ⊃ Δn(x, rp). Moreover,

∂u = ∂(χS) = ∂χ ∧ S
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is supported in the set Vδ := {ζ ∈ X : δ/2 ≤ d(x, ζ) ≤ 3δ/4}, and vp(ζ) =
−ε

√
ap d(x, ζ) ≤ −ε

√
ap δ/2 on this set. By Theorem 3.2 and (3.6) we get∫

Δn(x,rp)

|u|2hp

ωn

n!
≤
∫
X

|u|2hp
e2vp

ωn

n!
≤ 16

ap

∫
Vδ

|∂(χS)|2hp
e2vp

ωn

n!

≤ 16c

apδ2
e−ε

√
ap δ

∫
Vδ

|S|2hp
χ
ωn

n!
≤ c e−ε

√
ap δ,

since apδ
2 > 16τ2 > 16. Hence (3.7) implies that

|Pp(χS)(x)|2hp
≤ C ′c

c1(Lp, hp)
n
x

ωn
x

e−ε
√
ap δ .

It follows that∫
Δn(y,rp)

|Pp(x, ζ)|2hp

ωn
ζ

n!
≤ C ′c

c1(Lp, hp)
n
x

ωn
x

e−ε
√
ap d(x,y).

Combined with (3.5) this gives

|Pp(x, y)|2hp
≤ c(C ′)2

c1(Lp, hp)
n
x

ωn
x

c1(Lp, hp)
n
y

ωn
y

e−ε
√
ap d(x,y),

and the proof is complete. �

4. Equidistribution for zeros of random holomorphic sections

In Section 4.1 we prove Theorem 1.1. We provide examples of measures satisfying
condition (B) and give applications of Theorem 1.1 in Section 4.2.

4.1. Proof of Theorem 1.1. We prove first the following general equidistribution
result which combined with [CMM, Theorem 1.1] will yield Theorem 1.1.

Theorem 4.1. Let X be a compact (reduced) analytic space of pure dimension n
and let ω be a Hermitian form on X. Let (Lp, hp), p ≥ 1, be singular Hermitian
holomorphic line bundles on X and let H0

(2)(X,Lp) be the corresponding Bergman

spaces defined in (1.3) endowed with probability measures σp that verify assumption
(B). Let (H, σ) be the product probability space defined in (1.4). Assume that there
exist constants αp > 0 such that

(4.1)
1

αp
logPp → 0 as p → ∞ , in L1(X,ωn),

where Pp is the Bergman kernel function of H0
(2)(X,Lp) defined in (2.1). Then the

following hold:

(i) If limp→∞ Cpα
−ν
p = 0, then 1

αp

(
E[sp = 0]− c1(Lp, hp)

)
→ 0 , as p → ∞, in

the weak sense of currents on X.
(ii) If lim infp→∞ Cpα

−ν
p = 0, then there exists a sequence of natural numbers

pj ↗ ∞ such that for σ-a. e. sequence {sp} ∈ H we have

1

αpj

log |spj
|hpj

→ 0 ,
1

αpj

(
[spj

= 0]− c1(Lpj
, hpj

)
)
→ 0 , as j → ∞,

in L1(X,ωn), respectively, in the weak sense of currents on X.
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(iii) If
∑∞

p=1 Cpα
−ν
p < ∞, then for σ-a. e. sequence {sp} ∈ H we have

1

αp
log |sp|hp

→ 0 ,
1

αp

(
[sp = 0]− c1(Lp, hp)

)
→ 0 , as p → ∞,

in L1(X,ωn), respectively, in the weak sense of currents on X.

Proof. Note that if H0
(2)(X,Lp) �= {0}, then logPp ∈ L1(X,ωn), since it is locally

the difference of a psh and an integrable function. Let γp be the Fubini-Study
currents of the spaces H0

(2)(X,Lp) defined in (2.1).

(i) Let Φ be a smooth real valued (n − 1, n − 1) form on X. By (2.2) and
hypothesis (4.1) we have

1

αp
〈γp − c1(Lp, hp),Φ〉 =

1

2αp

∫
X

logPp dd
cΦ → 0 ,

so for the first assertion of (i) it suffices to show that

(4.2)
1

αp
〈E[sp = 0]− γp,Φ〉 → 0 , as p → ∞.

Note that there exists a constant c > 0 such that for every smooth real valued
(n− 1, n− 1) form Φ on X,

−c‖Φ‖C 2 ωn ≤ ddcΦ ≤ c‖Φ‖C 2 ωn.

Hence the total variation of ddcΦ satisfies |ddcΦ| ≤ c‖Φ‖C 2 ωn. Indeed, let τ : U ↪→
G ⊂ CN be a local embedding of X, where U ⊂ X and G ⊂ CN are open, such that

there exist a smooth real valued (N − 1, N − 1) form Φ̃ and a Hermitian form Ω on

G with Φ |Ureg
= τ�Φ̃ and ω |Ureg

= τ�Ω. There exists a constant c′ > 0 such that
for any smooth real valued (N − 1, N − 1) form ϕ on G and any open set G0 � G,
we have

−c′‖ϕ‖C 2(G0)Ω
n ≤ ddcϕ |G0

≤ c′‖ϕ‖C 2(G0)Ω
n.

Our claim follows by taking a finite cover of X with sets of form U0 = τ−1(G0).
If sp ∈ H0

(2)(X,Lp), using (2.4) and (2.2), we see that

(4.3)〈
[sp = 0],Φ

〉
=
〈
c1(Lp, hp),Φ

〉
+

∫
X

log |sp|hp
ddcΦ =

〈
γp,Φ

〉
+

∫
X

log
|sp|hp√

Pp

ddcΦ.

Note that log
|sp|hp√

Pp

∈ L1(X,ωn) as it is locally the difference of two psh functions.

We write

sp =

dp∑
j=1

ajS
p
j .

Moreover, for x ∈ X we let ep be a holomorphic frame of Lp on a neighborhood U
of x and we write Sp

j = spjep, where spj ∈ OX(U). Let 〈a, up〉 = a1u1 + . . .+ adp
udp

,
where

(4.4) up(x) := (u1(x), . . . , udp
(x)) , uj(x) =

spj (x)√
|sp1(x)|2 + . . .+ |spdp

(x)|2
·

Using Hölder’s inequality and assumption (B) it follows that∫
H0

(2)
(X,Lp)

∣∣∣ log |sp(x)|hp√
Pp(x)

∣∣∣dσp(sp) =

∫
C

dp

∣∣ log |〈a, up(x)〉|
∣∣dσp(a) ≤ C1/ν

p .
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Hence by Tonelli’s theorem∫
H0

(2)
(X,Lp)

∫
X

∣∣∣ log |sp|hp√
Pp

∣∣∣|ddcΦ| dσp(sp) ≤ C1/ν
p

∫
X

|ddcΦ| ≤ cC1/ν
p ‖Φ‖C 2

∫
X

ωn.

By (4.3) we conclude that〈
E[sp = 0],Φ

〉
=

∫
H0

(2)
(X,Lp)

〈
[sp = 0],Φ

〉
dσp(sp)

is a well-defined positive closed current which satisfies∣∣〈E[sp = 0]− γp,Φ
〉∣∣ ≤ cC1/ν

p ‖Φ‖C 2

∫
X

ωn.

Thus (4.2) holds since C
1/ν
p /αp → 0.

For the proof of assertion (ii), since lim infp→∞ Cpα
−ν
p = 0 we can find a sequence

of natural numbers pj ↗ ∞ such that
∑∞

j=1 Cpj
α−ν
pj

< ∞. Then we proceed as in

the proof of assertion (iii) given below, working with {pj} instead of {p}.
(iii) We define

Yp, Zp : H→ [0,∞) , Yp(s)=
1

αp

∫
X

∣∣ log |sp|hp

∣∣ωn , Zp(s)=
1

αp

∫
X

∣∣∣ log |sp|hp√
Pp

∣∣∣ωn ,

where s = {sp}. So

0 ≤ Yp(s) ≤ Zp(s) +mp , where mp :=
1

2αp

∫
X

| logPp|ωn.

Hypothesis (4.1) shows that mp → 0 as p → ∞. By Hölder’s inequality

0 ≤ Zp(s)
ν ≤ 1

αν
p

(∫
X

ωn

)ν−1 ∫
X

∣∣∣ log |sp|hp√
Pp

∣∣∣νωn.

For x ∈ X and up(x) as in (4.4) we obtain using (B) that∫
H0

(2)
(X,Lp)

∣∣∣ log |sp(x)|hp√
Pp(x)

∣∣∣νdσp(sp) =

∫
C

dp

∣∣ log |〈a, up(x)〉|
∣∣νdσp(a) ≤ Cp.

Hence by Tonelli’s theorem∫
H
Zp(s)

νdσ(s) ≤ 1

αν
p

(∫
X

ωn

)ν−1 ∫
X

∫
H0

(2)
(X,Lp)

∣∣∣ log |sp|hp√
Pp

∣∣∣νdσp(sp) ω
n

≤ Cp

αν
p

(∫
X

ωn

)ν

.

Therefore
∞∑
p=1

∫
H
Zp(s)

νdσ(s) ≤
(∫

X

ωn

)ν ∞∑
p=1

Cp

αν
p

< ∞ .

It follows that Zp(s) → 0, and hence Yp(s) → 0 as p → ∞ for σ-a. e. s ∈ H. This
means that 1

αp
log |sp|hp

→ 0 in L1(X,ωn), hence by (2.4),

1

αp

(
[sp = 0]− c1(Lp, hp)

)
→ 0

weakly on X, for σ-a. e. sequence {sp} ∈ H. The proof of Theorem 4.1 is finished.
�
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Proof of Theorem 1.1. By [CMM, Theorem 1.1] we have that

1

Ap
logPp → 0 as p → ∞ , in L1(X,ωn).

Hence Theorem 1.1 follows at once from Theorem 4.1 with αp := Ap. �

Let us give now a variation of Theorem 1.1 modeled on [CMM, Corollary 5.6].
It allows to approximate arbitrary ω-psh functions by logarithms of absolute values
of holomorphic sections. Let (X,ω) be a Kähler manifold with a positive line
bundle (L, h0), where h0 is a smooth Hermitian metric such that c1(L, h0) = ω.
The set of singular Hermitian metrics h on L with c1(L, h) ≥ 0 is in one-to-one
correspondence to the set PSH(X,ω) of ω-plurisubharmonic (ω-psh) functions on
X, by associating to ψ ∈ PSH(X,ω) the metric hψ = h0e

−2ψ (see, e.g., [D3,GZ]).
Note that c1(L, hψ) = ω + ddcψ.

Corollary 4.2. Let (X,ω) be a compact Kähler manifold and let (L, h0) be a pos-
itive line bundle on X such that c1(L, h0) = ω. Let h be a singular Hermitian
metric on L with c1(L, h) ≥ 0 and let ψ ∈ PSH(X,ω) be its global weight such that
h = h0e

−2ψ. Let {np}p≥1 be a sequence of natural numbers such that

(4.5) np → ∞ and np/p → 0 as p → ∞.

Let hp be the metric on Lp given by

(4.6) hp = hp−np ⊗ h
np

0 = hp
0 e

−2(p−np)ψ.

For p ≥ 1 let σp be probability measures on H0
(2)(X,Lp) = H0

(2)(X,Lp, hp) satisfying

condition (B). Then the following hold:

(i) If limp→∞ Cp p
−ν = 0, then 1

pE[sp = 0] → c1(L, h) , as p → ∞, weakly on

X.
(ii) If lim infp→∞ Cp p

−ν = 0, then there exists a sequence of natural numbers
pj ↗ ∞ such that for σ-a. e. sequence {sp} ∈ H we have as j → ∞,

1

pj
log |spj

|
h
pj
0

→ ψ in L1(X,ωn) ,
1

pj
[spj

= 0] → c1(L, h) , weakly on X.

(iii) If
∑∞

p=1 Cp p
−ν < ∞, then for σ-a. e. sequence {sp} ∈ H we have as p → ∞,

1

p
log |sp|hp

0
→ ψ in L1(X,ωn) ,

1

p
[sp = 0] → c1(L, h) , weakly on X.

Proof. Note that log |sp|hp
= log |sp|hp

0
− (p − np)ψ. The corollary follows from

Theorem 1.1 and the proofs of Corollaries 5.2 and 5.6 from [CMM]. �

Corollary 4.2 is an extension of [BL, Theorem 5.2] which deals with the special
case when ψ = V∗

K,q is the weighted ω-psh global extremal function of a compact

K ⊂ X. Note that we use here a different scalar product than in [BL].

Remark 4.3. Let us give a local version of Theorem 1.1. Note that when X is
smooth any holomorphic line bundle on X is trivial on any contractible Stein open
subset U ⊂ X. Assume that (X,ω), (Lp, hp), and σp verify the assumptions (A1),
(A2), and (B). Let U ⊂ X such that for every p ≥ 1, Lp|U is trivial and let
ep : U → Lp be a holomorphic frame with |ep|hp

= e−ϕp , where ϕp ∈ PSH(U).
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For a section s ∈ H0(X,Lp) write s = s̃ ep , with s̃ ∈ O(U). If
∑∞

p=1 CpA
−ν
p < ∞,

then for σ-a. e. sequence {sp} ∈ H we have as p → ∞,

1

Ap

(
log |s̃p| −ϕp

)
→ 0 in L1(U, ωn) ,

1

Ap

(
[ s̃p = 0]− ddcϕp

)
→ 0 , weakly on U .

In particular, let (Lp, hp) = (Lp, hp), where (L, h) is a fixed singular Hermitian
holomorphic line bundle on X such that c1(L, h) ≥ εω for some ε > 0. Let U ⊂ X
such that L|U is trivial, let e : U → L be a holomorphic frame with |e|h = e−ϕ,
where ϕ ∈ PSH(U). Consider the holomorphic frames ep = e⊗p of Lp|U . If∑∞

p=1 Cp p
−ν < ∞, then for σ-a. e. sequence {sp} ∈ H we have as p → ∞,

1

p
log |s̃p| → ϕ in L1

loc(U) ,
1

p
[ s̃p = 0] → ddcϕ , weakly on U .

Example 4.4. We formulate now some of the previous results in the case of poly-
nomials in Cn. Consider X = Pn and Lp = O(p), p ≥ 1, where O(1) → Pn is the
hyperplane line bundle. Let Cn ↪→ Pn, ζ �→ [1 : ζ], be the standard embedding.
The global holomorphic sections H0(Pn,O(p)) of O(p) are given by homogeneous
polynomials of degree p in the homogeneous coordinates z0, . . . , zn on C

n+1. For
any α ∈ Nn+1 the map Cn+1 � z �→ zα is identified to a section sα ∈ H0(Pn,O(p)).

On U0 = {[1 : ζ] ∈ Pn : ζ ∈ Cn} ∼= Cn we consider the holomorphic frame
ep = s(p,0,...,0) of O(p), corresponding to zp0 . The trivialization of O(p) using this
frame gives an identification

(4.7) H0(Pn,O(p)) → Cp[ζ] , s �→ s/zp0 ,

with the space of polynomials of total degree at most p,

Cp[ζ] = Cp[ζ1, . . . , ζn] := {f ∈ C[ζ1, . . . , ζn] : deg(f) ≤ p} .

Let ωFS denote the Fubini-Study Kähler form on Pn and let hFS be the Fubini-Study
metric on O(1), so c1(O(1), h

FS
) = ω

FS
. The set PSH(Pn, p ω

FS
) is in one-to-one

correspondence to the set pL(Cn), where L(Cn) is the Lelong class of entire psh
functions with logarithmic growth (cf. [GZ, Section 2]):

L(Cn) =
{
ϕ ∈ PSH(Cn) : ∃Cϕ ∈ R such that ϕ(z) ≤ log+ ‖z‖+ Cϕ on C

n
}
.

The map L(Cn) → PSH(Pn, ω
FS
) is given by ϕ �→ ϕ̃ where

ϕ̃(w) =

⎧⎨⎩ϕ(w)− 1
2 log(1 + |w|2) , w ∈ Cn,

lim sup
z→w,z∈Cn

ϕ̃(z) , w ∈ Pn \ Cn.

The one-to-one correspondence between singular Hermitian metrics hp on O(p)
with c1(O(p), hp) ≥ 0 and pL(Cn) is given by sending a metric hp to its weight ϕp

on U0 with respect to the standard frame ep. Define the L2-space

H0
(2)(P

n,O(p), hp) =

{
s ∈ H0(Pn,O(p)) :

∫
Pn

|s|2hp

ωn
FS

n!
< ∞

}
,

with the obvious scalar product. The map (4.7) induces an isometry between this
space and the L2-space of polynomials

(4.8) Cp,(2)[ζ] =

{
f ∈ Cp[ζ] :

∫
Cn

|f |2e−2ϕp
ωn

FS

n!
< ∞

}
.
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If σp are probability measures on Cp,(2)[ζ] we denote by H the corresponding prod-

uct probability space (H, σ) =
(∏∞

p=1 Cp,(2)[ζ],
∏∞

p=1 σp

)
.

Corollary 4.5. Consider a sequence of functions ϕp ∈ pL(Cn) such that ddcϕp ≥
ap ωFS

on Cn, where ap > 0 and ap → ∞ as p → ∞. For p ≥ 1 let σp be probability
measures on Cp,(2)[ζ] satisfying condition (B). Assume that

∑∞
p=1 Cpp

−ν < ∞ .

Then for σ-a. e. sequence {fp} ∈ H we have as p → ∞,

1

p

(
log |fp| − ϕp

)
→ 0 in L1(Cn, ωn

FS
) , hence in L1

loc(C
n) ,

1

p

(
[fp = 0]− ddcϕp

)
→ 0 , weakly on C

n .

Proof. If hp is the singular Hermitian metric on O(p) corresponding to ϕp, then

Ap =

∫
Pn

c1(O(p), hp) ∧ ωn−1
FS

= p, and c1(O(p), hp) |Cn= ddcϕp ≥ ap ωFS .

If T denotes the trivial extension of ddcϕp to P
n, then T ≥ ap ωFS on P

n. By
Siu’s decomposition theorem, c1(O(p), hp) = T + b[z0 = 0], where b ≥ 0. Hence
c1(O(p), hp) ≥ T ≥ ap ωFS

on Pn. The corollary now follows directly from Theo-
rem 1.1. �

In particular, we obtain the following.

Corollary 4.6. Let ϕ ∈ L(Cn) such that ddcϕ ≥ ε ωFS on Cn for some constant
ε > 0. For p ≥ 1 construct the spaces Cp,(2)[ζ] by setting ϕp = pϕ in (4.8) and let σp

be probability measures on Cp,(2)[ζ] satisfying condition (B). If
∑∞

p=1 Cp p
−ν < ∞,

then for σ-a. e. sequence {fp} ∈ H we have as p → ∞,

(4.9)
1

p
log |fp| → ϕ in L1(Cn, ωn

FS
) ,

1

p
[fp = 0] → ddcϕ , weakly on C

n .

We can also apply Corollary 4.2 to the setting of polynomials in Cn and obtain
a version of Corollary 4.6 for arbitrary ϕ ∈ L(Cn).

Corollary 4.7. Let ϕ ∈ L(Cn) and let h be the singular Hermitian metric on O(1)
corresponding to ϕ. Let {np}p≥1 be a sequence of natural numbers such that (4.5)
is satisfied. Consider the metric hp on O(p) given by hp = hp−np ⊗ hnp

FS
(cf. (4.6)).

For p ≥ 1 let σp be probability measures on H0
(2)(P

n,O(p), hp) ∼= Cp,(2)[ζ] satisfying

condition (B). If
∑∞

p=1 Cp p
−ν < ∞, then for σ-a. e. sequence {fp} ∈ H we have

(4.9) as p → ∞.

This is an extension (with a different scalar product) of [BL, Theorem 4.2] which
deals with the special case when ψ = V ∗

K,Q is the weighted pluricomplex Green

function of a nonpluripolar compact K ⊂ Cn [BL, (3.2)].

4.2. Classes of measures verifying assumption (B). In this section we give
important examples of measures that verify condition (B) and we specialize Theo-
rem 1.1 to these measures.
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4.2.1. Gaussians. We consider here the measures σk on Ck that have Gaussian
density,

(4.10) dσk(a) =
1

πk
e−‖a‖2

dVk(a) ,

where a = (a1, . . . , ak) ∈ C
k and Vk is the Lebesgue measure on C

k.

Lemma 4.8. For every integer k ≥ 1 and every ν ≥ 1,∫
Ck

| log |〈a, u〉||ν dσk(a) = Γν := 2

∫ ∞

0

r| log r|νe−r2 dr ∀u ∈ C
k, ‖u‖ = 1 .

Proof. Since σk is unitary invariant we have∫
Ck

| log |〈a, u〉||ν dσk(a) =

∫
Ck

| log |a1||ν dσk(a) =
1

π

∫
C

| log |a1||νe−|a1|2 dV1(a1) .

�

Lemma 4.8 implies at once that in this case Theorem 1.1 takes the following
simpler form.

Theorem 4.9. Assume that (X,ω), (Lp, hp) verify the assumptions (A1), (A2),
and σp := σdp

is the measure given by (4.10) on H0
(2)(X,Lp) 
 Cdp . Then the

following hold:

(i) 1
Ap

(
E[sp = 0]− c1(Lp, hp)

)
→ 0 , as p → ∞, in the weak sense of currents

on X. Moreover, there exists a sequence pj ↗ ∞ such that for σ-a. e.
sequence {sp} ∈ H we have

1

Apj

log |spj
|hpj

→ 0 ,
1

Apj

(
[spj

= 0]− c1(Lpj
, hpj

)
)
→ 0 , as j → ∞,

in L1(X,ωn), respectively, in the weak sense of currents on X.
(ii) If

∑∞
p=1 A

−ν
p < ∞ for some ν ≥ 1, then for σ-a. e. sequence {sp} ∈ H we

have

1

Ap
log |sp|hp

→ 0 ,
1

Ap

(
[sp = 0]− c1(Lp, hp)

)
→ 0 , as p → ∞,

in L1(X,ωn), respectively, in the weak sense of currents on X.

4.2.2. Fubini-Study volumes. The Fubini-Study volume on the projective space
P
k ⊃ C

k is given by the measure σk on C
k with density

(4.11) dσk(a) =
k!

πk

1

(1 + ‖a‖2)k+1
dVk(a) ,

where a = (a1, . . . , ak) ∈ C
k and Vk is the Lebesgue measure on C

k.

Lemma 4.10. For every integer k ≥ 1 and every ν ≥ 1,∫
Ck

| log |〈a, u〉||ν dσk(a) = Γν := 2

∫ ∞

0

r| log r|ν
(1 + r2)2

dr ∀u ∈ C
k, ‖u‖ = 1 .
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Proof. Recall that the area of the unit sphere in Ck is s2k = 2πk/(k − 1)!. Since
σk is unitary invariant we have∫

Ck

| log |〈a, u〉||ν dσk(a) =

∫
Ck

| log |a1||ν dσk(a)

= 4k(k − 1)

∫ ∞

0

∫ ∞

0

r| log r|νρ2k−3

(1 + r2 + ρ2)k+1
dρ dr,

where we used polar coordinates for a1 and spherical coordinates for (a2, . . . , ak) ∈
Ck−1. Changing variables ρ2 = (1+ r2)x(1− x)−1, 2ρ dρ = (1+ r2)(1− x)−2 dx, in
the inner integral we obtain∫ ∞

0

ρ2k−3

(1 + r2 + ρ2)k+1
dρ =

1

2(1 + r2)2

∫ 1

0

xk−2(1− x) dx =
1

2k(k − 1)(1 + r2)2
,

and the lemma follows. �

Lemma 4.10 shows that the conclusions of Theorem 4.9 hold for the measures
σp := σdp

given by (4.11) on H0
(2)(X,Lp) 
 Cdp .

More generally, one can consider radial probability measures on Ck with density

(4.12) dσk,α(a) =
Γ(k + α)

Γ(α)πk

1

(1 + ‖a‖2)k+α
dVk(a) ,

where α > 0 and Γ is the Gamma function. As in the proof of Lemma 4.10 one can
show that for every integer k ≥ 1 and every ν ≥ 1,∫

Ck

| log |〈a, u〉||ν dσk,α(a) = Γν,α := 2α

∫ ∞

0

r| log r|ν
(1 + r2)1+α

dr ∀u ∈ C
k, ‖u‖ = 1 .

4.2.3. Area measure of spheres. Let Ak be the surface measure on the unit sphere
S2k−1 in Ck, so Ak

(
S2k−1

)
= 2πk/(k − 1)!, and let

(4.13) σk =
1

Ak

(
S2k−1

) Ak .

Lemma 4.11. If ν ≥ 1 there exists a constant Mν > 0 such that for every integer
k ≥ 2, ∫

S2k−1

| log |〈a, u〉||ν dσk(a) ≤ Mν (log k)
ν ∀u ∈ C

k, ‖u‖ = 1 .

Proof. We use spherical coordinates (θ1, . . . , θ2k−2, ϕ) ∈
[
−π

2 ,
π
2

]2k−2 × [0, 2π] on

S2k−1 such that

ak = sin θ2k−3 cos θ2k−2 + i sin θ2k−2

dAk = cos θ1 cos
2 θ2 . . . cos

2k−2 θ2k−2 dθ1 . . . dθ2k−2dϕ .
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Since σk is unitary invariant we argue in the proof of [CMM, Lemma 4.3] and obtain
that there exists a constant c > 0 such that for every k and ν,∫

S2k−1

| log |〈a, u〉||ν dσk(a)

=

∫
S2k−1

| log |ak||ν dσk(a)

≤ ck

2ν

∫ 1

0

∫ 1

0

(1− x2)k−3/2(1− y2)k−2| log(x2 + y2 − x2y2)|ν dxdy

≤ πck

2ν+1

∫ 1

0

(1− t)k−2| log t|ν dt .

Note that

f(t) := t1/2| log t|ν ≤ f
(
e−2ν

)
= (2ν/e)ν for 0 < t ≤ 1.

It follows that∫ 1

0

(1− t)k−2| log t|ν dt

≤
(
2ν

e

)ν ∫ 1/k2

0

(1− t)k−2t−1/2 dt+

∫ 1

1/k2

(1− t)k−2| log t|ν dt

≤
(
2ν

e

)ν ∫ 1/k2

0

t−1/2 dt+ 2ν(log k)ν
∫ 1

1/k2

(1− t)k−2 dt

≤
(
2ν

e

)ν
2

k
+

2ν(log k)ν

k − 1
,

which implies the conclusion of the lemma. �

Lemma 4.11 implies that in this case Theorem 1.1 takes the following simpler
form.

Theorem 4.12. Assume that (X,ω), (Lp, hp) verify the assumptions (A1), (A2),
and σp := σdp

is the measure given by (4.13) on the unit sphere of H0
(2)(X,Lp) 


Cdp . Then the following hold:

(i) If limp→∞
log dp

Ap
= 0, then 1

Ap

(
E[sp = 0] − c1(Lp, hp)

)
→ 0 , as p → ∞, in

the weak sense of currents on X.

(ii) If lim infp→∞
log dp

Ap
= 0, then there exists a sequence pj ↗ ∞ such that for

σ-a. e. sequence {sp} ∈ H we have

1

Apj

log |spj
|hpj

→ 0 ,
1

Apj

(
[spj

= 0]− c1(Lpj
, hpj

)
)
→ 0 , as j → ∞,

in L1(X,ωn), respectively, in the weak sense of currents on X.

(iii) If
∑∞

p=1

(
log dp

Ap

)ν
< ∞ for some ν ≥ 1, then for σ-a. e. sequence {sp} ∈ H

we have

1

Ap
log |sp|hp

→ 0 ,
1

Ap

(
[sp = 0]− c1(Lp, hp)

)
→ 0 , as p → ∞,

in L1(X,ωn), respectively, in the weak sense of currents on X.
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We remark that the assertion (ii) of Theorem 4.12 was proved in [CMM, Theorem
4.2]. That paper also gives two general examples of sequences of line bundles Lp

for which

lim
p→0

log dimH0(X,Lp)

Ap
= 0;

see [CMM, Proposition 4.4] and [CMM, Proposition 4.5]. In particular, if X is
smooth and each Lp is semiample, then it is shown in [CMM, Proposition 4.5] that

dimH0(X,Lp) = O(AN
p ).

Therefore limp→∞(log dp)/Ap = 0. Moreover, since log dp <
√
Ap for p sufficiently

large, the hypothesis that
∑∞

p=1

(
log dp

Ap

)ν
< ∞, for some ν ≥ 1, in Theorem

4.12(iii), can be replaced by the condition that
∑∞

p=1 A
−ν
p < ∞ for some ν ≥ 1.

Remark 4.13. We note that for unitary invariant measures σp, like those from
Sections 4.2.1-4.2.3, the probability space (H0

(2)(X,Lp), σp) does not depend on the

choice of orthonormal basis. Other important classes of probability measures which
do not depend on the choice of orthonormal basis and are not unitary invariant are
given in [FZ] (see formulas (5), (6), and (7) therein). These measures γN are easily
seen to be dominated by measures σN on the space PN 
 CN+1 of polynomials in
C of degree at most N , with Gaussian-type density of the form

dσN (a) = eC−ε‖a‖2

dVN+1(a) .

Indeed, the polynomial P (x) from [FZ, (7)] is bounded from below on [0,+∞),
hence P (x) ≥ εx − C for all x ≥ 0, with some constants ε, C > 0. An argument
analogous to that in the proof of Lemma 4.8 shows that the measures γN verify
assumption (B) for every ν ≥ 1 with constants CN = Γν independent of N . In
particular, if the metric h and the measure ν in the definition of γN [FZ, (5)] is
positively curved, respectively, a Kähler form on P

1, then our Theorem 1.1 holds
in the setting of [FZ] for the measures γN .

4.2.4. Measures with heavy tail and small ball probability. Let σp be probability
measures on H0

(2)(X,Lp) 
 C
dp verifying the following: There exist a constant

ρ > 1 and for every p ≥ 1 constants C ′
p > 0 such that:

(B1) For all R ≥ 1 the tail probability satisfies

σp

(
{a ∈ C

dp : log ‖a‖ > R}
)
≤

C ′
p

Rρ
.

(B2) For all R ≥ 1 and for each unit vector u ∈ Cdp , the small ball probability
satisfies

σp

(
{a ∈ C

dp : log |〈a, u〉| < −R}
)
≤

C ′
p

Rρ
·

Lemma 4.14. If σp are probability measures on Cdp verifying (B1) and (B2) with
some constant ρ > 1, then σp verify (B) for any constant 1 ≤ ν < ρ.

Proof. Let ν < ρ and u ∈ C
dp be a unit vector. By (B1), (B2) we have

σp

(
{a ∈ C

dp : | log |〈a, u〉|| > R}
)
≤

2C ′
p

Rρ
∀R ≥ 1 .
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Hence ∫
C

dp

| log |〈a, u〉||ν dσp(a)

= ν

∫ ∞

0

Rν−1σp

(
{a ∈ C

dp : | log |〈a, u〉|| > R}
)
dR

≤ ν

∫ 1

0

Rν−1 dR+ 2νC ′
p

∫ ∞

1

Rν−ρ−1 dR = 1 +
2νC ′

p

ρ− ν
=: Cp .

�

4.2.5. Random holomorphic sections with i.i.d. coefficients. Next, we consider ran-

dom linear combinations of the orthonormal basis (Sp
j )

dp

j=1 with independent iden-

tically distributed (i.i.d.) coefficients. More precisely, let {apj}
dp

j=1 be an array of
i.i.d. complex random variables whose distribution law is denoted by P . Then a
random holomorphic section is of the form

sp =

dp∑
j=1

apjS
p
j .

We endow the spaceH0
(2)(X,Lp) with the dp-fold product measure σp induced by P .

Lemma 4.15. Assume that apj are i.i.d. complex valued random variables whose

distribution law P has density φ, such that φ : C → [0,M ] is a bounded function
and there exist c > 0, ρ > 1 with

(4.14) P ({z ∈ C : log |z| > R}) ≤ c

Rρ
∀R ≥ 1.

Then the product measures σp on Cdp satisfy condition (B) for any 1 ≤ ν < ρ, with

constants Cp = Γd
ν/ρ
p , where Γ = Γ(M, c, ρ, ν) > 0. In particular, if dp = O(AN

p )
for some N ∈ N and ρ > N , then σp satisfy condition (B) for any 1 ≤ ν < ρ with

Cp = O(A
Nν/ρ
p ) = o(Aν

p).

Proof. Let u = (u1, . . . , udp
) ∈ Cdp be a unit vector. For R ≥ log dp we have

{a ∈ C
dp : log |〈a, u〉| > R} ⊂

dp⋃
j=1

{
aj : |aj | > eR− 1

2 log dp
}
,

so by (4.14),
(4.15)

σp

(
{a ∈ C

dp : log |〈a, u〉| > R}
)
≤ dp P

(
{apj ∈ C : |apj | > eR− 1

2 log dp}
)
≤ 2ρcdp

Rρ
·

On the other hand, we have |uj | ≥ d
−1/2
p for some j ∈ {1, . . . , dp}. We may

assume j = 1 for simplicity and apply the change of variables

α1 =

dp∑
j=1

apjuj , α2 = ap2, . . . , αdp
= apdp

.
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Then, using the assumption φ ≤ M ,

σp

(
{a ∈Cdp : log |〈a, u〉| < −R}

)
=

∫
C

dp−1

∫
|α1|<e−R

φ

(
α1 −

∑dp

j=2 αjuj

u1

)
φ(α2) . . . φ(αdp

)
dα1 . . . dαdp

|u1|2

≤ Mπdpe
−2R.

(4.16)

For R0 ≥ log dp we obtain using (4.15) and (4.16)∫
C

dp

| log |〈a, u〉||ν dσp(a)

= ν

∫ ∞

0

Rν−1σp

(
{a ∈ C

dp : | log |〈a, u〉|| > R}
)
dR

≤ ν

∫ R0

0

Rν−1dR+ ν

∫ ∞

R0

Rν−1σp

(
{a ∈ C

dp : | log |〈a, u〉|| > R}
)
dR

≤ Rν
0 + ν

∫ ∞

R0

Rν−1

(
2ρcdp
Rρ

+Mπdpe
−2R

)
dR .

Since Rν−1e−R ≤ ((ν − 1)/e)ν−1 for R > 0, and since R0 ≥ log dp, we get∫
C

dp

| log |〈a, u〉||ν dσp(a) ≤ Rν
0 +

2ρνcdpR
ν−ρ
0

ρ− ν
+Mπνdp

(
ν − 1

e

)ν−1 ∫ ∞

R0

e−RdR

≤ Rν
0

(
1 +

2ρνcdp
(ρ− ν)Rρ

0

)
+Mπν

(
ν − 1

e

)ν−1

.

Choosing Rρ
0 = dp this implies that∫

C
dp

| log |〈a, u〉||ν dσp(a) ≤ Γdν/ρp ,

where Γ > 0 is a constant that depends on M , c, ρ, and ν. �

We remark that if X is smooth and each Lp is semiample, then dp = O(AN
p )

(see [CMM, Proposition 4.5]) and Lemma 4.15 applies.

4.2.6. Locally moderate measures. Let X be a complex manifold and let σ be a
positive measure on X. Following [DNS], we say that σ is locally moderate if for
any open set U ⊂ X, any compact set K ⊂ U , and any compact family F of psh
functions on U , there exist constants c, α > 0 such that

(4.17)

∫
K

e−αψdσ ≤ c , ∀ψ ∈ F .

Note that a locally moderate measure σ does not put any mass on pluripolar sets.
The existence of c, α in (4.17) is equivalent to existence of c′, α′ > 0 satisfying

σ({z ∈ K : ψ(z) < −t}) ≤ c′e−α′t

for any t ≥ 0 and ψ ∈ F . Important examples are provided by the Monge-Ampère
measures of Hölder continuous psh functions [DNS, Theorem 1.1, Corollary 1.2].

Lemma 4.16. If σp , p ≥ 1, is a locally moderate probability measure with compact
support in Cdp 
 H0

(2)(X,Lp), then σp satisfies condition (B) for every ν ≥ 1.
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Proof. Consider the compact family of psh functions F = {ψu : u ∈ S2dp−1}, where
ψu : Cdp → [−∞,∞), ψu(a) = log |〈a, u〉|. Let Rp ≥ 1 be such that ‖a‖ ≤ Rp for
all a ∈ supp σp. Then

|ψu(a)| = −ψu(a) + max{0, 2ψu(a)} ≤ −ψu(a) + 2 logRp

holds for all a ∈ supp σp and ψu ∈ F . Since σp is locally moderate and with
compact support, there exist constants cp, αp > 0 such that (4.17) holds for every
ψu ∈ F and with the integral over Cdp . Fix ν ≥ 1. As xν ≤ c′eαpx for all x ≥ 0,
with some constant c′ > 0 depending on p, ν, we conclude that∫

C
dp

|ψu(a)|ν dσp(a) ≤ c′
∫
C

dp

eαp|ψu(a)| dσp(a)

≤ c′R2αp
p

∫
C

dp

e−αpψu(a) dσp(a) ≤ c′cpR
2αp
p .

�
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méromorphes et applications (French, with English summary), Comment. Math. Helv.
81 (2006), no. 1, 221–258, DOI 10.4171/CMH/50. MR2208805

[DF] Harold Donnelly and Charles Fefferman, L2-cohomology and index theorem for the
Bergman metric, Ann. of Math. (2) 118 (1983), no. 3, 593–618, DOI 10.2307/2006983.
MR727705

[EGZ] Philippe Eyssidieux, Vincent Guedj, and Ahmed Zeriahi, Singular Kähler-Einstein met-
rics, J. Amer. Math. Soc. 22 (2009), no. 3, 607–639, DOI 10.1090/S0894-0347-09-00629-8.
MR2505296

[FZ] Renjie Feng and Steve Zelditch, Large deviations for zeros of P (φ)2 random polynomials,
J. Stat. Phys. 143 (2011), no. 4, 619–635, DOI 10.1007/s10955-011-0206-y. MR2800657

[FN] John Erik Fornæss and Raghavan Narasimhan, The Levi problem on complex spaces
with singularities, Math. Ann. 248 (1980), no. 1, 47–72, DOI 10.1007/BF01349254.
MR569410

[FS] John Erik Fornæss and Nessim Sibony, Oka’s inequality for currents and applications,
Math. Ann. 301 (1995), no. 3, 399–419, DOI 10.1007/BF01446636. MR1324517

[GW] Damien Gayet and Jean-Yves Welschinger, What is the total Betti number of a random
real hypersurface?, J. Reine Angew. Math. 689 (2014), 137–168, DOI 10.1515/crelle-
2012-0062. MR3187930
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[MM2] Xiaonan Ma and George Marinescu, Exponential estimate for the asymptotics of
Bergman kernels, Math. Ann. 362 (2015), no. 3-4, 1327–1347, DOI 10.1007/s00208-
014-1137-0. MR3368102

[N] Raghavan Narasimhan, The Levi problem for complex spaces. II, Math. Ann. 146 (1962),
195–216, DOI 10.1007/BF01470950. MR182747

[NS] Liviu I. Nicolaescu and Nikhil Savale, The Gauss-Bonnet-Chern theorem: a prob-
abilistic perspective, Trans. Amer. Math. Soc. 369 (2017), no. 4, 2951–2986, DOI
10.1090/tran/6895. MR3592534

[NV] S. Nonnenmacher and A. Voros, Chaotic eigenfunctions in phase space, J. Statist. Phys.
92 (1998), no. 3-4, 431–518, DOI 10.1023/A:1023080303171. MR1649013

[O] Takeo Ohsawa, Hodge spectral sequence and symmetry on compact Kähler spaces,
Publ. Res. Inst. Math. Sci. 23 (1987), no. 4, 613–625, DOI 10.2977/prims/1195176250.
MR918517

[S] Bernard Shiffman, Convergence of random zeros on complex manifolds, Sci. China Ser.
A 51 (2008), no. 4, 707–720, DOI 10.1007/s11425-008-0060-9. MR2395415

[SZ1] Bernard Shiffman and Steve Zelditch, Distribution of zeros of random and quantum
chaotic sections of positive line bundles, Comm. Math. Phys. 200 (1999), no. 3, 661–
683, DOI 10.1007/s002200050544. MR1675133

[SZ2] Bernard Shiffman and Steve Zelditch, Number variance of random zeros on complex
manifolds, Geom. Funct. Anal. 18 (2008), no. 4, 1422–1475, DOI 10.1007/s00039-008-
0686-3. MR2465693

[ST] Mikhail Sodin and Boris Tsirelson, Random complex zeroes. I. Asymptotic normality,
Israel J. Math. 144 (2004), 125–149, DOI 10.1007/BF02984409. MR2121537

[T] Gang Tian, On a set of polarized Kähler metrics on algebraic manifolds, J. Differential
Geom. 32 (1990), no. 1, 99–130. MR1064867

Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, Turkey
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