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ABSTRACT. In this work we prove a universality result regarding the equidis-
tribution of zeros of random holomorphic sections associated to a sequence of
singular Hermitian holomorphic line bundles on a compact Ké&hler complex
space X. Namely, under mild moment assumptions, we show that the asymp-
totic distribution of zeros of random holomorphic sections is independent of
the choice of the probability measure on the space of holomorphic sections. In
the case when X is a compact Kéhler manifold, we also prove an off-diagonal
exponential decay estimate for the Bergman kernels of a sequence of positive
line bundles on X.
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1. INTRODUCTION

In this paper we study the asymptotic distribution of zeros of random sequences
of holomorphic sections of singular Hermitian holomorphic line bundles. We gen-
eralize our previous results from [CM1, CM2, CM3, CMM, Bal, Ba3, Ba2] in sev-
eral directions. We consider sequences (Lp,hy,), p > 1, of singular Hermitian
holomorphic line bundles over Kéhler spaces instead of the sequence of powers
(LP,hP) = (L®P h®P) of a fixed line bundle (L, h). Moreover, we endow the vec-
tor space of holomorphic sections with wide classes of probability measures (see
condition (B) below and Section 4.2).
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Recall that by the results of [T] (see also [MM1, Section5.3]), if (X,w) is a
compact Kéahler manifold and (L, h) is a line bundle such that the Chern curvature
form ¢; (L, h) equals w, then the normalized Fubini-Study currents %vp associated
to H°(X, LP) (see (2.1)) are smooth for p sufficiently large and converge in the €
topology to w. This result can be applied to describe the asymptotic distribution of
the zeros of sequences of Gaussian holomorphic sections. Indeed, it is shown in [SZ1]
(see also [NV, DS, SZ2,S,DMS]) that for almost all sequences {s, € H(X, L?)},>1
the normalized zero-currents %[sp = 0] converge weakly to w on X. Thus w can be
approximated by various algebraic or analytic objects in the semiclassical limit p —
oo. Some important technical tools in higher dimensions were introduced in [FS].
Using these tools we generalized in [CM1,CM2,CM3, CMM, CMN1, CMN2, DMM]
the above results to the case of singular positively curved Hermitian metrics h. We
note that statistics of zeros of sections and hypersurfaces have been studied also in
the context of real manifolds and real vector bundles; see, e.g., [GW,NS].

In this paper we work in the following setting:

(A1) (X,w) is a compact (reduced) normal Kéhler space of pure dimension n,
X,eg denotes the set of regular points of X, and X, denotes the set of singular
points of X.

(A2) (Lp, hp), p > 1, is a sequence of holomorphic line bundles on X with singular
Hermitian metrics h, whose curvature currents verify

(1.1) c1(Lp, hp) > apw on X, where a, > 0 and lim a, = oco.
p—00

Let Ay = [y c1(Lp, hyp) Aw™ 1 If Xgng # 0 we also assume that

(1.2) 3Ty € 7 (X) such that ¢1(Ly, hy) < AT Vp>1.

Here .7 (X)) denotes the space of positive closed currents of bidegree (1,1) on X
with local plurisubharmonic potentials (see Section 2.1). We let H, ?2)(X ,Lp) be the

Bergman space of L2-holomorphic sections of L, relative to the metric h, and the
volume form w™/n! on X,

w'll
(13)  Hy(X.L,) = {s e HUX,L): [SIE= [ ISR, % < oo} ,
reg :
endowed with the obvious inner product. For p > 1, let d, =dim H (02) (X,L,) and
let S7,..., Sgp be an orthonormal basis of H?Q)(X, L,).
Now, we describe the randomization on H ?2)(X ,L,). Using the above orthonor-

mal bases we identify the spaces H ?2) (X, L,) ~ C% and endow them with proba-
bility measures o, verifying the following moment condition:
(B) There exist a constant v > 1 and for every p > 1 constants C,, > 0 such that

/Cdp | log |(a, u)| |Vdop(a) < C,, for any u € C% with |lul| = 1.

We remark that the probability space (H, ?2)(X ,Lp),0p) depends in general on
the choice of the orthonormal basis (used for the identification H ?2) (X, L,) ~ C%).
However, it follows from Theorem 1.1 below that the global distribution of zeros

of random holomorphic sections does not depend on the choice of the orthonormal
basis.
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General classes of measures o, that satisfy condition (B) are given in Section
4.2. Important examples are provided by the Gaussians (see Section 4.2.1) and the
Fubini-Study volumes (see Section 4.2.2), which verify (B) for every v > 1 with a
constant C, = T', independent of p. For such measures Theorem 1.1 below takes
a particularly nice form. We note that for the measures o, from Sections 4.2.1,
4.2.2, and 4.2.3 (area measure of spheres), the probability space (H(Q)(X Ly, o )
does not depend on the choice of the orthonormal basis, since these measures are
unitary invariant. In Section 4.2.4 we show that measures with heavy tail probability
(see condition (B1) therein) and small ball probability (see condition (B2) therein)
verify assumption (B). We also stress that random holomorphic sections with i.i.d.
coeflicients whose distribution has bounded density and logarithmically decaying
tails arise as a special case (cf. Lemma 4.15). Moreover, locally moderate measures
with compact support are also among the examples of such measures (cf. Lemma
4.16).

Given a section s € H°(X, L,) we denote by [s = 0] the current of integration
over the zero divisor of s. The expectation current E[s, = 0] of the current-valued
random variable H&) (X,Lp) 3 sp — [sp = 0] is defined by

(Els, =0l 8) = [ (5= 0.2) doy (s,

HY, (X, Ly)

where ® is an (n — 1,n — 1) test form on X. We consider the product probability

space

The following result gives the distribution of the zeros of random sequences of
holomorphic sections of L,, as well as the convergence in L' of the logarithms of
their pointwise norms. Note that by the Lelong-Poincaré formula (see (2.4)) the
latter are the potentials of the currents of integration on the zero sets, thus their
convergence in L' implies the weak convergence of the zero-currents.

(1.4) (H,o) <HH2) (X,L,),

p=1

wz:ng

Theorem 1.1. Assume that (X,w), (Lp, hp), and o, verify the assumptions (Al),
(A2), and (B). Then the following hold:

(i) If lim, o CpA,Y = 0, then ALP(IE[SP = 0] — c1(Lp, hp)) = 0, as p — oo,
in the weak sense of currents on X.

(ii) If liminf, . CpA," = 0, then there exists a sequence of natural numbers
p; /0o such that for o-a. e. sequence {s,} € H we have

1
10g |sp, [n,. =0, ——([sp, = 0] = c1(Lyp,, hp,)) = 0, as j — oo,

1
Ap, " ’ Ap,

in LY(X,w"), respectively, in the weak sense of currents on X.
(i) If 3,2, CpA,Y < 0o, then for o-a. e. sequence {sp} € H we have
1 1
—log|spln, = 0, —([sp =0] —c1(Lp, hp)) =0, asp— oo,
Ay v Ay

in LY(X,w"), respectively, in the weak sense of currents on X.
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Remark 1.2. If the measures o, verify condition (B) with constants C, =T', inde-
pendent of p, then the hypothesis of (i) (and hence of (ii)), lim, o, I', A,V = 0, is
automatically verified since by (1.1),

Ap2ap/w", so A, = 00 as p — 0.
X

Moreover, the hypothesis of (iii) takes the simpler form Z;O:l ALY < oo.

An important ingredient in the proof of Theorem 1.1 is the asymptotic behavior
of the Bergman kernel functions P, of the spaces H?Q)(X, L,) (see (2.1) for the

definition) established in [CMM, Theorem 1.1]: namely, one has that

Ai log P, = 0 as p — oo in L' (X,w™).
P

Theorem 1.1 will follow from this using Theorem 4.1, which shows, under very gen-
eral assumptions, that the equidistribution of zeros of random holomorphic sections
is a consequence of the asymptotic behavior of the Bergman kernel (see (4.1)). A
similar approach was used in a different context in [CM1, Theorems 1.1 and 1.2].

If (Lp,hy) = (LP,h?), where (L, h) is a fixed singular Hermitian holomorphic
line bundle, Theorem 1.1 gives analogues of the equidistribution results from [SZ1,
CM1, CM2,CM3, CMM] for Gaussian ensembles and [DS, Bal, Ba3, BL] for non-
Gaussian ensembles on compact normal Kéhler spaces. Note that in this case
hypothesis (1.2) is automatically verified as ¢, (LP, h?) = pcy(L, h), so we can take
To = c1(L, h)/|lei(L, h)||, where |ler (L, h)|| == [y ci(L,h) Aw" ! We formulate
here a corollary in this situation; for further variations of Theorem 1.1 see Section 4.

Corollary 1.3. Let (X,w) be a compact normal Kihler space and let (L,h) be a
singular Hermitian holomorphic line bundle on X such that c1(L, h) > ew for some
€ >0. Forp>1 let o, be probability measures on H?Q) (X, LP) satisfying condition
(B). Then the following hold:
(1) Iflimp oo Cpp™” =0, then %]E[sp =0] = c1(L,h), as p — oo, weakly on
X.
(i) If liminf, . Cpp~" = 0, then there exists a sequence of natural numbers
p; /0o such that for o-a. e. sequence {s,} € H we have as j — oo,

1 1
— log |y, |nrs — 0 in L'(X,w™), — [sp, = 0] = c1(L, h), weakly on X.
Dj bj

(iii) Ifzzozl Cpp™Y < 00, then for o-a. e. sequence {s,} € H we have asp — oo,
1 1
~ log |splne — 0 in LY (X,w™), ~[sp, =0] = c1(L,h), weakly on X.
p p

It is by now well established that the off-diagonal decay of the Bergman/Szeg6
kernel for powers LP of a line bundle L implies the asymptotics of the variance
current and variance number for zeros of random holomorphic sections of LP, cf.
[Ba2,ST, SZ2]. Note also that the Bergman kernel provides the 2-point correla-
tion function for the determinantal random point process defined by the Bergman
projection [Ber, §6.1].

We wish to consider here the off-diagonal decay for Bergman kernels of a sequence
L, satisfying (1.1). We expect that this will have applications in obtaining a Central
Limit Theorem for smooth linear statistics of zero divisors. To state our result, let
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us introduce the relevant definitions. We consider the situation where X is smooth
and the Hermitian metrics h, on L, are also smooth. Let L?(X, L,) be the space
of L? integrable sections of L, with respect to the metric h, and the volume form
w"/n!. We assume now that h, is smooth, hence Hpy (X, L,) = H(X, L,). Let
P, : L*(X,L,) — H°(X,L,) be the orthogonal projection. The Bergman kernel
P,(z,y) is defined as the integral kernel of this projection; see [MMI, Definition
1.4.2]. Let d, = dim H°(X, L,) and (Sp) | be an orthonormal basis of H°(X, L,).
We have

ZS” )@ SP(y)* € Lpa® Ly,

where ST (y)* = (-, S7(y))n, € Ly, We set Py(x) := Ppy(z,z).

The next result provides the exponential off-diagonal decay of the Bergman ker-
nels P,(z, y) for sequences of positive line bundles (L,, h,). Adapting methods from
[L, Be] we prove the following.

Theorem 1.4. Let (X,w) be a compact Kihler manifold of dimension n and let
(Lp, hp), p > 1, be a sequence of holomorphic line bundles on X with Hermitian
metrics hy, of class €3 whose curvature forms verify (1.1). Assume that

1.5 ep = ||hp 1/3 _1/2—>0 asp — 0.

( P - p

Then there exist constants C,T > 0, pg > 1, such that for every x,y € X and
p > po we have

c1(Lp, hp)y c1(Ly, hp)ryl

n n
Wy wy

(1.6) |Pp(x,y)|ip < Cexp(—T\/@d(x,y))

Here ||hy||3 denotes the sup-norm of the derivatives of h, of order at most three
with respect to a reference cover of X as defined in Section 2.3, and d(z,y) de-
notes the distance on X induced by the K&hler metric w. We also recall that, in
the hypotheses of Theorem 1.4, the first order asymptotics of the Bergman kernel
function P,(x) = Py(z,x) was obtained in [CMM, Theorem 1.3] (see Theorem 3.3
below).

The situation when (L, h,) = (L?, h?) was intensively studied. Let (L, h,) =
(L?, h?), such that there exists a constant € > 0 with

(1.7) c1(Lyh) = ew

Then a, = pe and ||hplls S pso (1.1) and (1.5) are satisfied, thus (1.6) holds in this
case, and is a particular case of (1.8) below. Namely, by [MM2, Theorem 1], there
exist T > 0, pp > 0 so that for any k£ € N, there exists Cj > 0 such that for any
p = po, x,y € X, we have

(1.8) P, y)lgn < Cip™ % exp(=T pd(,y)).
In [DLM, Theorem 4.18], [MM1, Theorem 4.2.9], a refined version of (1.8) was
obtained, i.e., the asymptotic expansion of P,(x,y) for p — 400 with an exponential
estimate of the remainder. The estimate (1.8) holds actually for complete Kéhler
manifolds with bounded geometry and for the Bergman kernel of the bundle LP Q@ E,
where F is a fixed holomorphic Hermitian vector bundle.

Assume that X = C" with the Euclidean metric, L = C**!, and h = e~¥ where
¢ : X — R is a smooth plurisubharmonic function such that (1.7) holds. Then
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the estimate (1.8) with & = 0 was obtained by [Chl] for n = 1 and [De], [L] for
n > 1 (cf. also [Be]). In [Ba2, Theorem 2.4] the exponential decay was obtained for
a family of weights having super logarithmic growth at infinity.

Assume that X is a compact Kéhler manifold, ¢; (L, h) = w, and take k = 0 and
d(x,y) > d > 0. Then (1.8) was obtained in [LZ, Theorem 2.1] (see also [Ber]) and
a sharper estimate than (1.8) is due to Christ [Ch2].

The paper is organized as follows. After introducing necessary notions in Section
2, we prove Theorem 1.4 in Section 3. In Section 4 we prove Theorem 1.1 and we
provide examples of measures satisfying condition (B) showing how Theorem 1.1
transforms in these cases.

2. PRELIMINARIES

2.1. Plurisubharmonic functions and currents on analytic spaces. Let X
be a complex space. A chart (U,7,V) on X is a triple consisting of an open set
U C X, a closed complex space V. C G C C¥ in an open set G of CV, and a
biholomorphic map 7 : U — V (in the category of complex spaces). The map
7:U — G C C¥ is called a local embedding of the complex space X. We write

X = chg U Xsinga

where X, (resp., Xging) is the set of regular (resp., singular) points of X. Recall
that a reduced complex space (X, €) is called normal if for every x € X the local
ring O, is integrally closed in its quotient field .#,. Every normal complex space
is locally irreducible and locally pure dimensional, cf. [GR2, p.125], Xgne is a
closed complex subspace of X with codim Xgine > 2. Moreover, Riemann’s second
extension theorem holds on normal complex spaces [GR2, p.143]. In particular,
every holomorphic function on X,e; extends uniquely to a holomorphic function
on X.

Let X be a complex space. A continuous (resp., smooth) function on X is a
function ¢ : X — C such that for every z € X there exists a local embedding
7:U — G C CN with 2 € U and a continuous (resp., smooth) function @ : G — C
such that p|ly = @or.

A (strictly) plurisubharmonic (psh) function on X is a function ¢ : X —
[—0o0, 00) such that for every x € X there exists a local embedding 7 : U — G C CV
with € U and a (strictly) psh function ¢ : G — [—00,00) such that ¢|y = goT.
If ¢ can be chosen continuous (resp., smooth), then ¢ is called a continuous (resp.,
smooth) psh function. The definition is independent of the chart, as is seen from
[N, Lemma4]. The analogue of Riemann’s second extension theorem for psh func-
tions holds on normal complex spaces [GR1, Satz4]. In particular, every psh func-
tion on X, extends uniquely to a psh function on X. We let PSH(X) denote
the set of psh functions on X, and refer to [GR1], [N], [FN], [D2] for the prop-
erties of psh functions on X. We recall here that psh functions on X are locally
integrable with respect to the area measure on X given by any local embedding
7:U — G C CV [D2, Proposition 1.8].

Let X be a complex space of pure dimension n. We consider currents on X
as defined in [D2] and we denote by D,, ,(X) the space of currents of bidimension
(p, q), or bidegree (n — p,n — ¢) on X. In particular, if v € PSH(X), then dd“v €
D;, 1 ,—1(X) is positive and closed. Let 7 (X) be the space of positive closed
currents of bidegree (1,1) on X which have local psh potentials: T € 7(X) if
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every € X has a neighborhood U (depending on T') such that there exists a psh
function v on U with T' = ddv on U N X,cs. Most of the currents considered here,
such as the curvature currents c¢1(Ly, hy) and the Fubini-Study currents +,, belong
to 7 (X). A Kahler form on X is a current w € 7 (X) whose local potentials
extend to smooth strictly psh functions in local embeddings of X to Euclidean
spaces. We call X a Kahler space if X admits a Kéhler form (see also [G, p. 346],
[O], [EGZ, Sec. 5]).

2.2. Singular Hermitian holomorphic line bundles on analytic spaces. Let
L be a holomorphic line bundle on a normal Kéahler space (X,w). The notion of
singular Hermitian metric h on L is defined exactly as in the smooth case (see
[D3], [MM1, p.97])): if e, is a holomorphic frame of L over an open set U, C X,
then |e,|? = e %P> where ¢, € Ll (Uy,w™). If gap = es/ea € O%(Us N Up)
are the transition functions of L, then ¢, = ¢ + log|gas|- The curvature current
ci(L,h) € D;,_q,_1(X) of h is defined by ci(L,h) = dd°ps on Uy N Xreg. We
will denote by h? the singular Hermitian metric induced by h on LP := L®P If
c1(L,h) > 0, then the weight ¢, is psh on U, N Xieg and since X is normal it
extends to a psh function on U, [GR1, Satz4], hence ¢1(L,h) € T (X).

Let L be a holomorphic line bundle on a compact normal Kéhler space (X, w).
Then the space H°(X, L) of holomorphic sections of L is finite dimensional (see,
e.g., [A, Théoreme 1,p. 27]). The space H&) (X, L) defined as in (1.3) is therefore
also finite dimensional.

For p > 1, we consider the space H&)(X, L,) defined in (1.3). Recall that
d, = dim H?Q)(X, L,) and S7,..., Sdpp is an orthonormal basis of H&) (X,Lp). If
z € X and e, is a local holomorphic frame of L, in a neighborhood U, of z we

write S = s¥e,, where s7 € Ox(Up). Then the Bergman kernel functions and the

Fubini-Study currents of the spaces H ?2)(X , L) are defined as follows:

d, d
P 1 . P
(2.1) Py(z) =Y 1SP@)F, . wlu, = 5 dd°log STIs7
j=1 j=1

where d = 8 4+ 8 and d° = 7-(9 — 8). Note that P,, 7, are independent of the
choice of basis S, ..., Sgp. It follows from (2.1) that log P, € L' (X,w™) and

(2.2) Yp — c1(Lp, hp) = % dd®log P, .
Moreover, as in [CM1,CM2], one has that
(2.3) P,(x) = max{|S(x)\ip :Se H?Q)(X, Ly), IS]l, =1}
for all z € X where |e,(x)|n, < 0o.
We recall that if S € H(X, L,) the Lelong-Poincaré formula shows that
(2.4) [S = 0] = c1(Lyp, hy) + dd“log S|, -

This follows exactly as in the case when X is smooth (see [MM1, Theorem 2.3.3]).
Indeed, if X is a compact (reduced) analytic space of pure dimension and S €
H°(X,L,), the current of integration [S = 0] € 7 (X) is defined as the current
with local psh potentials of the form log|s|, where S = se,, s € Ox(U,), and
ep is a holomorphic frame of L, on the open set U, C X. If |e,|n, = e™%, then
log S|, = log|s| — ¢, which gives (2.4).
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2.3. Special weights of Hermitian metrics on reference covers. Let (X,w)
be a compact Kéhler manifold of dimension n. Let (U, z), z = (z1,. .., z,), be local
coordinates centered at a point z € X. For » > 0 and y € U we denote by

A"y,r)={2€U:|zj—yj|<r, j=1,...,n}

the (closed) polydisk of polyradius (r,...,r) centered at y. The coordinates (U, z)
are called Kahler at y € U if

(2.5) w, = %Zdzj/\dzj—l—O(\z—yP) onU.

Jj=1

Definition 2.1 ([CMM, Definition 2.6]). A reference cover of X consists of the
following data: for j =1,..., N, a set of points z; € X and

(1) Stein open simply connected coordinate neighborhoods (Uj,w()) centered
at z; =0,
(2) Rj > 0 such that A™(z;,2R;) € U; and for every y € A™(x;,2R;) there
exist coordinates on U; which are Kahler at y,
N n
(3) X =U;=1 A" (zj, Rj).

Given the reference cover as above we set R = min R;.
We can construct a reference cover as in [CMM, Section 2.5]. On U; we con-

sider the differential operators D& , o € N?", corresponding to the real coordinates
associated to w = wl). For a function ¢ € €*(U;) we set

(2.6) lelle = llellew = sup {|Dge(w)] : w € A"(x;,2R;), o] < k}.

Let (L, h) be a Hermitian holomorphic line bundle on X, where the metric h is of
class €. Note that L|y, is trivial. For k < ¢ set

17|

2.7) kU; = inf{HSOj”k; D € %Z(Uj) is a weight of h on Uj},
' |2l = max {1, ||A]|ku, : 1<j <N}

Recall that ¢; is a weight of h on Uj if there exists a holomorphic frame e; of L on

U; such that |e;|, = e~¥7. We have the following.

Lemma 2.2 ([CMM, Lemma 2.7]). There exists a constant C > 1 (depending on
the reference cover) with the following property: Given any Hermitian holomorphic
line bundle (L,h) on X, where h is of class €3, any j € {1,...,N}, and any
x € A"(z;, R;) there exist coordinates z = (z1,...,2n) on A"(x, R) which are
centered at x = 0 and Kdhler coordinates for x such that

(i) nldm < (14 Cr?)w™ and w™ < (1 + Cr?)nldm hold on A™(x,r) for any
r < R where dm = dm(z) is the Fuclidean volume relative to the coordinates
z 2

(ii) (L,h) has a weight ¢ on A™(x, R) with p(2) = >0, Ajlzi 2 + @(z), where
A; € R and |p(2)| < C|\h||s|z? for z € A™(z, R).
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3. BERGMAN KERNEL ASYMPTOTICS

We prove in Section 3.1 an L2-estimate for the solution of the d-equation in the
spirit of Donnelly-Fefferman, which is used in Section 3.2 to prove Theorem 1.4.

3.1 LQ-_estimates for 0. Let us recall the following version of Demailly’s estimates
for the 0 operator [D1, Théoreme 5.1].

Theorem 3.1 ([CMM, Theorem 2.5]). Let Y, dimY = n, be a complete Kdihler
manifold and let Q be a Kdhler form on'Y (not necessarily complete) such that its
Ricci form satisfies Ricq > —2nBQ on Y for some constant B > 0. Let (Ly, hy)
be singular Hermitian holomorphic line bundles on'Y such that c¢1(Ly, hy) > 2a,42,
where a, — 00 as p — oo, and fix po such that a, > B for all p > po. If p > po
and g € L%, (Y, Ly,loc) verifies 9g = 0 and [, \g|,2Lp Q" < oo, then there exists
u € L3 o(Y, Ly,loc) such that Ou =g and [, ulf, Q" < i Jy lali, Q.

The next result gives a weighted estimate for the solution of the 9-equation which
goes back to Donnelly-Fefferman [DF]. The idea is to twist with a not necessarily
plurisubharmonic weight whose gradient is however controlled in terms of its com-
plex Hessian. We follow here [Ber, Theorem 4.3]; similar estimates were used for
C™ in [De,L].

Theorem 3.2. Let (X,w) be a compact Kdihler manifold, dim X = n, and let
(Lp, hy) be singular Hermitian holomorphic line bundles on X such that h, have
locally bounded weights and c1(Lp, hy) > apw, where a, — 00 as p — oo. Then
there exists pg € N with the following property: If v, are real valued functions of
class €2 on X such that

(3.1) Byl < Y ddou, > ~22

)

/ ‘uli e2van§ E/ |5u|i eQUpwn
x P ap X P

holds for p > po and for every €1-smooth section u of L, which is orthogonal to
HO(X, L,) with respect to the inner product induced by h, and w™.

Proof. We fix a constant B > 0 such that Ric, > —27Bw on X and pg such that
ap > 4B if p > po. Consider the metric g, = hye 2"» on L,. Then by (3.1),

3

then

a
c1(Lp, gp) = c1(Lp, hy) + dd vy > ?p w-

Moreover,

w™ w™
(e*ru, S)q,, = /X<62”Pu,5>gp P /X<u, S)h, i 0 VSeHX, L,).

Let a = 5(62"Pu) = €2%(20v, A u + Ou). By Theorem 3.1 there exists a section
u € L3 o(X,Ly) such that u = o and

~ 4
[l o< [er <t [ oo
X gr x 7 ap Jx 7

where the first inequality follows since e?V»u is orthogonal to H°(X, L,,) with respect
to the inner product (-,-),,. Using (3.1) we obtain

_ _ _ _ a _
\a|§p = 62”P|251)p/\u+8u|ip < 2e2vr (4\8vp/\u|ip+|8u\%p) < 2e2vr (1—2 \u|%p+\8u|,21p).
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It follows that

1 8 _
2 2v, n < - 2 2v, n 8 2 2v, n
Jlueea <5 [ b e “'+%XQ“W6 v

which implies the conclusion. O

3.2. Proof of Theorem 1.4. We recall the following result about the first term
asymptotic expansion of the Bergman kernel function P,(x) = P,(x, ) (see (2.1)).

Theorem 3.3 ([CMM, Theorem 1.3]). Let (X,w) be a compact Kdihler manifold
of dimension n. Let (Lp, hy), p > 1, be a sequence of holomorphic line bundles on
X with Hermitian metrics h, of class €> whose curvature forms verify (1.1) and
such that (1.5) holds. Then there exist C > 0 depending only on (X,w) and pg € N
such that

(3.2) P,(z) e —1|<celf?

c1(Lyp, hp)t
holds for every x € X and p > py.

Recall that d(z,y), x,y € X, denotes the distance induced by the Kédhler met-
ric w.

Proof of Theorem 1.4. We use ideas from the proof of [L, Proposition 9] together
with methods from [Be, Section 2] and [CMM, Theorem 1.3]. Let us consider a
reference cover of X as in Definition 2.1. Let py € N be sufficiently large such that

rp = a;l/z < R/2

and the conclusions of Theorems 3.2 and 3.3 hold for p > pg. If y € X and r > 0
we let B(y,r) := {¢ € X : d(y,¢) < r} and we fix a constant 7 > 1 such that,
for every y € X, A™(y,rp,) C B(y,7rp), where A™(y,r,) is the (closed) polydisk
centered at y defined using the coordinates centered at y given by Lemma 2.2.

We show first that there exists a constant C’ > 1 with the following property:
If y € X, soy € A"(xj, R;) for some j, and z are coordinates centered at y as in
Lemma 2.2, then

c1(Lp, hp)? w™

(3.3 S, <o T [ s 2
Wy A" (y,rp) v

where A™(y,r,) is the (closed) polydisk centered at y = 0 in the coordinates z and

S is any continuous section of L, on X which is holomorphic on A" (y,r,). Indeed,

let
op(2) = @ (2) + Bp(2), @p(2) =D Nlal,
=1

be a weight of h, on A™(y, R) so that @, verifies (ii) in Lemma 2.2 and let e, be a
frame of L, on U; with |ep|n, = e™%». Writing S = se,,, where s € O(A"™(y,7,)),
and using the sub-averaging inequality for psh functions we get
f 2,-2¢, 4
An(.ry) 877" dm
1S5, = s(0)]* < 5
fA"(O,rp) e” " rdm
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If C > 1 is the constant from Lemma 2.2, then

/ |s|?e=2% dm < (1+C’r§)exp(2 max (ﬁp)/ |s|26_2%’w—
A (0,rp) A (0,p) An(0,rp)

>

< (1+Cr§)exp(20||hpll37"3)/

Am(0,7p) g ’I’L'

Set

E(r):= /|g|gr e 21l dm(&) = g (1 - 6_2T2> ,

where dm is the Lebesgue measure on C. Since >‘§ > a, and E(1) > 1 we have

A\
/ 6_2¢/p dm 2 E(,;p app) 2 D ! D
A0y VISV Vi

Hence

wn
SO, < 0+ OOl ) NN [ s,

Note that at y, w, = § 320 dzj Adz;, e1(Lp, hy)y = dd°p,(0) = £ 3770 Mdz; A
dz; , thus
AP LA = (Z)n 1Ly
1 n 9 W'LL
Since r, — 0 and, by (1.5), [|hpls 73 = €3 — 0, there exists a constant C’ > 1 such

that
s

() a+Crdyep(2Clhylars) <’
for all p > 1. This yields (3.3).
We continue now with the proof of the theorem. Fix x € X. There exists a

section S, = S, € H°(X, L,) such that
1S5, = |Po(z,9)l7, Yy € X.

Then
w; w;
IS,12 = [ 180, 2 = [ 1), % = Pyto)

D' n. be n.

By Theorem 3.3 there exists a constant C” > 1 such that for allp > 1 and y € X,
c1(Lp, hp)y

3.4 P, <l ——=Y.
(3.4 ) < 0"

Assume first that y € X and d(z,y) < 4rr, = 4Ta;1/2. Using (2.3) and (3.4)
we obtain
1Po(@, )i, = 1S5, < P@)lISll7
c1(Lp, hp) c1(Lp, hp)y
= B()Ryly) < (2 ekl A Tely

Yy
Ly, hyp)? c1(Lps hy)y e~ Var d(zy)

< e4~r(c«//)2 ci(
w? wy
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We treat now the case when y € X and ¢ := d(z,y) > 4rrp, = 47’(1;1/2. By (3.3)
and the definition of S, we have

c1(Ly, hy)™ W
65) Bk, =IOk, <0 T [ p@oR,
wy An(y,rp) L

Note that
An(x7’rl)) - B(I,5/4), An(yﬂ"p) C {C €X: d(.I,C) > 36/4}
Let x be a non-negative smooth function on X such that
(3.6)
. . = c
X(Q) = 1if d(x,) > 35/4, x(C) = 0if d(z,¢) < /2, and [9x()* < 53 x(0)

for some constant ¢ > 0. Then we have
n

w
P 2 ¢
/A"(yﬂ"p | p(x’ C)‘hP n!

)
< [ 1P OB x(0)
X

n!
wn
= max{|Pp(XS)(a;)|2p : Se HY(X, L), /X |S[7, X = 1} ,

where
wn
R(S)(@) = [ Pl OS50 5
is the Bergman projection of the smooth section xS to H(X, L,).
It remains to estimate |P,(xS)(2)[}, , where S € H(X, L) and [y |S[; x wr =
1. To this end we consider the smooth section u of L,, given by

u = xS — Pp(x5).

Note that u is orthogonal to H°(X, L,) with respect to the inner product (-,-),
induced by h, and w™/n!. Moreover, since x(z) = 0, and since u is holomorphic in
the polydisk A™(z,r,) centered at x and defined using the coordinates centered at
x given by Lemma 2.2, it follows by (3.3) that

c1(Lyp, hy)? w™
67 RS, =i, <0 U g S

We will estimate the latter integral using Theorem 3.2. Let f : [0,00) — (—00,0]
be a smooth function such that f(x) =0 for x <1/4, f(x) = —x for x > 1/2, and
set gs(x) := 0f(x/d). There exists a constant M > 0 such that |g5(z)| < M and
|95 ()] < M/6 for all x > 0. We define the function

vp(() == ev/a, gs(d(,()), ¢ € X.
Then there exists a constant M’ > 0 such that

M'e S M'ea,
apw > — w
d PE= 4y

since 6 > 4ra, So v, satisfies (3.1) if we take ¢ = 1/(8M’). We have that
v, =0 in B(z,d/4) D A™(x,rp,). Moreover,

Ou=0(xS)=0xAS

[Bvll ) < M'e/ay , ddo, > —

1/2
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is supported in the set Vs := {( € X : §/2 < d(z,{) < 36/4}, and v,(¢) =
—&\/a, d(z,() < —&,/a, §/2 on this set. By Theorem 3.2 and (3.6) we get

w™ w™ 16 — w™
[ S < [ e S <2 [ pas)k, e
An(z,rp) . b'e n: Vs n

ap

since a,d? > 1672 > 16. Hence (3.7) implies that

ci(Lp, hp)? .
BS) @), < e LIl e,

x

It follows that

w? n
[ ipeor, S s oo alinhk
A (y,rp) ron

Combined with (3.5) this gives

e EVar d(z,y) .
Wy

Ly, hp)g cl(LP’ hP)Z

n n
wx wy

Py (2, y)]n, < e(C)? al e~V @)

and the proof is complete. O

4. EQUIDISTRIBUTION FOR ZEROS OF RANDOM HOLOMORPHIC SECTIONS

In Section 4.1 we prove Theorem 1.1. We provide examples of measures satisfying
condition (B) and give applications of Theorem 1.1 in Section 4.2.

4.1. Proof of Theorem 1.1. We prove first the following general equidistribution
result which combined with [CMM, Theorem 1.1] will yield Theorem 1.1.

Theorem 4.1. Let X be a compact (reduced) analytic space of pure dimension n
and let w be a Hermitian form on X. Let (Ly, hy), p > 1, be singular Hermitian
holomorphic line bundles on X and let H&)(X, L,) be the corresponding Bergman
spaces defined in (1.3) endowed with probability measures o, that verify assumption
(B). Let (H,0) be the product probability space defined in (1.4). Assume that there
exist constants o, > 0 such that

1
(4.1) — log P, = 0 asp — oo, in L'(X,w™),
QXp
where P, is the Bergman kernel function of H&) (X,L,) defined in (2.1). Then the
following hold:
(i) Iflim, o Cpa,” =0, then aLp(]E[SP =0]—c1(Lp,hp)) =0, as p — oo, in
the weak sense of currents on X.
(i) If iminf, Cpa,” =0, then there exists a sequence of natural numbers
p; /oo such that for o-a. e. sequence {sp} € H we have

1 1 .
—log\spj|hp7, =0, —([sp, =0] = c1(Lyp,, hp,)) = 0, as j — oo,
ap, : ap,

in LY(X,w"), respectively, in the weak sense of currents on X.
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(iii) If Z;i1 Cpay, ¥ < 00, then for o-a.e. sequence {s,} € H we have

1 1
— log|spln, — 0, —([sp=O]—cl(Lp,hp)) —0, asp— oo,
Qp Qp

in L(X,w"), respectively, in the weak sense of currents on X.

Proof. Note that if H(z)( L,) # {0}, then log P, € L*(X,w"), since it is locally
the difference of a psh and an integrable function. Let 7, be the Fubini-Study
currents of the spaces H&) (X, L,) defined in (2.1).
(i) Let ® be a smooth real valued (n — 1,n — 1) form on X. By (2.2) and
hypothesis (4.1) we have
1 1 .
a_p<rYp_Cl(Lp’hp)7¢>_E/X,logppdd(b%o’
so for the first assertion of (i) it suffices to show that
(4.2) - (Elsp =0] — 7, ®) = 0, as p — 0.
P
Note that there exists a constant ¢ > 0 such that for every smooth real valued
(n—1,n—1) form ® on X,

P S C||q)H<g2 w™.

Hence the total variation of dd°® satisfies |dd°®| < ¢||®||¢=z w™. Indeed, let 7: U —
G C C¥ be alocal embedding of X, where U C X and G C CV are open, such that
there exist a smooth real valued (N — 1, N — 1) form ® and a Hermitian form Q on
G with @ [y, = 7® and w U, = T+ There exists a constant ¢’ > 0 such that
for any smooth real valued (N — 1, N — 1) form ¢ on G and any open set Gy € G,
we have
—c[[ellw2(Go) Q" < dd°p |y < Cllpllw2(Go) -

Our claim follows by taking a finite cover of X with sets of form Uy = 771(Gy).

If s, € H(z)(X7 L,), using (2.4) and (2.2), we see that
(4.3)

<[sp = 0],<I>> = <01(Lp, hp),q)> +/ log |sp|hpdd0<1) = <7p,<1>> 1Og |s P|hp dd<P.
X

N

Note that log % € LY(X,w") as it is locally the difference of two psh functions.
P
We write

dP
_ ap
Sp = g a]Sj.
j=1

Moreover, for z € X we let e, be a holomorphic frame of L, on a neighborhood U
of x and we write Sf = s?ep, where 31;7 € Ox(U). Let (a,uP) = ajuy +. ..+ aq,uq,,
where

(44)  wP(x) = (wi(@),...,uq () s%(x)

; uj(z) =
VIS@P + .+ s ()2

Using Holder’s inequality and assumption (B) it follows that

/ M O'p(sp) - /d |10g |<a’up(z)>||d0'p(a) < C;/V'
H e

Py(x)
Licensed to Syracuse Univ. Prepared on Sat Aug 1 15:54:17 EDT 2020 for download from IP 128.230.234.162.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

‘ log

0, (X.Ly)



UNIVERSALITY RESULTS 3779

Hence by Tonelli’s theorem

S
/ / ’ IOg | ;D|hp
(X,Lp) J X P,

Hiy)
By (4.3) we conclude that

(Blsp =01 @)= [ (o= 0L @) doy (o)

|dd°®| doy(s),) < C;/”/X\ddcq>| gccg/"|\<1>||<gz/an.

is a well-defined positive closed current which satisfies
(Elsp = 0] — 9y )] < cCY7 @2 /Xwn.

Thus (4.2) holds since C;/V/ap — 0.
For the proof of assertion (ii), since lim infpﬁOO Cpa,” = 0 we can find a sequence
of natural numbers p; * oo such that Z Cyp, a,; ¥ < 0o. Then we proceed as in

the proof of assertion (iii) given below, worklng with {p;} instead of {p}.
(iii) We define

1 1 |s |hp
Y,, Z, : H—1[0,00), Yp(s):a—/x‘log\sphp‘w”, Zp(s)za—/x‘log \;ﬁ
P P P

n

where s = {s,}. So
1
0<Y,(s) < Z,(s) +mp, where m,:= —/ |log P,|w™.
20ép X
Hypothesis (4.1) shows that m, — 0 as p — co. By Hélder’s inequality

1 v—1 |S |h
OSZ(S)US—(/W") /’logg
: oy \Jx X Vv Ep

For x € X and uP(z) as in (4.4) we obtain using (B) that
[sp(2) n, ¥ v
[ e () = [ losla,u?(@)] doy(@ < G,
H(02)(X’Lp) Pp(‘/l;) clr

Hence by Tonelli’s theorem

n

/ Zp<8)uda<s>saiz( [e) B /[ ?2)(“?) og 2 ox oy (5 "
<)

Therefore
v o0 C
Z/ $)dos <(/wn> S o
X — oy
It follows that Zp( ) — 0, and hence Y,(s) — 0 as p — oo for o-a.e. s € H. This
means that a%) log |sp|n, — 0 in L'(X,w™), hence by (2.4),

a—([sp =0] — cl(Lp,hp)) -0

weakly on X, for o-a.e. sequence {s,} € H. The proof of Theorem 4.1 is finished.
O
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Proof of Theorem 1.1. By [CMM, Theorem 1.1] we have that

1
T log P, — 0 as p — 0o, in L'(X,w™).
P

Hence Theorem 1.1 follows at once from Theorem 4.1 with «, := Ap. O

Let us give now a variation of Theorem 1.1 modeled on [CMM, Corollary 5.6].
It allows to approximate arbitrary w-psh functions by logarithms of absolute values
of holomorphic sections. Let (X,w) be a Kahler manifold with a positive line
bundle (L, hg), where hg is a smooth Hermitian metric such that ¢;(L, hg) = w.
The set of singular Hermitian metrics h on L with ¢;(L,h) > 0 is in one-to-one
correspondence to the set PSH(X,w) of w-plurisubharmonic (w-psh) functions on
X, by associating to ¢ € PSH(X,w) the metric hy = hge™?¥ (see, e.g., [D3, GZ]).
Note that ¢1(L, hy) = w + dd®i.

Corollary 4.2. Let (X,w) be a compact Kidhler manifold and let (L, ho) be a pos-
itive line bundle on X such that ¢1(L,hg) = w. Let h be a singular Hermitian
metric on L with ¢c1(L,h) > 0 and let ¢ € PSH(X,w) be its global weight such that
h = hoe=2¥. Let {n,},>1 be a sequence of natural numbers such that

(4.5) n, — 00 and n,/p — 0 as p — oo.
Let hy, be the metric on LP given by
(4.6) hy = hP™"™ @ ho” = hl e 2070V,
Forp > 1 let o, be probability measures on H?Q)(X, L, = H?Q)(X, LP, h,) satisfying
condition (B). Then the following hold:
(i) Iflimp oo Cpp™” =0, then %E[sp =0] = c1(L,h), as p = oo, weakly on
X.

(i) If liminf, . Cpp~" = 0, then there exists a sequence of natural numbers
p; /oo such that for o-a. e. sequence {s,} € H we have as j — oo,

1 1
—log sy, |,7s — 1 in LY(X,w™), —[sp, = 0] = c1(L,h), weakly on X.
Dj 0 pj

(iii) Ifzgozl Cpp~" < 00, then for o-a. e. sequence {s,} € H we have asp — oo,
1 1
—log [sp|pz — 1 in LYNX,w™), —[sp =0] = c1(L,h), weakly on X.
p p

Proof. Note that log|sy|n, = log|splpz — (p — np)yp. The corollary follows from
Theorem 1.1 and the proofs of Corollaries 5.2 and 5.6 from [CMM]. O

Corollary 4.2 is an extension of [BL, Theorem 5.2] which deals with the special
case when ¢ = Vi is the weighted w-psh global extremal function of a compact
K C X. Note that we use here a different scalar product than in [BL].

Remark 4.3. Let us give a local version of Theorem 1.1. Note that when X is
smooth any holomorphic line bundle on X is trivial on any contractible Stein open
subset U C X. Assume that (X,w), (L, hp), and o, verify the assumptions (Al),
(A2), and (B). Let U C X such that for every p > 1, Lp|y is trivial and let
ep : U — L, be a holomorphic frame with |e,|s, = e™#», where ¢, € PSH(U).
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For a section s € HY(X, L,) write s = Se,, with s € O(U). If Z;O:1 CpA," < oo,
then for o-a.e. sequence {s,} € H we have as p — oo,

1 - 1/
—(log [sp| — gpp> — 0in LYU,w™), —([sp = 0] —ddcgpp) — 0, weakly on U.
Ap Ap
In particular, let (Lp, h,) = (L?,hP), where (L, h) is a fixed singular Hermitian
holomorphic line bundle on X such that ¢1(L, h) > ew for some € > 0. Let U C X
such that L|y is trivial, let e : U — L be a holomorphic frame with |e|, = e~ %,
where ¢ € PSH(U). Consider the holomorphic frames e, = e®? of LP|y. If
Z;il Cpp~Y < 00, then for o-a.e. sequence {s,} € H we have as p — oo,

%log 13,] = ¢ in L},.(U), %[gp = 0] — dd°p, weakly on U.
Example 4.4. We formulate now some of the previous results in the case of poly-
nomials in C". Consider X =P" and L, = O(p), p > 1, where O(1) — P" is the
hyperplane line bundle. Let C* < P", ( — [1 : (], be the standard embedding.
The global holomorphic sections H(P", O(p)) of O(p) are given by homogeneous
polynomials of degree p in the homogeneous coordinates z, ..., z, on C"*1. For
any o € N"*1 the map C"*! 5 2 — 2% is identified to a section s, € H°(P", O(p)).

On Uy ={[1:¢ €P"*: (e C"} = C" we consider the holomorphic frame
ep = 5(p,0,...,0) of O(p), corresponding to zj. The trivialization of O(p) using this
frame gives an identification

(4.7) HO(P™, O(p)) = Cu[¢], s+ s/z2h,
with the space of polynomials of total degree at most p,

CP[C] = CP[CM?CTL] = {f € C[Chvgn} deg(f) Sp}

Let w4 denote the Fubini-Study Kahler form on P" and let i be the Fubini-Study
metric on O(1), so ¢1(O(1), hyy) = wpe - The set PSH(P", pw,) is in one-to-one

correspondence to the set pL£(C™), where £(C™) is the Lelong class of entire psh
functions with logarithmic growth (cf. [GZ, Section 2]):

L(C") = {p € PSH(C"): 3C, € R such that ¢(z) <log" [|z|| + Cy, on C"}.
The map L£(C") — PSH(P",wy,) is given by ¢ — @ where

N o(w) — log(1 + |w|?), w e C,
plw) = limsup @(z), w € P\ C".
z—w,zeCn
The one-to-one correspondence between singular Hermitian metrics h, on O(p)
with ¢1(O(p), hp) > 0 and pL(C™) is given by sending a metric h, to its weight ¢,
on Uy with respect to the standard frame e,. Define the L?-space

wn
HY (.00 ) = {5 € 1O 00) - [ 12, % < o).

Pn

with the obvious scalar product. The map (4.7) induces an isometry between this
space and the L?-space of polynomials

(4.9 Cpldl = {£ € el [ 17e %52 <ol
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If o, are probability measures on C, (2)[¢] we denote by H the corresponding prod-
uct probability space (H,0) = (H;O:1 Cp. ¢ I, O'p).

Corollary 4.5. Consider a sequence of functions ¢, € pL(C™) such that dd®p, >
apwyg on C", where a, > 0 and a, — 00 as p — co. Forp > 1 let o), be probability
measures on C, 9)[C] satisfying condition (B). Assume that E;‘;l Cpp™" < 00.
Then for o-a. e. sequence {f,} € H we have as p — oo,

1

—(1og | fol — gpp) — 0 in L'(C™,w™,), hence in Li.(C",

p

1

1_?([fp =0] - ddcgap) — 0, weakly on C™.

Proof. If hy, is the singular Hermitian metric on O(p) corresponding to ,, then

Ay = / c1(O(p), hp) A wgs_l =p, and ¢1(O(p), hp) |crn=dd°pp > ap wys.

If T denotes the trivial extension of dd°yp, to P", then T" > a,w,, on P". By
Siu’s decomposition theorem, ¢1(O(p), h,) = T + blzp = 0], where b > 0. Hence
c1(O(p), hp) > T > apw,g on P*. The corollary now follows directly from Theo-
rem 1.1. O

In particular, we obtain the following.

Corollary 4.6. Let ¢ € L(C™) such that dd°p > ew,s on C™ for some constant
€ > 0. Forp > 1 construct the spaces C,, (2)[C] by setting ¢, = pp in (4.8) and let o,
be probability measures on C,, (2)[C] satisfying condition (B). If Z;il Cpp™" < o0,
then for o-a. e. sequence {f,} € H we have as p — oo,

1 1
(4.9) ;log |fpl = ¢ in L'(C™*, ™), 5[fp = 0] — dd°p, weakly on C".

We can also apply Corollary 4.2 to the setting of polynomials in C™ and obtain
a version of Corollary 4.6 for arbitrary ¢ € L(C").

Corollary 4.7. Let ¢ € L(C™) and let h be the singular Hermitian metric on O(1)
corresponding to ¢. Let {n,}p,>1 be a sequence of natural numbers such that (4.5)
is satisfied. Consider the metric h, on O(p) given by h, = hP~"r @ hl'z (cf. (4.6)).
Forp > 1 let o, be probability measures on H&)(IP’”, O(p), hy) = C,, (2)[¢] satisfying
condition (B). If 3272, Cpp™" < 0o, then for o-a. e. sequence {f,} € H we have
(4.9) as p — oo.

This is an extension (with a different scalar product) of [BL, Theorem 4.2] which
deals with the special case when ¢ = Vi 4 is the weighted pluricomplex Green
function of a nonpluripolar compact K C C" [BL, (3.2)].

4.2. Classes of measures verifying assumption (B). In this section we give
important examples of measures that verify condition (B) and we specialize Theo-
rem 1.1 to these measures.
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4.2.1. Gaussians. We consider here the measures o, on CF that have Gaussian

density,
1
(4.10) doy(a) = — e~ llall? dVi(a),
T
where a = (ay,...,ax) € CF and V4 is the Lebesgue measure on CF.

Lemma 4.8. For every integer k > 1 and every v > 1,
o0 2
/ |log [{a, u)||” dok(a) =T, := 2/ rllogr|[“e™ dr Yue CF, |jul| =1.
ck 0

Proof. Since oy, is unitary invariant we have

1 —la
/ |10g|<a,u>\|”dak(a):/ |10g|a1||”dak(a):—/|10g|a1||”e ‘1‘2dV1(a1).
Ck Ck ™ Jc
O

Lemma 4.8 implies at once that in this case Theorem 1.1 takes the following
simpler form.

Theorem 4.9. Assume that (X,w), (Lp, hp) verify the assumptions (Al), (A2),
and o, = 0q, is the measure given by (4.10) on H&)(X7 L,) ~ C%. Then the
following hold:

(i) 5 (E[sp = 0] — c1(Lp, hy)) = 0, as p — oo, in the weak sense of currents
P
on X. Moreover, there exists a sequence p; ,/* oo such that for o-a.e.
sequence {s,} € H we have

1 .
A_([Spj = 0] —cl(ij,hp].)) —0, asj — oo,

J Py

1
xlog\spﬁhpj -0,

in L(X,w"), respectively, in the weak sense of currents on X.
(i) If Z;il AV < oo for some v > 1, then for o-a.e. sequence {s,} € H we

have
1 1

A—log\sp|hp—>0, A—([sp:O]—cl(Lp,hp))a(), as p — 0o,
i4 4

in L(X,w"), respectively, in the weak sense of currents on X.

4.2.2. Fubini-Study volumes. The Fubini-Study volume on the projective space
P¥ 5 C* is given by the measure o}, on C* with density
k! 1

(4.11) doy(a) = — A+ aP)F

de (a) 5

where a = (ay,...,ar) € CF and V; is the Lebesgue measure on CF.
Lemma 4.10. For every integer k > 1 and every v > 1,

y * r|logr|”
/(Ck|log|<a,u>|\ dog(a) =T, ::2/0 ﬁdr VYueCF, |ul| =1.
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Proof. Recall that the area of the unit sphere in CF is so = 27%/(k — 1)!. Since
o) is unitary invariant we have

[, Mg e, douta) = [ ioglas]” do(a)

_r|logr|p*h 3
= 4k(k — 1) dpd
/ / (124 )Rt P

where we used polar coordinates for a; and spherical coordinates for (as, ..., ax) €
Ck~1. Changing variables p? = (1+72)z(1—2)"%, 2pdp = (1 +72)(1 —z)~2dz, in
the inner integral we obtain

o) p2k73 1 1 oo 1
/O A+ 2+ 2yt 2<1+r2>2/0“’ D= =D+

and the lemma follows. O

Lemma 4.10 shows that the conclusions of Theorem 4.9 hold for the measures
op 1= 04, given by (4.11) on H? (X, Ly) ~ Cr.

More generally, one can consider radial probability measures on C* with density

I'(k+a) 1

(412) 171e(@) = Tayh ({1 JalPyFre

de(a) s

where a > 0 and I' is the Gamma function. As in the proof of Lemma 4.10 one can
show that for every integer £ > 1 and every v > 1,

v = _r[logr|”
/Ck |10g|<a,u>\| dO'kva(a) = F’/,a = 20[/0 mdr Yu S Ck, ||UH =1.

4.2.3. Area measure of spheres. Let A be the surface measure on the unit sphere
S2F=1in C*, so A (S%*~1) = 27%/(k — 1)!, and let

1

4.13 =— A

(4.13) Ok A (SP1) k

Lemma 4.11. Ifv > 1 there exists a constant M, > 0 such that for every integer
k> 2,

/ |log |(a,u)||” doy(a) < M, (logk)” Yuec C*, ||lul| =1.
g2k—1
. . o w12k—2

Proof. We use spherical coordinates (61, ...,02,_2,¢) € [—5, 5] x [0, 27] on

S2k—1 guch that

ar = sin Oy, _3coslsp_o + isin Oy _o

dA;, = cos by cos? Oy ...cos?* 72 09y, _o dby ... dOsy_od.

Licensed to Syracuse Univ. Prepared on Sat Aug 1 15:54:17 EDT 2020 for download from IP 128.230.234.162.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



UNIVERSALITY RESULTS 3785

Since oy, is unitary invariant we argue in the proof of [CMM, Lemma 4.3] and obtain
that there exists a constant ¢ > 0 such that for every k and v,

L, Nogl(a.wll” dou)
S2k—1
= [, loglaul douta)
< = / / k 3/2( Q)k_2|10g(a?2+y2 _x2y2)|u dady

mck k—2 y
< 2y+1/ (1 =t)"=|logt|” dt .

Note that
f(t) :==t"?logt|” < f(e) = (2v/e)” for 0 <t < 1.
It follows that

1
/ (1 —t)*2|logt|” dt
0

2v\"” 1/k? !
<(2) [ a-orras [ a0t o a
e 0 1/k?

o\ Y UK 1

< (—) / t1/2 dt—|—2”(logk)"/ (1—t)F2dt
e 0 1/k2

< (2_1/) 2 N 2V (log k)

e ) k k-1
which implies the conclusion of the lemma. (Il

Lemma 4.11 implies that in this case Theorem 1.1 takes the following simpler
form.

Theorem 4.12. Assume that (X,w), (Ly, hyp) verify the assumptions (Al), (A2),
and oy, = 0q, is the measure given by (4.13) on the unit sphere of HO (X7 L,) ~

C?. Then the following hold:
(1) If im0 =5 logd =0, then 4 (E[sp = 0] — c1(Lp, hp)) = 0, as p — oo, in
the weak sense of currents on X.
(i) If liminf, ,, % = 0, then there exists a sequence p; /' oo such that for
o-a. e. sequence {s,} € H we have
1 1
——log|sp,|n, =0, —([sp, =0] —c1(Lp,, hp,)) = 0, asj— oo,
Apj 3 1p; Apj j j i
in L'(X,w™), respectively, in the weak sense of currents on X.
(iti) If >0, (lojjp> < 00 for some v > 1, then for o-a. e. sequence {s,} € H
we have

1

, —([spzo]—cl(Lp,hp))%O, as p — oo,
Ap

1
A—plog\sp|hp -0

in LY(X,w"), respectively, in the weak sense of currents on X.
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We remark that the assertion (ii) of Theorem 4.12 was proved in [CMM, Theorem
4.2]. That paper also gives two general examples of sequences of line bundles L,
for which

lim log dim H°(X, L,) _o.

p—0 A,
see [CMM, Proposition 4.4] and [CMM, Proposition 4.5]. In particular, if X is
smooth and each L, is semiample, then it is shown in [CMM, Proposition 4.5] that

dim H(X, L,) = O(A]).

Therefore lim,_, . (logd,)/A, = 0. Moreover, since logd, < /A, for p sufficiently

v
large, the hypothesis that Z;il (loid”) < 00, for some v > 1, in Theorem
P

4.12(iii), can be replaced by the condition that Z;il A" < oo for some v > 1.

Remark 4.13. We note that for unitary invariant measures o,, like those from
Sections 4.2.1-4.2.3, the probability space (H&)(X, L,),0,) does not depend on the
choice of orthonormal basis. Other important classes of probability measures which
do not depend on the choice of orthonormal basis and are not unitary invariant are
given in [FZ] (see formulas (5), (6), and (7) therein). These measures vy are easily
seen to be dominated by measures oy on the space Py ~ CV*! of polynomials in

C of degree at most N, with Gaussian-type density of the form
don(a) = eC—ellall® dVni1(a).

Indeed, the polynomial P(x) from [FZ, (7)] is bounded from below on [0, +00),
hence P(z) > ex — C for all x > 0, with some constants €,C' > 0. An argument
analogous to that in the proof of Lemma 4.8 shows that the measures vy verify
assumption (B) for every v > 1 with constants Cy = I', independent of N. In
particular, if the metric h and the measure v in the definition of vy [FZ, (5)] is
positively curved, respectively, a Kihler form on P!, then our Theorem 1.1 holds
in the setting of [FZ] for the measures ~yy.

4.2.4. Measures with heavy tail and small ball probability. Let o, be probability
measures on H&)(X, L,) ~ C% verifying the following: There exist a constant
p > 1 and for every p > 1 constants C,, > 0 such that:

(B1) For all R > 1 the tail probability satisfies

!

C
op({a e C% :log|al > R}) < R_f;'

(B2) For all R > 1 and for each unit vector u € C%, the small ball probability

satisfies
li

C
op({a € C% :log|(a,u)] < —R}) < R_ZP).

Lemma 4.14. If o, are probability measures on C% verifying (B1) and (B2) with

some constant p > 1, then o, verify (B) for any constant 1 < v < p.

Proof. Let v < p and u € C% be a unit vector. By (B1), (B2) we have

/

d, 26,
op({a € C™ : |log|(a,u)|| > R}) < T VR>1.
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Hence

[, logl{aw” doy(a)
C%p

- ,,/ R o, ({a € C% : |log|(a,u)|| > R}) dR
0

! o0 2vC!
Su/ R”—ldR+2u0;/ RVPTHdR =14+ —2 = C,.
0

1 p—v

O

4.2.5. Random holomorphic sections with i.i.d. coefficients. Next, we consider ran-
dom linear combinations of the orthonormal basis (Sf )?7’:1 with independent iden-
tically distributed (i.i.d.) coefficients. More precisely, let {a} ?21 be an array of
i.i.d. complex random variables whose distribution law is denoted by P. Then a

random holomorphic section is of the form

dp
— pgp
Sp = E a;S;.
Jj=1

We endow the space H, ?2) (X, Lp) with the dp-fold product measure o, induced by P.

Lemma 4.15. Assume that a? are i.i.d. complex valued random wvariables whose
distribution law P has density ¢, such that ¢ : C — [0, M] is a bounded function
and there exist ¢ > 0, p > 1 with

(4.14) P({z€C:log|z| > R}) < é VR> 1.

Then the product measures o, on C% satisfy condition (B) for any 1 < v < p, with
constants Cp, = I‘d;,f/p, where I' = (M, ¢,p,v) > 0. In particular, if d, = O(A))
for some N € N and p > N, then o, satisfy condition (B) for any 1 <v < p with
Cp = O(Ap"/%) = o(AY).

Proof. Let u = (u1,...,uq,) € C% be a unit vector. For R > logd,, we have
dP
{a € C% :log|(a,u)| > R} C U {a; :|aj| > el%%lc)gdp}7
j=1
so by (4.14),
(4.15)
2Pcdy,

op({a € C% :log|(a,u)| > R}) < d, P({a? € C: |a?| > efi2loedr}) < =

On the other hand, we have |u;| > d;1/2 for some j € {1,...,d,}. We may
assume j = 1 for simplicity and apply the change of variables

dp
_E P — 4P —_ P
a1 = ajuj, Q2 = Gy, ...,Oédp = adp.
Jj=1
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Then, using the assumption ¢ < M,
(4.16)
op({a €C% :log|(a,u)| < —R})

d,
Q] — ijzz QU5 daj ... dOcdp
= —_— az)...0«x -5
/C”lpf1 /a1|<eR i ( 1 ) gb( 2) (b( dp) |u1|2

< Mﬂ'dpefﬂ?‘.

For Ry > logd, we obtain using (4.15) and (4.16)

[, logl{a " doy(a)
C%p

,,/ R"o,({a € C» : |log|(a,u)|| > R}) dR
0

R() (oo}
< u/ R"7'dR + u/ R 'o,({a € C% :|log|(a,u)|| > R}) dR
0

Ro
>~ 20cd
< Ry + u/ R (—C 2 4 depe_QR) dR.
Ro ke

Since R¥~te R < ((v —1)/e)?~! for R > 0, and since Ry > logd,, we get

2ved, Ry ™" —1\"7t e
/ |log [{a, w)||" doy(a) < RY + 2210~ 4 arrya, (”—> / PR
Cp p—v € Ry

2Pved v—1\""!
< v P .
< R; <1+7(p_y)Rg>+M7w< . )

Choosing R = d,, this implies that

/ | log [{a, u)| | doy(a) < Td2/?,
cér
where I' > 0 is a constant that depends on M, ¢, p, and v. O

We remark that if X is smooth and each L, is semiample, then d, = O(A))
(see [CMM, Proposition 4.5]) and Lemma 4.15 applies.

4.2.6. Locally moderate measures. Let X be a complex manifold and let o be a
positive measure on X. Following [DNS], we say that o is locally moderate if for
any open set U C X, any compact set K C U, and any compact family .# of psh
functions on U, there exist constants ¢, & > 0 such that

(4.17) / e~ do <c, VY € .F.
K

Note that a locally moderate measure o does not put any mass on pluripolar sets.
The existence of ¢, in (4.17) is equivalent to existence of ¢/, o’ > 0 satisfying

o({z € K:(z) < —t}) < e

for any t > 0 and ¢ € .%. Important examples are provided by the Monge-Ampere
measures of Holder continuous psh functions [DNS, Theorem 1.1, Corollary 1.2].

Lemma 4.16. Ifo,, p > 1, is a locally moderate probability measure with compact
support in Cl ~ H&) (X,Ly,), then o, satisfies condition (B) for every v > 1.
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Proof. Consider the compact family of psh functions .# = {4, : u € S2%~1} where
Py : C% — [—00,00), Yu(a) = log|{a,u)|. Let R, > 1 be such that ||a|| < R, for
all a € suppo,. Then

|¢u(a)| = _d)u(a) + max{O, 27/)1»(“)} < _d)u(a) + 2log Rp

holds for all a € suppo, and v, € F. Since o, is locally moderate and with
compact support, there exist constants c,, o, > 0 such that (4.17) holds for every
1, € F and with the integral over C%. Fix v > 1. As ¥ < de®® for all z > 0,
with some constant ¢’ > 0 depending on p, v, we conclude that

/ |¢u(a)|ud0_p(a) < C// eap\wu(a” dap(a)
Cc Ccdp

< c'RzaP / e~ ¥u() dg (a) < c’chzaP .
cdr
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