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Abstract. We study finite energy classes of quasiplurisubharmonic functions in the
setting of toric compact Kähler manifolds. We characterize toric quasiplurisubharmonic
functions and give necessary and sufficient conditions for them to have finite (weighted)
energy, both in terms of the associated convex function in Rn, and through the integrabil-
ity properties of its Legendre transform. We characterize log-Lipschitz convex functions on
the Delzant polytope, showing that they correspond to toric quasiplurisubharmonic func-
tions which satisfy a certain exponential integrability condition. In the particular case of
dimension one, those log-Lipschitz convex functions of the polytope correspond to Hölder
continuous toric quasisubharmonic functions.

Introduction. A toric compact Kähler manifold (X,ω, T ) is an equiv-
ariant compactification of the torus T = (C?)n equipped with an (S1)n-in-
variant Kähler metric ω. Then ω can be written as

ω = ddcF0 ◦ L in (C?)n,

where F0 : Rn → R is a smooth strictly convex function and

(1) L : (C?)n → Rn, L(z1, . . . , zn) = (log |z1|, . . . , log |zn|).

The celebrated Atiyah–Guillemin–Sternberg theorem asserts that the
moment map ∇F0 : Rn → Rn sends Rn onto the interior of a compact
convex polytope

P = {`i(s) ≥ 0 : 1 ≤ i ≤ d} ⊂ Rn,
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where d ≥ n+ 1 is the number of (n− 1)-dimensional faces of P and

`i(s) = 〈s, ui〉 − λi,

with λi ∈ R and ui a primitive element of Zn.
Delzant [Del] observed that in this case P is what is now called “Delzant”,

i.e. there are exactly n faces of dimension n − 1 meeting at each vertex,
and the corresponding ui’s form a Z-basis of Zn. He also showed conversely
that there is exactly one (up to symplectomorphism) toric compact Kähler
manifold (XP , {ωP }, T ) associated to a Delzant polytope P ⊂ Rn. Here {ωP }
denotes the cohomology class of the T -invariant Kähler form ωP .

Let
G0(s) := sup

x∈Rn
(〈x, s〉 − F0(x))

denote the Legendre transform of F0. One has G0 = ∞ in Rn \ P and, for
s ∈ intP = ∇F0(Rn),

G0(s) = 〈x, s〉 − F0(x) ⇔ s ∈ ∇F0(x) ⇔ x ∈ ∇G0(s).

Guillemin [Gui] observed that a “natural” representative of the cohomol-
ogy class {ωP } is given by

G(s) =
1

2

d∑
i=1

`i(s) log `i(s).

We refer the reader to [CDG] for a neat proof of this beautiful formula of
Guillemin. Observe that G is only log-Lipschitz regular on P , although the
original Kähler potential is smooth.

The purpose of this note is to undertake a systematic study of toric
pluripotential analysis. There are three ways to understand a toric quasi-
plurisubharmonic function and its Monge–Ampère measure:

• by working directly on X and imposing toric symmetries,
• by looking at the corresponding object (convex function, real Monge–

Ampère measure) in Rn after a logarithmic transformation, and under-
standing the asymptotic properties at infinity,
• by understanding the behavior near the boundary of the polytope of the

Legendre transform of the corresponding convex function.

We refer to Section 3 for the definition of toric ω-plurisubharmonic
(ω-psh) functions on X and the corresponding energy classes. If ϕ is ω-psh,
we denote by Fϕ the corresponding convex function on Rn and by Gϕ its
Legendre transform (see Sections 2 and 3).

Our main results are as follows. We first describe the class of toric ω-psh
functions (see Proposition 3.2):
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Proposition A. Let FP (x) = maxs∈P 〈x, s〉 denote the support function
of the polytope P . The following are equivalent:

(i) ϕ ∈ PSHtor(X,ω);
(ii) Fϕ ≤ FP + C for some constant C;
(iii) Gϕ =∞ on Rn \ P ;
(iv) ∇Fϕ(Rn) ⊂ P .

We then characterize finite energy toric ω-psh functions and their
weighted versions, showing in particular the following (see Theorem 3.6):

Theorem B. Let ϕ ∈ PSHtor(X,ω). The following are equivalent:

(i) ϕ ∈ Etor(X,ω);
(ii) Gϕ is finite on intP ;
(iii) Fϕ has full Monge–Ampère mass;
(iv) the Lelong numbers ν(ϕ, p) equal 0 for all p ∈ X.

In Theorem 4.4 we study more regular toric ω-psh functions, character-
izing the maximal log-Lipschitz regularity of Legendrian potentials:

Theorem C. Let ϕ ∈ Etor(X,ω). The following properties are equiva-
lent:

(i) there exists ε > 0 such that exp(−εPSHtor(X,ω)) ⊂ L1(MA(ϕ));
(ii) the function Gϕ is log-Lipschitz on P .

It is tempting to think that these conditions are all equivalent to the
fact that ϕ is Hölder continuous. This is easily seen to be the case when
n = 1. We refer the interested reader to [DD+] for more information, geo-
metric motivations, and related questions connecting the Hölder continuity
of Monge–Ampère potentials with the integrability properties of the associ-
ated complex Monge–Ampère measure.

The paper is organized as follows. In Section 1 we recall some basic facts
about ω-psh functions on any compact Kähler manifold (X,ω), together with
the definition and main properties of various energy classes following [GZ].
Section 2 deals with the relevant properties of convex functions and their
Legendre transforms. In Section 3 we study energy classes of toric ω-psh
functions on a toric compact Kähler manifold (X,ω), and in Section 4 we
conclude by looking at questions about the higher regularity of such func-
tions.

1. Finite energy classes. In this section we let (X,ω) be a compact
Kähler manifold of dimension n, and we recall the definition of finite energy
classes of quasiplurisubharmonic functions following [GZ].
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1.1. Bedford–Taylor theory. A function on X is quasiplurisubhar-
monic if it is locally the sum of a psh function and a smooth one. In par-
ticular, quasiplurisubharmonic functions are upper semicontinuous and in-
tegrable.

Definition 1.1. A function ϕ : X → R ∪ {−∞} is ω-psh if it is quasi-
plurisubharmonic in X and if the current ω + ddcϕ is positive on X.

Let PSH(X,ω) denote the set of all ω-psh functions onX. This is a closed
subset of L1(X,ωn).

Bedford and Taylor [BT82] showed that one can define the complex
Monge–Ampère operator

MA(ϕ) := (ω + ddcϕ)n = (ω + ddcϕ) ∧ · · · ∧ (ω + ddcϕ)

for all bounded ω-psh functions. They showed that whenever (ϕj) is a se-
quence of bounded ω-psh functions decreasing to ϕ, the sequence MA(ϕj)
of measures converges weakly towards the measure MA(ϕ). Note also that�

X

MA(ϕ) =
�

X

ωn =: Vω.

At the heart of Bedford–Taylor theory lies the following maximum prin-
ciple: if u, v are bounded ω-psh functions, then

(MP) 1{v<u}MA(max(u, v)) = 1{v<u}MA(u).

The maximum principle (MP) implies the so-called comparison principle:
if u, v are bounded ω-psh functions then�

{v<u}

MA(u) ≤
�

{v<u}

MA(v).

1.2. The class E(X,ω). If ϕ ∈ PSH(X,ω), we let

ϕj := max(ϕ,−j) ∈ PSH(X,ω) ∩ L∞(X).

It follows from Bedford–Taylor theory that the MA(ϕj) are well defined
measures of total mass Vω. The following monotonicity property holds:

µj := 1{ϕ>−j}MA(ϕj) is an increasing sequence of Borel measures.

The proof is an elementary consequence of (MP) (see [GZ, p. 445]). Since
the µj have total mass bounded above by Vω, we can define

µϕ := lim
j→∞

µj ,

which is a positive Borel measure on X of total mass ≤ Vω.
Definition 1.2. We let

E(X,ω) := {ϕ ∈ PSH(X,ω) : µϕ(X) = Vω}.
For ϕ ∈ E(X,ω), we set MA(ϕ) := µϕ.
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The definition is justified by the following important fact proved in [GZ]:
The complex Monge–Ampère operator ϕ 7→ MA(ϕ) is well defined on the
class E(X,ω), in the sense that if ϕ ∈ E(X,ω) then for every decreasing
sequence ϕj ↘ ϕ of bounded ω-psh functions the measures MA(ϕj) converge
weakly on X towards µϕ.

Every bounded ω-psh function clearly belongs to E(X,ω). The class
E(X,ω) also contains many ω-psh functions which are unbounded. When
X is a compact Riemann surface, E(X,ω) is the set of ω-sh functions whose
Laplacian does not charge polar sets.

Remark 1.3. If ϕ ∈ PSH(X,ω) is normalized so that ϕ ≤ −1, then
−(−ϕ)ε belongs to E(X,ω) whenever 0 ≤ ε < 1 (see e.g. [CGZ]). The func-
tions which belong to the class E(X,ω), although usually unbounded, have
relatively mild singularities. In particular they have zero Lelong number at
every point.

It is shown in [GZ] that the maximum principle (MP ) and the com-
parison principle continue to hold in the class E(X,ω). The latter can be
characterized as the largest class for which the complex Monge–Ampère op-
erator is well defined and the maximum principle holds.

1.3. Weighted energy classes. Let W denote the set of all functions
χ : R− → R− such that χ is increasing and χ(−∞) = −∞.

Definition 1.4. We let Eχ(X,ω) be the set of ω-psh functions with finite
χ-energy,

Eχ(X,ω) := {ϕ ∈ E(X,ω) : χ(−|ϕ|) ∈ L1(X,MA(ϕ))}.

When χ(t) = −(−t)p, p > 0, we set Ep(X,ω) = Eχ(X,ω).

We list here a few important properties of these classes and refer the
reader to [GZ, BEGZ] for the proofs:

• E(X,ω) =
⋃
χ∈W Eχ(X,ω);

• PSH(X,ω) ∩ L∞(X) =
⋂
χ∈W Eχ(X,ω);

• the classes Ep(X,ω) are convex;
• ϕ ∈ Ep(X,ω) if and only if for any (resp. for one) sequence of bounded
ω-psh functions ϕj ↘ ϕ, supj

	
X |ϕj |

pMA(ϕj) <∞;
• if ϕj is a sequence of ω-psh functions decreasing to ϕ ∈ Ep(X,ω), then the

measures |ϕj |pMA(ϕj) converge weakly to |ϕ|pMA(ϕ).

2. Facts on convex functions. We collect here a few properties of
convex functions which will be used later. Some of these are well known,
but proofs are included for the convenience of the reader (see also [BB,
Section 2]).
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2.1. Subgradients and Monge–Ampère measures. Let F : Rn → R
be a convex function. The subgradient of F at x is the set

∇F (x) = {s ∈ Rn : F (y) ≥ F (x) + 〈y − x, s〉, ∀y ∈ Rn}.

We let
∇F (Rn) :=

⋃
x∈Rn

∇F (x).

The Legendre transform G of F is the lower semicontinuous convex func-
tion defined by

G : Rn → (−∞,∞], G(s) = sup
x∈Rn

(〈x, s〉 − F (x)).

Then F is the Legendre transform of G,

F (x) = sup
s∈Rn

(〈x, s〉 −G(s)),

and one has

G(s) = 〈x, s〉 − F (x) ⇔ s ∈ ∇F (x) ⇔ x ∈ ∇G(s).

Lemma 2.1. Let F : Rn → R be a convex function.

(i) If F is smooth and strictly convex then ∇F : Rn → Rn is injective, and
hence an open map.

(ii) If s0 ∈ ∇F (Rn) then G(s0) <∞. Conversely, if G(s) <∞ for all s in
an open ball B(s0, r) then s0 ∈ ∇F (Rn).

(iii) Let Fj : Rn → R, j ≥ 1, be convex functions. Then Fj ↘ F pointwise
on Rn if and only if the Legendre transforms satisfy Gj ↗ G pointwise
on Rn.

Proof. (i) If p 6= q and f(t) := F ((1 − t)p + tq) then f ′′(t) > 0, so
f ′(0) = 〈∇F (p), q − p〉 < f ′(1) = 〈∇F (q), q − p〉. Hence ∇F (p) 6= ∇F (q).

(ii) By the definition of the subgradient, if s0 ∈ ∇F (x) then 〈y, s0〉−F (y)
≤ 〈x, s0〉−F (x) for all y ∈ Rn, so G(s0) = 〈x, s0〉−F (x) <∞. Conversely, by
shrinking r we may assume that G < M on B(s0, r) for some constant M ,
hence 〈x, s〉 − F (x) ≤ M for all x ∈ Rn and s ∈ B(s0, r). Let F̃ (x) =

F (x) − 〈x, s0〉 +M . It follows that F̃ (x) ≥ 〈x, s − s0〉 for all s ∈ B(s0, r),
hence F̃ (x) ≥ r‖x‖. Therefore F̃ assumes a global minimum, i.e. there exists
x0 ∈ Rn such that F̃ (x) ≥ F̃ (x0). Thus 0 ∈ ∇F̃ (x0) = ∇F (x0)− s0.

(iii) Assume that Fj ↘ F . Then Gj ↗ G̃, where G̃ is lower semicontin-
uous, convex and G̃ ≤ G. If F̃ is the Legendre transform of G̃ then we have
Fj ≥ F̃ ≥ F . We conclude that F̃ = F and so G̃ = G. The converse follows
by a similar argument.
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Remark 2.2. Note that if F (x) = ex, x ∈ R, then we have G(0) = 0
but 0 6∈ F ′(R), so the hypothesis that G(s) <∞ in a neighborhood of s0 is
needed in the condition (ii) of Lemma 2.1.

Lemma 2.3. Let F : Rn → R be a convex function. If χ is a continuous
function with compact support on Rn then

�

(C?)n

(χ ◦ L)(ddcF ◦ L)n =
�

Rn
χMAR(F ),

where L is defined in (1), d = ∂ + ∂, dc = 1
2πi(∂ − ∂), and MAR(F ) is the

real Monge–Ampère measure of F .

Proof. Approximating F by a decreasing sequence of smooth convex
functions it suffices to assume that F is smooth. Recall that in this case
MAR(F ) is the measure defined by

MAR(F ) = n! det

[
∂2F

∂xi∂xj

]
dV,

where V denotes the Lebesgue measure on the corresponding Euclidean
space. Note that the function F ◦ L is plurisubharmonic on (C?)n and

∂2(F ◦ L)
∂zi∂zj

=
1

4zizj

(
∂2F

∂xi∂xj
◦ L
)
,

hence

det

[
∂2(F ◦ L)
∂zi∂zj

]
=

1

4n
∏
j |zj |2

(
det

[
∂2F

∂xi∂xj

]
◦ L
)
.

It follows that

(ddcF ◦ L)n =

(
i

π

)n
(∂∂F ◦ L)n

= n!

(
i

π

)n
det

[
∂2(F ◦ L)
∂zi∂zj

]
dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

= n!

(
2

π

)n
det

[
∂2(F ◦ L)
∂zi∂zj

]
dV (z)

= n!

(
2

π

)n 1

4n
∏
j |zj |2

(
det

[
∂2F

∂xi∂xj

]
◦ L
)
dV (z)

=
n!

(2π)n
det

[
∂2F

∂xi∂xj
(log r1, . . . , log rn)

]
dr1 . . . drn
r1 . . . rn

dθ1 . . . dθn,

where we use polar coordinates zj = rje
iθj . Changing variables xj := log rj
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we obtain
�

(C?)n

(χ ◦ L) (ddcF ◦ L)n

= n!
�

(0,∞)n

(
χdet

[
∂2F

∂xi∂xj

])
(log r1, . . . , log rn)

dr1 . . . drn
r1 . . . rn

= n!
�

Rn
χ(x) det

[
∂2F

∂xi∂xj
(x)

]
dV (x) =

�

Rn
χMAR(F ).

For a non-smooth convex function F the positive measure MAR(F ) is the
real Monge–Ampère measure of F (in the sense of Alexandrov; see [Gut]).

The following lemma is proved using an idea of Al Taylor [T].

Lemma 2.4. If F1, F2 : Rn → R are convex functions with F2(x) → ∞
as ‖x‖ → ∞ and F1(x) ≤ F2(x) for all x ∈ Rn, then

�

Rn
MAR(F1) ≤

�

Rn
MAR(F2).

Proof. Fix a compact K ⊂ (C?)n, a number ε > 0, and consider on (C?)n
the plurisubharmonic function

u := max{F1 ◦ L, (1 + ε)F2 ◦ L− C},

where the constant C > 0 is chosen so that u = F1 ◦ L in a neighborhood
of K. Since F2(x)→∞ as ‖x‖ → ∞ it follows that F1 ≤ F2 ≤ (1+ε)F2−C
on Rn \K for some compact K ⊂ Rn. Then L−1(K) ⊂ (C?)n is compact and
u = (1 + ε)F2 ◦ L− C on (C?)n \ L−1(K). We infer that

(1 + ε)n
�

(C?)n

(ddcF2 ◦ L)n =
�

(C?)n

(ddcu)n ≥
�

K

(ddcF1 ◦ L)n.

We conclude by using Lemma 2.3 and by letting K ↗ (C?)n and ε↘ 0.

2.2. Growth properties. Let P be a (compact) convex body in Rn.
Its support function, which is also known as the indicator function, is the
convex function

FP (x) := max
s∈P
〈x, s〉.

Its Legendre transform is the convex function

GP (x) =

{
0 if x ∈ P,
∞ if x 6∈ P.

If Pϑ := ϑ+P is the image of P under the translation by ϑ, and Pλ := λP
is the image of P under the dilation by λ > 0, then
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FPϑ(x) = FP (x) + 〈ϑ, x〉, GPϑ(s) = GP (s− ϑ),
FPλ(x) = FP (λx) = λFP (x), GPλ(s) = GP (s/λ).

Lemma 2.5. Let F : Rn → R be a convex function with Legendre trans-
form G. The following are equivalent:

(i) F ≤ FP + C for some constant C;
(ii) G =∞ on Rn \ P ;
(iii) ∇F (Rn) ⊂ P .

Proof. To show (i)⇒(ii), if F ≤ FP + C then G ≥ GP − C, so G = GP
=∞ on Rn \ P . For (ii)⇒(iii), if s ∈ ∇F (Rn) then G(s) <∞, hence s ∈ P
by (ii).

To prove (iii)⇒(i), let x ∈ Rn and note that if s ∈ ∇F (Rn) then s ∈ P ,
so 〈s, x〉 ≤ FP (x). Since F is locally Lipschitz along the line R 3 t 7→ tx, we
have

F (x)− F (0) =
1�

0

d

dt
F (tx) dt =

1�

0

〈∇F (tx), x〉 dt ≤
1�

0

FP (x) dt = FP (x).

Lemma 2.6. Let F0 : Rn → R be a smooth strictly convex function such
that FP − C ≤ F0 ≤ FP + C for some constant C. Then ∇F0 : Rn → intP
is bijective and ∇G0 : intP → Rn is its inverse, where G0 is the Legendre
transform of F0. Moreover, if χ is a continuous function with compact support
on Rn then�

Rn
χMAR(F0) = n!

�

intP

χ ◦ ∇G0 dV and
�

Rn
MAR(F0) = n! vol(P ).

Proof. By Lemmas 2.5 and 2.1(i), ∇F0 : Rn → P is injective. As FP −
C ≤ F0 we see that G0 ≤ GP +C, so G0 ≤ C on P . Thus intP ⊂ ∇F0(Rn)
by Lemma 2.1(ii), and hence ∇F0(Rn) = intP since ∇F0 is open. If x, x′ ∈
∇G0(s) then s = ∇F0(x) = ∇F0(x

′), so x = x′. Hence G0 is differentiable on
intP and ∇G0 = (∇F0)

−1. The remaining assertions follow by the change
of variables x = ∇G0(s), s = ∇F0(x), so

dV (s) = det

[
∂2F0

∂xi∂xj

]
dV (x) =

1

n!
MAR(F0)(x).

Lemma 2.7. If 0 ∈ intP then there exist constants a, b > 0 such that

b‖x‖ ≤ FP (x) ≤ a‖x‖, ∀x ∈ Rn.

Proof. If a, b > 0 are such that the closed balls B(0, b), B(0, a) satisfy
B(0, b) ⊂ P ⊂ B(0, a), then

b‖x‖ = FB(0,b) ≤ FP (x) ≤ FB(0,a) = a‖x‖.
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Lemma 2.8. Assume that 0 ∈ intP and let F : Rn → R be a convex func-
tion with Legendre transform G, such that F ≤ FP +C for some constant C.
The following are equivalent:

(i) G(s) <∞ for all s ∈ intP ;
(ii) for every ε ∈ (0, 1) there is Mε > 0 with F ≥ (1− ε)FP −Mε on Rn.

Moreover, these conditions imply that
	
Rn MAR(F ) = n! vol(P ).

Proof. Note that

F(1−ε)P (x) = sup
s∈P
〈x, (1− ε)s〉 = (1− ε)FP (x).

Assume that G(s) <∞ for all s ∈ intP . Since 0 ∈ intP , (1−ε)P ⊂ intP
for ε ∈ (0, 1), so there existsMε > 0 such that G ≤Mε on (1−ε)P . It follows
that

F (x) ≥ sup
s∈(1−ε)P

(〈x, s〉 −G(s)) ≥ F(1−ε)P (x)−Mε = (1− ε)FP (x)−Mε.

Conversely, if F ≥ (1− ε)FP −Mε = F(1−ε)P −Mε, then G ≤ G(1−ε)P +Mε,
so G(s) ≤Mε for s ∈ (1− ε)P . As ε↘ 0 this implies that G(s) <∞ for all
s ∈ intP .

By Lemma 2.7 we have FP (x) → ∞ as ‖x‖ → ∞. Since F ≤ FP + C,
Lemmas 2.4 and 2.6 imply that�

Rn
MAR(F ) ≤

�

Rn
MAR(FP ) =

�

Rn
MAR(F0) = n! vol(P ),

where F0 is a function as in Lemma 2.6. Note that by (ii), F (x) → ∞ as
‖x‖ → ∞, hence Lemma 2.4 again shows that�

Rn
MAR(F ) ≥ (1− ε)n

�

Rn
MAR(FP ), ∀ε ∈ (0, 1).

Letting ε→ 0 finishes the proof.

We conclude this section with the following lemma:

Lemma 2.9. Let P be a compact convex body in Rn with non-empty in-
terior and G : P → R ∪ {∞} be a lower semicontinuous convex function.
Then

|inf
P
G| ≤ 1

(21/(n+1) − 1) vol(P )

�

P

|G| dV.

Proof. If G ≥ 0 on P then
	
P GdV ≥ infP G · vol(P ) and we are done.

Otherwise, consider the convex set S = {G < 0} ⊂ P . It suffices to show
that if p ∈ intS then

−G(p) ≤ 1

(21/(n+1) − 1) vol(P )

�

P

|G| dV.
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We assume without loss of generality that p = 0 and use spherical coor-
dinates. For θ ∈ Sn−1 let 0 < a(θ) ≤ b(θ) be defined by a(θ)θ ∈ ∂S and
b(θ)θ ∈ ∂P . If σ is the area measure on Sn−1 then

vol(P ) =
�

Sn−1

b(θ)n

n
dσ(θ).

By convexity it follows that

G(tθ) ≤ −G(0)
a(θ)

(t− a(θ)) ≤ 0 if 0 ≤ t ≤ a(θ),

G(tθ) ≥ −G(0)
a(θ)

(t− a(θ)) ≥ 0 if a(θ) < t ≤ b(θ).

Thus
�

P

|G| dV ≥
�

Sn−1

a(θ)�

0

−G(0)
a(θ)

(a(θ)− t)tn−1 dt dσ(θ)

+
�

Sn−1

b(θ)�

a(θ)

−G(0)
a(θ)

(t− a(θ))tn−1 dt dσ(θ)

=
−G(0)
n(n+ 1)

�

Sn−1

(
nb(θ)n+1

a(θ)
− (n+ 1)b(θ)n + 2a(θ)n

)
dσ(θ).

Note that

f(a) :=
nbn+1

a
− (n+ 1)bn + 2an

≥ f(b2−1/(n+1)) = (n+ 1)(21/(n+1) − 1)bn

for 0 < a ≤ b. Therefore
�

P

|G| dV ≥ −G(0)
n

(21/(n+1) − 1)
�

Sn−1

b(θ)n dσ(θ)

= −G(0)(21/(n+1) − 1) vol(P ),

and we are done.

3. Toric energy classes. Let (X,ω) be a toric compact Kähler manifold
of dimension n. Then X is a compactification of the complex torus (C?)n
such that the canonical action by multiplication of (C?)n on itself extends
to a holomorphic action of (C?)n on X. Moreover, there exists a smooth
strictly convex function F0 : Rn → R such that ω|(C?)n = ddcF0 ◦ L, where
L is defined in (1). If P is the compact convex polytope determined by X
then ∇F0 : Rn → intP is bijective and we may assume that 0 ∈ intP . Let
G0 denote the Legendre transform of F0.
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3.1. Toric quasiplurisubharmonic functions. A toric ω-psh function
on X is an ω-psh function ϕ that is invariant under the (S1)n action induced
by the (C?)n action on X. We denote by PSHtor(X,ω) the class of such
functions. It follows that there exists a convex function Fϕ : Rn → R such
that

Fϕ ◦ L = F0 ◦ L+ ϕ on (C?)n ⊂ X.

We denote by Gϕ the Legendre transform on Fϕ. Note that Fϕ is continuous
on Rn, hence ϕ is continuous on (C?)n.

We define the energy classes of toric ω-psh functions by

Etor(X,ω) = PSHtor(X,ω) ∩ E(X,ω),
Eptor(X,ω) = PSHtor(X,ω) ∩ Ep(X,ω),
Eχ,tor(X,ω) = PSHtor(X,ω) ∩ Eχ(X,ω),

where p > 0 and χ ∈ W (see Sections 1.2, 1.3).
We begin with the following simple lemma:

Lemma 3.1. There exists a constant C > 0 such that

−C ≤ F0(x)− FP (x) ≤ C, ∀x ∈ Rn.

Proof. Since ∇F0(Rn) ⊂ P , by Lemma 2.5 we have F0 ≤ FP + C1 for
some constant C1. Let ω′ ∈ {ω} be a Kähler form with associated convex
function F such that its Legendre transform G is given by Guillemin’s for-
mula. Then F ◦ L = F0 ◦ L + θ for some smooth ω-psh function θ. Hence
F ≤ F0 + C2 and G ≥ G0 − C2, for some constant C2. Since G is bounded
above on P it follows that G0 ≤ GP + C3, and so F0 ≥ FP − C3, for some
constant C3.

Our next result gives a characterization of toric ω-psh functions:

Proposition 3.2. The following are equivalent:

(i) ϕ ∈ PSHtor(X,ω);
(ii) Fϕ ≤ FP + C for some constant C;
(iii) Gϕ =∞ on Rn \ P ;
(iv) ∇Fϕ(Rn) ⊂ P .

Proof. If ϕ ∈ PSHtor(X,ω) then ϕ is bounded above on X, hence Fϕ ≤
F0 + C ′ for some constant C ′, and (ii) follows by Lemma 3.1.

Conversely, if (ii) holds then by Lemma 3.1, Fϕ ≤ F0 + C ′ for some
constant C ′, hence ϕ ≤ C ′ on (C?)n ⊂ X. Since X \ (C?)n is an analytic set
invariant under the (S1)n action, we conclude that ϕ extends to an ω-psh
function on X which is (S1)n invariant.

The remaining equivalences (ii)⇔(iii)⇔(iv) follow from Lemma 2.5.
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Proposition 3.3. If ϕ ∈ PSHtor(X,ω) then

sup
X
ϕ ≤ CP +

1

(21/(n+1) − 1) vol(P )

�

P

|Gϕ| dV,

where CP = supP G0 = supRn(FP − F0).

Proof. Note that, for a constant C, one has Fϕ − F0 ≤ C on Rn if and
only if G0 −Gϕ ≤ C on P . It follows that

sup
X
ϕ = sup

Rn
(Fϕ − F0) = sup

P
(G0 −Gϕ) ≤ CP − inf

P
Gϕ,

and the proposition follows from Lemma 2.9.

Example 3.4. Let X = F1 be the blow up of P2 at a toric point p. It
is a geometrically ruled surface. We let F denote a generic fiber, E be the
exceptional divisor, and H = E +F the total transform of a line through p.
The cohomology classes of F and H are both semipositive and generate
H1,1(X,R). Any Kähler class {ω} is cohomologous to aH+bF , with a, b > 0.
In coordinates z ∈ (C?)2 it can be represented as

ω = aω1 + bω2, where ω1 = 1
2dd

c log(1 + ‖z‖2), ω2 = ddc log ‖z‖.
The convex function associated to ω is

F0(x) =
1
2a log(1 + e2x1 + e2x2) + 1

2b log(e
2x1 + e2x2),

and P = ∇F0(R2) is the polytope

P = {s1 ≥ 0, s2 ≥ 0, b ≤ s1 + s2 ≤ a+ b}.
Thus d = 4, `1(s) = s1, `2(s) = s2, `3(s) = a + b − s1 − s2, and `4(s) =
s1 + s2 − b. For s ∈ P , the Legendre transform of F0 is given by

G0(s) =
1
2 [s1 log s1 + s2 log s2 + (a+ b− s1 − s2) log(a+ b− s1 − s2)

+ (s1 + s2 − b) log(s1 + s2 − b)− (s1 + s2) log(s1 + s2)− a log a].

3.2. The class Etor(X,ω)

Definition 3.5. Let F : Rn → R be a convex function such that F ≤
FP + C. We say that F has full Monge–Ampère mass if�

Rn
MAR(F ) =

�

Rn
MAR(F0) = n! vol(P ).

Recall that a toric point of X is a point fixed by the action of the complex
torus (C?)n on X.

Theorem 3.6. Let ϕ ∈ PSHtor(X,ω). The following are equivalent:

(i) ϕ ∈ Etor(X,ω);
(ii) Gϕ is finite on intP ;
(iii) Fϕ has full Monge–Ampère mass;
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(iv) for every ε > 0 there exists a compact set Kε ⊂ (C?)n such that

ϕ(z) ≥ −εmax
{∣∣log |z1|

∣∣, . . . , ∣∣log |zn|∣∣} on (C?)n \Kε;

(v) the Lelong numbers ν(ϕ, p) equal 0 for all p ∈ X;
(vi) the Lelong numbers ν(ϕ, p) equal 0 at all toric points p ∈ X.

Proof. To prove that (i)⇒(ii), if ϕ ∈ Etor(X,ω) then ϕ ∈ Eχ,tor(X,ω) for
some function χ ∈ W. By Proposition 3.9, Gϕ ∈ Lχ(P ), so Gϕ < ∞ a.e.
on P . Since Gϕ is convex, this implies that Gϕ(s) <∞ for all s ∈ intP . The
implication (ii)⇒(iii) follows from Lemma 2.8.

We next prove that (iii)⇒(i). Consider the measure 〈ωnϕ〉 defined as
the non-pluripolar product of the positive closed currents ωϕ := ω + ddcϕ
[BEGZ, Definition 1.1]. As ϕ is locally bounded on (C∗)n, the Bedford–Taylor
product ωnϕ = ωϕ ∧ · · · ∧ ωϕ is well defined on (C∗)n [BT76, BT82]. Since
(C∗)n = X \ A, where A is an analytic subset of X, it follows from [BEGZ,
p. 204, Proposition 1.6] that 〈ωnϕ〉 is the trivial extension of ωnϕ to X. Then

�

X

〈ωnϕ〉 =
�

(C∗)n
ωnϕ =

�

(C∗)n
(ddcFϕ ◦ L)n

=
�

Rn
MAR(Fϕ) =

�

Rn
MAR(F0) =

�

X

ωn.

Therefore 〈ωnϕ〉 has full mass, so ϕ ∈ Etor(X,ω) and MA(ϕ) = 〈ωnϕ〉 [BEGZ,
Section 2].

To show that (ii)⇒(iv), let ε > 0. Using Lemmas 2.8 and 3.1 we get

ϕ = (Fϕ − F0) ◦ L ≥ −εFP ◦ L− C −Mε

with some constants C,Mε > 0. By Lemma 2.7 there exists a constant a > 0
such that FP (x) ≤ amax{|x1|, . . . , |xn|}. These imply that

ϕ(z) ≥ −2aεmax
{∣∣log |z1|

∣∣, . . . , ∣∣log |zn|∣∣}
for z ∈ (C?)n \Kε, where Kε = {εFP ◦ L ≤ C +Mε}.

Conversely, to prove that (iv)⇒(ii), we let ε ∈ (0, 1) and by applying
Lemma 2.8 we need to show that there exists Mε > 0 such that Fϕ ≥
(1 − ε)FP −Mε. By Lemma 2.7 we have FP (x) ≥ bmax{|x1|, . . . , |xn|} for
some constant b > 0. Using (iv) and Lemma 3.1 we obtain

Fϕ(L(z)) = F0(L(z)) + ϕ(z)

≥ FP (L(z))− C − bεmax
{∣∣log |z1|

∣∣, . . . , ∣∣log |zn|∣∣}
≥ (1− ε)FP (L(z))− C

for z ∈ (C?)n \ Kε, where Kε ⊂ (C?)n is a compact set. Since Fϕ, FP are
continuous this implies that Fϕ(L(z)) ≥ (1− ε)FP (L(z))−Mε on (C?)n for
some constant Mε > C.
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Recall that functions in the class E(X,ω) have zero Lelong number at
each point. To complete the proof we assume that ϕ ∈ PSHtor(X,ω) has
zero Lelong number at all the toric points of X and show that (iv) holds.

Let ε > 0 and let p1, . . . , pN be the toric points of X. We denote as
before by z = (z1, . . . , zn) the coordinates on the complex torus (C?)n ⊂ X.
For 1 ≤ j ≤ N , there exists an open set Vj such that pj ∈ Vj ⊂ X, and
a biholomorphic map Φj : Vj → Cn such that Φj(pj) = 0, (C?)n ⊂ Vj ,
Φj((C?)n) = (C?)n, and X = V1 ∪ · · · ∪ VN (see e.g. [ALZ, Proposition 4.4
and its proof]). Moreover, if Φj(z) = ζ = (ζ1, . . . , ζn) then

(log |ζ1|, . . . , log |ζn|) = Aj(log |z1|, . . . , log |zn|), where Aj ∈ GLn(Z).

We denote by ‖Aj‖∞ the operator norm of Aj with respect to the sup norm
(i.e. ‖Ajx‖∞ ≤ ‖Aj‖∞‖x‖∞) and let γ := max{‖A1‖∞, . . . , ‖AN‖∞}. Since
X is compact, we can find R > 0 such that X =

⋃N
j=1 Φ

−1
j (∆n(0, R)), where

∆n(0, R) ⊂ Cn is the open polydisc of radius R centered at 0.
We observe that (Φ−1

j )?(ω|(C?)n) = ddcF j0 ◦ L, where L(ζ1, . . . , ζn) =

(log |ζ1|, . . . , log |ζn|) and F j0 : Rn → R is a smooth strictly convex function
such that F j0 ◦ L extends to a smooth plurisubharmonic function on Cn. It
follows that ∇F j0 (Rn) ⊂ (0,∞)n. Moreover, there exists a convex function
F jϕ : Rn → R such that ∇F jϕ(Rn) ⊂ [0,∞)n and F jϕ ◦ L = F j0 ◦ L+ ϕ ◦ Φ−1

j

on (C?)n. The function F jϕ ◦L extends to a plurisubharmonic function on Cn

and has Lelong number ν(F jϕ ◦L, 0) = 0, since Lelong numbers are invariant
under biholomorphic maps. Hence there exists rj = rj(ε) > 0 such that
F jϕ(log r, . . . , log r) ≥ 1

2ε log r for 0 < r < rj . Since F
j
ϕ is increasing in each

variable, this implies

F jϕ(log |ζ1|, . . . , log |ζn|) ≥ 1
2εmin{log |ζ1|, . . . , log |ζn|}

if min{|ζ1|, . . . , |ζn|} < rj . So there exists a constant Mε > 0 such that

ϕ ◦ Φ−1
j (ζ) = F jϕ ◦ L(ζ)− F

j
0 ◦ L(ζ) ≥ 1

2εmin{log |ζ1|, . . . , log |ζn|} −Mε

for ζ ∈ ∆n(0, R) with min{|ζ1|, . . . , |ζn|} < rj . By shrinking rj we obtain

ϕ ◦ Φ−1
j (ζ) ≥ εmin{log |ζ1|, . . . , log |ζn|} = −εmax

{∣∣log |ζ1|
∣∣, . . . , ∣∣log |ζn|∣∣}

for ζ ∈ ∆n(0, R) with min{|ζ1|, . . . , |ζn|} < rj . It follows that

ϕ(z) ≥ −γεmax
{∣∣log |z1|

∣∣, . . . , ∣∣log |zn|∣∣}
if z ∈ Uj := (C?)n ∩Φ−1

j (∆n(0, R)∩{ζ ∈ Cn : min{|ζ1|, . . . , |ζn|} < rj}). We
note that Uε :=

⋃N
j=1 Uj ⊂ (C?)n is open and Kε := (C?)n \ Uε is compact.

Moreover the above lower estimate on ϕ holds on (C?)n \Kε.
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Corollary 3.7. If ϕ ∈ Etor(X,ω) and χ is a non-negative continuous
function on Rn then�

(C?)n

(χ ◦ L)(ddcFϕ ◦ L)n =
�

Rn
χMAR(Fϕ) = n!

�

intP

χ(∇Gϕ(s)) dV (s).

Proof. The first equality follows from Lemma 2.3. The second one fol-
lows from [BB, Lemma 2.7], since Fϕ has full Monge–Ampère mass by The-
orem 3.6.

Examples 3.8. If X = Pn is the complex projective space and ω is
the Fubini–Study Kähler form, then F0(x) =

1
2 log(1 +

∑n
i=1 e

2xi) and P =

∇F0(Rn) is the simplex

P =
{
s : si ≥ 0, 1 ≤ i ≤ n,

n∑
i=1

si ≤ 1
}
.

Thus d = n + 1, `i(s) = si for 1 ≤ i ≤ n, and `n+1(s) = 1 −
∑n

i=1 si. The
Legendre transform of F0 is

G0(s) =
1

2

[ n∑
i=1

si log si +
(
1−

n∑
j=1

sj

)
log
(
1−

n∑
j=1

sj

)]
.

This coincides with the function given by Guillemin’s formula.

1◦ Let [z] = [z0 : z1 : . . . : zn] denote the homogeneous coordinates on Pn.
The function

ϕ1[z] = log |z1| − log ‖z‖

is ω-psh and toric. It does not belong to the class Etor(X,ω) since it has
positive Lelong numbers along the toric hyperplane (z1 = 0). The associated
convex function F1 : Rn → R is given by F1(x) = x1 and its Legendre
transform is

G1(s) = 0 if s = (1, 0, . . . , 0),

and G1(s) =∞ otherwise.

2◦ The function
ϕ2[z] = max

1≤i≤n
log |zi| − log ‖z‖

is ω-psh and toric. It does not belong to the class Etor(X,ω) since it has
one positive Lelong number at the point [1 : 0 : · · · : 0]. The corresponding
convex function is F2(x) = max1≤i≤n xi and its Legendre transform is

G2(s) = 0 if s ∈
{
si ≥ 0, 1 ≤ i ≤ n,

n∑
i=1

si = 1
}
,

and G2(s) =∞ otherwise.
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3.3. The classes Eχ,tor(X,ω). If χ ∈ W, we define Lχ(P ) to be the set
of lower semicontinuous functions G : P → R ∪ {∞} such that

�

P

−χ
(
min
P
G−G(s)

)
dV (s) <∞.

Proposition 3.9. Let ϕ ∈ PSHtor(X,ω). If χ ∈ W and ϕ ∈ Eχ,tor(X,ω)
then Gϕ ∈ Lχ(P ). Conversely, if p ≥ 1 and Gϕ ∈ Lp(P ) then ϕ ∈ Eptor(X,ω).

Proof. For the first claim, let ϕ ∈ PSHtor(X,ω)∩L∞(X) be such that Fϕ
is smooth and strictly convex, and Fϕ ≤ FP ≤ F0. We prove the following
a priori estimate:

�

intP

−χ(−Gϕ(s)) dV (s) ≤ 1

n!

�

X

−χ(ϕ)MA(ϕ).

Note that ϕ ≤ 0 on X and Gϕ ≥ GP = 0 on P . Moreover, by Proposition 4.1
below and Lemma 2.6, ∇Fϕ : Rn → intP is bijective. Since F0 ≥ FP and
Fϕ(x) = 〈x, s〉 −Gϕ(s) for x = ∇Gϕ(s), we obtain

(F0 − Fϕ) ◦ ∇Gϕ(s) ≥ (FP − Fϕ) ◦ ∇Gϕ(s)
= FP (∇Gϕ(s))− 〈∇Gϕ(s), s〉+Gϕ(s) ≥ Gϕ(s) ≥ 0,

where s ∈ intP and the last estimate follows from the definition of FP .
Applying Lemmas 2.6 and 2.3 we get�

intP

−χ(−Gϕ(s)) dV (s) ≤
�

intP

−χ((Fϕ − F0) ◦ ∇Gϕ(s)) dV (s)

=
1

n!

�

Rn
−χ(Fϕ − F0)MAR(Fϕ)

=
1

n!

�

(C?)n

−χ(ϕ)MA(ϕ).

Let now ϕ ∈ Eχ,tor(X,ω) be such that Fϕ ≤ FP − 1. There exists a
sequence ϕj ∈ PSHtor(X,ω) ∩ L∞(X) such that ϕj ↘ ϕ, the associated
functions Fϕj are smooth and strictly convex, and Fϕj ≤ FP . Then�

X

−χ(ϕj)MA(ϕj)→
�

X

−χ(ϕ)MA(ϕ)

as j →∞. Since Gϕj ↗ Gϕ it follows by the a priori estimate applied to ϕj
and by the monotone convergence theorem that

�

P

−χ(−Gϕ(s)) dV (s) ≤ 1

n!

�

X

−χ(ϕ) MA(ϕ) <∞,

so Gϕ ∈ Lχ(P ). This concludes the proof of the first claim.
Conversely, let p ≥ 1 and consider the space of Kähler potentials H =

{ϕ ∈ C∞(X) : ω + ddcϕ > 0} endowed with the metric
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dp(ϕ1, ϕ2) = inf
{1�

0

( �
X

|ϕ̇t|p MA(ϕt)
)1/p

dt
}
, (ϕ1, ϕ2) ∈ H2,

where the infimum is taken over all smooth paths [0, 1] 3 t 7→ ϕt ∈ H joining
ϕ1 to ϕ2. It is shown in [Dar, Theorem 3] that if ϕ1, ϕ2 ∈ H then

(2)
�

X

|ϕ1 − ϕ2|pMA(ϕ1) ≤ Cpdp(ϕ1, ϕ2)
p

for some constant Cp > 1 depending on p. On the other hand if ϕ1, ϕ2 ∈
H∩PSHtor(X,ω) are determined by convex functions F1, F2 with Legendre
transforms G1, G2 then, by [G, Proposition 4.3],

(3) dp(ϕ1, ϕ2)
p =

�

P

|G1 −G2|p dV.

If ϕ ∈ H∩PSHtor(X,ω), we apply (2) and (3) with ϕ1 = ϕ and ϕ2 = 0, and
obtain�

X

|ϕ|pMA(ϕ) ≤ Cp
�

P

|Gϕ −G0|p dV ≤ 2p−1Cp(‖Gϕ‖pLp(P ) + ‖G0‖pLp(P )).

Let now ϕ ∈ PSHtor(X,ω) be such that Gϕ ∈ Lp(P ), and take a sequence
ϕj ∈ H ∩ PSHtor(X,ω) such that ϕj ↘ ϕ. Then Gϕj ↗ Gϕ, so by the
above estimate applied to ϕj and by dominated convergence we conclude
that supj

	
X |ϕj |

p MA(ϕj) <∞. Hence ϕ ∈ Eptor(X,ω).

Example 3.10. Let X = P1 and ω be the Fubini–Study Kähler form. By
Examples 3.8 the corresponding convex function is F0(x) =

1
2 log(1+e

2x) and
P = F ′0(R) = [0, 1]. Let ϕ be the toric ω-sh function associated to the convex
function F (x) := FP (x) = max(x, 0). Note that the Legendre transform of
F is G = 0 on [0, 1], and ddcF (log |z|) is the (normalized) Lebesgue measure
on the unit circle S1 ⊂ P1. We consider the sequence {ϕj} of toric ω-sh
functions defined by the convex functions

Fj(x) = (1− εj)F (x) + εj max(x,−Cj),
where εj decreases to 0, while Cj increases to ∞. A straightforward compu-
tation shows that the corresponding Legendre transforms are

Gj(s) = max(Cj(εj − s), 0), 0 ≤ s ≤ 1.

Note that
ϕj(z)− ϕ(z) = −εj log+ |z|+ εj max(log |z|,−Cj)

=


−εjCj , |z| < e−Cj ,

εj log |z|, e−Cj ≤ |z| < 1,

0, |z| ≥ 1.

Thus we obtain the following:
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• ϕj → ϕ in L1 if and only if εj → 0;
• ϕj → ϕ in L∞ if and only if εjCj → 0;
• ϕj → ϕ in W 1,2 (that is, the natural topology on E1(X,ω)) if and only if
ε2
jCj → 0.

3.4. Finite moments. It is tempting to think that one can characterize
the condition ϕ ∈ Eqtor(X,ω) by a finite moment condition, as follows. Let
ϕ ∈ Etor(X,ω), µR(ϕ) := MAR(Fϕ), 0 < q < n, and q∗ = nq/(n− q) denote
the Sobolev conjugate exponent of q. Does one have

ϕ ∈ Eq
∗

tor(X,ω) ⇔
�

Rn
‖x‖q dµR(ϕ) <∞?

This question was raised by E. Di Nezza, who showed in [DiN, Proposi-
tion 2.5] that, if ϕ ∈ Etor(X,ω), n ≥ 2 and 1 ≤ q < n, then�

Rn
‖x‖q dµR(ϕ) <∞ ⇒ ϕ ∈ Eq

∗

tor(X,ω).

We have the following partial answer to this question in dimension n = 1,
i.e. when X = P1 and ω = ωFS:

Proposition 3.11. Let (X,ω)=(P1, ωFS), ϕ∈Etor(X,ω), and 0<q<1.

(i) If q ≥ 1/2 and
	
R |x|

q dµR(ϕ) <∞ then ϕ ∈ Eq
∗

tor(X,ω).
(ii) If ϕ ∈ E1

tor(X,ω) then
	
R |x|

q dµR(ϕ) <∞ for all q < 1/2.
(iii) There exists a function ϕ ∈ E1

tor(X,ω) with
	
R |x|

1/2 dµR(ϕ) =∞.

Proof. Recall that in this case P = [0, 1] (see Example 3.10).
(i) Replacing ϕ by ϕ + C we may assume that min[0,1]Gϕ = Gϕ(a) = 0

for some a ∈ [0, 1]. Note that Gϕ is convex and finite, so it is differentiable
a.e. on (0, 1). Let s, t ∈ (0, 1) be such that G′ϕ(s), G′ϕ(t) exist and t is between
a and s. Since Gϕ is convex and assumes its minimum at a, we have |G′ϕ(t)| ≤
|G′ϕ(s)|. It follows that

0 ≤ Gϕ(s) =
∣∣∣s�
a

G′ϕ(t) dt
∣∣∣ ≤ ∣∣∣s�

a

|G′ϕ(t)|1−q|G′ϕ(t)|q dt
∣∣∣

≤ |G′ϕ(s)|1−q
∣∣∣s�
a

|G′ϕ(t)|q dt
∣∣∣ ≤ |G′ϕ(s)|1−q 1�

0

|G′ϕ(t)|q dt.

Using Corollary 3.7 we obtain
1�

0

Gϕ(s)
q/(1−q) ds ≤

(1�

0

|G′ϕ(t)|q dt
)q/(1−q) 1�

0

|G′ϕ(s)|q ds

=
(1�

0

|G′ϕ(s)|q ds
)1/(1−q)

=
(�
R

|x|q dµR(ϕ)
)1/(1−q)

<∞.

Since q/(1− q) ≥ 1, Proposition 3.9 yields ϕ ∈ Eq/(1−q)tor (X,ω).
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(ii) Let ϕ ∈ E1
tor(X,ω) and q < 1/2. ThenGϕ ∈ L1(P ) by Proposition 3.9.

The conclusion follows by showing that if Fϕ ≤ FP on R then
�

R

|x|q dµR(ϕ) ≤
2(1− q)
1− 2q

‖Gϕ‖qL1 .

Note that it suffices to prove this in the case when ϕ is bounded. Indeed,
if ϕ ∈ E1

tor(X,ω) is such that Fϕ ≤ FP on R, then there exists a sequence
of bounded toric ω-psh functions ϕj ↘ ϕ such that Fϕj ≤ FP on R. Hence
0 ≤ Gϕj ↗ Gϕ. Since µR(ϕj) → µR(ϕ) weakly on R it follows by the
monotone convergence theorem that

�

R

|x|q dµR(ϕ) ≤ lim inf
j→∞

�

R

|x|q dµR(ϕj) ≤
2(1− q)
1− 2q

‖Gϕ‖qL1 .

Assume that ϕ is a bounded toric ω-psh function such that Fϕ ≤ FP .
Then Gϕ ≥ 0 is a continuous convex function on [0, 1], and we fix a ∈ [0, 1]
such that min[0,1]Gϕ = Gϕ(a) ≥ 0. Applying Hölder’s inequality with p =
1/(1− q) we deduce, since 1/(1− pq) = (1− q)/(1− 2q) > 1, that

a�

0

|G′ϕ(s)|q ds =
a�

0

s−q(−sG′ϕ(s))q ds

≤
(a�

0

(−sG′ϕ(s)) ds
)q(a�

0

s−pq ds
)1/p

≤
(
−aGϕ(a) +

a�

0

Gϕ(s) ds
)q(1�

0

s−pq ds
)1/p

≤ 1− q
1− 2q

‖Gϕ‖qL1 .

Similarly,
1�

a

|G′ϕ(s)|q ds =
1�

a

(1− s)−q((1− s)G′ϕ(s))q ds

≤
(1�

a

(1− s)G′ϕ(s) ds
)q(1�

a

(1− s)−pq ds
)1/p

≤
(
−(1− a)Gϕ(a) +

1�

a

Gϕ(s) ds
)q(1�

0

(1− s)−pq ds
)1/p

≤ 1− q
1− 2q

‖Gϕ‖qL1 .

Using the last two estimates and Corollary 3.7 we obtain
�

R

|x|q dµR(ϕ) =
1�

0

|G′ϕ(s)|q ds ≤
2(1− q)
1− 2q

‖Gϕ‖qL1 .
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(iii) Let ϕ ∈ PSHtor(X,ω) be determined by a convex function Fϕ defined
as follows on the prescribed intervals and smooth on R:

Fϕ(x) =

{
x− 2

√
x/lnx if x ≥ e3,

0 if x ≤ 0.

Note that Fϕ(x) ≤ x ≤ F0(x) =
1
2 log(1 + e2x) for x ≥ 0, and ϕ ∈ Etor(X,ω)

since Fϕ has full Monge–Ampère mass. Moreover,

1

18x3/2 lnx
≤ F ′′ϕ(x) =

1− 8(lnx)−2

2x3/2 lnx
≤ 1

2x3/2 lnx
for x ≥ e3.

Therefore
�

R

|x|1/2F ′′ϕ(x) dx ≥
1

18

∞�

e3

1

x lnx
dx =∞.

Since ϕ ∈ Etor(X,ω), the measure MA(ϕ) does not charge polar sets. Hence
�

X

(−ϕ)MA(ϕ) =
�

R

(F0 − Fϕ)F ′′ϕ ≤ C +

∞�

e3

2
√
x

lnx
F ′′ϕ(x) dx

≤ C +

∞�

e3

1

x(lnx)2
dx <∞,

for some constant C, which implies that ϕ ∈ E1
tor(X,ω).

4. Higher regularity

4.1. Continuous toric functions. These can be characterized as fol-
lows:

Proposition 4.1. Let ϕ ∈ PSHtor(X,ω). The following are equivalent:

(i) ϕ is continuous on X;
(ii) ϕ ∈ L∞(X);
(iii) FP − C ≤ Fϕ ≤ FP + C for some constant C ≥ 0;
(iv) GP − C ≤ Gϕ ≤ GP + C for some constant C ≥ 0.

Moreover, we have in this case ‖Fϕ − FP ‖L∞(Rn) = ‖Gϕ‖L∞(P ).

Proof. Assume that ϕ ∈ PSHtor(X,ω) is bounded. Using the notation
from the proof of Theorem 3.6 we let p1, . . . , pN be the toric points of X
and pj ∈ Vj ⊂ X be open sets with biholomorphic maps Φj : Vj → Cn such
that Φj(pj) = 0, (C?)n ⊂ Vj , Φj((C?)n) = (C?)n, X = V1 ∪ · · · ∪ VN . If
L(ζ) = (log |ζ1|, . . . , log |ζn|), ζ ∈ Cn = Φj(Vj), there exist convex functions
F jϕ, F

j
0 : Rn → R such that F jϕ ◦ L,F j0 ◦ L extend to a plurisubharmonic

function, respectively to a smooth plurisubharmonic function, on Cn, and
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F jϕ ◦ L = F j0 ◦ L + ϕ ◦ Φ−1
j on (C?)n. Since ϕ is bounded and since polyra-

dial plurisubharmonic functions on Cn are continuous, this shows that ϕ is
continuous on each Vj , hence on X.

Using Lemma 3.1 we see immediately that (ii)⇔(iii), while (iii)⇔(iv)
follows from the definition of the Legendre transform. Moreover, if (iii) holds
with a constant C then (iv) holds with the same constant, and vice versa.
This implies the last claim.

We note that assertion (iv) in Proposition 4.1 is equivalent to the condi-
tion that Gϕ =∞ on Rn \ P and that Gϕ is bounded above on P .

4.2. Log-Lipschitz Legendre transforms. Recall that a continuous
function u : Ω ⊂ Rn → R is log-Lipschitz if its modulus of continuity ωu(x, r)
is locally bounded from above by Cr log r.

In order to prove Theorem C we need the following preliminary results.

Lemma 4.2. Let n ≥ 1 and

I(λ) =

1�

0

(tn−1 + λ−1) log(1 + λ−1t−n+1) dt, λ > 0.

If 0 < x ≤ 1/e and λx = (n+ 3)x log(1/x) then xI(λx) < 1.

Proof. We have

I(λ) ≤
1�

0

(tn−1 + λ−1) log
1 + λ

λtn−1
dt

=

(
1

λ
+

1

n

)
log

1 + λ

λ
+
n− 1

λ
+
n− 1

n2
.

Since x ≤ 1/e, we see that 1 + λx ≤ 1 + (n+ 3)/e and

log
1 + λx
λx

≤ log
1

x
+ log

(
1

n+ 3
+

1

e

)
− log log

1

x
< log

1

x
.

Therefore

I(λx) <

(
1

λx
+

1

n

)
log

1

x
+
n− 1

λx
+

1

n

=
1

(n+ 3)x
+

(n− 1)

(n+ 3)x log 1
x

+
1

n
log

1

x
+

1

n

≤ 1

x

(
n

n+ 3
+
x

n
log

1

x
+
x

n

)
≤ 1

x

(
n

n+ 3
+

2

ne

)
<

1

x
.

Proposition 4.3. Let P ⊂ Rn be a compact convex polytope and let
f : intP → R be a locally Lipschitz function. If eε‖∇f‖ ∈ L1(P ) for some
ε > 0 then f extends to a log-Lipschitz function on P .
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Proof. If n = 1 then P = [a, b], and for a < s1 < s2 < b it follows by
Jensen’s inequality that

|f(s2)− f(s1)| ≤
1

ε

s2�

s1

ε|f ′(t)| dt ≤ s2 − s1

ε
log

(
1

s2 − s1

s2�

s1

eε|f
′(t| dt

)

≤ s2 − s1

ε
log
‖eε|f ′|‖L1[a,b]

s2 − s1
.

We next consider the case n > 1. Since P is convex there exists a constant
c ∈ (0, 1) with the following property: for every s1, s2 ∈ P there exists a
compact subset A of the hyperplane perpendicular to the segment [s1, s2] at
its midpoint such that A ⊂ intP and

(4) c‖s1 − s2‖n−1 ≤ Vn−1(A) ≤ 1, ‖s1 − σ‖ ≤
‖s1 − s2‖

2c
for all σ ∈ A,

where Vn−1(A) is the (n−1)-dimensional Hausdorff measure of A. Note that
we then have ‖s2 − σ‖ ≤ ‖s1 − s2‖/2c for all σ ∈ A.

We will show that if s1, s2 ∈ intP are such that ‖s1 − s2‖ ≤ 2/e then

(5) |f(s1)− f(s2)| ≤ 2C‖s1 − s2‖ log
2

c‖s1 − s2‖n
,

where
C =

n+ 3

εc
max(1, ‖eε‖∇f‖‖L1(P )).

This clearly implies that f extends to a log-Lipschitz function on P .
Fix s1, s2 ∈ intP with ‖s1− s2‖ ≤ 2/e and let A be a set as in (4). Note

that (5) follows if we prove that

(6)
∣∣∣∣f(s1)−

1

Vn−1(A)

�

A

f dVn−1

∣∣∣∣ ≤ C‖s1 − s2‖ log
2

c‖s1 − s2‖n
,

since the same holds with s2 in place of s1.
We may assume that s1 = (0, a) ∈ Rn−1 × R, with a > 0, and that

A = B × {0} ⊂ Rn−1 × {0}. Then ‖s1 − s2‖ = 2a. We set σ = (σ′, 0) ∈ A
for σ′ ∈ B. Since f is locally Lipschitz on intP and, by (4), ‖s1 − σ‖ ≤ a/c
for σ ∈ A, we obtain

(7)
∣∣∣Vn−1(B)f(s1)−

�

B

f(σ) dVn−1(σ
′)
∣∣∣

=
∣∣∣ �
B

1�

0

〈∇f((1− t)s1 + tσ), s1 − σ〉 dt dVn−1(σ
′)
∣∣∣

≤
�

B

1�

0

‖∇f((1− t)s1 + tσ)‖ ‖s1 − σ‖ dt dVn−1(σ
′)
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≤ a

c

�

B

1�

0

‖∇f((1− t)s1 + tσ)‖ dt dVn−1(σ
′)

=
1

εc

�

B

1�

0

ε‖∇f((1− t)s1 + tσ)‖ t−n+1 dµ,

where µ is the measure on B × [0, 1] given by dµ = atn−1dtdVn−1.
Consider the weight χ(x) = (x+1) log(x+1)− x, x ≥ 0, with conjugate

weight (Legendre transform) χ?(y) = ey−y−1, y ≥ 0, and the Orlicz spaces
Lχ(B × [0, 1], µ) and Lχ

?
(B × [0, 1], µ). Recall that the norm of the space

Lχ(B × [0, 1], µ) is given by

‖g‖χ := inf
{
λ > 0 :

�

B×[0,1]

χ(|g|/λ) dµ ≤ 1
}
,

and one has ‖g‖χ ≤ max(1,
	
B×[0,1] χ(|g|) dµ).

Estimating the last integral in (7) by the multiplicative Hölder–Young
inequality (see [BB+, Proposition 2.15] or [RR]) we get

(8)
∣∣∣Vn−1(B)f(s1)−

�

B

f(σ) dVn−1(σ
′)
∣∣∣

≤ 2

εc

∥∥ε‖∇f((1− t)s1 + tσ)‖
∥∥
χ?
‖t−n+1‖χ.

If Γ is the cone in Rn with vertex s1 and base A then�

Γ

eε‖∇f‖ dVn =
�

B×[0,1]

eε‖∇f((1−t)s1+tσ)‖ dµ.

Since χ?(y) < ey it follows that∥∥ε‖∇f((1− t)s1 + tσ)‖
∥∥
χ?
≤ max

(
1,

�

B×[0,1]

eε‖∇f((1−t)s1+tσ)‖ dµ
)

≤ max
(
1,

�

P

eε‖∇f‖ dVn

)
.

It remains to estimate the second Orlicz norm in (8). We have
�

B×[0,1]

χ(t−n+1/λ) dµ

=
�

B

1�

0

[(
t−n+1

λ
+ 1

)
log

(
t−n+1

λ
+ 1

)
− t−n+1

λ

]
atn−1 dt dVn−1,

≤ aVn−1(B) I(λ),

where I(λ) is the function from Lemma 4.2. Note that
aVn−1(B) ≤ ‖s1 − s2‖/2 ≤ 1/e,
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since c‖s1 − s2‖n−1 ≤ Vn−1(B) = Vn−1(A) ≤ 1 by (4). Lemma 4.2 implies

aVn−1(B)I(λ0) ≤ 1 if λ0 = (n+ 3)aVn−1(B) log
1

aVn−1(B)
,

hence

‖t−n+1‖χ = inf
{
λ > 0 :

�

B×[0,1]

χ(t−n+1/λ) dµ ≤ 1
}

≤ λ0 ≤ (n+ 3)aVn−1(B) log
1

c‖s1 − s2‖n−1a
.

By (8) we conclude that∣∣∣f(s1)−
1

Vn−1(B)

�

B

f(σ) dVn−1(σ
′)
∣∣∣

≤ 2(n+ 3)

εc
max(1, ‖eε‖∇f‖‖L1(P ))a log

1

c‖s1 − s2‖n−1a
.

This yields (6), since a = ‖s1 − s2‖/2.

We now prove Theorem C stated in the Introduction.

Theorem 4.4. Let ϕ ∈ Etor(X,ω). The following properties are equiva-
lent:

(i) there exists ε > 0 such that exp(−εPSHtor(X,ω)) ⊂ L1(MA(ϕ));
(ii) there exists ε > 0 such that eε‖∇Gϕ‖ ∈ L1(P );
(iii) the function Gϕ is log-Lipschitz on P ;
(iv) there exists a constant C > 0 such that ‖∇Gϕ(s)‖ ≤ C log C

dist(s,∂P ) for
almost all s ∈ intP .

Recall that Guillemin’s potentials are only log-Lipschitz continuous on
the Delzant polytope P , although they correspond to smooth toric ω-psh
functions on X. The observation we make here is that this regularity actually
corresponds to a class of toric ω-psh functions which seem to be merely
Hölder continuous on X (see Remark 4.5).

Proof of Theorem 4.4. We set µR(ϕ) := MAR(Fϕ). Since ϕ ∈ Etor(X,ω),
the measure MA(ϕ) does not charge pluripolar sets, so by Lemma 2.3,�

X

e−εψMA(ϕ) =
�

(C?)n

e−ε(Fψ−F0)◦L(ddcFϕ ◦ L)n =
�

Rn
e−ε(Fψ−F0) dµR(ϕ)

for every ψ ∈ PSHtor(X,ω). From Lemma 3.1 and Proposition 3.2, it follows
that (i) is equivalent to

(i′)
	
Rn e

−ε(F−FP ) dµR(ϕ) < ∞ for any convex function F : Rn → R with
F ≤ FP +O(1) on Rn.
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To show (i′)⇔(ii), we may assume that 0 ∈ intP and we fix constants
a, b > 0 such that B(0, b) ⊂ P ⊂ B(0, a). Then by Lemma 2.7, b‖x‖ ≤
FP (x) ≤ a‖x‖. If (i′) holds, we apply it with F = 0 to conclude by Corol-
lary 3.7 that�

intP

eεb‖∇Gϕ(s)‖ dV (s) =
�

Rn
eεb‖x‖ dµR(ϕ) ≤

�

Rn
eεFP (x) dµR(ϕ) <∞,

which gives (ii). Conversely, assume (ii) holds and let F be a function as
in (i′). Then by Proposition 3.2, ∇F (Rn) ⊂ P ⊂ B(0, a), so

F (x) = F (0) +

1�

0

〈∇F (tx), x〉 dt ≥ −a‖x‖+ F (0).

Therefore FP (x)− F (x) ≤ 2a‖x‖ − F (0) and�

Rn
e−

ε
2a

(F−FP ) dµR(ϕ) ≤ e−
ε
2a
F (0)

�

Rn
eε‖x‖ dµR(ϕ)

= e−
ε
2a
F (0)

�

intP

eε‖∇Gϕ(s)‖ dV (s) <∞,

so (i′) holds.
Proposition 4.3 shows that (ii) implies (iii). We next prove that (iii)

implies (iv). Since Gϕ is log-Lipschitz on the compact polytope P it follows
that there exists a constant C > 0 such that ‖s− s′‖ ≤ C/2 and

|Gϕ(s)−Gϕ(s′)| ≤ C‖s− s′‖ log
C

‖s− s′‖
for all s, s′ ∈ P . Let s ∈ intP be such that Gϕ is differentiable at s, and
∇Gϕ(s) 6= 0, and let ν be the unit vector in the direction of ∇Gϕ(s). We
consider the convex function

g(t) = Gϕ(s+ tν), 0 ≤ t ≤ t?,
where t? > 0 is defined such that s? := s+ t?ν ∈ ∂P . Then t? = ‖s? − s‖ ≥
dist(s, ∂P ) and

‖∇Gϕ(s)‖ = g′(0) ≤ g(t?)− g(0)
t?

=
Gϕ(s

?)−Gϕ(s)
‖s? − s‖

≤ C log
C

‖s? − s‖
≤ C log

C

dist(s, ∂P )
.

Finally, we note that (iv) clearly implies that (ii) holds with ε > 0 small
enough.

Remark 4.5. It is tempting to think that these conditions are all equiv-
alent to the fact that ϕ is Hölder continuous. This is easily seen to be the
case when n = 1. We refer the interested reader to [DD+] for more infor-
mation, geometric motivations, and related questions connecting the Hölder
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continuity of Monge–Ampère potentials with the integrability properties of
the associated complex Monge–Ampère measure.

Example 4.6. Fix 0 < α < 1 and consider the convex function F :
R → R defined by F (x) = eαx when x ≤ 0 and F (x) = x + 1 when x ≥ 0.
It determines a Hölder continuous toric ωFS-psh function ϕ on P1 which is
defined in C by

ϕ(z) =

{
|z|α − log

√
1 + |z|2 if |z| ≤ 1,

log |z|+ 1− log
√

1 + |z|2 if |z| ≥ 1.

We let the reader check that the Legendre transform of F is given by

G(s) =

{
s
α log s

α −
s
α if 0 ≤ s ≤ α,

−1 if α ≤ s ≤ 1.
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