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Abstract— In this paper, we investigate the problem of optimal
planning and deployment of multiple relays to support energy-
efficient uplink transmissions of Internet of Things (IoT) devices.
A novel approach is proposed to optimize the relay locations with
the objective of minimizing the total energy consumption of the
network. In addition, the uplink transmit power of IoT devices
and the device-relay-channel association are jointly optimized
to meet the QoS requirement of IoT devices. A mixed-integer
linear programming (MILP) problem is formulated to obtain
the optimal solution. We also design a low-complexity genetic
algorithm to provide a sub-optimal solution to the problem.

Index Terms—IoT (Internet of Things) Devices, IoT Relays,
Relay Planning, Genetic Algorithm.

I. INTRODUCTION

The emerging Internet of Things (IoT) systems consist
of a large amount of small-scale, battery-powered devices
with limited computing and communication capabilities. While
long-range communication technologies are available for the
IoT [1], many practical IoT systems are still composed of low-
cost, short-range IoT devices that are unable to transmit over a
long distance [2], [3]. In such IoT systems, IoT relays can be
deployed to collect data from IoT devices and relay to a remote
server, which is out of direct communication range of IoT
devices. 10T relays usually have more resources than ordinary
IoT devices, but cost higher and consume more energy.

Deployment of a large number of relays will provide
increased coverage and network capacity under peak traffic
conditions. However, they may not be needed when the traffic
is light; in such scenarios, they may become under-utilized or
completely redundant leading to inefficient use of energy and
communication resources. One of the known techniques in the
literature is dynamic on/off switching, which is also known as
sleeping strategy, where a large number of relays are deployed
in a certain area, but they can be turned off during periods
of low traffic and their associated devices can be offloaded
to nearby relays. As a result, the power consumption of
lightly-loaded relays can be reduced or completely eliminated
depending on the configuration of their sleep state [4]-[6].
However, one drawback of this strategy is that a large number
of relays need to be deployed in advance, which could be
a costly investment. In practice, the budget limitation often
dictates the maximum number of relays to be deployed.
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In this paper, we study the relay planning problem for IoT
systems. Our goal is to identify an optimal relay planning
strategy to minimize the overall system energy consumption,
while satisfying the budget constraint (which decides the
maximum number of relays) and the Quality of Services (QoS)
constraint of IoT devices (which is indicated by the minimum
Signal-to-Interference-and-Noise-Ratio, or SINR). Previously,
many studies have been conducted to solve the relay con-
nectivity problem [7] or the relay placement problem [8], [9].
However, how to address both problems at the same time needs
more investigation. For instance, the work in [10] proposed
approximation schemes to place minimum number of relays
to achieve different level of fault tolerance in heterogeneous
networks. The relay placement problem under with a delay
constraint was investigated in [11]. A local search algorithm
has been introduced in [7] to solve the relay connectivity
problem where the sensor nodes are divided into groups and,
after that, a local set cover is found for each group using a local
search algorithm; however, the authors did not consider the
connectivity (interference) problem and the placement problem
jointly together.

In this paper, relay planning is considered jointly with
device-relay-channel association in an IoT network. Specif-
ically, we consider uplink communications in an IoT system
where each IoT device reports to the remote server via a relay.
Our contributions can be summarized as follows:

« Proposing an energy-efficient relay planning framework
for uplink communications in an IoT network.

« Formulating a mixed-integer linear programming problem
to minimize the network-wide energy consumption.

« Optimizing the relay locations, the device-relay-channel
association, and the transmit power of IoT devices, under
the budget constraint, the devices’ maximum transmit
power constraint, the device/relay association constraint,
and the devices’ QoS constraint.

« Proposing a low-complexity green optimization approach
based on Genetic Algorithm (GA) to find a sub-optimal
low-complexity solution [12].

The remainder of the paper is organized as follows. Sec-
tion II presents the system model. The problem formulation
is given in Section III. The proposed low-complexity genetic
algorithm is described in Section IV. Section V discusses the
evaluation results. Finally, the paper concludes in Section VI.
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II. SYSTEM MODEL

In this paper, we study uplink transmissions in an IoT
system that consists a total of U IoT devices. As shown in
Fig. 1, each IoT device is connected to an IoT relay which
forwards the data from IoT devices to a remote server. We
assume that the channel gain between an IoT device w and
a relay at location ! over communication channel ¢ can be
modeled as:

wl =\ T s (D
where d,,; is the Euclidean distance between device u and
relay [, @ is the path loss exponent, and hg , is the fading
coefficient of channel c.

- Candidate locations

@ Candidate locations with an
without a relay

active relay deployed
Fig. 1: System model.

Up to L IoT relays may be deployed to collect data from
IoT devices, where L is determined by the budget limitation.
Each relay can be placed at any one of L candidate locations
specified by the network admin. Each candidate location can
accommodate at most one relay. In the following, we use the
phrase “relay [” and “a relay placed at candidate location [”
interchangeably. The energy consumption of an active relay
can be represented as follows: [13]

alU P + 3, 2

where (1) « corresponds to the power consumption that
scales with the radiated power due to amplifier and feeder
losses, (2) 8 models an offset of site power that is consumed
independently of the average transmit power, (3) U is the set
of devices connected to relay [/, and (4) P corresponds to the
relay radiated powers over all users in U;. In this work, we
assume that P is constant and equal to }5/ U,, where P is
the maximum allowable transmit power of an IoT relay (to
communicate with the remote server), and U; is the maximum
number of devices each relay can accommodate due to the
backhauling constraint.

The achievable uplink data rate from device u to relay [
over channel c is given by

Py |hg
Ic +NO ’

Ry, =logy | 1+ 3)

. . 2 .
where Nj is the noise power, Z, = ZﬁENc,ﬁyﬁu P, |hil| is
the interference from other devices that use the same channel.

We use N, to denote the set of devices using channel c. To
simplify the analysis, we assume that P; is fixed and equal
to P,, where P, is the maximum transmit power of an IoT
device. Table I summarizes the notations used in the paper.

TABLE I: List of Notations
Notation ‘ Description
he Channel gain between device w and relay [ over channel ¢
L Maximum number of relays (decided by budget limitation)
U Total number of devices
U, Maximum number of devices served by relay [
P Relay transmit power
P, Device transmit power
Py Maximum transmit power of an IoT device
T Time slot length
€, Binary variable representing association between u, [, and ¢
M Binary variable representing if a relay is placed at location [
o Amplification power factor
B Offset site power when a relay is active
Dy Target SINR between device and relay
R, Target data rate from device to relay
Ey Device energy consumption
E; Relay energy consumption

III. PROBLEM FORMULATION AND SOLUTION

In this section, we formulate and solve a relay planning
and QoS problems aiming to minimize the network energy
consumption. We jointly optimize planning and channel as-
signment of IoT relays, device-relay-channel association, and
uplink transmit power of IoT devices.

A. Relay Planning Problem
We use € to denote a binary matrix of size L x C' x U. Its
entry e‘;,l is given as follows:
1

€l = over channel c, “)

, if device v communicates with relay [

0, otherwise.
A binary vector w of size L x 1 is used to indicate relay
placement at candidate locations. Its entry ; is given as:
S 1, if a relay is placed at candidate location [,
P71 0, otherwise.
4)
To ensure that devices cannot connect to a candidate location
where no relay is placed, the following condition must be

satisfied:
Vi, Vu,Ve. (6)

c
eu,l S T,

The total energy consumption of IoT devices is:

U
E,=TY P, (7
u=1

while the total energy consumption of IoT relays is:

L Uu C
E=TY m|ad Y & P+5]. ®)
=1

u=1c=1
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Using (6), we can re-write (8) as follows

TZ (azz ulPerB)

u=1c=1
L U C

- PZZZeulJrTﬁZm ©)

=1 u=1c=1
L

=TaPU+TBY m.
=1
Therefore, the relay planning problem that aims to minimize
the total consumed energy while satisfying the QoS of IoT de-
vices (defined by ®y, - the minimum SINR) can be formulated
as follows:

minirrll)ize B =0E, + (1 —0)Ey, (10)
71'1762,117 uZ
subject to: -
P, <P, Vu, (11)
Sy Gl 12
ZZ W = %th, u, (12)
=1 c=1
Uu ¢ B
Y> e<t, (13)
u=1c=1
L C
o> e =1, vu, (14)
=1 c=1
€n1 <, VI, Vu, Ve, (15)

where ¢ is a weight constant. Constraint (11) represents
the maximum allowable transmit power of device u, and
constraint (12) represents the minimum QoS required by an
IoT device. Constraints (13) and (14) aim to satisfy the
backhauling condition and ensure that each user is served by
at most one relay, respectively. The formulated optimization
problem is a mixed-integer non-linear programming problem
due to the SINR expression given in (12).

This optimization problem can be linearized by introducing
p. ; for each link such that pf ; = €, ; P, where the following
inequalities have to be respected: 7

P u Z PZJ 2 07
pi,l Z Puei’l _Pu+Pua
Put < Pu€yy (16)

The first inequality ensures that p¢ ; is between 0 and P,.
The second and third inequalities guarantee that Puy = 0 if

ws =0, and p; , = P, if € ; = 1. The third inequality also
guarantees that p;, ; cannot exceed P,. To deal with Z., we
use the following approximation:

U 5 2
> Pulhgl
u=1

I.~1.=
c (I7)
Y 5 2
L AZ_:IP | l|
=> > e, . (18)
=1 c=1

The approximation in (17) makes sense since the users will be
uniformly assigned to different channels in order to minimize
the interference. The purpose of (18) is to pull Z. out of the
denominator in (12), and it holds true because of (14).

Then, the linearized optimization problem can be re-
formulated as follows:

minimize Eo =0E, + (1 = 9)E], (19)
Wluéi’lvpu-,pu,lz
subject to:
Pu < Pua vu? (20)
L C
SN lhil? = da(@o+ No) Vu, @D
=1 c=1
U c
YN e, <, v (22)
u=1 c=1
L C
Yo, =1, v, (23)
=1 c=1
€u1 <M, VI, Vu,Ve (24)
0<py; <Py, VI,Vu,Ve (25)
P = P, u€il — P, + P,, VI,Vu,Vc (26)
P < P, W€l VI, Vu, Ve, 27)

where § is a weight constant. The constraints (25) to (27)
correspond to the linearization process in (16). The opti-
mal solution to such a problem can be obtained by using
Gurobi/CVX [14], [15].

IV. Low-COMPLEXITY GENETIC ALGORITHM

The formulated optimization problem given in Section III is
considered an NP-hard problem due to the existence of binary
variables. Hence, we propose a Genetic Algorithm (GA) as a
meta-heuristic algorithm [12].

A. Encoding

In our genetic based approach, we generate randomly N
solutions 8™ (n=1,--- ,N) of size (L+ L x C x U + U)
to form an initial population S. Each solution is encoded as:

o(m) — [ﬂ.(n),e(n)’pu(n)]’ (28)
where 7(™) is a binary vector carrying the relay planning
information as defined in (5), €(™ is a binary vector carrying
the device-relay-channel association information obtained by
reshaping the matrix defined in (4), and Pu(”) is a float vector
representing the device transmit power.
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B. Fitness Function and Selection

For each solution, we define its fitness f as the sum of
the objective function and the scaled penalties of violated
constraints. It is shown as follows:

f = Eioal + ZmaX(Pu - Pu; O)/Pu

L C
+3 max | Pp(Ze +No) =Y Y €5 Pulhl 12,0/ (@nNo)

U ¢ = L C
+Zmax ZZ%I U,0 /U +Z|ZZ€ZJ—1
l u=1c=1 u =1 c=1
+ Y max (e, —m, 0), (29)
u,l,c

where FEi is the total energy consumption defined in (10)
for the solution. GA selects strings that provide the best utility
and keeps them to the next population while the remaining
strings are generated by applying crossovers and mutations
to the survived parents. We adopt the tournament selection
algorithm to elect solutions with smaller fitness.

C. Crossover and Mutation

Crossovers consist of cutting two randomly-selected parent
strings at a random corresponding point. The obtained frag-
ments are then swapped and recombined to produce two new
strings. More specifically, crossover is applied to the survived
parents with a probability of p. to produce the next generation.
Crossover in our genetic algorithm is performed in three steps:

« Step 1: Extract the device, relay, and channel association
vectors from the two solutions to be crossed. Let €(®) and
€ denote the two vectors.

« Step 2: Randomly select a device index K, cut €(®) and
€ at position L x C' x K, and swap the cut fragments.

« Step 3: Update 7, P, 7 and P, according
to (15) and (12).

After that, mutation (i.e., changing the value of a randomly-
selected bit in the string) is applied with a probability p.,.
Mutation in our genetic algorithm is performed in three steps:

o Step 1: Extract the relay planning vector 7 from the
solution to be muted.

o Step 2: Randomly select a candidate location which has
an active relay, shut down the relay, and re-allocate all the
devices associated with the relay to other relays, update €.

o Step 3: Update w and P, according to (15) and (12).

V. EVALUATION

In this section, selected numerical results are provided to
evaluate the performance of the proposed relaying scheme.
IoT devices transmit their messages periodically every 7' = 1
sec. All the fading channel gains adopted in the framework are
assumed to be i.i.d. Rayleigh fading gains. The target SINR
threshold is ®y = 2% — 1, where Ry, = 0.1 bits/s/Hz is
the target data rate. The path loss exponent is w = 3. The
area of interest is 100 x 100 [m?]. The noise power is taken
to be Ny = NoW, where Ny = —174 dBm/Hz and W =
180 KHz. In Table II, we list the values of all the simulation
parameters [12], [13].

TABLE II: Simulation Parameters

Parameter  Description Value
« Amplification power factor 4
B [W] Offset site power when a relay is active 6.8
P [dBm] Device maximum transmit power 0
U, Maximum number of users served by relay [ 20
N Number of populations in GA (Genetic Algorithm) 300
Pe Crossover rate in GA 0.8
Pm Mutation rate in GA 0.015
é Weight constant 0.5

A. Optimal Performance

1) Energy Consumption vs. Number of IoT Devices: Fig. 2
shows the energy consumption performance with different
numbers of IoT devices in the system. As we can see in
Fig. 2a, as the number of devices increases, the total energy
consumption of devices increases, and the energy consumption
per device first increases and then decreases slightly. The
increase of the energy consumption per device is because when
there are more devices in the system, there will be more users
per channel and thus the interference will be higher. On the
other hand, when the number of devices gets even larger, more
relays will be deployed to support more devices as we can
see in Fig. 2b, which will result in a shorter distance from the
device to the relay on average.
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Number of Devices Number of Devices

(a) Device energy consumption.  (b) Relay energy consumption.

Fig. 2: Energy consumption vs. number of IoT devices. The
number of candidate relay locations is L = 16, and the number
of channels is C = 16.

From Fig. 2b, we can observe that, as the number of devices
increases, the total energy consumption of relays increases as
a result of the increased number of active relays. Meanwhile,
the energy consumption per relay remains almost the same,
which means that the load on each relay does not vary much.

2) Energy Consumption vs. Number of Candidate Relay
Locations: Fig. 3 shows the energy consumption performance
with different numbers of candidate locations for IoT relays.
As we can see, as the number of candidate locations increases,
the total energy consumption of devices, the energy consump-
tion per device, the total energy consumption of relays, and the
number of active relays all decrease. This is simply because
we could plan the IoT relays better, with a larger number of
candidate location available to choose from.

3) Energy Consumption vs. Number of Channels: Fig. 4
shows the energy consumption performance with different
numbers of channels. As we can see in Fig. 4a, as the number
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(a) Device energy consumption.  (b) Relay energy consumption.

Fig. 3: Energy consumption vs. number of candidate relay
locations. The number of IoT devices is U = 50, and the
number of channels is C' = 16.

of channels increases, the total energy consumption of devices
and the energy consumption per device decrease. This is
because when there are more channels, there will be less users
per channel and thus the interference will be smaller. We also
observe in Fig. 4b that, as the number of channels increases,
the total energy consumption of relays decreases too, as a
result of the reduced interference.
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(a) Device energy consumption.  (b) Relay energy consumption.

Fig. 4: Energy consumption vs. number of channels. The
number of IoT devices is U = 50, and the number of candidate
relay locations is L = 16.

B. Snapshots

In this subsection, we select one simulation run and show
some snapshot results. In this run, we simulate 50 IoT devices,
12 candidate relay locations, and 16 channels.

1) Device-Relay Association: Fig. 5 shows the relay lo-
cations, together with the device-relay association. In this
simulation run, we only need three relays and they are placed
at the candidate locations 2, 6, and 7, which are marked by a
solid red triangle, a solid blue square, and a solid black circle,
respectively. The other nine candidate locations, marked by
‘X’s, are not selected. The devices associated with a relay are
marked with the same (but smaller) symbol as the relay. As we
can see, a device usually favors a relay close to itself. However,
there are some outliers such as u4 and u4g at the upper-right
corner. They connect to relay ls instead of the closer relay
l7, since [; already has 20 associated users and has reached
its limit. Another example outlier is uq3, which chooses [g
instead of [o; this is because w12 has a higher channel gain
and lower interference with lg than [5, which is an effect of
Rayleigh fading.
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Fig. 5: Relay placement and device-relay association. Three
relays are deployed, which are marked with large solid tri-
angle, square, and circle. ‘X’s represent unused candidate
locations without a relay. Devices associated with a relay are
marked with the same but smaller symbol as the relay.

2) Transmit Power: Fig. 6 shows the relation between the
transmit power of IoT devices and their distances from the
associated relays. Generally, devices with a larger distance
from the relay tend to choose a higher transmit power.
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Fig. 6: Device transmit power vs. distance from the relay.

3) Channel Assignment: Fig. 7 shows the channel assign-
ment of IoT devices. As we expect, devices scatter uniformly
in all channels and each channel is occupied by a similar
number of devices.
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Index of Device

Fig. 7: Channel assignment of IoT devices.

4) Approximated vs. Actual Interference: Fig. 8§ compares
the approximated interference with the actual interference. As
we can see, the actual interference of all devices is close to but
less than the approximated interference, which demonstrates
the validity of our approximation of Z. in (17).
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Fig. 8: Approximated vs. actual interference.

C. Performance of Low-Complexity Genetic Algorithm

Fig. 9 compares the proposed low-complexity genetic al-
gorithm with the optimal solution, in term of total energy
consumption, with different numbers of IoT devices in the
system. As we can see, the genetic algorithm yields a solution
close to the optimal one. In particular, when the problem is
in small scale, i.e., U = 25, the genetic algorithm is able to
produce almost the optimal Ej.

£ £
a I
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40
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(a) Device energy consumption. (b) Relay energy consumption.

Fig. 9: Total energy consumption vs. number of IoT devices,
with L =16 and C = 16.
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(a) Device energy consumption. (b) Relay energy consumption.

Fig. 10: Total energy consumption vs. number of candidate
relay locations, with U = 50 and C = 16.

Fig. 10 shows the comparison results with different num-
bers of candidate relay locations. The results of the genetic
algorithm are still close to those of the optimal algorithm,
which verifies the effectiveness of the genetic algorithm. Note
that, for the genetic algorithm, the total energy consumption of
relays may increase when the number of candidate locations
increases; this is due to the sub-optimality and randomness of
the genetic algorithm. Finally, Fig. 11 shows the comparison
results with different numbers of channels.

VI. CONCLUSIONS

In this paper, we proposed a novel relaying framework
for energy-efficient uplink transmissions in IoT networks. We

A EI (sub-optimal GA)
EI (optimal)

Power(dBm)

A Eu (sub-optimal GA)
—— Eu (optimal)

4 8 12 16 4 8 12 16
Number of Channels Number of Channels

(a) Device energy consumption. (b) Relay energy consumption.

Fig. 11: Total energy consumption vs. number of channels,
with U = 50 and L = 16.

formulated a mixed-integer linear optimization problem that
aims to place the relays optimally with goal of minimizing the
total consumed energy while satisfying a set of constraints,
including the budget constraint that decides the maximum
number of IoT relays, and the QoS constraint of IoT de-
vices. We also proposed a low-complexity algorithm based
on genetic algorithm, and compared its performance with the
optimal solution.
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