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Abstract: The non-destructive evaluation (NDE) of civil infrastructure has been an active area of
research in recent decades. The traditional inspection of civil infrastructure mostly relies on visual
inspection using human inspectors. To facilitate this process, different sensors for data collection and
techniques for data analyses have been used to effectively carry out this task in an automated fashion.
This review-based study will examine some of the recent developments in the field of autonomous
robotic platforms for NDE and the structural health monitoring (SHM) of bridges. Some of the salient
features of this review-based study will be discussed in the light of the existing surveys and reviews
that have been published in the recent past, which will enable the clarification regarding the novelty
of the present review-based study. The review methodology will be discussed in sufficient depth,
which will provide insights regarding some of the primary aspects of the review methodology followed
by this review-based study. In order to provide an in-depth examination of the state-of-the-art,
the current research will examine the three major research streams. The first stream relates to
technological robotic platforms developed for NDE of bridges. The second stream of literature
examines myriad sensors used for the development of robotic platforms for the NDE of bridges.
The third stream of literature highlights different algorithms for the surface- and sub-surface-level
analysis of bridges that have been developed by studies in the past. A number of challenges towards
the development of robotic platforms have also been discussed.

Keywords: non-destructive evaluation (NDE); structural health monitoring (SHM); electric resistivity
(ER) sensors; ground-penetrating radar (GPR); infrared (IR) thermography; impact echo (IE);
NDE sensor fusion; convolutional neural network (CNNs); concrete crack detection; rebar detection
and localization

1. Introduction

The monitoring, maintenance and rehabilitation of civil infrastructure is of paramount importance
at the national and international level. Of the different types of civil infrastructure, the need for
the maintenance and evaluation of bridges has been stressed by studies in the recent past [1-4].
The need for public infrastructure evaluation and monitoring is important, as a large number of
civilian populations use the different infrastructures on a daily basis. Any structural defects that
remain unchecked for a long time can lead to serious hazards for civilians utilizing that particular
infrastructure. For the case of bridges alone, according to the National Bridge Inventory (NBI) statistics,
there are more than 607,380 bridges in the entirety of the United States [5]. Although the overall
ratio of marginally or seriously damaged bridges has been declining in recent decades, the recent
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statistics outlined by the U.S. Department of Transportation have classified around 67,000 bridges as
structurally deficient and around 85,000 as functionally obsolete in nature [5]. Out of the $14.3 billion
expenditure sanctioned for the maintenance of existing bridges and the construction of new bridges in
2010, $12.8 billion was dedicated towards the maintenance of existing bridges [6], which shows that a
considerable portion of annually allocated funds are being diverted for the maintenance of bridges.
A number of different factors contribute towards the partial or total destruction of bridges, ranging
from design errors and construction defects to environmental degradation, scour, flood, collision and
overloading [7,8]. The impact of bridge destruction and collapse far exceeds the overall material
and financial costs associated with the bridge construction, as it also includes the various direct and
indirect costs, which include, but are not limited to, the loss of lives, user delays, planning for alternate
routes, along with the green-house gas emissions linked to detours and delays in traffic [7,9-11].
Figure 1 highlights the multitude of bridge destruction incidents in the U.S. in recent decades. Figure 2
provides a flow chart with an examination of the inter-relationship between the different sections of
the review-based study. Table 1 outlines a complete list of abbreviations used in this review paper. It is
being predicted that with the increase in climate change and frequency of adverse climate incidents
(e.g., hurricane, floods, tsunamis) on a global scale, the overall costs related to bridge repair and
maintenance is also expected to accelerate from $140 billion to $250 billion annually [10] with direct
and indirect losses amounting to more than 17% of the total expenditures [11]. Therefore, the timely
evaluation, monitoring and rehabilitation of bridges can result in reduced overall direct costs as well
as the indirect costs in terms of the potential destruction of property and lives incurred in the wake
of bridge destruction. Although natural disasters cannot be averted, but the different techniques for
non-destructive evaluation (NDE) have the potential towards minimizing the overall direct and indirect
costs associated with the destruction of bridges caused by internal deficiencies, construction deficits
and maintenance-related issues. In the light of this realization, a number of national-level initiatives
have been developed in the United States. One such example is the Long-Term Bridge Performance
Program (LTBP) initiated by the Federal Highway Administration (FHWA) with the primary aim
towards promoting the utilization of non-destructive evaluation technologies and techniques for
regular bridge inspection and maintenance [12].
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Figure 1. Timeline showing some of the bridge accidents in the U.S. in recent decades [1].
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Figure 2. Roadmap of the review-based study in order to understand the inter-relationship between
the different sections of the paper.

Table 1. A complete list of the abbreviations and their meanings that have been used in this

review-based study.

Abbreviation Meaning Abbreviation Meaning
LTBP Long-Term Bridge Performance Program ROCIM Robotic Crack Inspection and Mapping
FHWA Federal High Way Administration RABIT Robotics-Assisted Bridge Inspection Tool
NDE Non-Destructive Evaluation usv Unmanned Submersible Vehicle
NDT Non-Destructive Testing uGv Unmanned Ground Vehicle
SHM Structural Health Monitoring UMV Unmanned Marine Vehicle
IR Infrared UAV Unmanned Aerial Vehicle
GPR Ground-Penetrating Radar RGB Red Green Blue
UAS Unmanned Aerial Systems RGB-D Red Green Blue Depth
IE Impact-Echo EM Electro-Magnetic
ER Electrical Resistivity USW Ultrasonic Surface Waves
PRISMA Preferred Reportmg tems for Systematic ASTM American Society of Testing and Materials
Reviews and Meta-Analyses
HA Habib Ahmed CCTV Closed Circuit Television
HML Hung Manh La CNN Convolutional Neural Network
NG Nenad Gucunski RANSAC Random Sample Consensus
YSI®UUV YSI®Unmanned Undersea Vehicle Sea-RAI Sea Robot Assisted Inspection
BRIDGE Bridge Risk Investigation Diagnostic LRF Laser Range Finder
Grouped Exploratory
ETH Eidgenossische Technische Hochschule MRC IN-II Multlfunctl(l)nal RO'bOtIC Crawler for
nspection-II
LIDAR Light and Radar ABI Auto Bridge Inspection
ROV Remotely Operated Vehicle CCD Charged Coupled Device
SONAR Sound Navigation and Ranging BYU Bringham Young University
YOLO You Only Look Once SVM Support Vector Machine
HOG Histogram of Oriented Gradient FCN Fully Connected Network
NN Neural Network VGG Visual Geometry Group
ARA Advanced Robotics and Automation ResNet Residual Network

Apart from the increased costs associated with the destruction of bridges and other civil
infrastructures, there are a number of different factors serving as valid motivations to perform
a comprehensive review of different state-of-the-art solutions for the NDE of bridges. In the past
decade, there has been an increase in the development of various automated robotic platforms with
different capabilities and functionalities. Therefore, it is important to examine the various aspects
of existing robotic platforms, which can serve as a benchmark for guiding research in the NDE of
infrastructure in the future. Many of the relevant review-based studies in the recent past that focus
on the robotic platforms in the field of NDE fail to provide a holistic evaluation of the different
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critical aspects, namely the type of robotic platforms used, the sensory modalities employed for NDE
data collection and the data analysis techniques leveraged for accurately analyzing the collected
data. These review-based studies only emphasize a limited number of studies. In this regard, this
review-based study will provide insights on a wide-range of novel robotic platforms (e.g., ground robots,
aerial robots and marine robots), along with the different sensory modalities (e.g., visual, acoustic,
electric and contact-based sensors) and data analysis techniques for examining the surface-level and
sub-surface-level defects that have been employed for analyzing the structural health monitoring
(SHM) of bridges.

This paper was divided into nine sections. Section 2 will provide a comparison between some
of the existing review and survey studies available related to NDE and the manner in which the
present review provides recent and relevant insights for the researchers in the field of NDE for bridges.
Section 3 discusses some of the salient features of the review methodology adopted in this review-based
study. The Section 4 will outline a novel taxonomy that classifies the literature related to the NDE
of civil infrastructure into three sub-sections, which will allow a better appreciation of the different
ways in which the research in this area has evolved in the past years. A comprehensive discussion and
evaluation of the different robotic platforms will be performed in Section 5. The discussion regarding
the different sensory modalities for NDE-based data collection techniques will be provided in Section 6.
Section 7 will highlight the different types of techniques developed for sub-surface- and surface-level
analysis. Section 8 deals with the challenges facing the effective NDE of infrastructures in general and
bridges in particular. Section 8 will also outline some of the limitations of the existing studies and
potential recommendations in the field of NDE, specifically related to the three major themes within
the proposed taxonomy. Section 9 will discuss the conclusion along with recommendations for future
research in this research area.

2. Comparison with Existing Reviews

The purpose of this section is to provide a comparative evaluation between the different salient
features of various existing surveys and reviews and the present review-based study with respect
to examining the state-of-the-art in the field of NDE for bridges. In the past, a number of reviews
have been published related to the field of NDE sensors and techniques [13] as well as some of the
NDE data fusion techniques [14,15] and other aspects of research in the field of the NDE of civil
infrastructure in general [16-18]. Table 2 [13-24] highlights the different review and survey studies that
have been published in the recent past, along with their specific area of focus and the various limitations,
which necessitate the need for renewing the understanding and knowledge of the state-of-the-art in the
research area related to the NDE of civil infrastructure in general and bridges in particular. In order to
assess the relevance of the information provided in earlier review studies, the most important factors
include the time and scope of the evaluation. It can be seen in Table 2 that out of the total studies,
nine have been published within the last five years [13,16-18,20-24], which means that the insights
reported in these studies might still be relevant to the present research scenario. Two studies [14,19]
were published more than ten years ago, which means that any findings examined are no longer
relevant to the current state of the art. One of these studies [14] focused on the fusion techniques for
NDE sensors. The other review-based study assessed the feasibility of the different algorithms for
landmine detection using GPR sensors [19]. Another study [15] has a broad focus on multi-sensor
data fusion in general for a diverse range of applications. Conversely, another one of the review
papers [13] narrowly focuses on the studies related to one of the various NDE sensors, namely infrared
thermography. The study reported by Chen [16] provided a quantitative analysis of the different
studies reported in the field of construction automation. However, this study [16] did not provide
an in-depth exploration of the salient features of the automation solutions and their applications
for construction automation. Another relevant review study proposed by Agnisarman [17] focused
on human-in-the-loop-based visual inspection systems for construction automation. There are a
number of ways in which this study has a limited scope, as: (i) it does not focus on robot-based
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semi-autonomous and autonomous applications for construction automation, and (ii) this study only
examined visual inspection-based sensors for SHM [17]. Similarly, another review-based study also
provided an examination of vision-based applications for construction automation [18]. This study
was limited in terms of its scope towards only identifying vision-based systems for construction
automation [18]. The review of unmanned aerial systems (UAS) by another recent study only focused
on the flying drones and the use of an infrared thermography sensor for building inspection [21].
Another review-based study dealing with non-destructive testing (NDT) methods for concrete bridges,
which primarily focused on the different sensors for data collection for the NDE of bridges [20].
Five different types of sensors for the NDE of concrete structures were highlighted in another recent
study [23]. Similarly, another review-based study discussed four types of non-contact testing sensors
for the SHM of bridges, namely GPR, laser scanner, photogrammetry and infrared thermography [24].
However, these studies [20,23,24] only provide details regarding data collection techniques using a
number of different NDE sensors.

Table 2. A number of the review and survey studies that have been published which are relevant to the
NDE of civil infrastructure.

Author

Year

Focus

Limitations

This review explores different

The findings are not up to date.
This review focuses on algorithms for data
analysis for a single type of NDT/NDE sensor,

Wilson et al. [19] 2007 algorithms specific to landmine .
detection using GPR sensor. Le., GPR.
fon using ' The algorithms highlighted are restricted to a
single application, i.e., landmine detection.
A. comprehensive evah.1at1on of . The findings are not up to date.
different NDT data fusion techniques. . . .
The survey also provides brief details This survey does not include studies related to
Liu et al. [14] 2007 recarding the performance evaluation NDT data fusion techniques for infrastructures.
5 § the perio! This review does not examine data analyses
and data visualization for . .
- techniques for single-sensor-based systems.
selected applications.
The review focuses on examining The findings are not up to date.
multi-sensor data . . .
. . This study does not attempt to link different
fusion methodologies. . - s . .
. . issues and their algorithmic solutions with
. The review explores different o . R
Khaleghi et al. [15] 2013 . specific practical applications.
data-related issues (correlated, k e .
. : - The review does not explore specific issues
uncorrelated, inconsistent, conflicting,
. ! related to NDT sensory data and
imperfect data) and algorithms for relevant techniques
tackling specific data-related issues. ques.
This review examines the dl.fferent This review only focuses on algorithms for data
NDE techniques for steel bridge . ;
. analysis for a single type of NDT/NDE sensor,
cracks using IR thermography. ie. IR thermograph
Sakagami [13] 2015 The different surface-level and o srapay: .
. The data analysis algorithms are restricted to a
sub-surface-level algorithms for crack . A S
. . single application, i.e., crack detection in
detection using IR thermography h
: steel bridges.
have been discussed.
The review examines different NDT
methods for bridges using
different sensors. The review does not assess the state-of-the-art
Rehman etal. [20] 2016 For each NDT method, different in robotic NDT methods for bridges.
applications and limitations
are discussed.
The review examines construction
automation using text The review does not focus on the various
mining approach. critical qualitative aspects (e.g., types of sensors,
Chen etal. [16] 2018 A clustering-based visualization of platforms, algorithms, and performance
relevant research areas has evaluation) for construction automation.
been outlined.
This review only focuses on algorithms for data
This review focuses on UAS ?;::I};ls;s fgrﬁ SISIE:’II :;;LDT/NDE sensor, i.e., IR
Rakha et al. [21] 2018 applications towards SHM for sraphy ’

building inspection.

This review only focuses on the applications
based on a single type of robotic platform, i.e.,
aerial robots.
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Author

Year

Focus

Limitations

This review highlights different
vision-based solutions and
applications for SHM.

The fundamental principles of

This review only focuses on a single type of
NDT/NDE sensor, i.e., vision-based sensors.
The review is restricted to a single type of SHM

Feng etal. [22] 2018 vision-based systems are discussed application, i.e., visual inspection.
(e.g., template matching, coordinate ~ The review does not highlight vision-based
conversion, practical issues related to  state-of-the-art systems for SHM.
camera calibration).
This survey examined This review only focuses on algorithms for data
semi-autonomous systems developed  analysis for a single type of NDT/NDE sensor,
for the visual inspection for the SHM i.e., vision-based sensors.
of civil infrastructures. The data analysis algorithms focus on a single
Agnisarman etal. [17] 2019 The different studies were classified in  type of applications, i.e., visual
terms of application, autonomy, type  inspection methods.
of visual sensor used, navigational This review only focuses on algorithms
capabilities and algorithms for developed for buildings’ energy
data analysis. auditing applications.
This review directly explores some of E:ter?cltfi Zri(r)ltatg]i}; eslg)f segsoofrasl hlilglalgf;;e? :re
the different sensors used for SHM of gle typ ppacation, Le.,
sensors for measuring and monitoring different
. concrete structures. .
Taheri [23] 2019 . . properties of concrete.
For each type of sensor, their various . - - .
) This review does not highlight the different
benefits and drawbacks have also . . .
) data analysis algorithms for different sensors
been discussed.
for SHM.
Scientometric review of v1510n-b§sed The review does not focus on the qualitative
systems developed for construction . . . .
. - aspects of visual inspection solutions (e.g., type
automation has been highlighted. .
. L OO of sensors, types of algorithms, system
. A clustering-based visualization of
Martinez et al. [18] 2019 . . performance).
relevant research areas is provided, . - . .
. This review only examines the studies related
along with focus towards keywords, . .
. to a single type of NDT/NDE sensor, i.e.,
authors, journals, country networks L.
vision-based sensors.
and author networks.
This review examines tools and
techniques for four non-contact
sensors (GPR, IR, laser scanners, The review only focuses on the platforms and
Dabous et al. [24] 2020 photogrammetry) for SHM of bridges. systems developed using a single type of

The review also examines some of the
different challenges towards the use
of four non-contact sensors for the
SHM of bridges.

sensory modality, e.g., non-contact-based
testing technologies.

In comparison with the prior reviews, this paper will differ in a number of ways. Table 3 highlights
and compares the different research areas being examined by the different review studies that have
already been discussed in Table 2. Collectively, the different topics explored by the existing review
studies include the discussion related to various NDE sensors, the sensor fusion techniques in general
for all applications and particularly for NDE and algorithms for SHM-related data analysis.

Table 3. Comparison in the research areas being covered by the different review studies.

Platforms

NDE Sensors

NDE Sensor Fusion SHM Data

Study

Robot

Human

IR 1IE ER GPR

Wilson [19]

Liu [14]

Khaleghi [15]

Sakagami [13]

Rehman [20]

Chen [16]

Vision

General NDE-Centric  Analysis

e

Feng [22]
Rakha [21]
Agnisarman [17]
Taheri [23]

e

Martinez [18]

Dabous [24]
This review

The green shaded region means that that particular area has been covered by the respective review paper
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In this review, the focus will be towards examining some of the recent technological developments
in relation to the automation of NDE for SHM culminating in various single-sensor and multi-sensor
systems with semi/full autonomous capabilities [8,12,16-18]. This review-based study will also
cover some of the most important NDE sensors (e.g., visual sensors, impact-echo (IE), infrared (IR),
ground-penetrating radar (GPR) and electrical resistivity (ER) sensors) and relevant studies utilizing
data from aforementioned sensors towards the NDE of bridges in particular. For the effective SHM of
bridges, there is a need to examine the integrity of the underlying structure using various data analysis
techniques, which will also be discussed in this study. For the case of multi-sensor systems, this review
will explore the varying sensor fusion techniques employed to ensure that bridge data from different
sensors are used to provide a better assessment of SHM.

3. Methodology

In this section, the methodology for conducting the review performed in this research will be
outlined. In order to ensure that only the most reliable and relevant studies were included within
the review, there was a need to follow a specific set of guidelines that were proposed by a number of
different studies in the past [25-27]. In this manner, researchers can attempt to replicate the review
study successfully in the future. In the following discussion, some of the different elements of the
review methodology will be discussed, which include the study design, search strategy, inclusion
and exclusion criteria, selection process and data synthesis. Figure 3 outlines the way in which the
quantitative assessment of the way in which the research papers were searched, selected, reviewed and
short-listed throughout the different stages of the proposed research methodology. In the following
sub-section, some of the salient features of the research study design implemented in this review-based
study will be outlined.

Google Science IEEE Xplore Springer Records identified through
Scholar Direct Link additional sources (n = 30)
| |
|

c
-% Records identified through
© database search (n = 104,347)

c

L
2

Records after duplicates
removed (n = 61,150)

1]

E

c

(1]

E Records screened Records excluded:
il {n=21,080) (n=20,802)

} .
£ Records excluded with
o - (n=
= Full text articles assessed re:sc:rl;s.l (n=95)
= T ot Relevance
o for eligibility (n = 337) Out of Scope

‘ Non-credible

c

(=]

a
I—f Studies included
= (n=242)

Figure 3. The different steps in the review process for the evaluation of the relevant literature.
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3.1. Study Design

Before the details of the data collection process can be discussed, it is important to outline
the different design elements of the research methodology implemented in this review-based study.
The review-based study should be developed in order to minimize the risks of different biases as well
as facilitate repeatability and transparency, especially when dealing with different types of data and
analysis methodologies. A number of different studies have reported on different suitable methods
for conducting a review of the relevant literature. Based on the meta-analyses of studies discussing
the salient design-level features of review-based studies, Grant and Booth [27] have outlined 14
different types of review studies. In view of this classification, the present study can be termed as a
‘state-of-the-art review’. This type of review-based study not only acknowledges the findings from
previous reviews, but attempts to update the information in light of the relevant research developments
in recent decades that have not been addressed by existing reviews. Consequently, the PRISMA
statement for reporting systematic reviews and meta-analyses [26] was used towards the selection
and analysis of research papers related to the NDE of civil infrastructures and bridges in particular.
In this respect, a number of different steps within the research methodology were shaped by the
recommendations and best practices outlined by the PRISMA statement [26]. These different steps are
outlined in the following sub-section of the paper.

3.2. Search Strategy

One of the authors (HA) devised a search strategy to extract the relevant literature from a number of
online databases. The different reliable, peer-reviewed online databases searched for this review-based
study included: IEEE Xplore, Science Direct, Springer Link, and Google Scholar. The keywords used to
search for the relevant papers from the aforementioned databases included the following:

1.  For adding studies related to the non-destructive evaluation of bridges (autonomous/semi
-autonomous robot-based and non-robot-based methods), the following keywords were used:
‘non-destructive evaluation of bridges” and ‘NDE of bridges’;

2. For adding studies related to the use of different sensors for NDE, some of the keywords used
included ‘sensors for non-destructive evaluation of bridges” and ‘NDE sensors for bridges’;

3. For ensuring that a sufficiently broad-level examination of the relevant literature from the fields
related to the NDE of civil infrastructure can be included in the early phases of the literature
search and review, the following keywords were also used: ‘NDE sensors for civil infrastructures’,
‘non-destructive evaluation sensors of civil infrastructure’, ‘non-destructive evaluation for civil
infrastructures’, and the ‘NDE for civil infrastructures’.

The scope of the keywords was intentionally selected to be sufficiently broad in nature. This allowed
the extraction of all the relevant and important studies for the different research areas, along with some
studies that were out of the scope of the present study. Such results could be easily filtered out in the
remaining steps of the methodology, which will be discussed in the following sub-section. A number
of different filtering options are available in the different online databases, which have been leveraged
to ensure that only the most relevant studies are included in this review paper.

3.3. Inclusion and Exclusion Criteria

The purpose of the inclusion and exclusion criteria is to develop a set of standards that can allow
the objective and effective evaluation of the different studies. In order to warrant inclusion in this
review, the following set of criteria had to be satisfied: (i) the content of the study should be published
in the English language, (ii) the study should deal with one or multiple aspects (e.g., platforms, sensors,
or algorithms) of the NDE of infrastructure in general or bridges in particular, (iii) the study should
have been published after 1 January 2000 to warrant inclusion in this review, (iv) the studies should
be published in high-ranking peer-reviewed conferences and journals, and (v) the full version of the
research paper should be accessible to the researchers. The exclusion criteria were used to ensure
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that the irrelevant studies that were included in the initial search results could be filtered out in a
systematic fashion. Some of the exclusion criteria developed for this research are outlined as follows:
(a) if the overall quality of the publication is sub-par (the use of erroneous language usage and/or the
reporting of vague or inconclusive findings), the evaluation criteria are unverified and untested in
nature and (b) the research focus of the paper does not fit into the scope of the review. Exceptions
were made in the case of seminal studies and research works published as reports and books that
were published before or after 2000. All of these included works are mentioned as additional sources
within Figure 2. In order to practically implement the various inclusion and exclusion criteria within
the online databases, filter options were available, which were used to ensure that the most relevant
information was selected and included within the review-based study. In the following sub-section,
some critical details of the selection process will be outlined.

3.4. Selection Process

In the earlier process of selection of relevant literature, the title and abstracts were separately
screened by the two reviewers (HA and HML). The inclusion and exclusion criteria were applied to
the individual articles by the two reviewers (HA and NG) on the randomly allocated set of articles,
which led to the removal of various research articles during the screening process, as seen in Figure 3.
In the later stage of the selection process, the full-text of the articles were reviewed independently by
the two reviewers (HA and HML) to ensure the conformity of the individual articles to the specified
exclusion and inclusion criteria outlined in the previous sub-section. In the final stage of the selection
process, the remaining articles were discussed collectively by the two reviewers (HA and NG) in order
to reduce bias in the selection of the individual articles. In the case of disagreement between the
reviewers, Cohen’s Kappa was calculated [28]. The closer the value of Cohen’s Kappa to 1.0, the greater
the consistency in the application of the inclusion/exclusion criteria between the two reviewers [28].

3.5. Data Synthesis

Due to the diverse nature of topics being covered, the study design and methodologies being
followed, and the type of data analysis methods being used, it was challenging to perform a synthesis
on the final set of studies obtained. In order to facilitate the evaluation of the findings from different
studies, the overall selected set of literature was divided in terms of the taxonomy proposed in this
research. Similarly, the overall analyses and subsequent findings were highlighted in a different manner.
For each of the different literature streams, the data regarding the type of technologies, different sensors
and algorithms were reported with variations in terms of the details. The details regarding the different
literature streams investigated will be discussed in the following section.

4. Proposed Taxonomy

The NDE of civil infrastructure has been a widely discussed research area in the recent past.
Figure 4 highlights the chronological developments in the research field of the NDE of civil infrastructure
in terms of some of the major themes that are covered in this review. It can be seen from Figure 4 that
the beginning period (1950-1978) of this research area focused on the development of novel sensing
technologies, for bridge inspection in particular, and civil infrastructure in general [29-34]. Some of the
major sensing technologies developed include GPR, infrared thermography, electric resistivity sensors,
impact-echo-based techniques and ultrasonic pulse propagation-based methods. After that time period,
the focus was devoted towards using different sensor fusion techniques and their application towards
bridge inspection and civil infrastructure evaluation [35,36]. Some of the early studies related to
robotics application towards bridge and civil infrastructure inspection were developed during the early
2000s. The development of semi and fully autonomous robotic systems expanded considerably after
2010 [37—46]. The different types of robots developed for bridge inspection can be broadly classified
into ground, aerial and underwater robots. The complete details for each of these robot types will be
explored in Section 5 of this paper.
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Figure 4. Timeline depicting the applications of the different sensors and the development of different
platforms for NDE.

In order to do adequate justice to the multi-faceted nature of the different tools, techniques,
methodologies and technologies used in the prior studies, the proceeding discussion will be divided in
the following manner:

1. Platforms: Different robotic platforms being used to assess the various physical characteristics
of bridges. A taxonomy will be proposed, which will differentiate the different types of robot
platforms for the NDE of bridges. Some of the essential components for evaluating the SHM of
bridges will also be examined;

2. Sensors: An array of instrumentation modules used for data collection will also be discussed with
specific distinction between the single sensor-based and multiple sensor-based systems for NDE
of bridges. Data from multiple sources require an additional level of complexity with regards to
specifying the appropriate sensor fusion techniques. This particular aspect will also be analyzed
in sufficient detail;

3. Algorithms: A variety of techniques that facilitate the surface-level and the sub-surface-level
structural evaluation of bridges will be highlighted in this section.

Figure 5 outlines the manner in which the aforementioned aspects of the research study are
interlinked within the context of NDE of bridges. All of these elements are critical for the effective
functioning of the robotic solutions. In this respect, the discussion in the following section will examine
some of the different types of existing state-of-the-art technological robotic platforms for the NDE
of bridges.
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Figure 5. Visual representation for the proposed taxonomy used for studies on the NDE for civil
infrastructure evaluation.

5. Technological Platforms

Traditionally, infrastructure evaluation has been considered a manual labor-intensive task, which is
carried out by civil personnel using different sensors for data collection [8]. Despite recent technological
advancements in this research area [8,37,47], a majority of the infrastructure evaluation is still performed
by human operators using traditional modes for data collection, which are composed of standalone
single sensor-based systems. In Figure 4, a better appreciation of the manner in which the available
tools, techniques and platforms have evolved in recent years can be observed. It can be seen that there
are fundamental divergences between the traditional methods and the innovative technological tools,
techniques and platforms that have been employed for the NDE of civil infrastructure in the recent past.
Most of the traditional tools utilize single-sensor-based systems, which means that the overall hardware
and software requirements and complexities are limited in nature. However, most of the traditional
tools and techniques require human operators a considerable number of man-hours to collect the data
for assessing the structural fitness for a particular type of infrastructure. In contrast, the technologically
advanced tools and techniques are efficient, such that they can use a limited amount of time to collect
data from a wide array of sensors to provide an in-depth and multi-faceted assessment of the different
structural deficiencies within infrastructures. In recent decades, there has been an increased focus
towards the development and usage of semi-autonomous and fully autonomous robots for the NDE
and SHM of civil infrastructures in general and bridges in particular. A wide array of diverse robots
have been developed ranging from climbing robots (e.g., legged robots, wheel-based sliding robots
and crawler robots) [38—40,48-62], and multi-rotor unmanned aerial vehicles (e.g., quad-rotors and
octo-rotors) [63—-69] to unmanned ground vehicles (UGVs) (e.g., advanced robotics and automation
(ARA) lab robot, robotic crack inspection and mapping (ROCIM), robotics-assisted bridge inspection
tool (RABIT)) [45,47,70-79] and water-based robotic crafts (e.g., unmanned submersible vehicles (USVs),
underwater marine vehicles (UMVs), underwater vehicles (UUVs)) [41,42,80].

Some of the recent studies have also focused towards developing hybrid robotic frameworks
(e.g., wall-climbing unmanned aerial vehicles (UAVs), robots capable of flying and crawling and
other multi-rotor flying robots capable of latching on to specific parts of infrastructure that require
inspection), which are able to provide multi-functional roles and capabilities for the different types
of inspection activities [43,81-85]. A number of different types of robots (e.g., flying robots, walking
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robots, sliding robots, climbing robots, and underwater diving robots) have been leveraged for the SHM
and NDE of bridges in order to gain access to different parts of the bridges. For example, evaluating
and inspecting tall steel beams above bridges can be a hazardous task for human inspectors to perform
during different environmental conditions (e.g., rain, snow, wind, day and night conditions). It is for
this reason that different types of climbing and aerial robots have been used to facilitate these tasks.
In particular, the versatility of the aerial robots has allowed their increased utilization for the inspection
of the different parts of bridges, such as the inaccessible underside of the bridge decks, higher parts of
the bridge beams and cables [40,49,63-67,86]. Similarly, a number of different wheel-based and legged
robots have also been used for inspecting concrete bridge decks, steel wires, concrete underside, and
steel beams.

A number of different robot platforms are designed for inspection activities for specific types
of bridges (e.g., cantilever, arch, suspension, truss, cable-stayed, beam, girder and tied-arch bridges)
[38—40,46,48,49,51-53,55,56,58,59,63-71,73,87]. In order to provide some level of insight regarding the
different robotic solutions for bridge inspection, the proceeding discussion will focus on the taxonomy
provided in Figure 6, namely: (i) ground robots, (ii) aerial robots, and (iii) marine robots. Some details
regarding the different platforms are outlined in the following sub-section:

applications
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Figure 6. Proposed taxonomy for NDE robot development for bridge inspection.
5.1. Ground Robots

The majority of the robots developed for the SHM and NDE of bridges can be classified under the
category of ground-based robots, in view of the taxonomy proposed in Figure 6. As it has been provided
in Figure 6, the ground-based robots (these robots can also be termed as land-based robots, as they are
developed to function on land) can be further classified based on the different types of locomotion
capabilities developed, which allow them to inspect specific parts of the bridge infrastructure. ROCIM
is a robotic platform that has been developed for bridge deck inspection [51,88]. Similarly, RABIT is
another wheel-based ground robot with a wide array of sensors and autonomous navigational
capabilities [12,40,47,49,51,70,79,88,89]. This particular robotic platform has been equipped with
state-of-the-art sensor technologies (e.g., impact echo, ultrasonic surface waves, electrical resistivity
and GPR), which enable the classification of some of the most common defects in bridge decks,
such as concrete degradation, delamination and rebar corrosion [12,47]. The ARA Lab Robot is
also a wheel-based robotic platform that has been recently developed for bridge deck inspection
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and maintenance [37,50,90,91]. With a similar array of sensors, another autonomous platform for
infrastructural inspection was developed by La et al. [8], which provided a wide array of different
functionalities related to the automated monitoring of civil infrastructure, using on-surface crack
detection and bridge evaluation for signs of deterioration within the metal rebar and concrete slabs.
In this particular research, the overall effectiveness of the automated robotic inspection system was
also assessed for the evaluation of actual bridges [8]. A climbing robot was leveraged for the inspection
of the underside of the bridge deck [59]. The majority of these robots have primarily been used for
bridge deck inspection applications. A number of climbing, walking and crawling robots have also
been developed, which are able to scale the vertical surfaces of the bridge infrastructure. Some of
these robots include the BRIDGE (Bridge Risk Investigation Diagnostic Grouped Exploratory) bot [39],
chain-like robot [52], magnetic wheeled robot [38], and the vortex climbing robot [69]. Most of the
climbing and sliding robots dedicated to the inspection of different parts of the bridges are small-scale
in nature, with a primary reliance on visual inspection methods using vision-based sensors.

Many bridges are equipped with cables to provide support and load balancing across the different
parts of the bridge. To provide the automatic maintenance and inspection of these parts of the bridges,
a considerable amount of studies focuses towards the mechanical design and development of different
cable climbing robots [53-59,63,64]. The use of bipedal and quadruped legged robots has also been
proposed for the inspection of civil infrastructures in general and the vertical structures of bridges in
particular [87,92-98]. Table 4 summarizes some of the major characteristics of the different platforms
for the NDE of bridges using a wide array of different robotic platforms and their respective sensory
modalities. Due to the wide array of different sensors available for the NDE of bridges, the different
sensory modalities are classified into radars (GPR sensors that employ EM waves of different frequency
and wavelength), vision (all types of cameras and other sensors that provide visual information,
e.g., red green blue (RGB), RGB-Depth (RGB-D), time-of-flight, thermal cameras, and sensors for
infrared thermography), acoustic (all forms of sensors that employ sound for SHM, e.g., different IE
methods and microphones, ultrasonic sensors) and electric (sensors that employ variations in current
and voltage, e.g., ER, potential field mapping and Eddy current sensors) sensory modalities. When
comparing the different ground-based platforms given in Table 4, it can be seen that the RABIT and
ARA Lab Robot are the two robotic platforms with existing hardware and software capabilities that can
allow them to function in an intelligent, autonomous fashion with regards to path planning, collision
avoidance, trajectory planning, trajectory generation and sensor fusion techniques. As functional
robots, they also have the ability to evolve over time, by equipping them with the state-of-the-art
sensors for enhanced autonomous capabilities and data collection. In comparison, the majority of the
other ground-based platforms relied on a single form of sensory modalities with limited hardware and
software capabilities.
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Table 4. Comparison between the state-of-the-art NDE robotic platforms.

NDE Sensors

Robotic Platforms Robot Type
Radar Vision Acoustics Electric
RABIT Wheeled 1 GPR Arra 1C ®C IE and USW Arrays 1 ER Probe
[12,40,47,49,51,70,79,88,89,99] y anon = L-amera 4
ROCIM [51,88] Wheeled 1 Canon ® Camera

1 PrimeSense
ARA Lab Robot [37,50,90,91] Wheeled 1 GPR Array Camera
1 Stereo Camera

2 ER Arrays

. s Lo 1 Half-Cell
ETH Zurich Climbing Robot [59] Climbing Potential Mapper
BridgeBot [39] Climbing
Steel Bridge Climbing Robot s 1 Eddy Current
[52,100,101] Climbing 2 Cameras Sensor
ABI Robot [56] Climbins [N 1 Come:

Caterpiller robot [58] Climbing
SkySweeper [71] Climbing
Cable Robot [57] Sliding 4 CCD Cameras
Cable Inspector [64,66] Climbing
CCRobot-II [53,54,63] Climbing
MRCZ IN-II [68] Sliding 1 Camera
Quadrotor platform [81] UAV
Manipulator robot [44] UAV
Contact prism robot [84] UAV
Flying/walking platform [43] Hybrid
Octo-rotor platform [45] UAV
Quadrotor platform [76] UAV 1 Camera

Hammering platform [85] UAV
13D LIDAR1
3D Mapper Robot [98] UAV
DJI®Phantom [74] UAV 1 Camera
2D LRF Robot [77] UAV 12D LR with
Mirrors
Omni-Wheel Robot [83] UAV 2 Cameras
Infrared Imagery UAV [72] UAV VIR cameral RGB
camera
Underwater ROV [80] Uusv
Sea-RAI [41] Usv 4 Cameras
1 Stereo RGB-D
Muddy Waters [42] usv Cameral
ARIS®Sonar
Videoray ROV [41] Usv 1 Cameral Imaging
Sonar
YSI®Ecomapper [41] Uusv 1 Side-Scan Sonar
Red-shaded region shows that the specific type of NDE sensor was not incorporated in the particular robot
platform developed.

5.2. Aerial Robots

The recent breakthroughs in the field of aerial robots has allowed the usage of various multi-rotor
platforms (e.g., four-rotor and eight-rotor-based platforms) in the field of SHM, with various
implementation focusing towards bridge inspection and maintenance. The majority of the studies
for bridge inspection using UAVs rely on visual inspection methods [72-76]. However, some of
the recent studies have attempted to explore different ways in which aerial robots can be modified
to provide perching and contact-based inspection capabilities [45,78,82,84]. A number of recent
studies have also proposed the development of hybrid robots, which are able to provide multiple
functionalities (e.g., flying and walking mechanisms and a number of different flying and contact-based
approaches) [43,81,82]. Some of these platforms have provided a proof-of-concept with considerable
potential towards successful utilization for bridge inspection in the future. Some of the different aerial
robots deployed for the visual inspection of bridges are outlined in Table 4. For example, a UAV
platform developed in [81] provided contact-based bridge inspection capabilities. Similarly, research
by [45] examined the effect of contact force on pitch angle and vertical thrust force using one degree of
freedom manipulator to perform the hammering analysis for bridge inspection. However, this platform
did not rely on any NDE sensors, as the research is still in its initial stages. Another study focused on
the position determination of UAV for the visual inspection of bridges using an on-board camera [76].
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This is a relatively new field of research and further research is required in order to fully exploit the
flexibility and versatility of aerial robotic platforms towards the accessing and monitoring of different
parts of the bridge infrastructures.

5.3. Marine Robots

Marine robots primarily deal with the inspection of parts of the bridge infrastructure, which are
submerged underwater. One of the earliest studies in this category emphasized the importance
of examining and inspecting inaccessible or hard-to-access regions of the bridge infrastructure by
human inspectors [80]. This platform made use of a camera for the visual inspection of submerged
pier sections of the bridges [80]. However, the overall effectiveness of visual inspection is heavily
affected by the clarity of the water and weather conditions, to name a few limitations of underwater
standalone vision-based systems. Over the years, this area has expanded to receive attention with
regards to post-disaster inspection as well as the regular SHM of bridge piers [42]. A number of
unmanned marine vehicles (UMV), unmanned underwater vehicles (UUVs) and remotely operated
vehicles (ROVs) have been deployed in the past, which include semi-autonomous sensory platform,
Muddy Waters, sea-RAI, VideoRay and YSI®Ecomapper [41,42,80]. The majority of the limited number
of robotic platforms deployed underwater rely on the visual sensory information for assessing the
SHM of a bridge structure submerged under water, as it can be seen from Table 4. However, due to
the various challenges associated with underwater inspection, there is a need for further research,
which can provide improved sensory capabilities for data collection as well as tools and techniques
for analyses, which can be used for the underwater SHM of bridges in the future. At the same time,
there is also a need for performing the comprehensive feasibility of the developed and deployed robotic
platforms within different underwater conditions for the SHM of different bridges. In the following
section, the prime focus will be towards discussing some of the different algorithms and techniques
developed for the NDE of bridges.

6. Tools and Techniques for Data Collection

Sensors allow the different NDE platforms to collect data, which can be used to assess the overall
conditions of the infrastructure in terms of its suitability and safety for humans in the near future without
endangering their lives in any way. For studies in this particular field, it is important to incorporate
sensors, which are able to analyze the overall internal and external conditions without physically
tampering with the infrastructural materials (e.g., concrete, steel). In the previous section, it can be
seen in Table 4 that the different types of sensors deployed on the various platforms had been classified
into four main categories, namely vision, acoustics, radar, and electric sensors. The classification
proposed in Table 4 was based on the different sensory modalities that were equipped in the different
NDE platforms. However, in this section, the scope is broader than the usability and applicability
of the variety of sensors on NDE-based robotic platforms. In this section, the primary discussion
will relate to the different types of sensor-based systems utilized for infrastructure evaluation and
structural health monitoring. It can be seen in Figure 7 that NDE systems can be broadly classified into
single-sensor and multi-sensor-based systems. Most of the single sensor systems, such as Roadmap [102]
and BYU (Brigham Young University) IE scanner [103] employ a single sensor each, namely GPR and IE
respectively. Conversely, multi-sensor systems (e.g., RABIT [12,40,47,51,70] and Seekur Jr. [8]) make use
of different types of sensors, which allows them to provide an accurate and multi-faceted evaluation of
the infrastructure, such that the limitations of one sensor type (e.g., infrared thermography, which is
limited in terms of providing information regarding near-surface delamination [89] can be mitigated
by the use of other sensors (e.g., GPR, which is able to provide information regarding the structural
defects present at sufficient depth underground [47]). However, this platform did not rely on any NDE
sensors, as the research is still in its initial stages.
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Figure 7. The different sensor configurations within the NDE evaluation literature.

Another study focused on the position determination of UAV for the visual inspection of bridges
using an on-board camera [76]. This is a relatively new field of research and further research is required
in order to fully exploit the flexibility and versatility of aerial robotic platforms towards the accessing
and monitoring of different parts of the bridge infrastructures. In Figure 7, each single sensor-based
system leverages one type of sensor (e.g., sensor 4, sensor b and so on). Therefore, the discussion within
single-sensor systems will deal with the different types of sensors used for the NDE of bridges. For the
case of multi-sensor systems (A, B, ... N), such that each system is composed of n sensors (A;, Ay,
... Ay for system A; By, By, ... By, for system B and so on), such that n € N. It can be seen in Figure 7
that in order for the multi-sensor systems to extract meaningful insights from multi-sensor data, there
is a need for implementing sensor fusion algorithms (fusion algorithm F, for system A, algorithm
Fy, for system B and so on). Therefore, the primary focus of the discussion within the multi-sensor
systems will deal with the rationale behind the utilization of sensor fusion and the different algorithms
proposed in the previous studies. The following sub-section will discuss some of the available sensory
modalities for the NDE of bridges, which are widely utilized within single-sensor-based NDE systems.

6.1. Single Sensor Systems

It has already been discussed in the prior sections that many of the earlier studies in the field of
the NDE of bridges deal with single sensor-based systems. At the same time, according to Table 4,
the majority of the existing robotic solutions developed can also be classified as single-sensor-based
systems. However, there are a number of different sensory modalities available for the NDE of bridges
and civil infrastructures in general, which will be discussed in sufficient detail in this section. For the
case of impact-echo-based NDE techniques, metallic objects (e.g., metal chains, ball bearings) are used
to create acoustic vibrations and contact sensors are employed to record the reflected sound waves
from the different underground materials and the defects within infrastructures. A number of studies
in the field of the NDE of infrastructures have reported the utilization of impact-echo sensors in the
recent past [103-111]. These studies have focused towards examining the different types of defects
present within civil infrastructures. For the case of the research proposed by Zhu and Popovics [105],
an air-coupled impact-echo sensor and recording devices have been used to analyze the extent and depth
of delamination within concrete structures. The effectiveness of the impact-echo sensors is dependent
on the type of impactor used [105]. This particular tool for data collection has been extensively used
for infrastructure evaluation in a number of recent studies [103,108,112]. Another study validating
the effectiveness and efficiency of air-coupled sensors was also validated [107]. However, for rapid
scanning-based applications, the use of air-coupled sensors can pose challenges for real-time data
collection [108]. To improve the overall efficiency of data collection for NDE-based applications, different
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studies have developed automated IE systems with complicated electromechanical mechanisms for
the repeated and consistent impacts on structure surfaces [103,108,113,114]. Figure 8 provides details
regarding the impact-echo method and its utilization for the NDE of civil infrastructures using different
components, such as impactors (metal objects used to create sound vibrations), transducers (sensor used
to detect the sound reflections), data acquisition module (hardware components used to filter sound
vibrations) and the data analysis module (software used for analyzing and visualizing the signal output
from the sensor over time).

Impactor Transducer
Data Acquisition

\

Void

Data Processing
and Analysis

"’_Tm f‘h‘-ﬁl‘ﬁﬁ | ' | 2y

:.___________; quuLJL.—-..--
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Figure 8. Different elements of the IE method for NDE of infrastructure [111].

In the wake of technological improvements in commercially available infrared detectors,
infrared (IR) thermography has gained considerable popularity in the past decade, specifically
after being established as an American Society of Testing and Materials (ASTM)-certified method to
detect delamination in bridges in 2003 [13,115]. The use of infrared thermography has been discussed,
not only in the context of infrastructure evaluation [13,116-119], but also for tunnel excavation [120-122]
and for the examination of different materials (e.g., metals, aluminum laminates, carbon fiber-reinforced
polymers and glass fiber-reinforced polymers), which is important towards assessing the structural
integrity of different mechanical parts specifically developed for the aerospace industry [123,124].
In comparison with other methods for the NDE of infrastructure, infrared thermography has been
recommended to provide the real-time, objective assessment of infrastructural health, specifically for
the case of near-surface delamination detection [125-127]. However, with the increasing depth of
the underground defects within infrastructures, the overall accuracy and reliability of the infrared
thermography technique decreases substantially [128-130]. Some of the other factors which can impede
on the accuracy of the data collected include the type of sensor equipment being used, shadows,
moisture, surface debris, wind speed and sustained solar heat [118,131,132].

The governing principles underlying the usage of infrared thermography include conduction,
convection and radiation. For the case of the near-surface delamination of the presence of underground
void spaces, infrared thermography leverages the concept of variation of the temperature gradient
between the defective and non-defective regions within infrastructures [133,134]. Figure 9a,b outline
the ways in which heat conduction and radiation emission during day and night time, respectively,
allow the infrared thermography sensors to differentiate between delaminated and non-delaminated
regions [133]. It can be seen in Figure 9¢,d that the regions with potential underground structural
defects are visible as brighter regions on the thermogram [134].
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Figure 9. Data collection using a thermography sensor: (a) the absorption of solar radiation by the
different parts of the infrastructure during the day time [133], (b) the emission of radiation from the
different parts of the infrastructure during night time [133], (c) the output of the data collection unit in
the form of a digital image [134], and (d) the output of the data collection unit. [134].

Another widely utilized sensor is the ground-penetrating radar (GPR), which has been the focus
of a number of recent studies related to the infrastructure evaluation and SHM of civil infrastructures
and bridges [8,37,47,135-146]. Within civil engineering, GPR has been utilized for diverse applications,
which include, but are not limited to, detecting and measuring pipes, mines, other underground
utilities, the health monitoring of bridges, railway tracks, tunnels, roads and pavements, as well
as for the detection and localization of underground rebar [8,37,47,136-148]. The B-scan data from
GPR sensors provide a visual transformation of the radar waves reflected from different parts of the
underground infrastructure (e.g., concrete, steel rebars, void spaces), which can be used to highlight
the corrosion, delamination, presence of void spaces and structural damage to rebars [37,135,137,138].
The details regarding different data analysis techniques will be discussed in the following sub-section.
Figure 10a provides information regarding the underlying principles for wave propagation using the
fixed-offset-based method for data collection using GPR [149,150]. Similarly, the use of a common
midpoint-based method has been shown in Figure 10b [149,150]. The radar waves from the transmitter
penetrate the ground, and based on the different properties of the underlying construction materials
and other artefacts (e.g., location, dimensions, density, depth), the intensity and signature of the waves
reflected back from the different regions to the receiver can vary to a considerable extent.

Vision-based sensors have received considerable attention in the recent past towards the
NDE of diverse civil infrastructures, ranging from sewers [151], tunnels [152,153], structural
ceilings [154], roads [155-157], dams [158], pavements [159-162], and bridge decks [40,48,49,163,164].
The advent of state-of-the-art learning-based techniques for data analysis has facilitated the
widespread usage of vision-based sensors within different robotic systems for the NDE of
bridges [12,37,40,47,49-51,70,79,88-91,99]. The visual inspection of infrastructure is important to
provide information regarding the surface-level defects and damages in concrete. A number of
vision sensors have been utilized to perform the SHM of civil infrastructures, namely the smartphone
camera [154], digital cameras [8,88,89,99,152,165], depth sensors [42,164], time-of-flight cameras [166],
closed-circuit television (CCTV) [151], laser-scanners [77,98,157,164] and Visual SONAR (Sound
Navigation and Ranging) sensor [41]. The vision-based sensors are dependent on the reflection of
light from infrastructure surfaces to provide an assessment of surface-level NDE. Based on the data
in Table 4, it can be seen that many of the aerial robots are equipped with different visual sensors to
provide surface-level information to assess structural health of bridges [72,74-77,83,98].
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Figure 10. Principles for the GPR wave transmission: (a) wave transmission with the fixed-offset
profiling method for data collection, (b) the use of a common midpoint method for data collection
using GPR [149,150] with different visual sensors to provide surface-level information to assess the
structural health of bridges [72,74-77,83,98].

A number of different electrical sensors have also been used for the assessment of SHM of
infrastructures [12,37,40,47,49-52,59,70,79,88-91,99-101], which are primarily used in a ground-based
robot. A half-cell potential sensor was used by the ETH (Eidgendssische Technische Hochschule)
Zurich autonomous robot for potential mapping to detect a level of corrosion within the concrete
structures (e.g., bridge deck underside and parking lots) [59]. Electrical Resistivity (ER) probes have
been one of the most widely used electrical sensors, which have been incorporated within two of the
most widely discussed ground robots for the SHM of bridge decks in the recent past, namely the ARA
Lab Robot [37,50,90] and RABIT platforms [8,91,100,101]. The purpose of ER probes is to examine the
level of sub-surface corrosion within bridge decks and other infrastructures [79]. The RABIT platform
is equipped with four Wenner-type ER probes; two outer probes generate an electrical current and
the two inner probes measure the intensity of electrical field, which is used to calculate the electrical
resistivity [79]. Another type of electrical sensor was used by the steel climbing robot, namely the Eddy
current sensor [53,100,101], which is used to measure the level of corrosion, rust and crack within the
steel structures of bridges.

6.2. Multi-Sensor Systems

For the case of traditional tools, techniques and platforms, any one of the aforementioned data
collection methods (e.g., impact echo, GPR or infrared thermography) can be utilized for performing
SHM and the assessment of civil infrastructures. However, state-of-the-art platforms (e.g., Seekur Jr.,
RABIT) [8,12,40,47,51,70] have utilized an array of different sensors, which provide an in-depth and
holistic evaluation of the civil infrastructures. In this section, the primary purpose is to explore the
different ways in which sensor fusion techniques can be used for different modalities (discussed in the
previous section) to collectively allow the development of efficient and cost-effective systems for the
NDE of bridges.

Sensor fusion within multi-sensor systems allows the improvement in the ability of those systems
towards effectively obtaining insights from the available data. Prior studies have revealed that sensor
fusion techniques also improve the overall accuracy and efficiency as well as reduce the data-level
and system-level redundancy of multi-sensor-based systems [167,168]. Sensor fusion is being widely
utilized in a wide array of applications, ranging from medical diagnostics [169], aerospace [170],
plant inspection, and high-precision manufacturing [171,172] to remote sensing [173] and the NDE
of civil infrastructures [37,168]. One of the various functions of sensor fusion is to ensure that the
data from multiple sources can be combined together to facilitate appropriate analyses, leading to
the enhanced efficiency and effectiveness of the deployed practical systems [174,175]. Some of the
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earlier studies have explored different types of fusion techniques, which can be broadly classified into
the following:

1.  Data-level fusion: Raw data from the different sensors are transformed and concatenated together.
A single technique for data processing and analysis is applied collectively to the fused data from
the different sensors [14,128,176];

2. Feature-level fusion: Feature from the multi-modal data are collated collectively. In order to
ensure that data from different sensors are fused together effectively, different types of data
transformation technique are utilized [14,128,176];

3.  Classifier-level fusion: A number of different classifiers are used together to develop hybrid
classifiers. The final performance of the hybrid classifier is based on the average of the individual
classifiers chosen for analyzing multi-sensory data [14,128,176];

4. Result-level fusion: A number of techniques are employed to individually analyze data from
individual sensors. The results from each method are combined together based on specified
criteria [14,128,176].

It is important to understand that different sources provide varying classifications for
understanding the different types of data fusion techniques. For example, a review of NDE sensor
fusion techniques by Liu et al. [14] outlined the different approaches that can be broadly divided into
signal-level, feature-level, pixel-level and symbol-level fusion techniques. Meanwhile, the survey
of different data fusion techniques in another study developed a taxonomy in terms of the different
underlying challenges, namely data imperfection, data correlation, data inconsistency and varying
data forms [15].

For catering to the various technical requirements of multi-sensor-based systems, a major
stream of literature related to NDE has focused towards developing the different techniques of sensor
fusion [14,37,128,168,177]. A common method for data fusion is the Dempster—Shafer Theory, which has
been widely used for NDE applications ranging from data fusion between ultrasonic and X-ray imagery
to the techniques developed from the data fusion between infrared thermography and GPR-based
sensor modalities [167,168,178]. One of the earlier studies on the fusion of data from NDE sensors
(e.g., GPR, portable seismic analyzer, and falling weight deflectometer) utilized a number of different
fusion techniques, which include fuzzy logic, Bayesian, statistical weighted average and hybrid fusion
techniques [179]. The use of adaptive fusion operators with customized decision criteria was employed
by one of the relevant studies for performing the fusion of multi-modal data (e.g., electrical resistivity,
ultrasonic waves, infrared thermography) represented in the form of possibility distributions and
fuzzy sets [168]. The use of radar and ultrasonic sensory modalities was performed in another study
by Maierhofer and colleagues [167], which utilized data pre-processing, normalization, filtering and
amplification techniques for data transformation before different fusion techniques (e.g., summation,
subtraction and maximum amplitude-based methods) were performed on the multi-sensor data.

In their research, Kee et al. [128] proposed the usage of tools related to infrared thermography and
air-coupled impact echo, along with their fusion techniques, which was based on simple rule-based
criteria to provide valuable insights towards effective infrastructural maintenance. However, the data
were not obtained from an actual bridge, but from a bridge test-bed specimen, which means that this
method has not been tested on a practical system using data from actual bridges. Data from a wide
array of different sensors were utilized within the RABIT platform in another study related to the NDE
of bridges [8]. However, the use of sensor fusion techniques was not outlined to ensure that the data
from different modalities could be effectively leveraged to provide a holistic evaluation of the SHM
of bridges. For the case of the deployment of the ARA Lab Robot for the NDE of bridges, a sensor
fusion algorithm was deployed, which allowed the robot to optimize the duration of time taken to
perform the necessary operations required for data collection using a camera, GPR and IE sensors
across the different regions of the bridge deck infrastructure [37]. According to Brierley et al. [172],
the questions related to the selection of an appropriate sensor fusion technique is application specific



Sensors 2020, 20, 3954 21 of 38

in nature. Some of the considerations in this regard are given as follows: (i) the type of problem being
addressed, (ii) the type and scale of the sensory data being handled, and (iii) the assessment criteria
for performance evaluation, as the sensor fusion techniques can provide varying results in different
contexts and applications [172].

7. Algorithms for Data Analysis

In this section, the focus will be towards outlining the different analysis techniques using data
from a wide array of NDE sensors for bridge infrastructural evaluation, which were highlighted in the
previous sub-sections. The discussion in this section will be divided into two sub-sections, namely:
(i) different techniques pertaining to analysis of the surface-level data for bridges and other civil
infrastructures, and (ii) myriad of techniques developed for analyzing sub-surface-level data for bridge
decks. The surface-level analysis for NDE is used to examine the level of cracks, and the corrosion of
the concrete surfaces of civil infrastructures. The sub-surface-level analysis allows the evaluation of
the level of cracks, corrosion and delamination within bridge decks.

7.1. Surface-Level Analysis: Concrete Crack Detection

There is a considerable amount of research effort devoted towards concrete crack detection for the
surface-level SHM of civil infrastructures in general and bridges in particular [37,48,51,88,163,180-212].
Due to the concrete-based composition of the majority of civil infrastructures (e.g., dams, roads,
buildings, sewers, bridges, tunnels), the techniques developed for concrete crack detection within a
particular type of concrete structure can also be generalized towards other civil infrastructures. Some of
the earlier works focused on the utilization of basic-level image-processing techniques for crack detection
in concrete structures [48,51,88], which included basic-level morphological approaches [166,190-193],
digital image correlation techniques [194-197] and different segmentation-based approaches [198].
A number of different image-based filtering techniques were also employed, namely Gabor
filtering [199], median filtering [184,200], texture filtering [201,202] and data fusion-based filtering
approaches [176,203]. The efficacy of different image transformation techniques has also been
discussed, ranging from the watershed transform [190,192,194], wavelet transform [200,201,204,205],
and randomized Hough transform [200,206]. The use of fast Fourier and fast Haar algorithms with
Sobel and Canny edge detectors was developed for the concrete crack detection in one of the earlier
studies [207]. A block-based crack detection approach was developed for the bridge decks in another
study [37]. Another study made use of histogram-based method for the extraction of crack features
from the input images of bridge decks [48]. A genetic learning-based network optimization algorithm
was also proposed with the application for concrete crack detection [181]. For the classification of
images into crack and non-crack regions, the use of Support Vector Machine (SVM) was proposed
for effectively detecting and classifying the cracks in bridges [187]. Data from the GPR sensor were
used for sensitive concrete crack detection using a super high-frequency band system and time-variant
deconvolution-based approach [208].

The use of different deep-learning frameworks has gained considerable attention in recent works
related to concrete crack detection [157,180,182,189,209]. A deep-learning-based SSD Inception V2
and SSD MobileNet models for concrete road damage detection was developed in another recent
study [155,159,210]. Similarly, the crack detection problem was solved using semantic segmentation
with the help of deep residual neural networks (NNs) in a number of recent studies [211,212].
A Faster-region-based CNN model (Faster R-CNN) was proposed towards the quasi-real-time system
development for the detection of different types of defects (e.g., concrete crack detection, steel
delamination, bolt corrosion, etc.) [152,209]. Another recent study utilized a U-net-based fully
connected CNN model for concrete crack detection [188]. Some of the most recent studies have made
use of different encoder—decoder-based deep-learning architectures to improve the existing limitations
of crack detection systems using a pixel-wise classification of concrete images [182,189]. [213-215].
DeepCrack is the name proposed for a deep learning-based framework designed specifically for the
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crack detection using crack probability maps obtained with the help of a deep-encoder—decoder-based
network [216]. A comparison in the performance and techniques employed by the different studies
in the past towards concrete crack detection have been outlined in Table 5. A number of other
deep-learning frameworks have also been developed for crack detection, such as the CrackNet [217],
CrackNet II [218] and CrackNet V [219] models, which have further improved the performance of the
crack detection systems. Another study made use of multiple visual sensors (e.g., digital camera,
laser scanner and distance sensor) for concrete crack detection and measurement with the help of the
YOLO (You Only Look Once)-v3-tiny model [164]. An autonomous crack width-measurement system
using medial axis transform and flexible kernel was also proposed in another recent study [220].

Table 5. Comparison between the state-of-the-art technique for concrete crack detection.

Study Application Dataset Image Size Algorithm Performance
. . Image Segmentation Accuracy: 92.6%
Lietal. [183] Bridge 1000 N/A Algorithm Mean Error: 0.03 mm
. ) Locally Adaptive . o
Fujita et al. [184] General 60 640 x 480 Thresholding AuC: 98.0%
Chen et al. [185] Bridge 40 3088 x 2056 Self-Organizing Map Accuracy: 89-91%
Optimization
Oh et al. [186] Bridge 80 640 x 480 Morphological Operations Accuracy: 94.1%
. . Active Contour Model Width Accuracy: 92.1%
Lietal. [187] Bridge 1200 4288 x 2848 with SVM Mean Error: 0.03 mm
Precision: 90.0%
Liu et al. [188] General 84 512 x 512 U-Net Recall: 91.0%

F1-score: 90.0%

Precision: 66.07%
Ren et al. [152] Tunnels 409 4032 x 3016 CrackSegNet Recall: 85.54%
Fl-score: 74.55%

Precision: 90%

Dung et al. [189] General 40,600 227 x 227 FCN with VGG-16 Max-E1: 90%
Precision: 99.7%
Zhou et al. [157] Road 52,408 256 x 256 ResNet Recall: 99.8%
Fl-score: 99.8%
Billah et al. [180] Bridge 43,996 256 x 256 ResNet-50 Accuracy = 94.0%
Park et al. [164] General 1800 N/A YOLO-V3-tiny Thickness Error: 0.09

mmLength Error: 2.72 mm

Accuracy = 98.7%
Billah et al. [182] Bridge 12,000 256 x 256 SegNet Error = 1.3%
Fl-score = 24.1%

ResNet-18 with
Hierarchical SoftMax

Wang et al. [154] Ceiling 1953 400 x 600 DCNN Accuracy: 86.22%

Lietal. [151] Sewer 18,333 224 x 224 Accuracy: 64.8%

7.2. Sub-Surface-Level Analysis: Rebar Detection and Localization

One of the primary emphases of this section will be towards the algorithms proposed for rebar
detection and localization, which is essential for the structural health monitoring of bridges. For the
case of bridge monitoring, earlier studies utilized different pattern recognition and image-processing
techniques for rebar detection and localization by hyperbola extraction from GPR radargrams [221-224].
Different hand-crafted features were employed by many of the earlier studies, such as the
edge-based features [146-148,225-227], texture-based features [222,228], template matching [221,229],
histogram of oriented gradients (HOG) [47,135,140], feature transformation methods, e.g., Radon
transform [142], and Hough transform [230-233] and statistics-based methods, such as clustering-based
approaches [223,234], least-square methods [235], and higher-order moments [235,236]. These features
were trained using a wide range of different learning-based techniques towards developing effective
rebar detection and localization algorithms in the past [47,135-138,227,237]. Research by Gibb and
La [135] trained a Naive Bayesian classifier using HOG features. Support Vector Machine (SVM) has also
been used in prior studies [47,145]. A number of different neural network (NN) frameworks have also
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been employed in earlier studies for rebar classification [147,148,227,237]. Many of the earlier methods
failed to effectively leverage the capabilities of NN models using edge-based features [147,148,227],
which are not suitable for real-world systems dealing with GPR data that contain varying rebar
signatures and fluctuating noise levels. Some of the recent studies have made use of convolutional
neural networks for rebar detection [136-138,238]. A study by Dinh et al. [136] proposed the
usage of a 24-layer deep CNN model for rebar classification. The use of residual neural networks
(ResNet-50) has also been proposed in recent studies related to rebar detection and localization [137,138].
The preliminary examination of the results using GPR data from real-world bridges has shown that
different ResNet models (i.e., ResNet-18, ResNet-32, ResNet-50, ResNet-101, ResNet-152) provide
increased accuracy and generalizability [137,138,239]. Another study implemented the multi-objective
genetic algorithm for the classification of rebar images [240].

Due to its critical importance, many of the studies focused on the development of rebar detection
and localization systems in a collective fashion [47,135,136,138]. The earlier studies made use of
hand-crafted features with edge-fitting or curve-fitting algorithms to localize rebar signatures from
GPR radargrams containing multiple rebar profiles [143,147,221,224]. Hough transform fitting has
also been leveraged with edge features to localize individual rebar profiles [224]. Yuan et al. [226]
proposed the drop-flow algorithm using edge features to decompose individual hyperbolas and cater to
over-segmentation. The edge-feature-based localization methods suffer from a lack of generalizability
to rebar size, dimensions, location and variations in the noise levels. An expectation-maximization
algorithm was proposed by Chen and Cohn [235], which has various limitations for implementation in
real-time systems, in terms of computational complexity, difficulty in convergence and sensitivity to
the variations in configuration points. A column-connecting clustering algorithm with orthogonal
hyperbola fitting was developed in [139]. Another study proposed a precise hyperbola localization
algorithm [135], which made use of the hyperbola fitting and local maxima. However, this method has
limitations towards providing results for real-time systems. In contrast to previous hyperbola-fitting
methods, the study by Kaur et al. [47] made use of random sample consensus (RANSAC), which is an
iterative method for robust hyperbola fitting with corrective capabilities, specifically with noisy data
and outliers.

The different characteristics of the studies related to rebar detection and localization have been
outlined in Table 6. There are various other studies utilizing GPR sensors with rebar detection and
localization algorithms, which focus on other underground buried objects, such as landmines, void
spaces, and pipes. These studies have not been included in the table, as they are beyond the scope
of this discussion. Despite considerable research in this field, the effective acquisition of hyperbolic
signature remains a complicated research problem with various challenges, such as the separation
of intersecting rebar profiles, the full/partial occlusion of hyperbolic signatures, and the complexities
within the underground spatial configurations [139,226,239].

Table 6. Comparison between the state-of-the-art techniques for rebar detection and localization.

Rebar Detection Rebar Localization

Study Features Dataset Techniques Performance Techniques Performance
. C3 Algorithm + .
Dou et al. [138] F Ectlge SyntheDtlct + Real 3-Layer PRe§al1L Og 07%)8 Orthogoll;ii‘Hyperbola Time: 0.73 s/rebar
eatures ata Feed-Forward NN recision: 0. itting

Kaur et al. [47] HOG 3 Bridges SVM Acc.: 91.98% RANSAgi;irP\Igperbola Accuracy: 91.98%

Gibb et al. [135] HOG 4 Bridges Naive Bayes Acc.: 95.06% Precise P'Iyp?rbola Time: 32.4 s/image
Localization

Dinh et al. [136] N/A 26 Bridges 24-layer CNN Acc.: 99.6% Rebar Picking Accuracy: 99.6%

: . . Accuracy: 94.52%
| . % ]
Ahmed et al. [138] N/A 6 Bridges ResNet-50 Acc.: 99.42% K-Means Clustering Precision: 95.18%
) HOS MOGA + 3-layer . o
Harkat et al. [240] cumulant 133 radargrams CNN Acc.: 88.99% Hough Transform N/A

Accuracy: 91.91%

. . o o L] o

Ahmed et al. [239] N/A 9 Bridges Deep ResNets Train Acc.: 99.4%  Novel Rebar Localization ~ Precision: 96.89%

Val. Acc.: 97.20%

Algorithm

Recall: 94.41%
F1-score: 95.58%
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8. Challenges

There are a number of different challenges affecting the development of
autonomous/semi-autonomous systems for the NDE of civil infrastructures in general and
bridges in particular. Most of the processes underlying NDE systems (e.g., manufacturing NDE,
industrial NDE and civil infrastructure NDE) are time and resource intensive in nature. This means
that NDE is performed only if the cost of failure (in terms of capital and loss of human lives) is greater
than the costs associated with performing NDE, but with timely inspection and remedial measures,
the probability of defect can be substantially reduced [172]. Over the years, a number of robotic
platforms have been developed for performing the NDE of infrastructure [8,12,37,47,52]. However,
there are a limited number of different initiatives towards the development of semi-autonomous/fully
autonomous systems that can reduce the overall time and resources taken to provide regular health
monitoring services for civil infrastructures. It is for this reason that the current situation warrants
the development of robust, replicable and cost-effective technological platforms for the SHM of civil
infrastructure studies.

From a sensor and data fusion perspective, there are a number of challenges that have hindered
the development of effective sensor fusion techniques for practical systems in the past. The deployment
of contact-based sensors for the NDE of civil infrastructure is time-consuming in nature [37]. In this
respect, there is a need for the development of stochastic, optimal path planning algorithms that utilize
sensor fusion-based decision making to differentiate between areas of higher and lower priorities for
inspection, depending on the input from different sensory modalities. At the same time, the majority of
the existing studies related to sensor fusion do not provide reliable performance evaluation metrics [15].
Some of the other challenges towards the development of performance criteria for effective sensor
fusion techniques include a lack of effective ground truth, multiple, often conflicting dimensions of
different performance metrics, and the need for the modification of the performance criteria for sensor
and data fusion in view of the underlying criteria, context and applications [15]. A similar issue
has also been encountered with respect to the examination of studies related to rebar detection and
localization. In Table 6, only a handful of studies have been reviewed, as the majority of the studies
related to rebar detection and localization do not provide reliable and effective performance evaluation
metrics. Apart from that, there are many studies that do not provide any information regarding the
performance criteria used to assess the quality of findings in their respective studies.

Many of the existing studies utilizing robotic platforms for the SHM of bridges rely on single
sensors, which can provide limited insight into the multi-faceted problem related to the SHM of bridges
and civil infrastructures in general. In this regard, the increased utilization of vision-based inspection
methods has been stressed in one of the recent studies [18]. A scientometric analysis of the relevant
research field provided insight regarding the lack of multi-disciplinary research, which is hindering
and limiting the development of effective solutions for the NDE of bridges [18]. A number of studies
in other research domains related to robotics have extensively examined the human-level factors that
affect the development of relevant systems. However, the use of civil infrastructure-based robotic
systems has not examined the human factors, which include, but are not limited to, the civil inspectors’
skills, trust in automation-based platforms, situation awareness, and the workload demands of civil
inspectors [17]. There is also a need to assess the human-robot collaborative factors that can determine
the effectiveness of deploying inspection-based robotic platforms in the different environments and
contexts within the field of civil infrastructure evaluation.

Another limitation towards the development of effective real-time robotic solutions for the NDE
of bridges is the lack of adequate funding towards the development of automated solutions to provide
the regular SHM of bridges. In order to expedite the process of the regular maintenance of public
infrastructure, there is a need for investment in the field of NDE of infrastructure, which can allow the
development of effective autonomous and semi-autonomous platforms. One of the recent studies in
this regard emphasized the high costs regarding development, the testing and practical deployment of
on-ground robotic systems for facilitating the SHM of civil infrastructure [16]. Earlier studies have
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emphasized the effectiveness and superiority of the robot-based NDE systems in comparison with
the traditional maintenance techniques that have been in practice in the past [16,135]. Nevertheless,
the overall advantages of developing autonomous/semi-autonomous robotic platforms for SHM
outweigh the underlying costs and challenges. The next section (which will be the final section of this
paper) will conclude some of the major elements of the discussion that have been highlighted in the
different sections of this review-based study, along with recommendations for future studies in the
field of the NDE for bridges.

9. Conclusions and Future Works

This paper has provided a comprehensive review of the state-of-the-art robotic platforms,
sensors and algorithms that have been developed for bridge inspection and evaluation with considerable
implications for civil infrastructures in general. There are a number of different relevant topics that have
been addressed in this review paper. In order to effectively highlight the novelty of this review-based
study, a cross-level comparison between different reviews and surveys was discussed. The level of
difference in the focus and scope between the existing review-based studies has also been examined.
Unlike prior review-based studies, this review attempts to provide a holistic overview of the relevant
research area by highlighting the three critical themes of the robotic systems for the SHM of bridges,
namely the robotic platforms, sensory modalities and data analysis techniques. This review also
provides a detailed evaluation of the different challenges, as many of the aspects highlighted in that
section have not been adequately covered by existing reviews in the past. The novel contributions
of this paper can be highlighted in terms of the manner in which the relevant literature has been
structured in the perspective of three major inter-linked themes outlined in Figure 5. One of the major
themes that has been discussed in this review is related to the different robotic platforms that have been
developed for the NDE of bridges. A taxonomy of the different robotic platforms has been presented
along with some of the salient features of the different robotic systems that have been developed in
recent studies. It has been highlighted that the different robot systems can be broadly classified into
single-sensor and multi-sensor-based systems. Therefore, the second theme examined the different
sensors that have been used for the NDE of bridges. For the case of single-sensor-based systems,
the focus has been towards the individual types of sensory modalities (e.g., GPR, IE, ER, vision).
For the case of multi-sensor-based systems, the focus has been towards exploring the different sensor
fusion techniques leveraged for the SHM of bridges and civil infrastructures in general. The third
and final theme that has been highlighted in this review focused on the different types of algorithms
developed for the surface-level (concrete crack detection) and sub-surface level of analysis (rebar detection
and localization). In the later parts of the review-based study, some of the major challenges have also
been examined in view of the development of effective autonomous robotic systems for the real-time
NDE of civil infrastructures in general and bridges in particular.

There are a number of different ways in which future studies can attempt to extend the state
of the art in the SHM of bridges and civil infrastructures. The use of multiple sensors should
be explored in future studies for the development of solutions for the SHM of bridges and civil
infrastructure [18]. The use of multiple sensory modalities will allow the examination of the various
aspects of the infrastructural deficiencies within the different civil infrastructures and bridges in
particular. The previous section highlighted a number of different challenges being faced towards the
development of robotic solutions for the NDE of bridges in particular and civil infrastructure in general.
Future researchers can work towards developing effective strategies for managing or mitigating the
different challenges. At the same time, the emphasis of relevant studies in the future should be demoted
towards the development of state-of-the-art robotic platforms, in particular the aerial and underwater
platforms, which currently lack in terms of practical deployment and effectiveness in practical scenarios.
Therefore, future studies should primarily focus towards the practical effectiveness of the aerial and
underwater robotic platforms with practical testing and evaluation on actual civil infrastructures.
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