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A tribute to Professor Jozef Siciak

Abstract. We study finite energy classes of quasiplurisubharmonic functions in the
setting of toric compact Kéahler manifolds. We characterize toric quasiplurisubharmonic
functions and give necessary and sufficient conditions for them to have finite (weighted)
energy, both in terms of the associated convex function in R"™, and through the integrabil-
ity properties of its Legendre transform. We characterize log-Lipschitz convex functions on
the Delzant polytope, showing that they correspond to toric quasiplurisubharmonic func-
tions which satisfy a certain exponential integrability condition. In the particular case of
dimension one, those log-Lipschitz convex functions of the polytope correspond to Hoélder
continuous toric quasisubharmonic functions.

Introduction. A toric compact Kéhler manifold (X,w,T) is an equiv-
ariant compactification of the torus T = (C*)" equipped with an (S1)"-in-
variant Kéahler metric w. Then w can be written as

w=dd°FyoL in (C")",
where Fp : R® — R is a smooth strictly convex function and
(1) L:(C)" —=R", L(z1,...,2n) = (log|z1],...,log|zn])-

The celebrated Atiyah—Guillemin—Sternberg theorem asserts that the
moment map VFy : R® — R"™ sends R" onto the interior of a compact
convex polytope

P={l(s)>0:1<i<d}CR"

2010 Mathematics Subject Classification: Primary 32W20; Secondary 32U05, 32020,
32U25, 14M25.

Key words and phrases: quasiplurisubharmonic function, complex Monge-Ampére opera-
tor, Lelong number, Delzant polytope, toric manifold.

Received 9 April 2018; revised 25 June 2018.

Published online 12 October 2018.

DOI: 10.4064/ap180409-3-7 [215] ®© Instytut Matematyczny PAN, 2019



216 D. Coman et al.

where d > n + 1 is the number of (n — 1)-dimensional faces of P and
Gi(s) = (s,wi) — N,

with \; € R and u; a primitive element of Z".

Delzant |Del| observed that in this case P is what is now called “Delzant”,
i.e. there are exactly n faces of dimension n — 1 meeting at each vertex,
and the corresponding u;’s form a Z-basis of Z™. He also showed conversely
that there is exactly one (up to symplectomorphism) toric compact Kéhler
manifold (Xp, {wp}, T) associated to a Delzant polytope P C R™. Here {wp}
denotes the cohomology class of the T-invariant Kéhler form wp.

Let

Go(s) == sup ((z, s) — Fo())
zeR?

denote the Legendre transform of Fy. One has Gy = oo in R™ \ P and, for
s € int P = VEFy(R"),

Go(s) = (x,s) — Fo(z) & se€ VFy(z) & z € VGy(s).

Guillemin |Gui| observed that a “natural” representative of the cohomol-
ogy class {wp} is given by
1 d
G(s) =5 Z&(S) log £;(s).
=1
We refer the reader to [CDG] for a neat proof of this beautiful formula of
Guillemin. Observe that G is only log-Lipschitz regular on P, although the
original Kahler potential is smooth.
The purpose of this note is to undertake a systematic study of toric
pluripotential analysis. There are three ways to understand a toric quasi-
plurisubharmonic function and its Monge—Ampére measure:

e by working directly on X and imposing toric symmetries,

e by looking at the corresponding object (convex function, real Monge—
Ampeére measure) in R” after a logarithmic transformation, and under-
standing the asymptotic properties at infinity,

e by understanding the behavior near the boundary of the polytope of the
Legendre transform of the corresponding convex function.

We refer to Section 3 for the definition of toric w-plurisubharmonic
(w-psh) functions on X and the corresponding energy classes. If ¢ is w-psh,
we denote by F, the corresponding convex function on R"™ and by G, its
Legendre transform (see Sections 2 and 3).

Our main results are as follows. We first describe the class of toric w-psh
functions (see Proposition 3.2):
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PROPOSITION A. Let Fp(x) = maxsep(x, s) denote the support function
of the polytope P. The following are equivalent:

(i) ¢ € PSHyo (X, w);

(ii) F, < Fp+ C for some constant C;
(i) G, =00 on R™\ P;
(iv) V ( ") C P.

We then characterize finite energy toric w-psh functions and their
weighted versions, showing in particular the following (see Theorem 3.6):

THEOREM B. Let ¢ € PSHio(X,w). The following are equivalent:

(1) ga € &or(X,w);

(i) Gy is finite on int P;

(iii) F, has full Monge-Ampére mass;

(iv) the Lelong numbers v(p,p) equal O for allp € X.

In Theorem 4.4 we study more regular toric w-psh functions, character-
izing the maximal log-Lipschitz regularity of Legendrian potentials:

THEOREM C. Let ¢ € Eor(X,w). The following properties are equiva-
lent:

(i) there exists € > 0 such that exp(—e PSHo (X, w)) C LY (MA(p));
(ii) the function G is log-Lipschitz on P.

It is tempting to think that these conditions are all equivalent to the
fact that ¢ is Holder continuous. This is easily seen to be the case when
n = 1. We refer the interested reader to [DD| for more information, geo-
metric motivations, and related questions connecting the Holder continuity
of Monge-Ampére potentials with the integrability properties of the associ-
ated complex Monge-Ampére measure.

The paper is organized as follows. In Section 1 we recall some basic facts
about w-psh functions on any compact Kahler manifold (X, w), together with
the definition and main properties of various energy classes following [GZ].
Section 2 deals with the relevant properties of convex functions and their
Legendre transforms. In Section 3 we study energy classes of toric w-psh
functions on a toric compact Kéhler manifold (X, w), and in Section 4 we
conclude by looking at questions about the higher regularity of such func-
tions.

1. Finite energy classes. In this section we let (X,w) be a compact
Ké&hler manifold of dimension n, and we recall the definition of finite energy
classes of quasiplurisubharmonic functions following [GZ].
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1.1. Bedford—Taylor theory. A function on X is quasiplurisubhar-
monic if it is locally the sum of a psh function and a smooth one. In par-
ticular, quasiplurisubharmonic functions are upper semicontinuous and in-
tegrable.

DEFINITION 1.1. A function ¢ : X — RU{—o0} is w-psh if it is quasi-
plurisubharmonic in X and if the current w + ddyp is positive on X.

Let PSH(X,w) denote the set of all w-psh functions on X. This is a closed
subset of LY(X,w™).
Bedford and Taylor [BT82| showed that one can define the complex
Monge-Ampere operator
MA(p) := (w+dd°p)" = (w+ dd°p) A --- A (w + ddp)
for all bounded w-psh functions. They showed that whenever (y;) is a se-
quence of bounded w-psh functions decreasing to ¢, the sequence MA(p;)
of measures converges weakly towards the measure MA(y). Note also that
S MA(p) = S W' =:V,.
X X

At the heart of Bedford—Taylor theory lies the following mazimum prin-
ciple: if u,v are bounded w-psh functions, then

(MP) 1 v<uy MA(max(u, v)) = L{yeyy MA(u).

The maximum principle (MP) implies the so-called comparison principle:
if u,v are bounded w-psh functions then

| MA@w) < | MA(v).
{v<u} {v<u}
1.2. The class £(X,w). If p € PSH(X,w), we let
¢; = max(p, —j) € PSH(X,w) N L= (X).

It follows from Bedford-Taylor theory that the MA(yp;) are well defined
measures of total mass V,,. The following monotonicity property holds:

pj = lios_jy MA(p; ) is an increasing sequence of Borel measures.

The proof is an elementary consequence of (MP) (see |[GZ, p. 445]). Since
the p; have total mass bounded above by V,,, we can define

P = jlirgo 1
which is a positive Borel measure on X of total mass < V,,.
DEFINITION 1.2. We let
E(X,w) :={p € PSH(X,w) : p,(X) =V, }.
For ¢ € £(X,w), we set MA(p) := fi,.
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The definition is justified by the following important fact proved in [GZ]:
The complex Monge—Ampére operator ¢ — MA(p) is well defined on the
class E(X,w), in the sense that if ¢ € E(X,w) then for every decreasing
sequence @; \ ¢ of bounded w-psh functions the measures MA(p;) converge
weakly on X towards pu,.

Every bounded w-psh function clearly belongs to £(X,w). The class
E(X,w) also contains many w-psh functions which are unbounded. When
X is a compact Riemann surface, £(X, w) is the set of w-sh functions whose
Laplacian does not charge polar sets.

REMARK 1.3. If ¢ € PSH(X,w) is normalized so that ¢ < —1, then
—(—)¢ belongs to £(X,w) whenever 0 < e < 1 (see e.g. [CGZ|). The func-
tions which belong to the class £(X,w), although usually unbounded, have
relatively mild singularities. In particular they have zero Lelong number at
every point.

It is shown in |GZ| that the maximum principle (M P) and the com-
parison principle continue to hold in the class £(X,w). The latter can be
characterized as the largest class for which the complex Monge-Ampére op-
erator is well defined and the maximum principle holds.

1.3. Weighted energy classes. Let VW denote the set of all functions
X : R™ — R~ such that x is increasing and x(—o0) = —c0.

DEFINITION 1.4. We let &, (X, w) be the set of w-psh functions with finite
X-energy,
Ex(X,w) = {p € E(X,w) : x(~l¢]) € L' (X, MA(p))}.
When x(t) = —(=t)?, p > 0, we set EP(X,w) = &, (X, w).

We list here a few important properties of these classes and refer the
reader to |[GZ, BEGZ] for the proofs:

E(X,w) = Uy E(X,w);
PSH(X,w)NL®(X) = ﬂXeW Ev(X,w);

the classes EP(X,w) are convex;

¢ € EP(X,w) if and only if for any (resp. for one) sequence of bounded
w-psh functions ¢; \ @, sup; {  l¢;[P MA(p;) < oo;

e if ; is a sequence of w-psh functions decreasing to ¢ € EP(X,w), then the
measures ;[P MA(p;) converge weakly to |¢|P MA(p).

2. Facts on convex functions. We collect here a few properties of
convex functions which will be used later. Some of these are well known,
but proofs are included for the convenience of the reader (see also [BB,
Section 2]).
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2.1. Subgradients and Monge—Ampére measures. Let F': R” — R
be a convex function. The subgradient of ' at x is the set

VF(z)={seR": F(y) > F(x)+ (y — z,s), Vy € R"}.

We let
VFR") := | ] VF(x).

z€eR™

The Legendre transform G of F' is the lower semicontinuous convex func-
tion defined by

G:R" — (—o0,¢], G(s)= xsguﬂg((:r, s) — F(x)).

Then F is the Legendre transform of G,

F(x) = sup((x.5) - G(s))

and one has
G(s) = (z,s) — F(z) & se€VF(x) & z € VG(s).
LEMMA 2.1. Let F : R™ — R be a convex function.

(i) If F is smooth and strictly convex then VF : R™ — R" is injective, and
hence an open map.
(i) If sop € VF(R™) then G(so) < co. Conversely, if G(s) < oo for all s in
an open ball B(sg,r) then sg € VF(R™).
(ili) Let Fj : R™ = R, j > 1, be convex functions. Then F; ~, F pointwise
on R™ if and only if the Legendre transforms satisfy G; ,/* G pointwise
on R".

Proof. (i) If p # ¢ and f(t) := F((1 — t)p + tq) then f”(t) > 0, so
f1(0) =(VF(p),q —p) < f'(1) = (VF(q),q — p). Hence VF(p) # VF(q).

(ii) By the definition of the subgradient, if sy € VF(z) then (y, so) — F (v)
<(x,so)—F(z) forally € R", so G(sg) = (z, so)—F(x) < co. Conversely, by
shrinking r we may assume that G < M on B(sg,r) for some constant M,
hence (z,s) — F(z) < M for all z € R and s € B(so,r). Let F(z) =
F(z) — (x,50) + M. It follows that F(z) > (z,s — so) for all s € B(sg,7),
hence F(z) > 7||z||. Therefore F assumes a global minimum, i.c. there exists
2o € R™ such that F(z) > F(zo). Thus 0 € VF(zq) = VF(z0) — so.

(iii) Assume that F; ~\, F. Then G; / G, where G is lower semicontin-
uous, convex and G < G.If F is the Legendre transform of G then we have
F; > F > F. We conclude that F = F and so G = G. The converse follows
by a similar argument. m
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REMARK 2.2. Note that if F(z) = €, € R, then we have G(0) = 0
but 0 € F'(R), so the hypothesis that G(s) < co in a neighborhood of s is
needed in the condition (ii) of Lemma 2.1.

LEMMA 2.3. Let F': R™ — R be a convex function. If x is a continuous
function with compact support on R™ then

| (xoL)(ddFoL)" = | xMAR(F),
(C*)n R”

where L is defined in (1), d = 0+ 0, d° = 5(9 — 0), and MAR(F) is the
real Monge—Ampére measure of F.

Proof. Approximating F' by a decreasing sequence of smooth convex
functions it suffices to assume that F' is smooth. Recall that in this case
MAR(F) is the measure defined by

0*F
3$1a$ 5

MAR(F) =n! det[ ] dv,
where V' denotes the Lebesgue measure on the corresponding Euclidean
space. Note that the function F' o L is plurisubharmonic on (C*)™ and

2 2
P(FoL) 1 (ap OL>?

82182 - 42’2‘5]' 8.%18.%3

hence

0*(FolL) 1 0’F
de{ 0507 ] AR (det{axiaxj] ° L)‘

It follows that

n

(dd°F o L)" = (Z> (99F o L)"
T
AN 2
(LY aet| 2D o ndm A A di A dz
™ 821‘823'
2\" 0*(Fol)
—nll = P S
n(ﬂ) det[ D207 }dV(z)
2\" 1 0’F
=nll — det L)d
" <W> 4n 11, |Zj|2( ‘ [3%3%‘] ° ) V)
n! O*F dry...dry,
_ ] o logry) | " db, ... db,,
(2m)m det[axiaxj(()grl’ 108 T )} r1...Th doy .. do

where we use polar coordinates z; = r;e’7. Changing variables z; := logr;
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we obtain

| (xoL)(ddForL)
(€)™

2
=n! S x det il (logrl,...,logrn)M
8:75@-8:5]- r...rn
(0,00)™
=n! S x(x) det O°F ()| dV(z) = S X MAR(F).
R 8%8:75] R

For a non-smooth convex function F' the positive measure MAg(F') is the
real Monge-Ampére measure of F' (in the sense of Alexandrov; see [Gut|). =

The following lemma is proved using an idea of Al Taylor [T].

LEMMA 2.4. If F1,F5 : R — R are convex functions with Fy(x) — oo
as ||z|| = oo and Fi(z) < Fy(z) for all x € R™, then

| MAR(F) < | MAR(F).
R™ R
Proof. Fix a compact K C (C*)", a number ¢ > 0, and consider on (C*)"
the plurisubharmonic function
u:=max{FioL,(1+¢e)Fy0L—C},

where the constant C' > 0 is chosen so that v = F} o L in a neighborhood
of K. Since Fy(z) — oo as ||z|| — oo it follows that F} < F, < (14-¢)F,—C
on R\ K for some compact X C R™. Then L~(K) C (C*)" is compact and
u=(1+e)FyoL—C on (C*)"\ L71(K). We infer that
(1+o)" | (dd°Fhol)"= | (ddw)" > |(dd°FyoL)".
ok ok K
We conclude by using Lemma 2.3 and by letting K 7 (C*)™ and € \,0. =

2.2. Growth properties. Let P be a (compact) convex body in R™.
Its support function, which is also known as the indicator function, is the
convex function

Fp(x) := r;lealgc@, s).

Its Legendre transform is the convex function
0 ifzeP,
oo ifzxéP.

If Py := 9+ P is the image of P under the translation by ¥, and Py := AP
is the image of P under the dilation by A > 0, then

Gp(z) = {
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Fp,(x) = Fp(z) + (9, 2), Gpy(s) = Gp(s =),
Fp)\(l‘) :Fp()\l‘) :)\Fp(m), GPA(S) :GP(S/)\).

LEMMA 2.5. Let F': R® — R be a convex function with Legendre trans-
form G. The following are equivalent:

(i) F < Fp+C for some constant C;
(i) G =00 on R™\ P;
(i) VF(R™) C P.

Proof. To show (i)=(ii), if F < Fp + C then G > Gp — C, so G = Gp
= oo on R™\ P. For (ii)=(iii), if s € VF(R") then G(s) < oo, hence s € P
by (ii).

To prove (iii)=-(i), let € R™ and note that if s € VF(R") then s € P,
so (s,z) < Fp(z). Since F is locally Lipschitz along the line R > ¢t — tz, we
have

F(z) - F(0) = | %F(tm) dt = \(VF(tz), z) dt < | Fp(x) dt = Fp(z). =
0 0 0

LEMMA 2.6. Let Fy : R®™ — R be a smooth strictly convex function such
that Fp — C < Fy < Fp + C for some constant C. Then VFy : R® — int P
is bijective and VGq : int P — R™ is its inverse, where Gy is the Legendre
transform of Fy. Moreover, if x is a continuous function with compact support
on R™ then

S X MAR(Fp) = n! S xoVGodV and S MAR(Fp) = n!vol(P).
R" int P R"

Proof. By Lemmas 2.5 and 2.1(i), VFp : R" — P is injective. As Fp —
C < Fy we see that Go < Gp+ C, so Gy < C on P. Thus int P C VEFy(R")
by Lemma 2.1(ii), and hence VFy(R™) = int P since VFy is open. If z, 2’ €
VGo(s) then s = VFy(z) = VFy(2'), so z = . Hence G| is differentiable on
int P and VG = (VFy)~!. The remaining assertions follow by the change
of variables x = VGy(s), s = VFy(x), so

av(s) = det| L5 ] ) = L MA(F) @)
N 0z;0z; - nl RLFOAE)- H
LEMMA 2.7. If 0 € int P then there exist constants a,b > 0 such that

blle| < Fp(z) <alle], Vo e R

_ Proof. If a,b > 0 are such that the closed balls B(0,b), B(0,a) satisfy
B(0,b) ¢ P C B(0,a), then

bllz| = FE(o,b) < Fp(z) < FE(o,a) =al[z|. =
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LEMMA 2.8. Assume that 0 € int P and let F : R™ — R be a convex func-
tion with Legendre transform G, such that F < Fp+C' for some constant C.
The following are equivalent:

(i) G(s) < oo for all s € int P;
(i) for every e € (0,1) there is M. > 0 with F > (1 —e)Fp — M, on R™.

Moreover, these conditions imply that {,, MAR(F) = n!vol(P).
Proof. Note that

Fa—ep(z) = ig}g(ﬂc, (1—e)s) = (1 —¢)Fp(x).

Assume that G(s) < oo for all s € int P. Since 0 € int P, (1—¢)P C int P
for e € (0,1), so there exists M. > 0 such that G < M, on (1—¢)P. It follows
that

F(x) = sup  ((z,8) = G(s)) = Fu—eyp(z) — Me = (1 — &) Fp(z) — M-.
s€(l—e)P
Conversely, if ' > (1 —¢)Fp — M. = F1_op — M., then G < G(1_)p+ M,
so G(s) < M. for s € (1 —¢e)P. As € \, 0 this implies that G(s) < oo for all
s € int P.

By Lemma 2.7 we have Fp(z) — o0 as ||z|| — oo. Since F' < Fp + C,

Lemmas 2.4 and 2.6 imply that

| MAR(F) < | MAR(Fp) = | MAR(Fp) = n!vol(P),

R" R" R"
where Fj is a function as in Lemma 2.6. Note that by (ii), F'(z) — oo as
||z|| — oo, hence Lemma 2.4 again shows that

| MAR(F) > (1—2)" | MAR(Fp), Vee€ (0,1).
R” R”
Letting € — 0 finishes the proof. m

We conclude this section with the following lemma:

LEMMA 2.9. Let P be a compact convex body in R™ with non-empty in-
terior and G : P — R U {oo} be a lower semicontinuous convex function.
Then

! \|Glav.

inf G| <
Gl < S — 1) vol(P) ;

Proof. If G > 0 on P then {,GdV > infp G - vol(P) and we are done.
Otherwise, consider the convex set S = {G < 0} C P. It suffices to show
that if p € int S then

—G(p) < !

21/ — 1) vol(P)

\lGlav.
4
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We assume without loss of generality that p = 0 and use spherical coor-

dinates. For § € S" ! let 0 < a(f) < b(6) be defined by a(f)§ € 4S and
b(0)0 € OP. If o is the area measure on S™~! then

b(6)"

vol(P) = | = do(0).
Sn—l
By convexity it follows that
G(th) < _afe(g)) (t—a(0) <0 if0<t<a(8),
G(t6) > _afe(g)) (t—a(6) >0 ifa(8) <t<b@).
Thus
a(9)
flglav> | | ‘aG((gD (a(B) — t)t" ' dt do(6)
P Sn=1 0
b(6)
+ Sngl gl aC(;G(;)) (t — a(6))t" " dt do(6)
_ _G(O) nb(e)n—H n n
=t D) S @ — (n+1)b(0)" + 2a(0) > do(0).
Note that
f(a) := nb" ! —(n4+1)b" + 2a"

> f(bzfl/(n+1)) _ (n + 1)(21/(n+1) _ 1)bn
for 0 < a < b. Therefore

jic1av > “CO@ueen 1§ ey o)

P Snfl
= —G(0)(2Y ) — 1) vol(P),

and we are done. =

3. Toric energy classes. Let (X,w) be a toric compact Kahler manifold
of dimension n. Then X is a compactification of the complex torus (C*)"
such that the canonical action by multiplication of (C*)" on itself extends
to a holomorphic action of (C*)” on X. Moreover, there exists a smooth
strictly convex function Fpy : R™ — R such that w\((c*)n = dd°Fy o L, where
L is defined in (1). If P is the compact convex polytope determined by X
then VFy : R” — int P is bijective and we may assume that 0 € int P. Let
G denote the Legendre transform of Fjy.
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3.1. Toric quasiplurisubharmonic functions. A toric w-psh function
on X is an w-psh function ¢ that is invariant under the (S1)" action induced
by the (C*)™ action on X. We denote by PSHiy (X, w) the class of such
functions. It follows that there exists a convex function F, : R" — R such
that

FooL=FyoL+¢ on(C)"CX.

We denote by G, the Legendre transform on Fi,. Note that F, is continuous
on R™ hence ¢ is continuous on (C*)™.
We define the energy classes of toric w-psh functions by

Etor (X, w) = PSHiop (X, w) N E(X,w),
génor( ) = PSHtor(X7OJ) N EP(X,w),
Extor(X,w) = PSHior (X, w) N Ey (X, w),

where p > 0 and x € W (see Sections 1.2, 1.3).
We begin with the following simple lemma:

LEMMA 3.1. There exists a constant C > 0 such that
—C < Fy(x) — Fp(x) <C, VreR"

Proof. Since VEFy(R™) C P, by Lemma 2.5 we have Fy < Fp + C for
some constant Cp. Let w’ € {w} be a Kahler form with associated convex
function F' such that its Legendre transform G is given by Guillemin’s for-
mula. Then F'o L = Fyo L + 6 for some smooth w-psh function 6. Hence
F < Fy+ Cy and G > Gy — C5, for some constant Cs. Since GG is bounded
above on P it follows that Gy < Gp + C3, and so Fy > Fp — C3, for some
constant Cs. =

Our next result gives a characterization of toric w-psh functions:
ProOPOSITION 3.2. The following are equivalent:

i) ¢ € PSHyo (X, w);

(ii) F, < Fp+ C for some constant C;
(iii) G (p—oo on R™\ P;

(iv) VF,(R") C P.

Proof. 1f ¢ € PSH¢or(X,w) then ¢ is bounded above on X, hence Fy, <
Fy + C' for some constant C’; and (ii) follows by Lemma 3.1.

Conversely, if (ii) holds then by Lemma 3.1, F, < Fy + C’ for some
constant C’; hence ¢ < C" on (C*)" C X. Since X \ (C*)™ is an analytic set
invariant under the (S')" action, we conclude that ¢ extends to an w-psh
function on X which is (S')" invariant.

The remaining equivalences (ii)< (iii)<(iv) follow from Lemma 2.5. =
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PROPOSITION 3.3. If ¢ € PSHyo (X, w) then
1

G Ty vol(P) | 114V

P

supp < Cp +
X

where Cp = supp Go = supgn (Fp — Fp).
Proof. Note that, for a constant C, one has F, — Fyp < C on R" if and
only if Go — G, < C on P. It follows that

sup ¢ = sup(F, — Fy) = sup(Go — G) < Cp — inf G,
X R P P

and the proposition follows from Lemma 2.9. u

EXAMPLE 3.4. Let X = [F; be the blow up of P? at a toric point p. It
is a geometrically ruled surface. We let F' denote a generic fiber, E¥ be the
exceptional divisor, and H = E + F the total transform of a line through p.
The cohomology classes of F' and H are both semipositive and generate
HYY(X,R). Any Kéhler class {w} is cohomologous to aH +bF', with a,b > 0.
In coordinates z € (C*)? it can be represented as

w = aw; +bws, where wi = $ddlog(1+ |2[]*), w2 = dd°log||z|.
The convex function associated to w is
Fy(z) = Lalog(1 + ' + ™) + $blog (e + *2),
and P = W(RQ) is the polytope
P={512>0,52>0,b<s1+s2 <a+b}.
Thus d = 4, l1(s) = s1, la(s) = s2, l3(s) = a+b— s1 — sg, and ly(s) =
$1 4+ s2 — b. For s € P, the Legendre transform of Fj is given by
Go(s) = %[sl log s1 + salogse + (a+b— s1 — s2)log(a+b— s; — s2)
+ (51 + s2 — b)log(s1 + s2 — b) — (s1 + s2) log(s1 + s2) — alogal.
3.2. The class o (X, w)

DEFINITION 3.5. Let F' : R®™ — R be a convex function such that F <
Fp 4+ C. We say that F has full Monge—Ampére mass if

| MAR(F) = | MAR(Fy) = n!vol(P).
R” R”
Recall that a toric point of X is a point fixed by the action of the complex
torus (C*)™ on X.
THEOREM 3.6. Let ¢ € PSHyo (X, w). The following are equivalent:
<1> 2 € gtor(X7w)7.
(i) Gy is finite on int P;
(ili) Fy, has full Monge-Ampére mass;
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(iv) for every e > 0 there exists a compact set K. C (C*)" such that
o(2) > —max{ log |z | ... log |zl[} on (€)™ \ K.

(v) the Lelong numbers v(p,p) equal O for allp € X;
(vi) the Lelong numbers v(p,p) equal 0 at all toric points p € X.

Proof. To prove that (i)=(ii), if ¢ € Eor (X, w) then ¢ € &, tor(X,w) for
some function xy € W. By Proposition 3.9, G, € Ly(P), so G, < oo a.e.
on P. Since Gy, is convex, this implies that G,(s) < oo for all s € int P. The
implication (ii)=-(iii) follows from Lemma 2.8.

We next prove that (iii)=-(i). Consider the measure (wj) defined as
the non-pluripolar product of the positive closed currents w, := w + ddp
[IBEGZ, Definition 1.1]. As ¢ is locally bounded on (C*)", the Bedford-Taylor
product wj; = wy A -+ Aw, is well defined on (C*)" [BT76, BT82|. Since
(C*)™ = X \ A, where A is an analytic subset of X, it follows from [BEGZ,

p. 204, Proposition 1.6] that (w?) is the trivial extension of wg to X. Then

V= | wi= | (dd°F,oL)"

X (C*)n (C*)n
= | MA=(F,) = | MAg(R) = [ o™,
R™ R™ X

Therefore (wy;) has full mass, so ¢ € Eor(X,w) and MA(p) = (w) [BEGZ,
Section 2].
To show that (ii)=-(iv), let ¢ > 0. Using Lemmas 2.8 and 3.1 we get
p=(F,—Fy)oL>—-cFpoL—-C— M,
with some constants C, M. > 0. By Lemma 2.7 there exists a constant a > 0
such that Fp(x) < amax{|zi|,...,|rn|}. These imply that
¢(z) > —2ae max{|log |z1]|,...,|log]|zn||}

for z € (C*)"\ K., where K. = {e¢Fpo L < C + M_}.

Conversely, to prove that (iv)=(ii), we let € € (0,1) and by applying
Lemma 2.8 we need to show that there exists M. > 0 such that F, >
(1 —e)Fp — M.. By Lemma 2.7 we have Fp(z) > bmax{|xi|,...,|z,|} for
some constant b > 0. Using (iv) and Lemma 3.1 we obtain

Fo(L(2)) = Fo(L(2)) + #(2)
> Fp(L(z)) — C — bemax{|log |z1]|,.. ., |log|zn||}
> (1 ) Fp(L(z) — C
for z € (C*)" \ K., where K. C (C*)" is a compact set. Since F,, F'p are
continuous this implies that F,(L(z)) > (1 —¢)Fp(L(z)) — M. on (C*)" for
some constant M, > C.



Toric pluripotential theory 229

Recall that functions in the class £(X,w) have zero Lelong number at
each point. To complete the proof we assume that ¢ € PSH. (X, w) has
zero Lelong number at all the toric points of X and show that (iv) holds.

Let € > 0 and let py,...,py be the toric points of X. We denote as
before by z = (21, ..., 2,) the coordinates on the complex torus (C*)" C X.
For 1 < j < N, there exists an open set V; such that p; € V; C X, and
a biholomorphic map ®; : V; — C" such that @;(p;) = 0, (C*)" C Vj,
Q;((C*)") = (C*)", and X = Vi U---UVy (see e.g. [ALZ, Proposition 4.4
and its proof|). Moreover, if ®;(z) = (¢ = ((1,..., () then

(log|Cil,...,1log|C]) = Aj(log|z1],...,log|zn]),  where A; € GLy,(Z).

We denote by ||Aj|| the operator norm of A; with respect to the sup norm
(ie. |4Ajz|loo < [[Ajllocllz]loo) and let v := max{||A1l/oc,- -, ||AN]loo}. Since
X is compact, we can find R > 0 such that X = Ujvzl @;1(A”(O, R)), where
A™(0, R) C C™ is the open polydisc of radius R centered at 0.

We observe that (Qﬁj_l)*(w\(c*)n) = dd°F] o L, where L(C1,...,(n) =
(log|¢i], ... ,log|¢y]) and FJ : R™ — R is a smooth strictly convex function
such that Fg o L extends to a smooth plurisubharmonic function on C". It
follows that VFg (R™) C (0,00)™. Moreover, there exists a convex function
F} : R" — R such that VF}(R") C [0,00)" and Fo L = Fj oL+ @od; "
on (C*)". The function Fg, o L extends to a plurisubharmonic function on C"
and has Lelong number V(Fé o L,0) = 0, since Lelong numbers are invariant
under biholomorphic maps. Hence there exists r; = 7;j(¢) > 0 such that
Fé(log ry...,logr) > %slogr for 0 < r < r;. Since Fé is increasing in each
variable, this implies

Fé(log IC1], -, 1og |Cal) > %5 min{log [(1],...,log|¢,|}

if min{|Ci|,...,[¢nl} < 7). So there exists a constant M. > 0 such that
o @51 (Q) = Flo L(Q) — Ff o L(¢) > zemin{log[Gi], ..., log [¢al} — Me
for ¢ € A™(0, R) with min{[(i[,...,|(.|} < rj. By shrinking r; we obtain
po®;1(¢) 2 emin{log |G, log |¢al} = —e max{[log|Ci]],..., [log|Cul|}
for ¢ € A™(0, R) with min{[(i|,...,|C.|} < rj. It follows that
o(z) > —yemax{‘log \le, ol ‘log |zn|‘}
if z € Uy := (C)"N®; (A0, R)N{¢ € C* : min{[G1l, ..., [al} < 7}). We

note that U, := Uévzl U; C (C*)™ is open and K, := (C*)"™ \ U; is compact.
Moreover the above lower estimate on ¢ holds on (C*)" \ K.. =
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COROLLARY 3.7. If ¢ € &ior(X,w) and x is a non-negative continuous
function on R™ then

| (xoL)(ddF,0L)" = | xMAR(F,) =nl | x(VGy(s))dV(s).
(C*)n R int P

Proof. The first equality follows from Lemma 2.3. The second one fol-
lows from [BB, Lemma 2.7], since F,, has full Monge-Ampére mass by The-
orem 3.6. m

ExamMpLESs 3.8. If X = P” is the complex projective space and w is
the Fubini-Study Kéhler form, then Fy(z) = 1log(1+ 31, €*) and P =
VEy(R™) is the simplex

n
P:{s:siZO,lgign,Zsigl}.
=1

Thus d = n+1, 4i(s) = s; for 1 <i <n, and £py1(s) =1 — > 1 ;5. The
Legendre transform of Fy is

n

Go(s) = ;[isilogsi + (1 — Zsj> log<1 — isjﬂ.

j=1 j=1
This coincides with the function given by Guillemin’s formula.

1° Let [2] = [20 : 21 : ... : 2] denote the homogeneous coordinates on P".

The function
p1[z] = log |z1| —log ]|
is w-psh and toric. It does not belong to the class Eop(X,w) since it has
positive Lelong numbers along the toric hyperplane (z; = 0). The associated
convex function F} : R™ — R is given by Fi(x) = x; and its Legendre
transform is
Gi(s)=0 if s=(1,0,...,0),

and G1(s) = oo otherwise.
2° The function

pale] = ymax log|=] — log 2]

is w-psh and toric. It does not belong to the class Eor(X,w) since it has
one positive Lelong number at the point [1: 0 : ---: 0]. The corresponding
convex function is Fy(x) = maxj<;<, x; and its Legendre transform is

n
Cia(s) = 0 ifse{sizo,lgign,zsi:1}’
=1

and Ga(s) = oo otherwise.
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3.3. The classes &, or(X,w). If x € W, we define L, (P) to be the set
of lower semicontinuous functions G : P — R U {oo} such that

S —X<m1;nG - G(s)) dV(s) < oo.
P

PROPOSITION 3.9. Let ¢ € PSHio (X, w). If x € W and ¢ € &y tor(X, w)
then G, € Ly (P). Conversely, if p > 1 and G, € LP(P) then ¢ € &L (X, w).

tor

Proof. For the first claim, let ¢ € PSHior (X, w)NL>(X) be such that F,
is smooth and strictly convex, and F, < Fp < Fy. We prove the following
a priori estimate:

[ —X(—Go() dV(5) < — | —x(¢) MA(p).
int P X
Note that ¢ <0 on X and G, > Gp = 0 on P. Moreover, by Proposition 4.1
below and Lemma 2.6, VF, : R" — int P is bijective. Since Fy > Fp and
Fo(x) = (x,5) — Gu(s) for x = VG, (s), we obtain
(Fo — Fy) o VGy(s) > (Fp — Fp) 0o VG (s)
= Fp(VGy(s)) — (VGp(s).8) + Gials) = Gols) 2 0,

where s € int P and the last estimate follows from the definition of Fp.
Applying Lemmas 2.6 and 2.3 we get

[ —X(=Go()dV(s) € | —x((Fy— Fo) o VG,o(s)) dV ()

SRR

int P int P
1
] S —x(Fyp — Fo) MAR(Fy)
on
1
=~ | X(©)MA(p).

(€
Let now ¢ € & tor(X,w) be such that F, < Fp — 1. There exists a

sequence ¢; € PSHio (X,w) N L>®(X) such that ¢; \, ¢, the associated
functions F,; are smooth and strictly convex, and F,; < Fp. Then

| —x()) MA(p)) = | —x(9) MA(p)

X X
as j — o00. Since Gy, /" Gy, it follows by the a priori estimate applied to ¢;
and by the monotone convergence theorem that

| X(~Gu() dV(5) < - | ~x(p) MA(p) < o0,
P X
so Gy, € Ly (P). This concludes the proof of the first claim.
Conversely, let p > 1 and consider the space of Kéhler potentials H =
{p € C®(X) :w+dd°¢ > 0} endowed with the metric
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1
oo o) = it (V1 MAG0) " at}, (or00) € #2
0 X

where the infimum is taken over all smooth paths [0,1] 5 t — ¢; € H joining
©1 to wo. It is shown in [Dar, Theorem 3| that if 1, @2 € H then

(2) | o1 — palP MA (1) < Cpdy(ip1, p2)"

X
for some constant C}, > 1 depending on p. On the other hand if ¢1,¢2 €
H N PSHior (X, w) are determined by convex functions Fi, F» with Legendre
transforms G1, Go then, by |G, Proposition 4.3|,

(3) dp(p1,p2)" = | |G1 — Ga|P aV.

P
If o € HNPSHor (X, w), we apply (2) and (3) with ¢1 = ¢ and 2 = 0, and
obtain

S [P MA(p) < Cp S |Gy — GolPdV < 2p_lcp(”Ggo||€p(p) + ||G0||I£p(p))~
X P
Let now ¢ € PSHyor (X, w) be such that G, € LP(P), and take a sequence
¢j € H N PSHor(X,w) such that ¢; N\, ¢. Then G,; /" Gy, so by the
above estimate applied to ¢; and by dominated convergence we conclude
that sup; { [P MA(g;) < oo. Hence p € & (X, w). =

tor

EXAMPLE 3.10. Let X = P! and w be the Fubini-Study Kahler form. By
Examples 3.8 the corresponding convex function is Fy(z) = 3 log(1+€%**) and

P = F{(R) = [0, 1]. Let ¢ be the toric w-sh function associated to the convex
function F(z) := Fp(xr) = max(z,0). Note that the Legendre transform of
Fis G =0on [0,1], and dd°F(log |z]|) is the (normalized) Lebesgue measure
on the unit circle S* C P'. We consider the sequence {p;} of toric w-sh
functions defined by the convex functions

Fj(z) = (1 —¢j)F(z) + ¢ max(xz, —C}),

where ¢; decreases to 0, while C; increases to co. A straightforward compu-
tation shows that the corresponding Legendre transforms are

Gj(s) = max(Cj(e; — 5),0), 0<s<1.

Note that
0j(2) —p(z) = —¢j log™ |z| + ejmax(log |z|, —C})
—£;C; 2| < e ¢,
= { ¢;log|z], e i <z < 1,
0, |z| > 1.

Thus we obtain the following:
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e v; — ¢ in L if and only if ¢; — 0;

e p; — ¢ in L if and only if £;C; — 0;

e ©; — ¢ in Wh? (that is, the natural topology on £'(X,w)) if and only if
6?03' — 0.

3.4. Finite moments. It is tempting to think that one can characterize
the condition ¢ € &L (X,w) by a finite moment condition, as follows. Let
¢ € Eor(X,w), pr(p) := MAR(F,), 0 < ¢ < n, and ¢* = ng/(n — ¢) denote
the Sobolev conjugate exponent of ¢. Does one have
¢ € E(X,w) & | ||al|”dum(p) < oo?
R
This question was raised by E. Di Nezza, who showed in [DiN, Proposi-
tion 2.5| that, if ¢ € Eor(X,w), n > 2 and 1 < g < n, then

V12l dpn(p) <00 = ¢ € EL(X,w).
Rn
We have the following partial answer to this question in dimension n = 1,
i.e. when X = P! and w = wyg:

PROPOSITION 3.11. Let (X,w)= (P!, wrs), €& or(X,w), and 0<g<1.
(i) If ¢ > 1/2 and g |x|9 dur(p) < oo then ¢ € EL (X, w).

tor
(i) If ¢ € L (X, w) then (4 |z]|? dur(p) < oo for all ¢ < 1/2.
(iii) There exists a function ¢ € EL (X, w) with (g |z|'/2 dpg (@) = co.

Proof. Recall that in this case P = [0, 1] (see Example 3.10).

(i) Replacing ¢ by ¢ + C we may assume that minj ;) G, = Gy(a) =0
for some a € [0,1]. Note that G, is convex and finite, so it is differentiable
a.e.on (0,1). Let s, € (0,1) be such that G{,(s), G}, (t) exist and ¢ is between
a and s. Since G, is convex and assumes its minimum at a, we have |G(,(t)| <
|G',(s)|. Tt follows that

0<Gulo) =[G dt| < [fe, 011G

s 1
< 161G, W1 | < 169§ IG 017t
a 0
Using Corollary 3.7 we obtain

1 1 : q/(1=q) ¢
|Gl ds < (JIGL0N ) NIl ds
0 0 )
1
- (S ‘G:D(S)‘qu) V= = <S ’[L"q dMR((P))I/(l_q) <o
0 R

Since q/(1 — q) > 1, Proposition 3.9 yields ¢ € ga/(1=4) (X,w).

tor
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(ii) Let p € &L, (X,w) and ¢ < 1/2. Then G, € L (P) by Proposition 3.9.
The conclusion follows by showing that if Fi, < Fp on R then
2(1 —

el dus (o) < 252G, 1,

R
Note that it suffices to prove this in the case when ¢ is bounded. Indeed,
if p € EL,(X,w) is such that F,, < Fp on R, then there exists a sequence
of bounded toric w-psh functions ¢; “\ ¢ such that F,, < Fp on R. Hence
0 < Gy, 7 Gy Since pug(pj) — ur(p) weakly on R it follows by the
monotone convergence theorem that

. 2(1 —
el dps (o) < timinf § ol dis(3) < 232 Gl
J—00 1-— 2q L

R R

Assume that ¢ is a bounded toric w-psh function such that F, < Fp.
Then G, > 0 is a continuous convex function on [0,1], and we fix a € [0,1]
such that minj ;) G, = G,(a) > 0. Applying Hélder’s inequality with p =
1/(1 — q) we deduce, since 1/(1 —pq) =(1—¢q)/(1 —2q) > 1, that

S!G’ ]qu—Ss 1(=sG,(s))? ds

0 0
a/¢ /p
( SG' > <§)s pqu)
L -~ /p

S( aGy(a) + Gw(s)ds> Q pqu)
1-—

< LGyl

Similarly,
1 1

VG (s)|9ds = 3(1 —5)79((1 - 5)G,(s)) ds
1

( (1 —5)G(s ds)q(x (1—3)*pqu)
( (1-a)G +§G¢(s) ds)qd (1—s) P4 ds) v

a

1/p

IN

1

—q q

Using the last two estimates and Corollary 3.7 we obtain

: 2(1—q)
V1219 dur(p) = | 1G},(s)|% ds < 2 Gl 74
R 0
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(iii) Let ¢ € PSHior (X, w) be determined by a convex function F, defined
as follows on the prescribed intervals and smooth on R:

() r—2y/x/Inz if x> €3,
€Tr) =
0 if x <0.

Note that Fi,(z) < z < Fy(z) = log(1+¢€?®) for £ > 0, and ¢ € Eor(X, w)
since F, has full Monge-Ampére mass. Moreover,

1 1—8(Inz)~2 1
- < F'x)= f; > ¢,
1823/2Inx — o () 2032z~ 2032 =
Therefore
1 o0
1/2 g1 - _
S [ 7R () 18 S lnx B
R e3
Since ¢ € Eior (X, w), the measure MA(p) does not charge polar sets. Hence

[ (—o)MA(p) = (7o - F)F) < C + | ?X;Fg( ) da
X e3

=

—— dx < 00,

for some constant C, which implies that ¢ € &L (X, w). =

4. Higher regularity

4.1. Continuous toric functions. These can be characterized as fol-
lows:

PROPOSITION 4.1. Let ¢ € PSHio (X, w). The following are equivalent:

(i) ¢ is continuous on X;

(i) o € L2(X);
(i) Fp —C < F, < Fp+ C for some constant C > 0;
(iv) Gp—C <G, < Gp + C for some constant C > 0.

Moreover, we have in this case |[F, — Fpl|peorn) = |Gyl (p)-

Proof. Assume that ¢ € PSH¢,(X,w) is bounded. Using the notation
from the proof of Theorem 3.6 we let p1,...,pn be the toric points of X
and p; € V; C X be open sets with biholomorphic maps @; : V; — C" such
that @;(p;) = 0, (C*)" C V;, @,;((C*)" ) CH" X =WViuU---UWy. If
L(¢) = (log IC1],- -5 1og|Gal), € € (C” = @;(V}), there exist convex functions
Fé,F J R R such that FJ o L, FJ o L extend to a plurisubharmonic
function, respectively to a smooth plurlsubharmonlc function, on C", and
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Fg oL = Fg oL+ ¢po 45;1 on (C*)". Since ¢ is bounded and since polyra-
dial plurisubharmonic functions on C™ are continuous, this shows that ¢ is
continuous on each Vj, hence on X.

Using Lemma 3.1 we see immediately that (ii)<>(iii), while (iii)<(iv)
follows from the definition of the Legendre transform. Moreover, if (iii) holds
with a constant C' then (iv) holds with the same constant, and vice versa.
This implies the last claim. =

We note that assertion (iv) in Proposition 4.1 is equivalent to the condi-
tion that G, = oo on R™ \ P and that G is bounded above on P.

4.2. Log-Lipschitz Legendre transforms. Recall that a continuous
function u : 2 C R® — Ris log-Lipschitz if its modulus of continuity w,,(z, )
is locally bounded from above by Crlogr.

In order to prove Theorem C we need the following preliminary results.

LEMMA 4.2. Letn >1 and
1
I ="+ A D log(L+ A1t dt, A > 0.
0
If 0 <z <1/e and Ay = (n+ 3)zlog(1/x) then zI(A\;) < 1.

Proof. We have

1
1
I <@+ A7) log +); dt
) A=
B l_'_l o 1+/\+n—1+n—1
“\NTn) % ) n2

Since x < 1/e, we see that 1 + Ay < 1+ (n+ 3)/e and

2 1 1 1 1 1
log Slog—i—log(—i—) — loglog — < log —.
= x n+3 e x T
Therefore

1 1 1 n—-1 1

I(\; — 4+ — ) log— —

( )<()\I+n>0gaz+ " +o

1 (n—1)

11 1+1
- Clog — 4 =
(n+3)z  (n+3)zlog: n &z n

< 1 n n :L'I 1 n Ty 1 n n 2 < 1

— —log — 4+ — — — —.
“zz\n+3 n gw n) x\n+3 ne x .
PROPOSITION 4.3. Let P C R"™ be a compact convexr polytope and let

f:int P — R be a locally Lipschitz function. If eIVl e LY(P) for some
€ > 0 then f extends to a log-Lipschitz function on P.
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Proof. If n = 1 then P = [a,b], and for a < s; < s2 < b it follows by
Jensen’s inequality that

Fls2) — fls1)] < - 525|f’(t)| dt < 22— log( ! f el dt)
€ SS9 — 81

A

e
S1 S1

!
S2 — 81 log ||6’E‘f |||L1[a,b}
g S92 — 81 '

<

We next consider the case n > 1. Since P is convex there exists a constant
¢ € (0,1) with the following property: for every si,se € P there exists a
compact subset A of the hyperplane perpendicular to the segment [s1, so] at
its midpoint such that A C int P and

|51 — sal

(4) c|ls1— sl < V1 (A) <1, st — o] < for all o € A,

where V;,_1(A) is the (n —1)-dimensional Hausdorff measure of A. Note that
we then have ||sg — o] < ||s1 — s2]|/2¢ for all o € A.
We will show that if s1,s2 € int P are such that ||s; — s2|| < 2/e then
) — <2C|s1 — log ——m—
(5) |f(s1) — f(s2)| <2C||s1 — s2| log st = sl

where
n+3

C= max(1, [|eF1V )| 1 p)).

This clearly implies that f extends to a log-Lipschitz function on P.
Fix s1, s9 € int P with ||s; — s2|| < 2/e and let A be a set as in (4). Note
that (5) follows if we prove that

R —

I <(C — |
Vo) < Clls1 — 52|/ log

S denfl
A
since the same holds with so in place of sy.

We may assume that s; = (0,a) € R" ! x R, with @ > 0, and that
A= B x {0} c R"! x {0}. Then ||s; — sa|| = 2a. We set 0 = (¢/,0) € A
for o' € B. Since f is locally Lipschitz on int P and, by (4), ||s1 — 0| < a/c
for o € A, we obtain

(1) |Vacr(B)f(s1) = | f(o) dVaa(0)

B

cllsy — sa||"’

1
= H [ (VA1 t)s1 +t0), 51 — o) dt dVi_1 (o)
BO
1
< \VIVF( = )51+ to) | st — ol| dt dViir (o)
BO
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1
< 2 IVA(L = )51 + to)]| dt dVaa (o)
BO
1

= L T eITA 1+ 107
BO
where p is the measure on B x [0, 1] given by du = at™~'dtdV,,_;.

Consider the weight x(z) = (x+1)log(z 4+ 1) — z, > 0, with conjugate
weight (Legendre transform) X*(y) =eY—y—1,y >0, and the Orlicz spaces
LX(B x [0,1], ) and LX" (B x [0,1], ). Recall that the norm of the space
LX(B x [0,1], ) is given by

lgll :=int{x>0: | x(lgl/3) du < 1},
Bx[0,1]
and one has g < max(1,§ 5,0, x(lg]) dp)

Estimating the last integral in (7) by the multiplicative Holder—Young
inequality (see [BB™, Proposition 2.15] or [RR]) we get

Var(B)f(s1) = | f(0) dVa (o)

B

2
<~ |elvsa -9
If I' is the cone in R™ with vertex s; and base A then
S IV dv,, = S EIVI((A=t)si+to)]| du.

*|‘t_n+1||X‘

r Bx[0,1]
Since x*(y) < €Y it follows that
eV £((1— 1) oosmax(L, [ SO0l g,
Bx[0,1]
< max( f eIVl ay, )
P

It remains to estimate the second Orlicz norm in (8). We have

| ox@ /) dp

Bx[0,1]
Lr/p—nt1 4+l 4+l )
= 1)1 1) — " dt dVy, 1,
G e K G ) e AR

< aVp—1(B)I(N),
where I(\) is the function from Lemma 4.2. Note that
aanl(B) < ||51 - 82H/2 < 1/6,
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since ¢||s1 — s2||" "t < V5i_1(B) = V,,_1(A) < 1 by (4). Lemma 4.2 implies
Vie1(B)YI(Ng) <1 if Ao = 3)aV,_1(B)log ———,
a 1( ) ( 0)— 1 0 (n+ )a‘ 1( ) Oga/vn_l(B)
hence
[y, = inf{)\ >0 | XN du < 1}
Bx[0,1]
1

< Ao < (n+3)aV,_1(B)log 51— sl T’

By (8) we conclude that

1 /
fs) =y Jif @) dlaale)
2(n +3) v 1

This yields (6), since a = ||s1 — s2|/2. =
We now prove Theorem C stated in the Introduction.

THEOREM 4.4. Let ¢ € Eor(X,w). The following properties are equiva-
lent:

(i) there exists € > 0 such that exp(—e PSHyor (X, w)) C LY (MA(¢));
(ii) there exists € > 0 such that eflIVGel ¢ Ll(P);
iii) the function G, is log-Lipschitz on P;
©
(iv) there exists a constant C > 0 such that ||VGy(s)|| < Clog W for
almost all s € int P.

Recall that Guillemin’s potentials are only log-Lipschitz continuous on
the Delzant polytope P, although they correspond to smooth toric w-psh
functions on X . The observation we make here is that this regularity actually
corresponds to a class of toric w-psh functions which seem to be merely
Holder continuous on X (see Remark 4.5).

Proof of Theorem 4.4. We set ugr(p) := MAR(F,). Since ¢ € Eor(X,w),

the measure MA(¢) does not charge pluripolar sets, so by Lemma 2.3,

S 6—61/) MA(CP) _ S 6—5(F¢—F0)0L(dch¢ ° L)n _ S e—e(F¢—F0) d,uR(SD)

X ((C*)n R
for every ¥ € PSHyo (X, w). From Lemma 3.1 and Proposition 3.2, it follows
that (i) is equivalent to

(i) §gn e sF=FP) dug(p) < oo for any convex function F : R® — R with

F <Fp+O(1) on R".



240 D. Coman et al.

To show (i)« (ii), we may assume that 0 € int P and we fix constants
a,b > 0 such that B(0,b) C P C B(0,a). Then by Lemma 2.7, b||z| <
Fp( ) < allz||. If (") holds, we apply it with F' = 0 to conclude by Corol-
lary 3.7 that

[ eIVl ay(s) = | ol dpug(p) < | 7@ dus(p) < oo,
int P R" R"
which gives (ii). Conversely, assume (ii) holds and let F' be a function as
n (i’). Then by Proposition 3.2, VF(R") C P C B(0,a), so
1
F(z) = F(0) + (VF(tx), z) dt > —a|z| + F(0).
0
Therefore Fp(z) — F(x) < 2al|z|| — F(0) and
[ e F=F) dpug (o) < 57O | el dpg ()
R" R7
— ¢~ 3. F(0) S VGBIl gy (s) < oo
int P
o (i') holds.

Proposition 4.3 shows that (ii) implies (iii). We next prove that (iii)
implies (iv). Since Gy, is log-Lipschitz on the compact polytope P it follows
that there exists a constant C' > 0 such that ||s — §'|| < C/2 and

C
ls = 'l
for all 5,5’ € P. Let s € int P be such that G, is differentiable at s, and
VG, (s) # 0, and let v be the unit vector in the direction of VG, (s). We
consider the convex function

9(t) = Gols +t), 0<t <t

where t* > 0 is defined such that s* := s+ t*v € OP. Then t* = ||s* — s|| >
dist(s,0P) and

|Go(s) = Go(s)] < Clls — 5| log

196, (s)]] = g/(0) < L =90 _ Gels) = Gols)

t Is* = ]|

C
<(Clog—— < Clog —+——.
=8 |s* —s|| — ©8 dist(s, dP)
Finally, we note that (iv) clearly implies that (ii) holds with £ > 0 small
enough. m

REMARK 4.5. It is tempting to think that these conditions are all equiv-
alent to the fact that ¢ is Holder continuous. This is easily seen to be the
case when n = 1. We refer the interested reader to [DD| for more infor-
mation, geometric motivations, and related questions connecting the Hélder
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continuity of Monge—-Ampére potentials with the integrability properties of
the associated complex Monge-Ampére measure.

EXAMPLE 4.6. Fix 0 < a < 1 and consider the convex function F :
R — R defined by F(x) = e** when x < 0 and F(z) = x + 1 when z > 0.
It determines a Holder continuous toric wpg-psh function ¢ on P! which is
defined in C by

() |z|* —log /1 + |z|? if |z] <1,
Z) =
4 log |z| + 1 —log+/1+|2]? if |z| > 1.

We let the reader check that the Legendre transform of F' is given by

G(s) 2log2 -2 if0<s<a,
S) =
-1 fa<s<l.
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