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Millions of open-source projects with numerous bug fixes are available in code repositories. This proliferation
of software development histories can be leveraged to learn how to fix common programming bugs. To explore
such a potential, we perform an empirical study to assess the feasibility of using Neural Machine Translation
techniques for learning bug-fixing patches for real defects. First, we mine millions of bug-fixes from the change
histories of projects hosted on GitHub, in order to extract meaningful examples of such bug-fixes. Next, we
abstract the buggy and corresponding fixed code, and use them to train an Encoder-Decoder model able to
translate buggy code into its fixed version. In our empirical investigation we found that such a model is able to
fix thousands of unique buggy methods in the wild. Overall, this model is capable of predicting fixed patches
generated by developers in 9-50% of the cases, depending on the number of candidate patches we allow it
to generate. Also, the model is able to emulate a variety of different Abstract Syntax Tree operations and
generate candidate patches in a split second.
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1 INTRODUCTION

Localizing and fixing bugs is known to be an effort-prone and time-consuming task for software
developers [33, 72, 89]. To support programmers in this common activity, researchers have proposed
a number of approaches aimed at automatically repairing programs [5, 8, 20, 21, 36, 37, 41, 42, 45,
48,52, 53, 61, 64, 66, 76, 78, 86, 88, 93]. The proposed techniques either use a generate-and-validate
approach, which consists of generating many repairs (e.g., through Genetic Programming like
GenProg [45, 87]), or an approach that produces a single fix [32, 61]. While automated program
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repair techniques still face many challenges to be applied in practice, existing work has made strides
to be effective in specific cases. These approaches, given the right circumstances, substantially
contribute in reducing the cost of bug-fixes for developers [43, 50].

Two major problems automated repair approaches have, are producing patches acceptable for
programmers and especially for generate-and-validate techniques, over-fitting patches to test cases.
Qi et al. [67] found that the majority of the reported patches generated by several generate-and-
validate techniques are not correct, and that such techniques mostly achieve repair by deleting
pieces of functionality or by overfitting on test cases. To cope with this problem, Le et al. [42]
leverages the past history of existing projects — in terms of bug-fix patches — and compares
automatically-generated patches with existing ones.

Patches that are similar to the ones found in the past history of mined projects are considered to
be more relevant. Another approach that identifies patches from past fixes is Prophet [48], which
after having localized the likely faulty code by running test cases, generates patches from correct
code using a probabilistic model.

Our work is motivated by the following three considerations. First, automated repair approaches
are based on a relatively limited and manually-crafted (with substantial effort and expertise re-
quired) set of transformations or fixing patterns. Second, the work done by Le et al. [42] shows
that the past history of existing projects can be successfully leveraged to understand what a “mean-
ingful" program repair patch is. Third, several works have recently demonstrated the capability
of advanced machine learning techniques, such as deep learning, to learn from relatively large
software engineering datasets. Some examples of recent models that can be used in a number of
software engineering tasks include: code completion [68, 92], defect prediction [85], bug localization
[40], clone detection [81, 91], code search [24], learning API sequences [25], recommending method
names [3], learning code changes [80] or generating Android APKs from designer’s sketches [56].

Forges like GitHub provide a plethora of change history and bug-fixing commits from a large
number of software projects. A machine-learning based approach can leverage this data to learn
about bug-fixing activities in the wild.

In this work, we expand upon our original idea of learning bug-fixes [82] and extensively evaluate
the suitability of a Neural-Machine Translation (NMT-based approach) to automatically generate
patches for buggy code.

Automatically learning from bug-fixes in the wild provides the ability to emulate real patches
written by developers. Additionally, we harness the power of NMT to “translate” buggy code into
fixed code thereby emulating the combination of Abstract Syntax Tree (AST) operations performed
in the developer written patches. Further benefits include the static nature of NMT when identifying
candidate patches, since, unlike some generate-and-validate approaches, we do not need to execute
test cases during patch generation[74, 94]. Test case execution on the patches recommended by the
NMT approach would still be necessary in practice, however, this would only be needed on the
candidate set of patches.

To this aim, we first mine a large set of (~ 787k) bug-fixing commits from GitHub. From these
commits, we extract method-level AST edit operations using fine-grained source code differencing
[16]. We identify multiple method-level differences per bug-fixing commit and independently
consider each one, yielding to ~ 2.3M bug-fix pairs (BFPs). After that, the code of the BFPs is
abstracted to make it more suitable for the NMT model. Finally, an encoder-decoder model is used
to understand how the buggy code is transformed into fixed code. Once the model has been trained,
it is used to generate patches for unseen code.

We empirically investigate the potential of NMT to generate candidate patches that are identical
to the ones implemented by developers. Also, we quantitatively and qualitatively analyze the AST
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Fig. 1. Overview of the process used to experiment with an NMT-based approach.

operations the NMT model is able to emulate when fixing bugs. Finally, we evaluate its efficiency
by computing the time needed to learn a model and to infer patches.

The results indicate that trained NMT models are able to successfully predict the fixed code,
given the buggy code, in 9-50% of the cases. The percentage of bugs that can be fixed depends
on the number of candidate patches the model is required to produce. We find that over 82% of
the generated candidate patches are syntactically correct. When performing the translation the
models emulate between 27-64% of the AST operations used by developers to fix the bugs, during
patch generation. The NMT models are capable of producing multiple candidate patches for a given
buggy code in less then a second.

In all, the paper provides the following contributions:

e An extensive empirical investigation into the applicability of NMT techniques for learning
how to generate patches from bug-fixes;

e A detailed process for training and evaluating NMT models by mining, extracting, and
abstracting bug-fixing examples in the wild;

e A publicly available replication package, including datasets, source code, tools, and detailed
results reported and discussed in this study [83].

2 APPROACH

Fig. 1 shows an overview of the NMT approach that we experiment with. The dark boxes represent
the main phases, the arrows indicate data flows, and the dashed arrows denote dependencies on
external tools or data. We mine bug-fixing commits from thousands of GitHub repositories using
GitHub Archive [23] (Section 2.1). From the bug-fixes, we extract method-level pairs of buggy and
corresponding fixed code named bug-fix pairs (BFPs) (Section 2.2.1). BFPs are the examples that we
use to learn how to fix code from bug-fixes (buggy — fixed). We use GumTree [16] to identify the
list of edit actions (A) performed between the buggy and fixed code. Then, we use a Java Lexer and
Parser to abstract the source code of the BFPs (Section 2.2.2) into a representation better suited for
learning. During the abstraction, we keep frequent identifiers and literals we call idioms within the
representation. The output of this phase are the abstracted BFPs and their corresponding mapping
M, which allows reconstructing the original source code. Next, we generate two datasets of BFPs
grouping together fixes for small and medium methods, respectively (Section 2.2.3). Finally, for each
set, we use an encoder-decoder model to learn how to transform a buggy code into a corresponding
fixed version (Section 2.3). The trained models can be used to generate patches for unseen buggy
code.

2.1 Bug-Fixes Mining

We downloaded from GitHub Archive [23] every public GitHub event between March 2011 and
October 2017 and we used the Google BigQuery APIs to identify all commits having a message
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containing the patterns [17]: (“fix” or “solve”) and (“bug” or “issue” or “problem” or “error”). We
identified ~10M (10,056,052) bug-fixing commits.

As the content of commit messages and issue trackers might imprecisely identify bug-fixing
commits [4, 29], two authors independently analyzed a statistically significant sample (95% confi-
dence level +5% confidence interval, for a total size of 384) of identified commits to check whether
they were actually bug fixes. After solving 13 cases of disagreement, they concluded that 97.6% of
the identified bug-fixing commits were true positive. Details about this evaluation are in our online
appendix [83].

For each bug-fixing commit, we extracted the source code before and after the bug-fix using
the GitHub Compare API [19]. This allowed us to collect the buggy (pre-commit) and the fixed
(post-commit) code. We discarded commits related to non-Java files, as well as files that were
created in the bug-fixing commit, since there would be no buggy version to learn from. Moreover,
we discarded commits impacting more than five Java files, since we aim to learn focused bug-fixes
that are not spread across the system.

The result of this process was the buggy and fixed code of 787,178 bug-fixing commits.

2.2 Bug-Fix Pairs Analysis

A BFP (Bug-Fixing Pair) is a pair (m;,, my) where my, represents a buggy code component and m¢
represents the corresponding fixed code. We will use these BFPs to train the NMT model, make it
learning the translation from buggy (m;) to fixed (mys) code, thus being able of generating patches.

2.2.1 Extraction. Given (fp, fr) a pair of buggy and fixed file from a bug-fix bf, we used the
GumTree Spoon AST Diff tool [16] to compute the AST differencing between f}, and fr. This
computes the sequence of edit actions performed at the AST level that allows to transform the f;’s
AST into the fr’s AST.

GumTree Diff considers the following edit actions: (i) updatedValue: replaces the value of a node
in the AST (<Update, AST_Node_Type, Target_AST_Node_Type>); (ii) add/insert: inserts a new
node in the AST (<Insert, AST_Node_Type, Target_AST_Node_Type>); (iii) delete: which deletes
anode in the AST (<Delete, AST_Node_Type, Target_AST_Node_Type>); (iv) move: moves an ex-
isting node in a different location in the AST (<Move, AST_Node_Type, Source_AST_Node_Type,
Target_AST_Node_Type>). In our analysis we consider the set of AST edit actions as defined by
GumTree Diff.

Since the file-level granularity could be too large to learn patterns of transformation, we separate
the code into method-level fragments that will constitute our BFPs. The rationale for choosing
method-level BFPs is supported by several reasons. First, methods represent a reasonable target for
fixing activities, since they are likely to implement a single task or functionality. Second, methods
provide enough meaningful context for learning fixes, such as variables, parameters, and method
calls used in the method. This choice is justified by recent empirical studies, which indicated how
the large majority of fixing patches consist of single line, single churn or, worst cases, churns
separated by a single line [75].

Smaller snippets of code lack the necessary context and, hence, they could not be considered.
Finally, considering arbitrarily long snippets of code, such as hunks in diffs, makes learning more
difficult given the variability in size and context [1, 39].

We first rely on GumTree to establish the mapping between the nodes of f;, and fr. Then, we
extract the list of mapped pairs of methods L = {(myp, myf), ..., (mpp, mpr)}. Each pair (m;p, m;y)
contains the method m;;, (from the buggy file f) and the corresponding method m; f (from the
fixed file fr). Next, for each pair of mapped methods, we extract a sequence of edit actions using the
GumTree algorithm. We then consider only those method pairs for which there is at least one edit
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action (i.e., we disregard methods that have not been modified during the fix). Therefore, the output
of this phase is a list of BFPs = {bfp1,...,bfpi}, where each BFP is a triplet bfp = {m;, mg, A},
where my, is the buggy method, my is the corresponding fixed method, and A is a sequence of edit
actions that transforms mj, in my. We exclude methods created/deleted during the fixing, since we
cannot learn fixing operations from them. Overall, we extracted ~2.3M BFPs.

It should be noted that the process we use to extract the BFPs: (i) does not capture changes
performed outside methods (e.g., class signature, attributes, etc.), and (ii) considers each BFP as an
independent bug fix, meaning that multiple methods modified in the same bug fixing activity are
considered independently from one another.

2.2.2  Abstraction. Learning bug-fixing patterns is extremely challenging by working at the level
of raw source code. This is especially due to the huge vocabulary of terms used in the identifiers
and literals of the ~2M mined projects. Such a large vocabulary would hinder our goal of learning
transformations of code as a NMT task. For this reason, we abstract the code and generate an
expressive yet vocabulary-limited representation. We use a Java lexer and a parser to represent
each buggy and fixed method within a BFP as a stream of tokens. The lexer, built on top of ANTLR
[62, 63], tokenizes the raw code into a stream of tokens, that is then fed into a Java parser [84],
which discerns the role of each identifier (i.e., whether it represents a variable, method, or type
name) and the type of a literal.

Each BFP is abstracted in isolation. Given a BFP b fp = {m;, mg, A}, we first consider the source
code of my. The source code is fed to a Java lexer, producing the stream of tokens. The stream
of tokens is then fed to a Java parser, which recognizes the identifiers and literals in the stream.
The parser generates and substitutes a unique ID for each identifier/literal within the tokenized
stream. If an identifier or literal appears multiple times in the stream, it will be replaced with the
same ID. The mapping of identifiers/literals with their corresponding IDs is saved in a map (M).
The final output of the Java parser is the abstracted method (abstract,). Then, we consider the
source code of ms. The Java lexer produces a stream of tokens, which is then fed to the parser. The
parser continues to use a map M when abstracting my. The parser generates new IDs only for novel
identifiers/literals, not already contained in M, meaning, they exist in mg but not in my. Then, it
replaces all the identifiers/literals with the corresponding IDs, generating the abstracted method
(abstracty). The abstracted BFP is now a 4-tuple bfpa = {abstracty, abstractg, A, M}, where M is
the ID mapping for that particular BFP. The process continues considering the next BFP, generating
a new mapping M. Note that we first analyze the buggy code m;, and then the corresponding fixed
code my of a BFP, since this is the direction of the learning process.

IDs are assigned to identifiers and literals in a sequential and positional fashion: The first method
name found will be assigned the ID of METHOD_1, likewise the second method name will receive
the ID of METHOD_2. This process continues for all the method and variable names (VAR_X) as well
as the literals (STRING_X, INT_X, FLOAT_X).

At this point, abstract, and abstracty of a BFP are a stream of tokens consisting of language
keywords (e.g., for, if), separators (e.g., “(*, “;”, “}”) and IDs representing identifiers and literals.
Comments and annotations have been removed from the code representation.

Some identifiers and literals appear so often in the code that, for the purpose of our abstraction,
they can almost be treated as keywords of the language. This is the case for the variables i, j,
or index, that are often used in loops, or for literals such as 0, 1, -1, often used in conditional
statements and return values. Similarly, method names, such as size or add, appear several times
in our code base, since they represent common concepts. These identifiers and literals are often
referred to as “idioms” [11]. We include idioms in our representation and do not replace idioms
with a generated ID, but rather keep the original text when abstracting the code.
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To define the list of idioms, we first randomly sampled 300k BFPs and considered all their original
source code. Then, we extracted the frequency of each identifier/literal used in the code, discarding
keywords, separators, and comments. Next, we analyzed the distribution of the frequencies and
focused on the top 0.005% frequent words (outliers of the distribution). Two authors manually
analyzed this list and curated a set of 272 idioms also including standard Java types such as String,
Integer, common Exceptions, etc. The list of idioms is available in the online appendix [83].

This representation provides enough context and information to effectively learn code trans-
formations, while keeping a limited vocabulary (|V| = ~430). The abstracted code can be mapped
back to the real source code using the mapping (M).

buggy code fixed code
public Integer getMinElement(List myList) { public Integer getMinElement(List myList) {
if(myList.size() >= 0) { if(myList.size() >= 1) {
return ListManager.getFirst(myList); |Dbug-fix return ListManager.min(myList);
o }
return 0; return null;
abstracted buggy code abstracted fixed code
public TYPE_1 METHOD_1 ( TYPE_2 VAR_1 ) public TYPE_1 METHOD_1 ( TYPE_2 VAR_1 )
{ if ( VAR_1 . METHOD_2 ( ) >= INT_1 ) { if ( VAR_1 . METHOD_2 ( ) >= INT_2 )
{ return TYPE_3 . METHOD_3 ( VAR_1 ) ; } { return TYPE_3 . METHOD_4 ( VAR_1 ) ; }
return INT_1 ; } return null ; }
abstracted buggy code with idioms abstracted fixed code with idioms
public TYPE_1 METHOD_1 ( List VAR_1 ) . public TYPE_1 METHOD_1 ( List VAR_1 )
{ if ( VAR_1 . size ( ) >=0 ) learning _ |{ if ( VAR_1 . size ( ) >= 1
{ return TYPE_2 . METHOD_3 ( VAR_1 ) ; } " return TYPE_2 . min ( VAR_1 ) ; }
return 0 ; } return null ; }

Fig. 2. Code Abstraction Example.

To better understand our representation, let us consider the example in Fig. 2, where we see
a bug-fix related to finding the minimum value in a list of integers. The buggy method contains
three errors, which the fixed code rectifies. The first bug is within the if-condition, where the
buggy method checks if the list size is greater than or equal to @. This is problematic since a list
without any values cannot have a minimum value to return. The second bug is in the method called
getFirst, this will return the first element in the list, which may or may not be the minimum
value. Lastly, if the if-condition fails in the buggy method then the method returns 9; returning @
when the minimum is unable to be identified is incorrect as it indicates that one of the elements
within the list is 0. The fixed code changes the if-condition to compare against a list size of 1 rather
than 0, uses the min method to return the minimum value and changes the return value to null
when the if-condition fails.

Using the buggy and fixed code for training, although a viable and realistic bug-fix, presents
some issues. When we feed the buggy piece of code to the Java Parser and Lexer, we identify
some problems with the mapping. For example, the abstracted fixed code contains INT_2 and
METHOD_4, which are not contained in the abstracted version of the buggy code or its mapping.
Since the mapping of tokens to code is solely reliant on the buggy method, this example would
require the synthesis of new values for INT_2 and METHOD_4. However, the methodology takes
advantage of idioms, allowing to still consider this BFP. When using the abstraction with idioms,
we are able to replace tokens with the values they represent. Now, when looking at the abstracted
code with idioms for both buggy and fixed code, there are no abstract tokens found in the fixed
code that are not in the buggy code. Previously, we needed to synthesize values for INT_2 and
METHOD_4, however, INT_2 was replaced with idiom 1 and METHOD_4 with idiom min. With the use
of idioms, we are capable of keeping this BFP while maintaining the integrity of learning real,
developer-inspired patches.
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2.2.3  Filtering. We filter out BFPs that: (i) contain lexical or syntactic errors (i.e., either the lexer or
parser fails to process them) in either the buggy or fixed code; (ii) their buggy and fixed abstracted
code (abstracty, abstracty) resulted in equal strings; (iii) performed more than 100 atomic AST
actions (|A| > 100) between the buggy and fixed version. The rationale behind the latter decision
was to eliminate outliers of the distribution (the 3rd quartile of the distribution is 14 actions), which
could hinder the learning process. Moreover, we do not aim to learn such large bug-fixing patches.
Next, we analyze the distribution of BFPs based on their size, measured in the number of tokens,
shown in Fig. 3. We can notice that the density of BFPs for the buggy code has a peak before 50
tokens and a long tail that extends over 300 tokens.

50 700 150 200 250 300
tokens

Fig. 3. Distribution of BFPs by the number of tokens.

NMT models require large training dataset in order to achieve reasonable results. Moreover,
the variability in sentences length can affect training and performance of the models, even when
techniques such as bucketing and padding are employed. For these reasons, we decided to focus on
the intervals where most of the data points are available. From Fig. 3 it is clear that most of the
data points are concentrated in the interval 0-100. Further analysis showed that there are more
data points in the interval 0-100 than in the larger interval 100-500. Therefore, we disregard long
methods (longer than 100 tokens) and focused on small/medium size BFPs. We create two datasets:
BFPpai = {bfp < 50} and BFP,eqium = {50 < bfp < 100}.

2.24 Synthesis of ldentifiers and Literals. BFPs are the examples we use to make our model
learn how to fix source code. Given a bfp = {my, m¢, A}, we first abstract its code, obtaining
bfpa = {abstracty, abstracts, A, M}. The buggy code abstract;, is used as input to the model,
which is trained to output the corresponding fixed code abstracts. This output can then be mapped
back to real source code using M.

In the real usage scenario, when the model is deployed, we do not have access to the oracle
(i.e., fixed code, abstracty), but only to the input code. This source code can then be abstracted
and fed to the model, which generates as output a predicted code (abstract,). The IDs that the
abstract, contains can be mapped back to real values only if they also appear in the input code.
If the fixed code suggests to introduce a method call, METHOD_6, which is not found in the input
code, we cannot automatically map METHOD_6 to an actual method name. This inability to map
back source code exists for any newly created ID generated for identifiers or literals, which are
absent in the input code.

Therefore, it appears that the abstraction process, which allows us to limit the vocabulary size
and facilitate the training process, confines us to only learning fixes that re-arrange keywords,
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identifiers, and literals already available in the context of the buggy method. This is the primary
reason we decided to incorporate idioms in our code representation, and treat them as keywords of
the language. Idioms help retaining BFPs that otherwise would be discarded because of the inability
to synthesize new identifiers or literals. This allows the model to learn how to replace an abstract
identifier/literal with an idiom or an idiom with another idiom (e.g., bottom part of Fig. 2).

After these filtering phases, the two datasets BFPs,,;; and BF Py, qium consist of 58k (58,350)
and 65k (65,455) bug-fixes, respectively.

2.3 Learning Patches

2.3.1 Dataset Preparation. Given a set of BFPs (i.e., BFPs,;, 411 and BFP,,c4i,m) We use the instances
to train an Encoder-Decoder model. Given a bfpa = {abstracty, abstracty, A, M} we use only
the pair (abstracty, abstracty) of buggy and fixed abstracted code for learning. No additional
information about the possible fixing actions (A) is provided during the learning process to the model.
The given set of BFPs is randomly partitioned into: training (80%), validation (10%), and test (10%) sets.
Before the partitioning, we make sure to remove any duplicated pairs (abstracty, abstracty) to not
bias the results, i.e.,, same pair both in training and test set. Specifically, code duplication represents
a significant threat to machine learning approaches on source code which could lead to inflated
results, as recently described by Allamanis [2]. In particular, there exists no pair < bfp;,bfp; > in
our dataset (i.e., train, validation, and test combined) such that bfp; = bfp;. The duplicates are
removed after the abstraction process, allowing us not only to discard instances with identical
source code, but also those with similar code that becomes identical after the abstraction. As a
matter of fact, by replacing identifiers and literals with IDs such as VAR and TYPE, we perform a
process similar to the one applied by clone detection tools to identify similar code. Therefore, we
go beyond simply removing instances having the same source code.

In order to better check against the presence of clones, we also employ a state-of-the-art clone
detection tool, NiCad [69]. NiCad provides pre-defined configurations for different types of clones,
which allow us to avoid to set an arbitrary similarity threshold. Also, recent work [70] showed the
superiority of NiCad to alternative tools in terms of precision/recall. The only comparable tool is
SourcererCC [70], which is above all better in terms of scalability, something not really relevant for
our application scenario.

We found no Type I clones, and only ~1,200 and ~400 Type II clone pairs in BFP,,;; and
BFPpedium, respectively. These few Type II clones come from the idiomatic abstraction process,
where instances differ for idioms in the abstract code. Note that, even if these instances represent
clones, they are effectively two different inputs/outputs for the model, since their sequences of
tokens are different.

2.3.2 NMT. The experimented models are based on an RNN Encoder-Decoder architecture, com-
monly adopted in NMT [15, 35, 77]. This model consists of two major components: an RNN Encoder,
which encodes a sequence of terms x into a vector representation, and an RNN Decoder, which
decodes the representation into another sequence of terms y. The model learns a conditional distribu-
tion over a (output) sequence conditioned on another (input) sequence of terms: P(y1, .., Ym|X1, .., Xn)s
where n and m may differ. In our case, given an input sequence x = abstract, = (x1, .., x,) and a
target sequence y = abstracty = (yi, .., Ym), the model is trained to learn the conditional distribu-
tion: P(abstractg|abstracty) = P(y1, .., YmlxX1, .., X)), Where x; and y; are abstracted source tokens:
Java keywords, separators, IDs, and idioms. Fig. 1 shows the architecture of the Encoder-Decoder
model with attention mechanism [6, 10, 49]. The Encoder takes as input a sequence x = (x1, .., Xp,)
and produces a sequence of states h = (hy, .., h,). We rely on a bi-directional RNN Encoder [6],
which is formed by a backward and a forward RNN, which are able to create representations taking
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Fig. 4. Beam Search Visualization.

into account both past and future inputs [10]. That is, each state h; represents the concatenation

(dashed box in Fig. 1) of the states produced by the two RNNs when reading the sequence in a
— —

forward and backward fashion: h; = [h;; h;].

The RNN Decoder predicts the probability of a target sequence y = (y1, .., Y ) given h. Specifically,
the probability of each output term y; is computed based on: (i) the recurrent state s; in the Decoder;
(ii) the previous i—1 terms (yi, .., y;—1); and (iii) a context vector c;. The latter constitutes the attention
mechanism. The vector ¢; is computed as a weighted average of the states in h: ¢; = }}_; a;¢hs
where the weights a;; allow the model to pay more attention to different parts of the input sequence.
Specifically, the weight a;; defines how much the term x; should be taken into account when
predicting the target term y;,.

The entire model is trained end-to-end (Encoder and Decoder jointly) by minimizing the negative
log likelihood of the target terms, using stochastic gradient descent.

2.3.3 Generating Multiple Patches via Beam Search. After the model is trained, it is evaluated
against the test set of unseen buggy code. The classic greedy decoding selects, at each time step
i, the output term y; with the highest probability. The downside of this decoding strategy is that,
given a buggy code as input, the trained model will generate only one possible sequence of predicted
fixed code. Conversely, we would like to generate multiple potential patches (i.e., sequence of terms
representing the fixed code) for a given buggy code. To this aim, we employ a different decoding
strategy called Beam Search and used in previous applications of deep learning [6, 9, 22, 68].

The major intuition behind Beam Search decoding is that rather than predicting at each time
step the token with the best probability, the decoding process keeps track of k hypotheses (with k
being the beam size or width). Formally, let H; be the set of k hypotheses decoded till time step t:

He = {1 90 @ T @ G0
At the next time step ¢ + 1, for each hypothesis there will be |V| possible y;.; terms (V being the
vocabulary), for a total of k - |V| possible hypotheses.

k
Coot = M@ G000 @ G o))
i=1

From these candidate sets, the decoding process keeps the k sequences with the highest probability.
The process continues until each hypothesis reaches the special token representing the end of a
sequence. We consider these k final sentences as candidate patches for the buggy code. Note that
when k = 1, Beam Search decoding coincides with the greedy strategy.

Fig. 4 shows an example of the Beam Search decoding strategy with k = 3. Given the abstract,
code as input (top-left), the Beam Search starts by generating the top-3 candidates for the first
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term (i.e,, public, void, private). At the next time step, the beam search expands each current
hyphothesis and finds that the top-3 most likely are those following the node public. Therefore,
the other two branches (i.e., void, private) are pruned (i.e., red nodes). The search continues till
each hypothesis reaches the <eos> (End Of Sequence) symbol. Note that each hypothesis could
reach the end at different time steps. This is a real example generated by our model, where one of
the candidate patches is the actual fixed code (i.e., green path).

2.3.4  Hyperparameter Search. For both models built on the BFP;,,,;; and BFPy,cq;um dataset (i.e.,
Mgman and Mp,eqium) we performed hyperparameter search by testing ten configurations of the
encoder-decoder architecture. The configurations tested different combinations of RNN Cells (LSTM
[31] and GRU [15]), number of layers (1, 2, 4) and units (256, 512) for the encoder/decoder, and
the embedding size (256, 512). Bucketing and padding was used to deal with the variable length
of the sequences. We trained our models for a maximum of 60k epochs, and selected the model’s
checkpoint before over-fitting the training data. To guide the selection of the best configuration,
we used the loss function computed on the validation set (not on the test set), while the results are
computed on the test set. All the configurations and settings are available in our online appendix
[83].

2.3.5 Code Concretization. In this final phase, the abstracted code generated as output by the
NMT model is concretized by mapping back all the identifiers and literal IDs to their actual values.
The process simply replaces each ID found in the abstracted code to the real identifier/literal
associated with the ID and saved in the mapping M, for each method pair. The code is automatically
indented and additional code style rules can be enforced during this stage. While we do not deal
with comments, they could be reintroduced in this stage as well.

3 EXPERIMENTAL DESIGN

The goal of this study is, as stated in the introduction, to empirically assess whether NMT can be
used to learn fixes in the wild. The context consists of a dataset of bug fixes mined from Java open
source projects hosted on GitHub (see Section Section 2).

The study aims at answering three research questions, described in the following.

3.1 RAQT1: Is Neural Machine Translation a viable approach to learn how to fix code?

We aim to empirically assessing whether NMT is a viable approach to learn transformations of the
code from a buggy to a fixed state. To this end, we rely on multiple internal and external datasets.

3.1.1 Internal Dataset. We use the two datasets BFP;,,,,;; and BFP,,,c4ium to train and evaluate two
NMT models Mgq11 and My, eqium- Precisely, given a BFP dataset, we train different configurations
of the Encoder-Decoder models, then select the best performing configuration on the validation
set. We then evaluate the validity of the model with the unseen instances of the test set.

The evaluation is performed as follows: let M be a trained model (Msp,q11 O Mppedium) and
T be the test set of BFPs (BFPs;,411 or BFPpedium), we evaluate the model M for each bfp =
(abstracty, abstracty) € T. Specifically, we feed the buggy code abstract;, to the model M, per-
forming inference with Beam Search Decoding for a given beam size k. The model will generate
k different potential patches P = {abstract), ..., abstract;f}. We say that the model generated a
successful fix for the code if there exists an abstract}, € P such that abstract;; = abstracty. We
report the raw count and percentage of successfully fixed BFPs in the test set, varying the beam
size k from 1 (i.e., a single patch is created by M) to 50 (i.e., 50 patches are created) with incremental
steps of 5.
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Table 1. CodRep Datasets.

Datasets ‘ Msmall ‘ Mmedium ‘
CodRep1 221 503
CodRep2 530 1130
CodRep3 665 1397
CodRep4 603 1124
CodRep5 1066 2119
CodRep | 3027 6205

3.1.2  External Dataset. The external dataset comprises methods extracted from CodRep: a Machine
Learning on Source Code Competition [14]. The goal of the competition is to predict where to
insert a specific line into a source code file. The competition aims at being a common playground
on which the machine learning and the software engineering research communities can interact
[14], with potential usages in the field of automated program repair [13]. The dataset is composed
of five collections of source code files taken from real commits in open-source projects, belonging
to seven different studies in the literature focusing on bug-fixes and change history analysis
[28, 46, 55, 71,79, 95, 97]. On the CodRep dataset we perform the same steps described in Section 2.2,
which involves extracting the changed methods, abstracting the pairs, and selecting only small
and medium methods. Table 1 reports the number of unique (i.e., no duplicates) method pairs in
each of the five collections as well as the entire CodRep dataset (i.e., last row in Table 1) where also
inter-collections duplicates have been removed. The same models M;,41; and M,eqiym, which
have been trained on the BFP dataset, are then evaluated on the entire CodRep dataset, without
making any adjustments or adding more idioms. This helps in assessing the “portability” of our
models when trained on a dataset D; and tested on a different dataset D;.

3.2 RQ2: What types of operations are performed by the models?

This RQ investigates the quality and type of operations performed by the fixes that our model
generates. We perform the investigation by means of automated and manual analysis.

We first analyze the syntactic correctness of the patches for all beam widths. That is, we feed each
potential patch abstract;, to a Java lexer and parser in order to assess whether the patch is lexically
and syntactically correct. We do not assess the compilability of the patches, since it would require
us to download the exact, entire snapshot of each GitHub project. This would entail downloading
thousands of different GitHub projects and attempting to compile them with the newly generated
patch. There are also obstacles when dealing with different building systems.

Next, we focus on the BFPs that are successfully fixed by the models and analyze the types of
AST operations performed during the fix. While these NMT models do not technically operate on
the source code’s AST, but rather on sequences of tokens, it is still worthwhile to understand the
types of AST operations that such models can emulate. This analysis will provide an idea on the
potential and/or limitations of such models. In detail, we extract the AST operations by selecting
the action set A of the BFPs successfully fixed by the model. We identify the set M4 of unique
AST actions performed by the model M in the successful fixes and compare them with the overall
set O4 of unique AST operations contained within the entire test set of BFPs (i.e., those that are
needed to fix all the bugs in our test sets). With this information we can compute the percentage
of AST actions in O4 that are learned and applied by M (i.e.,, [Ma|/|O4|). We also calculate the
“theoretical bug coverage” ensured by M, as the percentage of bugs in the test set that could be
theoretically fixed by only using a subset of operations in M. This allows us to check whether the
AST operations that are not “learned” by M (i.e.,, |O4| \ |M4|) are used in many bug-fixing activities,
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Fig. 5. Number of perfect prediction, operation (orange) bug (green) coverage, and syntactic correctness for
varying beam width and for different method lengths.

thus representing an important loss for our model. A low theoretical bug coverage indicates that
many bugs in test sets can not be fixed by only using the operations in M4, while a high theoretical
bug coverage points to the fact that the operations not learned by M are only sporadically used to
fix bugs.

Finally, we discuss some interesting examples of the patches generated by NMT models.

3.3 RQ3: What is the training and inference time of the models?

In this RQ we evaluate the performance of the models in terms of execution time. Specifically,
we analyze and discuss the time required to train the models, and the time needed to perform an
inference once models have been deployed. For the latter, we report the total time of inference and
compute the average time per patch generated for every beam width.

4 RESULTS
4.1 RAQ1:Is Neural Machine Translation a viable approach to learn how to fix code?

When performing the hyperparameter search, we found that the configuration, which achieved
the best results on the validation set, for both M1 and M,eqium, Was the one with 1-layer
bi-directional Encoder, 2-layer Attention Decoder both with 256 units, embedding size of 512,
and LSTM [31] RNN cells. We trained the M, and My,eqium models for 50k and 55k epochs,
respectively.

4.1.1 Internal Dataset. Table 2 reports the number and percentage of BFPs correctly predicted by
the models for different beam sizes. As expected, increasing the beam size and, therefore, generating
more candidate patches, increases the percentages of BFPs for which the models can perfectly
generate the corresponding fixed code starting from the buggy code input. The most surprising
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Table 2. Models’ Performances

BFP

Msmali

Mmedium

CodRep

Msmali

Mmedium

538 / 5835 (9.22%)
1595 / 5835 (27.33%
2119 / 5835 (36.31%
2356 / 5835 (40.37%
2538 / 5835 (43.49%
2634 / 5835 (45.14%
2711 / 5835 (46.46%
2766 / 5835 (47.40%
2834 / 5835 (48.56%
2899 / 5835 (49.68%

)
)
)
)
)
)
)
)
)
2927 / 5835 (50.16%)

211 / 6545 (3.22%)
859 / 6545 (13.12%)
1166 / 6545 (17.82%)
1326 / 6545 (20.25%)
1451 / 6545 (22.16%)
1558 / 6545 (23.80%)
1660 / 6545 (25.36%)
1720 / 6545 (26.27%)
1777 / 6545 (27.15%)
1830 / 6545 (27.96%)
1869 / 6545 (28.55%)

65 /3027 (2.14%)
311 /3027 (10.27%)
450 / 3027 (14.86%)
539 /3027 (17.80%)
614 / 3027 (20.28%)
657 / 3027 (21.70%)
701 /3027 (23.15%)
733 /3027 (24.21%)
761 /3027 (25.14%)
784 / 3027 (25.90%)
807 / 3027 (26.66%)

26 / 6545 (0.41%)
207 / 6205 (3.33%)
361/ 6205 (5.81%)
451 / 6205 (7.26%)
524 / 6205 (8.44%)
574 / 6205 (9.25%)
599 / 6205 (9.65%)
644 / 6205 (10.37%)
679 / 6205 (10.94%)
709 / 6205 (11.42%)
749 / 6205 (12.07%)

-:13

results are those obtained with small beam sizes. The models can predict the fixed code of 9% and
3% of the BFPs with only one attempt. If we let the models generate 15 candidate patches, the
percentage of perfect predictions bumps to 40% and 20% for small and medium methods, respectively.
The number of BFPs patched steadily increases when more candidate patches are generated by the
models (i.e., bigger beam size), to reach a 50% and 28% of perfect predictions when 50 candidates
patches are considered.

The leftmost graphs in Fig. 5 show the percentage of successful fixes as a function of the beam
size. When setting the beam size to 50, M, fixes 2,927 bugs (out of 5,835) in the same exact way
they were fixed by developers. Likewise, M,eqium fixes 1,869 bugs (out of 6,545). It is important
to note that all BFPs in the test sets are unique and have never been seen before by the model
during the training or validation steps. Moreover, there is no inherent upper bound to the beam
width used during inference, therefore even larger beam widths could be set. All perfect predictions
generated by the models at different beam sizes as well as experiments with even larger beam sizes
are available in our online appendix [83].

The differences in performances between the M, 4;; and Myeqium could be explained by the
fact that larger methods have potentially more faulty locations where a transformation of the code
could be performed.

4.1.2  External Dataset. The last two columns of Table 2 report the results for the external dataset
CodRep. The results show that the models M1 and My, egiym — which have been trained on
the test set of BFPs,41; and BFPy,eqium — are able to fix a high number of bugs belonging to
a completely different and heterogeneous dataset. Similarly, increasing the beam size leads to
improvements in the number of fixes, up to 26.66% and 12.07% for small and medium methods when
50 different potential patches are generated. Table 3 reports in details the fixes for each CodRep
dataset (beam size 50). The overall percentages of fixes for CodRep dataset are slightly lower than
those for BFP. This could be due to the fact that (i) the dataset is smaller, therefore, the model has
fewer instances that can potentially fix; (ii) the dataset could contain different idioms which have
not been considered (we did not fine-tune the idioms on this dataset). Overall, the results on the
external dataset confirm the generalizability and potential of the NMT models to fix bugs on a
different dataset.

Summary for RQ;.

Using NMT, we trained a model on small BFPs, which can produce developer inspired fixes for
9.22% - 50.16% of bugs (dependent upon beam width). Likewise, a model trained on medium BFPs
is capable of producing developer inspired fixes for 3.22% - 28.55% of bugs (dependent on beam
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Table 3. CodRep Results

Datasets ‘ Mg mall ‘ Mmedium ‘

CodRepl | 55/221 (24.89%) 48 /503 (9.54%)

CodRep2 | 167/530(31.51%) | 136/ 1130 (12.03%)
CodRep3 | 180 /665 (27.07%) | 166/ 1397 (11.88%)
CodRepd | 167/603 (27.69%) | 157 /1124 (13.97%)
CodRep5 | 288 /1066 (27.02%) | 244 /2119 (11.51%)

CodRep | 807/3027 (26.66%) | 749 / 6205 (12.07%) |

width). These results indicate that Neural Machine Translation is a viable approach for learning
how to fix code. The results on the external dataset confirm the generalizability and potential of
the NMT models.

4.2 RQ2: What types of operations are performed by the models?

Fig. 5 also shows the results of the two models (i.e., Mgmar top, Mpmedium bottom) in terms of
operations coverage, and syntactic correctness of the generated patches. Before discussing these
results, it is important to comment on the dataset characteristics for small and medium BFPs. To fix
the 5,835 small methods, developers adopted combinations of 600 different types of operations at
the AST level (e.g., Insert BinaryOperator at Conditional, Delete Catch at Try, etc.). Of these, only 87
have been used in more than 1% of bug-fixes, meaning that a vast majority of the AST operations
have been rarely used to fix bugs (e.g., in the case of the BF P, 411, 513 types of AST operations
have been used for the fixing of less than 58 bugs). Also, the average number of operations needed
to fix a bug in the “small” dataset is 4.5. Similar observations can be done for BFP,qiy,m (see Fig.
5).

4.2.1 Syntactic Correctness. We start by analyzing the syntactic correctness (rightmost graphs).
We can notice that, when the models are asked to generate a single prediction (i.e., the most likely
one), the overall syntactic correctness of the predicted code is very high (99% and 98%). Clearly, the
more candidate predictions the model is required to generate, the more likely is that it introduces
syntactic errors during the transformation of the code. We observe this phenomenon in the graph
with a decreasing syntactic correctness, reaching 82% and 85% when 50 variants of patches are
generated. The slightly better syntactic correctness achieved by the M, ¢q;um model could be
explained by the fact that, in larger methods, there are more potential points of transformation
where syntactically correct variants can be generated, with respect to smaller methods. While
we do not measure the compilability rate of the generated patches, it is worth to note that the
perfect predictions generated by the models correspond to the code that was actually committed to
repositories by developers. For such reasons, we could reasonably expect those predicted patches
to be compilable.

4.2.2  AST Operations. The center graphs in Fig. 5 show the operation coverage (orange line) and
theoretical bug coverage (green line) when varying the beam size. When only one candidate patch
is generated, the models My, 411 and M,eqiym cover 28% and 16% of the total unique operations in
the entire test sets, which include 600 and 690 operations, respectively. An increase of the beam
size to 5 and 10 leads to a dramatic surge in the coverage of various operations in the test set. These
results show that allowing the models to generate more candidate patches not only leads to more
fixes, but also to a larger variety of bug fixing operations being performed. The operation coverage
keeps increasing with larger beam widths.
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Table 4. Perfect Prediction Top-10 Operations

Delete

Frequency  Operation

1774  Delete Invocation at Block

1295  Delete TypeAccess at ThisAccess

1034  Delete FieldRead at Invocation
878  Delete VariableRead at Invocation
850  Delete TypeAccess at Invocation
789  Delete Literal at Invocation
622 Delete TypeAccess at FieldRead
602  Delete ThisAccess at FieldRead
570  Delete ThisAccess at Invocation
532  Delete Literal at BinaryOperator

Insert

Frequency  Operation

338 Insert TypeAccess at ThisAccess
186  Insert Literal at BinaryOperator
185  Insert Block at Method

156  Insert ThisAccess at FieldRead
155  Insert BinaryOperator at If

150  Insert ThisAccess at Invocation
147  Insert If at Block

136  Insert VariableRead at Invocation
123 Insert Return at Block

114  Insert Block at If

Move

Frequency  Operation

277 Move Invocation from Block to CtInvocationImpl
129 Move Block from If to CtBlockImpl
97  Move Return from Block to CtReturnIlmpl
76  Move Invocation from BinaryOperator to CtInvocationImpl
71  Move Invocation from Invocation to CtInvocationImpl
59  Move Parameter from Method to CtParameterImpl
59  Move BinaryOperator from BinaryOperator to CtBinaryOperatorImpl
57  Move Invocation from LocalVariable to CtInvocationImpl
57  Move Block from Method to CtBlockImpl
40  Move Method from Class to CtMethodImpl

Update

Frequency  Operation

314  Update Invocation at Block
303  Update Method at Class
122 Update Invocation at Invocation
114  Update Literal at Invocation
77  Update BinaryOperator at If
75  Update Invocation at Return
48  Update Literal at BinaryOperator
45  Update BinaryOperator at BinaryOperator
38  Update Invocation at LocalVariable
33  Update ThisAccess at FieldRead

We observe a similar trend for the theoretical bug coverage, with large improvements in the
early beam widths, and a steady increase afterwards. It is also worth to carefully speculate on
the theoretical bug coverage percentages. As a matter of fact, the results suggest that — with
combinations of the AST actions learned and successfully emulated by the models in perfect fixes -
the models could theoretically cover 94% and 84% of the bug fixes in the test set. This means that
the AST operations that the models failed to learn are quite rare, and only used in a small subset of
the real bug-fixing activities used for training.
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Examples of successfully fixed bugs

if statement

4| Pprivate static long METHOD_1 ( TYPE_1 VAR 1 ) { return VAR_1 . METHOD_2 . getvalue ( ) ; }
1) {

()
private static long METHOD_1 ( TYPE_1 VAR_ return ( VAR_1 . METHOD_2 ( ) ) == null ? @ : VAR_1 . METHOD_2 ( ) . getValue ( ) ; }

public int METHOD_1 ( ) { java.lang.String VAR_1 = null ; return VAR_1 . length ( ) ; }
public int METHOD_1 ( ) { java.lang.String VAR_1 = null ; return VAR_1 == null ? @ : VAR_1 . length ( ) ; }

public void METHOD_1 ( final int VAR_1 ) { VAR_2 . get ( VAR_1 ) . METHOD_1 ( ) ; }
public void METHOD_1 ( final int VAR_1 ) { if ( ( VAR.2 . get ( VAR_.1) ) != null ) { VAR_2 . get ( VAR_1 ) . METHOD_1 ( ) ; } }

public void METHOD_1

() { TYPE_1 VAR_1 = VAR_2 . remove ( ) ; VAR_1 . METHOD_2 ( ) ; }
public void METHOD_1 ( ) {

if ((( VARZ2 . size () ) >0 ) { TYPE_L VAR_1 = VAR2 . remove ( ) ; VAR_L . METHOD_2 () ; } }

public boolean METHOD_1 ( ) { return METHOD_2 ( ) . METHOD_3 ( ) . METHOD_4 ( ) ; }
public boolean METHOD_1 ( ) { if (( METHOD_2 ( ) . METHOD_3 ( ) ) != null) {return METHOD_2 ( ) . METHOD_3 ( ) . METHOD_4 ( ) ;} return false ;}

public void METHOD_1 ( TYPE_1 < ? > VAR 1 ) { VAR2 . add ( VAR_1 ) ;
public void METHOD_1 ( TYPE_1 < ? > VAR_1 ) { if ( ! ( VAR.2 . contains ( VAR_.1 ) ) ) VAR2 . add ( VAR.1) ; }

casting

public float METHOD_1 ( ) { return values [ INT_1 1] ; }
public float METHOD_1 ( ) { return ( ( float ) ( values . get ( INT_1) ) ) ; }

code structure

8 private synchronized void METHOD_1 ( _1 . METHOD_2 ( VAR_2 ) ; VAR_1 . METHOD_3 ( listener ) ;
(

}
private synchronized void METHOD_1 . METHOD_3 ( listener ) ; VAR_1 . METHOD_2 ( VAR_2 ) ; }

private boolean METHOD_1 ( int type ) { switch ( type ) { case VAR_1 : return true ; } return false ; }
private boolean METHOD_1 ( int type ) { switch ( type ) { case VAR_1 : return true ; default : return false ; } }

try-catch statement
public static void METHOD_1 ( ) { for ( TYPE_1 VAR_1 : VAR_2 ) { try { VAR_1 . update ( ) ; } catch ( java.lang.Exception VAR_3 ) { TYPE_2 .
METHOD_2 ( STRING_1 , VAR_3 . toString ( ) ) ; } } }

public static void METHOD_1 ( ) { try { for ( TYPE_1 VAR_1 : VAR_2 ) { VAR_1 . update ( ) ; } } catch ( java.lang.Exception VAR_3 ) { TYPE_2 .
METHOD_2 ( STRING_1 , VAR_3 . toString ( ) ) ; } }

else statement

protected void METHOD_1 ( ) throws java.io.IOException {if (( VAR_1 )<( VAR_2 VAR_2;} else if (( VAR_1 )>( VAR_3 )) { METHOD_2 ();}}

)) {VAR_1
1‘ protected void METHOD_1 ( ) throws java.io.IOException {if (( VAR_1 )<( VAR_2 )) {VAR_1 = VAR_2;} else { METHOD_2 ();}}

method calls

public float op ( float VAR_1 ) { return TYPE_1 . METHOD_1 ( VAR_1 , num . METHOD_2 ( ) ) ; }
public float op ( float VAR_1 ) { return TYPE_1 . min ( VAR_1 , num . METHOD_2 ( ) ) ; }

3]

43| Public void METHOD_1 ( ) { if (! ( VAR1 . equals ( VAR 2 . intValue () ) ) ) { ( VAR1) ++ ; METHOD_2 () ; } }
public void METHOD_1 ( ) { if ( ! ( VAR_1 . equals ( VAR_2 ) ) ) { ( VAR_1 ) ++ ; METHOD_2 ( ) ; } }

logic/boolean operators

14| Public void METHOD_1 (TYPE_1 VAR_1) { if (VAR_2) { VAR_3.setText( TYPE_2.METHOD_2 (((TYPE_3) ( VAR_3.getContext ())))); } VAR_2 = ! (VAR_2);}
public void METHOD_1 (TYPE_1 VAR_1) { if (!(VAR_2)) { VAR_3.setText( TYPE_2.METHOD_2 (((TYPE_3) ( VAR_3.getContext ())))); } VAR_2 = ! (VAR_2);}
15 public void METHOD_1 (java.lang.CharSequence title){METHOD_1(title); if((title!=null)||((METHOD_2())!=null)){METHOD_2().METHOD_1(title.toString());}}
public void METHOD_1 (java.lang.CharSequence title){METHOD_1(title); if((title!=null)&&((METHOD_2())!=null)){METHOD_2().METHOD_1(title.toString());}}
16| Public void METHOD_1 ( ) { while ( ( VAR1) <= ( VAR2 ) ) { TYPE_1 VAR 3 = TYPE_2 . METHOD_2 ( ) ; add ( VAR3 ) ; ( VAR1) ++; } }
public void METHOD_1 ( ) { while ( ( VAR.1 ) < ( VAR_.2 ) ) { TYPE_1 VAR 3 = TYPE_2 . METHOD_2 ( ) ; add ( VAR 3 ) ; ( VAR.1) ++; } }

Fig. 6. Examples of successfully-generated patches.

Table 4 reports the top-10 operations for each category successfully emulated by the models
when generating the perfect predictions. The complete list of all the AST operations as extracted
by GumTree Diff is available in our online appendix [83]

4.2.3  Qualitative Examples. Fig. 6 shows some interesting examples of patches generated by the
model. For space limitations, we focus on interesting fixes distilled from the set of perfect predictions
generated by the model M;,,4;;. The examples are shown in abstracted code (with idioms), as they
are fed and generated by the models. The actual source code can be generated by mapping back all
the IDs to the real values stored in the mapping M. Fig. 6 also groups the examples based on the
“type of fix” implemented, showing the ability of the model in learning different fixing patterns,
also in the context of the same group. For example, we show that not all fixes dealing with if
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conditions are identical. All examples are perfect predictions meaning that the model changed the
buggy method to reflect exactly how the developer changed the method in the wild.

Our first group of examples (1-6) concern buggy methods that were missing and if or that
benefited from its addition. Thus, the added condition either helped to prevent errors during
execution or ensured the expected outcome from the executed code. Example 1 shows an in-line
if condition added to the fixed method to check whether the getValue method is being called on
a null object and returns 0 if it is. If the object is not null, then the original getValue method is
called on the object and that value is returned. This fix ensures that the get method is not called
on a null object. Likewise, example 2 inserts a similar check but targeting the length of a variable
rather than a getter method. The in-line if checks ensures the variable is not null, if it is then
the method returns 0, otherwise, the method returns the result of VAR_1.1length(). This patch is
interesting because the string VAR_T1 is set to null before the length is calculated. This could be an
example where the developer was performing error checking and wanted to ensure that the string
was in fact nulled out. Given the context, we would expect the method to always return 0. However,
the original method calls the length() method on a null string, which would return an error.
Although this patch is “correct”, the model may have learned a sub-optimal coding practice from
the developer’s patch. The model’s generated patch is unsurprising as the training data included
many in-line if checks as a potential fix. Most likely, the model identified this pattern and applied a
similar fix in this scenario. Examples 3, 4 and 5 all insert similar if-checks that are not in-line if's.
Examples 3 and 5 both add an if condition handling cases in which the invoked method returns
null, while example 4’s if condition checks the size of a variable before operating on it.

The last example in this group (i.e., number 6) is different from the others, since the if condition
is more complex and makes use of the boolean operator not (!). Here the fix is preventing the
method from adding a duplicated value to VAR_2. If the value VAR_1 is already present in VAR_2,
then the method will not add VAR_1 again. It is important to note that although these examples all
add an if check as the fix, they are all unique and tailored to the method’s context. The model was
able to learn the correct changes needed for the specific method that would mimic a developer’s
changes.

The second group of fixes addresses issues related to the cast of a specific variable. The original
method in example 7 would throw an error if executed because the method signature calls for a
return value of type float, but the method returns a value of type int. The model recognized this
error and casted the return value of type float. Additionally, the fix also changes the mechanism
by which the value is extracted from values (see Fig. 6). This not only changes the type of value
returned by also the mechanism by which it is returned.

The next group of examples pertain to the implementation or structure of the code, leading
to incorrect execution. Example 8 switches the statements’ order of execution, without applying
any other change. This swap could be needed due to the first statement changing the state of the
system (e.g., the value of VAR_1) which would then cause the VAR_1.METHOD_2 (VAR_2) invocation
to have a different outcome. Our model is capable of finding such errors in order execution and
provide an adequate fix. Example 9 is similar in that the structure of the code is incorrect. Here the
switch statement is missing a default case in the buggy method. Thus, the buggy method will
execute the switch and, if no case condition will be met, the code outside the switch statement
will be run. The fix adds a default case to the switch statement to handle cases in which no case
condition is met. This fix does not change the outcome of the code since the code executed outside
the case statement (buggy version) and inside the default statement (fixed version) is exactly the
same (see Fig. 6). However, it improves the readability of the code, making it adhering to the Java
coding convention suggesting that switch statements should have a default case, which occurs
when no other case in the switch has been met.
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Our fourth category of examples are changes where the model fixes try-catch statements. We
report one representative example (number 10). This fix changes the scope of the try block to also
include in it the for loop, that was instead containing the try block in the buggy method.

The fifth group of fixes we found addresses incorrect else statements. In example 11 we see
that the else if statement is removed from the buggy method. This change is seen as a bug fix
since the buggy method only defines its behavior when VAR_1 < VAR_2 or VAR_1 > VAR_2.It has
no behavior defined when VAR_1 == VAR_2, which could lead to unexpected errors. The model
fixes this by replacing the else if statement with an else, covering all possible relations between
VAR_1 and VAR_2.

The sixth group of fixes aims at replacing incorrect method calls. As seen in example 12, the
method call METHOD_1 is replaced with min. The example demonstrates the power of idioms. Indeed,
without this idiom, we would discard this fix since we would be unable to generate a name for the
unseen method min in the fix and would name it METHOD_3. Since METHOD_3 would not be seen
in our mapping M, we would have to synthesize the new methods name when translating the
abstracted code back into source code. Having min as an idiom allows us to avoid the synthesis and
still learn the fix. Although this patch replaces METHOD_1 with min, which seems very specific, it is
logical that the method is being replaced with a mathematical method. The power of our RNN is
that context is taken into account and the context of this method demonstrates a mathematical
operation. When the model observes mathematical methods it may be inclined to generate a patch
using variables and method calls seen in similar methods. Therefore, the min function makes sense
as a patch since it compares two numbers and is a mathematical function, which fits the context of
the overall method well. Example 13 shows instead the removal of unnecessary/harmful method
calls. Here the model removes in the fixed method the invocation to intValue() on VAR_2. This
method is used to return a numeric value, represented by an object, as an int. In this situation,
textttVAR_2 is a Java integer object and intValue() would return an int type. The fix removes
this method call which compares an object to int, making equals comparing VAR_1 to the integer
type VAR_2.

Finally, the last group of fixes involves the changing, addition or removal of logic or boolean
operators. Although they changes themselves do not appear massive, they have major implications
on the source code behavior. For instance, example 14 adds a negation boolean operator to the if
condition. This completely changes the functionality of the fixed method since now it will only
execute the if block when ! VAR_2 == true. Example 15 performs a fix along the same line,
changing an operator in the if condition from logical or (||) to a logical and (&&). This means
that both conditions must be met in order to run the code within the if block. Since the buggy
method allowed only one condition to be met, it is possible that this led to undesired results for the
developers. Example 16 changes a <= to a < operator. It is worth noting that this operator change
takes place within the scope of a while loop, thus reducing by one the times that the code in the
while loop is executed.

The reported qualitative examples show the potential of NMT models to generate meaningful
correct patches, by learning from real bug-fixes wrote by developers, which allows the model to
avoid problems arising with existing program repair techniques. Indeed, a previous work by Qi et
al. [67] found that existing techniques achieve repair by overfitting on the test cases, or by simply
deleting pieces of functionality. The models produced many other interesting patches, which are
not discussed here due to space limitations. Our online appendix [83] contains many more examples
of bug-fixes using different operations, considering methods with different lengths, and using a
variety of beam widths.

Besides success cases, we also qualitatively discuss code snippets for which our approach failed
in fixing the bug. Each of the discussed examples is shown in Figure 7 in three lines: the first
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Examples of unfixed bugs

public void METHOD_1 (TYPE_1 <TYPE_2> VAR_1, java.lang.Throwable VAR_2) { METHOD_2 (VAR 2) ; }
public void error (java.lang.Throwable VAR_2) { METHOD_2 (VAR_2) ; }

public void METHOD_1 (TYPE_1 <TYPE_2> VAR_1, java.lang.Throwable VAR_2) { METHOD_2 (VAR_2) ; if((VAR_3)!= null){VAR_3.METHOD_3 (VAR_2.METHOD_4());} } ‘

public java.lang.Integer METHOD_1 (java.lang.Integer VAR_1 , java.lang.Object VAR 2 , int VAR_3) {return INT_1;}
public java.lang.Integer METHOD_1 (java.lang.Integer VAR_1 , java.lang.Object VAR_2 , int VAR_3) {return 0;}

public java.lang.Integer METHOD_1 (java.lang.Integer VAR_1 , java.lang.Object VAR_2 , int VAR_3) {value = ((java.lang.Integer) (VAR_2)); return value;}
void METHOD_1 ( java.lang.String VAR_1 ) { TYPE_1 . info ( this , VAR_1 ) ; out . METHOD_2 ( VAR_1 ) ; out . METHOD_3 ( ) ; }
3 |void METHOD_1 ( java.lang.String VAR_1 ) { java.io.File . info ( this , VAR_1 ) ; out . METHOD_2 ( VAR_1 ) ; out . METHOD_3 ( ) ; }
void METHOD_1 ( java.lang.String VAR_1 ) { if ( (out) == null ) return ; TYPE_1 . info (this , VAR_1); out . METHOD_2 (VAR_1) ; out . METHOD_3 ( ) ; }
public boolean METHOD_1 ( final boolean VAR_1 , final boolean VAR_2 ) { return VAR_1 & VAR_2 ; }
4 | public boolean METHOD_1 ( final boolean VAR_1 , final boolean VAR_2 ) { return VAR_1 . equals ( VAR_2 ) ; }
public boolean METHOD_1 ( final boolean VAR_1 , final boolean VAR_2 ) { return VAR_1 & (! VAR_2 ) ; }
public void METHOD_1 ( ) { TYPE_1 . assertThat ( VAR_1 . METHOD_1 ( ) . get ( STRING_1 ) , TYPE_2 . METHOD_2 ( STRING_2 ) ) ; }
5 | public void METHOD_1 ( ) { assertThat ( VAR_1 . METHOD_1 ( ) . get ( STRING_1 ) , TYPE_2 . METHOD_2 ( STRING_2 ) ) ; }
public void METHOD_1 ( ) { TYPE_1 . assertThat ( VAR_1 . METHOD_1 ( ) . isEmpty ( ) , TYPE_2 . METHOD_2 ( true ) ) ; }

Fig. 7. Examples of unfixed bugs.

represent the buggy code to fix, the second is the fix generated by our approach, and the third is
the correct fix implemented by the developer.

In the first example, the model deleted the last if statement from the buggy code. However, the
developer fix aimed at renaming the method, removing VAR_1 from the method parameters and
deleting the if-block at the end of the method body. These three changes were not completely
captured by the model. In fact, the only fix that was implemented was the removal of the if-block
at the end of the method body. Most likely, the model failed to completely fix this bug due to the
drastic changes to the original method and a lack of training data to properly identify this pattern
of changes. From a practical standpoint, the renaming of the method is a refactoring operation
rather than a bug fix, and the model’s fix would have the same functionality as the developer fix.
Although the model’s fix is not perfect, the functionality is correct.

In the second example, the model’s fix changes the return statement from an integer of unknown
value, to the idiom 0. However, the developer’s fix is much more extensive as it assigns to value
the integer cast of VAR_2. After this integer cast of VAR_2 has been performed, value is returned.
In this example, the developer has introduced a completely new statement and a variable as a bug
fix. The model struggles with synthesizing new statements unless the pattern is repeatedly seen in
the training data. It is likely that this pattern of changes was not seen frequently during training
and, therefore, the model performed the fix incorrectly.

The third example demonstrates the model’s inability to recognize the need for an if-block in
the beginning of the method body. The model attempted to fix the bug by changing the type of
TYPE_1 . info ( this , VAR_1 ). The developer’s fix shows that the type of that variable
is correct. However, an if-check was missing to determine whether the out variable was null.
Without this check, methods could be called on a null object, which would lead to an error. The
model has previously inserted these if-checks in other examples; however, in this particular case,
the model failed to recognize the potential for a null object.

The fourth example shows the model incorrectly changing the return value. The developer’s
performed fix on this method was to add the Boolean not operator: ! to VAR_2. Our model
changed the and operator & to a . equals ( ) method call. The model’s fix is the opposite of
the developer’s fix: the developer’s method will return true whereas the model’s method would
return false, and vice versa. One explanation for the model’s behavior could be the frequent case of
changing ==to . equals ( ), which we see often in the training data. Although the && symbol is
not the same as ==, the same symbol twice in a row pattern may cause the model to replace that
symbol with . equals ( ).
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Finally, the fifth example shows that the model struggles to find various, drastic changes that
were implemented by the developer. The model’s “fix” in this situation is to remove the type
from the assertThat method call. However, the developer has fixed this method by replacing
the METHOD_1. get (STRING_1) with METHOD_1 . isEmpty ( ) and then replacing the STRING_2
argument in TYPE_2 . METHOD_2 ( STRING_2 ) with the idiom true. The model fails to recognize
both changes and therefore would be ineffective in finding a bug fix for the original method. The
developer’s method completely changes the computation and the purpose from the original method,
which may be why the model is not capable to perform a fix.

Summary for RQ,. The models exhibit a very high syntactic correctness of the generated
patches ranging between 99% and 82%. Moreover, while the models are able to learn on how to
apply a subset of the AST operation types exploited by developers to fix all bugs in the test set, the
learned operations are the most representative ones, allowing to, theoretically, fix a large percentage
of bugs.

17 5 10 15 20 25 30 35 40 45 50
beam width

Fig. 8. Inference Time (M, edium)-

4.3 RQ3: What is the training and inference time of the models?

The training of the models M,41; and My,eqium took six and 15 hours respectively, running
on a server with three consumer-level GPUs. Overall, this is an acceptable one-time cost that
allows building a cross-project bug-fixing model in a reasonable amount of time. Fig. 8 shows the
average inference time per patch (orange line) and per bug (green line) for the M,;¢gi,m model
with increasingly large beam size. While the average time per bug rises with larger beam sizes (i.e.,
more patches generated for the same bug) from a minimum of only 0.006s (k = 1) to a maximum of
0.226s (k = 30), the average time per patch generated stays well below 0.030s. Overall, the model
is able to generate 50 candidate patches for a bug in less than a second. The inference times for
Mg man are even lower. The complete timing results, raw values, and total number of seconds are
available in our online appendix [83].

Summary for RQs. After training for less than 15 hours, the models are able to generate 50
candidate patches for a single bug in less than a second.

5 THREATS TO VALIDITY

Construct validity threats concern the relationship between theory and observation, and are
mainly related to likely sources of imprecision in our analyses. To have enough training data, we
mined bug-fixes in GitHub repositories rather than using curated bug-fix datasets such as Defects4;
[34] or IntroClass[44], useful but very limited in size. To mitigate imprecisions in our datasets,
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we manually analyzed a sample of the extracted commits and verified that they were related to
bug-fixes.

Internal validity threats concern factors internal to our study that could influence our results.
It is possible that the performance of our models depends on the hyperparameter configuration.
We explain in Section 2.3.4 how hyperparameter search has been performed.

External validity threat concern the generalizability of our findings. We did not compare NMT
models with state-of-the-art techniques supporting automatic program repair since our main goal
was not to propose a novel approach for automated program repair, but rather to execute a large-
scale empirical study investigating the suitability of NMT for generating patches. Additional steps
are needed to convert the methodology we adopted into an end-to-end working tool, such as the
automatic implementation of the patch, or the execution of the test cases for checking a patch’s
suitability. This is part of our future work agenda.

We only focused on Java programs. However, the learning process is language-independent and
the whole infrastructure can be instantiated for different programming languages by replacing the
lexer, parser and AST differencing tools.

Finally, we only focused on small- and medium-sized methods. We reached this decision after
analyzing the distribution of the extracted BFPs, balancing the amount of training data available
and the variability in sentence length.

6 RELATED WORK

This section describes related work on (i) automated program repair techniques and, specifically,
their underlying redundancy assumption, and (ii) the use of machine translation to support software
engineering tasks.

6.1 Program Repair and the Redundancy Assumption

Automated program repair involves the transformation of an unacceptable behavior of a program
execution into an acceptable one according to a specification [54]. Behavioral repair techniques in
particular change the behavior of a program under repair by changing its source or binary code [54].
These techniques [20, 45, 73] rely on a critical assumption, the redundancy assumption, that claims
large programs contain the seeds of their own repair. This assumption has been examined by at least
two independent empirical studies, showing that a significant proportion of commits originates
from previously-existing code [7, 51].

Martinez et al. [51] empirically examined the assumption that certain bugs can be fixed by
copying and rearranging existing code. They validated the redundancy assumption by defining a
concept of software temporal redundancy. A commit is temporally redundant if it is a rearrangement
of code in previous commits. They measured redundancy at two levels of granularity: line- and
token-level. At line-level granularity, they found that most of the temporal redundancy is localized
in the same file. At token-level granularity, their results imply that many repairs never need to
invent a new token.

Barr et al. [7] examined a history of 15,723 commits to determine the extent to which the
commits can be reconstructed from existing code. The grafts they found were mostly single lines,
i.e., micro-clones, and they proposed that micro-clones are useful since they are the atoms of code
construction [7]. Their findings align with Martinez et al. [51] in that changes to a codebase contain
fragments that already exist in the code base at the time of the change.

Repair approaches based on the redundancy assumption are called redundancy-based repair
techniques, since they leverage redundancy and repetition in source code (7, 12, 18, 30, 51, 60, 65, 90].
For example, GenProg [20, 21, 45] searches for statement-level modifications to make to an abstract
syntax tree. The approach by Arcuri and Yao [5] co-evolves programs and test cases using a model
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similar to the predatory-prey one. Weimer et al. [86] perform program repair using a deterministic
search, reducing the search space with program equivalence analysis. Le et al. [42] use the content
of previous patches to reward patches that can have a likely better acceptability for developers,
and therefore avoid over-fitting patches to test cases. A complementary set of repair techniques
leverage program analysis and program synthesis to repair programs by constructing code with
particular properties [36, 41, 52, 53, 61, 64, 78, 93].

Some approaches perform automated program repair by searching the fix among manually-
written patterns, as in the case of PAR [37], or through a SMT (satisfiability modulo theories)-
based semantic code search over a large body of existing code, as for SearchRepair [36]. Instead,
Prophet [48] is a learning-based approach that uses explicitly designed code features to rank
candidate repairs. Other approaches train on correct solutions (from student programs) to specific
programming tasks and try to learn task-specific repair strategies [8, 66]. This goal has been
achieved successfully in contexts such as in massively open online courses (MOOC), where the
programs are generally small and synthetic [27].

Finally, one of the first approaches able to learn code transformation templates from human-
written patches is Genesis, by Long et al. [47]. Genesis can learn patches related to three types
of defects, specifically related to null pointers, out of bounds and class casting. Long et al. show
how Genesis is able to find more patches than previously-proposed approaches like PAR [37]. Also,
the approach proposed by Long et al. is capable to infer new tokens from existing patches. Our
approach is different from the work of Long et al., as we employ NMT whereas they use integer
programming. Also, differently from Genesis, in our work we would like to experiment with the
applicability of NMT to learn and then apply generic (and not defect-specific) fixes from a large
body of source code changes.

The goal of our empirical investigation was to determine whether NMT could be used to bring
the “redundancy assumption”, but also the heuristics used by program repair approaches using
code search, at a next level. Such a next level would be the capability to automatically learn patches
from large software corpora.

As mentioned in the introduction, this work represent an extension of our previous work in
which we proposed the general idea of learning bug-fixes using NMT [82]. While our previous
paper mainly presented the idea and assessed its overall feasibility, this paper reports an extensive
evaluation, in which we also (i) generate multiple candidate patches via beam search; (ii) analyze the
types of AST operations performed in the fixes as well as the syntactic correctness; (iii) qualitatively
analyze the kinds of fix operations the learned models are able to perform, and (vi) assess the timing
performance of the approach when learning the models and when recommending the fix.

6.2 Machine Translation in Software Engineering

Modern machine translation systems generally use data-driven methods to translate text or speech
from one language to another. Machine translation systems are trained on translated texts, or
“parallel corpora”, for particular text types [38] in both natural languages and formal languages
such as programming languages. Manually migrating software projects from one language to
another is a time-consuming and error-prone task [96]. Nguyen et al. [57-59] used statistical
machine translation for method-to-method migration from Java to C#, translating small token
sequences at a time. Recently, NMT systems superseded traditional statistical approaches as the
state-of-the-art in translation. One advantage neural systems have over purely statistical systems
is they can measure fluency at a higher level of granularity, e.g., sentence-level granularity, rather
than being constrained to phrases. However, NMT systems are indeed data-hungry systems, and
this problem has been an issue for software engineering applications where there are not a lot of
parallel corpora. DeepAM [26] uses deep learning to automatically mine application programming
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interface mappings from a source code corpus without parallel text. Our work is intended to study
the feasibility of using NMT to learn bug-fixes from real-world changes.

7 FUTURE WORK

Our initial goal is to continue to improve and analyze the model we have generated. One task we
plan to begin with is to analyze the trade off between our training set percentage, model quality
and training time. We plan to use a tiered approach to determine how many training instances
are needed to achieve an optimal performance. Therefore, we will train the model with 10% of the
training set, then increase this percentage to 20%, 30%, etc. all the way up to 90%. This analysis will
include a discussion about diminishing returns as well as the timing required to train the model.
We currently don’t implement this techinique in our work due to the extensive amount of time
needed for the study. Training deep neural networks can take many days and is heavily reliant on
the computational power and size of the dataset. As our dataset is fairly large, training on 10% of
the training set all the way up to 90% will take a substantial amount of time. Then after the model
is trained, we would still need to perform the analysis to determine the quality of the model. Given
that this is a very expensive analysis, we save this task for future work.

As extensive future work, we want to focus on two major limitations of the approach. The first
is to address a different level of granularity as opposed to function level. Currently, our approach
only learns patches at a function level with less than 100 tokens. We would like to increase this
size and maybe even change the granularity to class or package level. This change in granularity
would increase the context for certain bug fixes and should make the approach more meaningful to
developers. It may even be possible to generate bug fixes that span across multiple files, requiring a
change to multiple methods.

Our second task is similar to the first, but we want to focus on learning smaller changes within
the context of a larger method. We want to focus on a segmentation technique, which would allow
us to keep the context meaningful but still allow the model to change tokens. Our idea is to further
abstract the source code so that only meaningful statements are recognized. This technique can
be difficult since further abstraction leads to less meaningful context. However, we believe that
walking the line between less meaningful context and not overwhelming the model, is the key to
success. We do not want to lose fixes we have found by changing types and variables within the
code, therefore, we plan to combine our tool with state of the art static analysis tools. These latter
should be able to find meaningful fixes pertaining to types and variables, which frees up our deep
learning model to focus on more complex fixes. Thus, we plan to severely abstract any statement
or code fragment that can be changed with a static analysis tool and feed the remaining parts of
the large method into our deep learning RNN model. This methodology still maintains meaningful
context while allowing the model to focus on more complex parts of the method, which static
analysis may not be useful for.

8 CONCLUSION

We presented an extensive empirical investigation into the applicability of Neuro-Machine Trans-
lation (NMT) for the purpose of learning how to fix code, from real bug-fixes. We first devised
and detailed a process to mine, extract, and abstract the source code of bug-fixes available in the
wild, in order to obtain method-level examples of bug-fix pairs (BFPs). Then, we set up, trained,
and tuned NMT models to translate buggy code into fixed code. Our empirical analysis aimed at
assessing the feasibility of the NMT technique applied to the bug-fixing problem, the types and
quality of the predicted patches, as well as the training and inference time of the models.

We found the models to be able to fix a large number of unique bug-fixes, ranging between
9-50% of small BFPs (up to 2,927 unique fixed bugs) and 3-28% of medium BFPs (up to 1,869 unique
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fixed bugs) in our test set, depending on the amount of candidate patches we require the model to
generate. The models generate syntactically correct patches in more than 82% of the cases. The
model M;,,41; is able to emulate between 28-64% of the Abstract Syntax Tree operations performed
during fixes, while M,,¢4i,m achieves between 16-52% of the coverage. Finally, the running time
analysis shows that these models are capable of generating tens of candidate patches in a split of a
second.

This study constitutes a solid empirical foundation upon which other researchers could build,
and appropriately evaluate, program repair techniques based on NMT.
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