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Abstract—The Internet of Things (IoT) paradigm has been
proposed to assist and automate various activities such as
environment monitoring by connecting physical devices in the
area of our interest. Low-cost, battery-operated, and resource-
limited IoT devices usually are densely deployed for robustness
against node failures as well as for providing desired quality of
monitoring. One of the effective ways to prolong the lifetime of
an IoT network is to schedule selected IoT devices to enter the
sleep mode and activate them later in a future time. However, this
must be done carefully in order not to violate application-specific
requirements. In this paper, we study the scheduling problem of
IoT devices to prolong the network lifetime while satisfying both
report-accuracy and timely-update requirements. We model and
analyze the network as a Markov process, and derive system
parameters. We formulate an optimal node activation scheduling
problem and propose a low-complex greedy algorithm to expe-
dite the scheduling process. Evaluation results demonstrate the
effectiveness of both optimal and greedy algorithms.

Index Terms—Internet of Things, sleep mode, node scheduling,
Markov process

I. INTRODUCTION

Low-power, low-cost devices with sensing modules have
been widely used in our daily lives as well as in special
circumstances for particular missions such as environment
monitoring and target tracking. Despite such devices’ limited
computing power and energy supply, they have become the
essential component for Internet of Things (IoT) and Wireless
Sensor Networks (WSNs). Such trend is expected to prosper
by IEEE 802.11ah TG (Task Group) [1] that is intended to
provide a unified wireless communication solution for large-
scale IoT networks. To be specific, an 802.11ah-compatible
AP (Access Point) is capable of associating with up to 8,192
devices with a coverage radius of about 1 km [2].

Although 802.11ah has built-in power saving methods [2],
energy efficiency is still one of the biggest challenges for many
IoT applications. This is because IoT devices (referred to as
nodes) are battery-operated, and it may not be cost-effective or
even possible to recharge or replace batteries in some applica-
tions, e.g., environment monitoring of an inaccessible terrain.
In general, nodes are densely deployed in an IoT network
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for connectivity and coverage as well as for dealing with
nodes’ high failure rates [3]. Highly-populated nodes, however,
increase the channel contention for the shared medium as well
as produce redundant sensed readings, which decreases the
overall energy efficiency and the network lifetime.

One effective way to prolong the network lifetime is to
operate some of the nodes in the sleep mode and activate them
later in a future time. However, the reduced number of active
nodes may degrade the system performance, such as accuracy
of the fusion report in environment monitoring applications.
Also, the reduced number of active nodes may result in a
violation of some application-specific requirements, such as
maximum update interval or maximum delay requirement in
environment monitoring applications.

In this paper, we study the problem of energy-efficient
activation/sleep scheduling of IoT devices to maximize the
network lifetime for environment monitoring applications.
Here, the network lifetime refers to the time period during
which the network operates properly without violating any
application-specific requirements. As shown in Fig. la, we
consider a clustered IoT network with multiple fusion centers
(FCs) serving as cluster heads to collect sensed readings from
IoT nodes and then transmit the fusion reports to the AP. We
consider the following two requirements: (1) [report-accuracy
requirement] maximum error in the fusion report created by
the FC, assuming that each sensed reading has an inherent
measurement error; and (2) [timely-update requirement] max-
imum reporting interval from the FC to the AP.

To do so, we first model and analyze the network as
a Markov process. Then, we compute the optimal number
of nodes to activate, and configure the FC to satisfy the
requirements. Finally, given the optimal number of nodes to
activate, we formulate an optimal node scheduling problem to
determine the set of nodes to activate by taking into consid-
eration the nodal residual energy. The problem is formulated
as a mixed integer linear program (MILP) problem that is
intractable in general; thus, we also propose a low-complexity
greedy algorithm to solve the problem.

The rest of this paper is organized as follows. The network
model and problem formulation are given in Section II. We
analyze the network in Section III. In Section IV, we derive
an optimal node scheduling algorithm, and propose a practical
greedy algorithm with a lower complexity. Evaluation results
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Fig. 1. System model.

are presented in Section V. We summarize the related work
in Section VI, and finally, conclude the paper in Section VIL

II. SYSTEM MODEL AND PROBLEM OVERVIEW
A. Models and Assumptions

We study a clustered 802.11ah-compatible IoT network for
environment monitoring applications. As shown in Fig. la,
many battery-operated and resource-limited IoT devices (re-
ferred to as nodes) are deployed uniformly at random in the
area to be monitored, while multiple FCs are deployed to
relay the data from IoT devices to the AP in the form of
fusion reports. Each FC has a stable power supply and can
communicate directly with the AP. An FC associates with the
nodes within its transmission range, forming a cluster. We use
W to denote the set of nodes in a cluster. If a node is within
the transmission range of multiple FCs, it associates with the
one with the strongest signal strength.

An active node senses the environment (e.g., temperature,
sound, light, or vibration) and transmits the sensed readings
(referred to as data) to the FC. After collecting multiple sensed
readings from its associated nodes, the FC takes a sample
mean, and transmits only the mean value (referred to as report)
to the AP. We use reporting interval to refer to the time interval
between two consecutive reports from the FC to the AP, as
illustrated in Fig. 1b.

1) From IoT Devices to the Fusion Center: We make the
following assumptions on the sensed readings generated by
IoT devices of the same cluster within the [ reporting interval:
(1) they are generated according to a Poisson distribution with
a rate of A\ which is the aggregate data rate of all nodes
in the cluster (W); (2) their values are i.i.d. (independent
and identically distributed) random variables, with a mean
of D! and a variance of o2, where o2 can be viewed as
the sensing/measurement error. We assume that nodes are
homogeneous with inexpensive hardware and simple software;
thus, they have the same measurement error of o2 and the same
fixed data generation rate of A\/|W| on average. We assume
each node has a limited amount of energy supply and without
energy harvesting or energy replenishment capabilities. We
assume that each FC has a buffer of finite size B, which

can store up to B number of data. All the received data are
stored in the FC’s buffer, till the FC takes a sample mean and
transmits the fusion report to the AP. If the buffer becomes full,
the FC discards any new data arrivals. Once the FC transmits
a report to the AP, it flushes its buffer.

2) From the Fusion Center to the AP: We assume that
the reports from the FC to the AP also follow a Poisson
distribution with a rate of u. Different from IoT devices, the
FC can adjust its reporting rate x dynamically. We assume that
u is discrete, and it is adjustable between [fimin, fimax] With a
step size of A,,.

Moreover, we assume that clusters are independent of each
other. Thus, we focus our study on a single cluster in the rest
of this paper. In 802.11ah, each node is assigned a unique
identifier, called AID (association ID). Nodes are partitioned
into different clusters based on their AIDs. The restricted
access window (RAW) method — which is one of the most
noteworthy features in 802.11ah — provides each cluster with
a dedicated time interval to access the channel exclusively. By
limiting the number of nodes that are allowed to compete for
the shared wireless medium at the same time, the RAW scheme
reduces channel contention, while increasing the period of time
during which nodes can enter the sleep mode.

B. Problem Statement

For each cluster, our goal is to schedule the activation of IoT
nodes to maximize the lifetime of the cluster. Recall that the
lifetime of a cluster refers to the time period during which the
cluster operates properly without violating any requirements.
Clearly, having too many active nodes may generate redundant
sensed readings and deplete their battery fast. On the other
hand, having too few active nodes may render the FC’s report
(i.e., sample mean) less accurate. In addition, even if the
optimal number of nodes to activate is known, the schedule of
node activations may greatly affect the lifetime of a cluster. In
this regard, we formulate an energy-efficient node scheduling
problem as shown below.

Given:

o the set of nodes W = {w1,wy,--- ,wpy} in a cluster,
« the total arrival rate A of sensed readings,

o the nodal residual energy ¢(w,), YVw, € W,

« the measurement error o2, and

o the buffer size B at the FC,

with the following constraints (or application requirements):

e report-accuracy requirement: maximum expected error
Oreq in each fusion report,

e timely-update requirement: maximum expected reporting
interval 7,.cq,

the outputs of the proposed scheme are:

o the optimal reporting rate p* of the FC,
« the optimal number of nodes n* to activate, and
« the optimal node activation/sleep schedule,

such that the lifetime of a cluster is maximized. The termi-
nating condition of the proposed method is: [{w, : Yw, €
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Fig. 2. Markov chain model for the FC (Fusion Center).

W such that ¢(w,) > @ }| < n*, where ¢y, is the mini-
mum residual energy for an IoT node to function normally.
That is, when the number of nodes with enough residual
energy is smaller than n*, the proposed scheme terminates
since the cluster can no longer satisfy the requirements.

C. Overview of the Proposed Solution

To achieve this goal, we first model and analyze the network
as a Markov process, based on which we compute the mini-
mum number of nodes to activate (n*) to satisfy the application
requirements. Also, we compute the optimal p* at which the
FC shall report to the AP. Then, given n*, we derive an optimal
scheme to schedule node activation/sleeping, by taking into
consideration the residual energy of each node, so that we can
iteratively determine the set of nodes to activate to maximize
the cluster lifetime.

In this paper, the way to satisfy the requirements are based
on the mathematical analysis, which helps to build a practical,
robust solution. By considering the direct relation between the
nodal residual energy and the cluster lifetime, the proposed
solution performs better than methods that are based on the
indirect relation instead (e.g., maximizing a utility function).
Moreover, in the proposed solution, the FC can adapt its
behavior (i.e., report rate 1) so that it can adjust to the network
dynamics to meet the goal and the requirements.

III. NETWORK MODELING AND ANALYSIS

Let {X;}:>0 be a continuous-time stochastic process that
takes a value from a countable set B = {0,1,2,--- ,b,--- , B}
at time ¢ > 0. Here, B is a finite set since the FC discards
any new arrivals when its buffer is full. By X; = b (ie., b
is the state of X;), we mean that the FC has b number of
data in its buffer at time ¢t. When X; < B, the state of the
process is increased by 1, if there is a new arrival from an
active node. The state of the process returns to O when the FC
transmits a report to the AP. The amount of time spent in a
state (referred to as holding time) is continuous, and the next
state transition, given the present state, is independent of the
past. Thus, { X} };+>0 is a continuous-time Markov process with
the holding time in each state being exponentially distributed.
The corresponding continuous-time Markov chain (CTMC) is
shown in Fig. 2.

Let W = {w;,wa,---} be the set of nodes in a cluster.
Arrivals from an active node to the FC is independent of
arrvials from other nodes, and the total rate at which the
CTMC transitions to the right is A, given the current state
is not B. On the other hand, the CTMC transitions to state 0
at rate u, given the current state is not state 0; please note
that the FC does not report to the AP when it has no data

in its buffer. Let Q = [qi;](;,j)eBx 5 be the transition rate (or
infinitesimal generator) matrix where g;; is the rate at which
the CTMC transitions from state ¢ to state j.

—qo1 do1 0 . 0

o —(qu0+ q12) q12 ... 0

Q= | %0 0 —(g20 + g23) - .. 0
: 0 0 :

Here, we have ¢;; = —q; where ¢; = Zijéi i is the total
outgoing rate from state <.

From the CTMC with the rate matrix, we can derive an
embedded discrete-time Markov chain (DTMC) with exponen-
tial holding time. From DTMC, we know that all the states
communicate with each other, forming one communication
class, and thus, both DTMC and CTMC are irreducible. An
irreducible DTMC with a finite state space is always recurrent
(i.e., all states are recurrent), and so is the equivalent CTMC.
Also, the CTMC is non-explosive (or regular) since the state
space is finite. Since {X;};>¢ is irreducible and recurrent, we
can compute the stationary distribution w = {my, 7o, -+ , 75}
by using both the global balance equation (i.e., ng' 2i i X

= ZW# T X qji) and Y .o pmi = 1. Let p = ﬁ; then,
we can get 7; for all states ¢ as shown below, where 7; is the
proportion of time spent in state ¢ over a long period of time.

1
1 L A,B-1
SR
{ ,\31}1
ApB

1
{ —l—)‘pB 1} , fori=DB.

for 7 = 0.

T = for 0 < i < B.

p
A
n

Given that {X,};>0 has a unique sum-up-to-1 stationary
distribution, the process is positive recurrent.

By using the stationary distribution, we can compute the
expectation of (1) the error of each sample mean, and (2)
the reporting interval. Then, we can determine the minimum
(i.e., optimal) number of nodes to activate to satisfy the
corresponding requirements.

Let U! be a random variable for the number of buffered
data that the FC uses to calculate the sample mean within a
reporting interval [. For example, if U' = b € B, it means
that the FC has calculated and reported a sample mean with b
readings, and hence CTMC has made a transition from state b
to state 0. Then, we have E[U!] = 1_1m Zf;li x 7;. The
summation term is normalized by 1 — 7y since there is no
transition from state O to itself. Let D! be a random variable
for the value of the m™ sensed reading that arrives at the FC
within a reporting interval [. Since D! ’s are i.i.d. by assump-
tion, the sample mean for the reporting interval [ is a random
variable S! = % 251:1 D! . By the Central Limit Theorem,
S! follows the Normal distribution with a mean of D! and a
variance of o2 /U!. Thus, the expectation of the sample mean
error for the reporting interval ! is o/+/E[U*]. The report-

accuracy requirement requires that o/\/E[U!] < 0.
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The reporting interval is the time interval for the CTMC to
start at state O and then return to state O for the first time. Please
note that there is no direct transition from state O to itself. Let
T;; be the smallest return time from state ¢ to state i, i.e.,
Tii — ll’lf{t 2 0: Xt = ’i,Xt, 75 Z‘Xo = Z} Since {Xt}tZO
is positive recurrent, we have FE[r;] = ﬁ < o00. Thus,
Too 1S the reporting interval. The timely-update requirement
requires that 799 < Tyeq-

For a given p, as the number of active nodes increases,
the expected error of each sample mean decreases since
an FC can buffer more data during each reporting interval.
Meanwhile, the expected reporting interval decreases because
of a shorter holding time in state 0. Let 05z (1) and ng; (1)
be the minimum number of nodes to activate, in order to
satisfy the report-accuracy and timely-update requirements,
respectively, for a given p. Then, the minimum number of
nodes to activate to satisfy both requirements can be computed
as 0" (1) = max{nppp (1), Mg (1)}

Furthermore, as u increases, the expected reporting interval
decreases. Thus, njrr(1t) has to increase to guarantee the
FC buffers enough number of data within a shorter amount of
time. On the other hand, as ;. decreases, the expected reporting
interval increases. Therefore, 7}, (1) has to increase so that the
FC can activate more nodes to reduce the holding time in state
0, in order to meet the maximum report interval requirement.
To summarize, 7}z (1) is a non-decreasing function of 4,
while 75, (1) is non-increasing. Therefore, there exists at least
one optimal p that may yield the minimum number of nodes
to activate. Let p* denote such an optimal x, and let n* be the
smallest number of nodes to activate for p*. When there are
more than one p producing the same optimal n*, we choose
the smallest one among the optima as p*.

IV. NODE SCHEDULING PROBLEM AND ALGORITHMS

Given n*, we formulate an optimal node activation schedul-
ing problem to maximize the network lifetime. In this paper,
the maximum network lifetime is achieved by maximizing the
lifetime of each cluster.

A. Optimal Node Scheduling: Problem Formulation

Nodes are partitioned into a set of groups G = {g1, g2, - },
and the proposed scheme activates one group at a time. Here,
we have |G| = G = |W/n*|, where W = |W)|. That is, the
proposed scheme activates the minimum number (77*) of nodes
to maximize the energy saving. The lifetime of each group
is determined by the node with the least amount of residual
energy in the group. That is, the lifetime of g; is proportional
to min{¢(w,) : Yw, € gy}, where ¢(w,) is a function that
returns the residual energy of node w,. By maximizing the
sum of minimum residual energy over all groups, we can form
an optimal node scheduling problem as below (called P. 1).

G
max Zmin{d)(wa) Yw, € o (la)
b=1
subject to: Vb : Z Zap =N° (1b)

a=1

G
Ya : Zzab <1 (Ic)
b=1
Va,b: zq € {0,1}, (1d)
where Z = [Zab](a’b)e{1727...7W}X{1727.A.1g} is a W—by-G
membership indicator matrix with z,, = 1 if w, € gy or

0 otherwise (i.e., binary relation as in Eq. 1d). Each group g,
consists of n* nodes (Eq. 1b), and each node w, belongs to
at most one group (Eq. 1c). We, then, transform P. 1 into an
MILP formulation as shown below (called P. 2).

G
én%ui ;vb (22)
subject to: constraints in (1b), (1c), (1d)
Va,b U S d)(wa) X Zab + ¢maw X Eab (Zb)
Va,b: zZap + Zap = 1, (2¢)

where Z = 1y — Z (Eq. 2¢) and ¢4, is the maximum
battery capacity of a node. From both Eq. 2a and Eq. 2b, we
have v, = min{min{¢p(w,) : Yw, € gu}, dmaz }- The new
objective function (Eq. 2a) is equivalent to the previous one
(Eq. 1a) as long as each group has at least one node, which is
always guaranteed by Eq. 1b. The optimal solutions Z* and
v* € R indicate which node belongs to which group and the
set of the group-wise least residual energy, respectively. The
number of binary variables in P. 2 is W x G ~ W2 /n*, which
could make the problem intractable as the number of nodes
increases. However, by carefully studying P. 2, we can reduce
the number of binary variables.

Let ® = {¢p, d2), P31, -+ > ywy} be an ordered list of
P(w,) for a = 1,2,--- W, such that ¢ < ¢ppq). Also,
let g/ be a group that the minimum residual energy among
the nodes in the group is the k™ smallest among those values
of all groups. For gl*], the set of residual energy of the nodes in
the group is denoted by ®¥! = {¢[1], - ¢F¢7*]} such that
(b[l] < ¢[l +1)- For the minimum re31dua1 energy, ¢k1], of groups

g*l forall k =2,3,--- ,G—1, we have (;5 < qb"“‘ < gf)ﬁJ]rl.
Claim 1 (Optlmal Node Partitioning):? leen that Eq. 2a
equals max Zb 1 qS , we claim that an optimal partition-

ing of ¢ values® (or an optimal node partltlomng) is:

M = {pp1)s s ,¢[k+n }, @ {415
¢[k+n*+2], Qo b, @G = {¢[k+(G—1)n*+1]7
¢[k+(G—1)n*+2] : a¢k+Gn } where £k = W — n" x

LWEJ The corresponding optimal \%

¢>k+1]) ¢[21](_ ¢[k+n 1)) »¢[1]( Plit(@—1ym 1)) -
Also, V is element -wise greater than or equal to any other

v = {¢fy,¢7, -+ 0ff)}, and thus, we have PO 1(;5”
>y By

leen the optimal partitioning of nodes, we can make
P. 2 more tractable by scheduling one group at a time,

vector is: [¢; (=

'We assume @1x) is real-valued. Thus, without loss of generality, we assume
that ¢[k] #* ¢[k’] ifk#£kK.

2The proof of Claim 1 is omitted due to space limitation.

3Since each ¢ value is unique, we can derive the partitioning of nodes from
the partitioning of ¢ values.
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thus reducing the number of binary variables. The modified
problem P. 3 chooses 1™ nodes to form a group g%, which
is the set of nodes with residual energy being ®[!,

max. v (3a)
Z,V .
subject to: Z Za=n" (3b)
a=1
Va: z, € {0,1} (3¢)
Va: v < ¢(wa> X 2q + Qsmaw X Za, (3d)
Va: zq+Zq =1, (3e)

where z € {0,1}" denotes the membership relation between
each node and Q[G], Z=1w — z, and v € R is the minimum
nodal residual energy in gl i.e., q@ﬁ] OF i+ (G—1)y*+1]- In
P. 3, the number of binary variables is W, which is much
smaller than W?2 /n* for a large W and a small n*.

To summarize, we have formulated an optimal node
scheduling problem P. 1 which partitions all nodes in a cluster
into G groups. The problem is then converted to an MILP
formulation which is P. 2. Finally, based on the analytical
solution to P. 2 given by Claim 1, we have formulated an
optimal node scheduling problem P. 3 which chooses only n*
number of nodes to activate to reduce the complexity of the
combinatorial optimization problem.

B. Optimal and Greedy Node Scheduling Algorithms

Given the optimal node scheduling for §(¢! from P. 3, we
can derive an Optimal Node Scheduling (ONS) algorithm
which runs as follows. [Step 1] ONS runs P. 3 to choose
n* number of nodes to activate. [Step 2] When any of the
active nodes does not have enough residual energy to operate,
remove/deactivate the node, and go back to [Step 1]. Please
note that P. 3 is still an MILP. When there are a small number
of binary variables (e.g., < 50), an optimal solution can be
found in a negligible amount of time, but it is not always
the case if the number of nodes in a cluster is large or the
processing power of the FC is limited.

To further reduce the complexity, we propose a Greedy
Node Scheduling (GNS) algorithm that produces the same
node selection as ONS but with a much lower complexity
of O(n*W). Given that an optimal node selection for §l&!
is equivalent to finding nodes with residual energy of 3G
= { Pl (G=1)m*+1]> Pl (G—1)m*+2]> " ** » Plk+cn+] }» this can
be done by choosing n* nodes with the highest residual
energy. Please note that ¢y (G—1)n +1] Plk+(G-1)m=+2]> """ >
GltGye) correspond to (n*)®, (n* — 1)%, -+, 1% highest
nodal residual energy, respectively, in a cluster. GNS has the
same two-step algorithm as ONS except in [Step 1], instead of
solving P. 3, GNS iteratively selects a node with the n'" highest
nodal residual energy where n =1,2,--- ,n* to activate. The
algorithm for ONS and GNS is given in Algo. 1.

Algo. 1 first checks if the number of nodes in the cluster
is at least n* (line 1); if not, it terminates (line 2). Then, the
set g is initialized to an empty set (line 4). For ONS, g is
determined by the solution to P. 3 (lines 5-7). On the other

Algorithm 1 Optimal/Greedy Node Scheduling
1. if [W| <n* then
2:  Terminate
3: end if
4 g < {}
5: if ONS is chosen then
6
7
8
9

/l infeasible, not enough nodes
// initialize to an empty set

z* + Solve P. 3
: g+ gU{wg},Va such that z¥ =1
: else if GNS is chosen then

while |g| <n* do

10: a* + arg, max{¢p(w,) : Va € 1dx(W — g)}
11: g < gU{wg}

122 end while

13: end if

14: while |g| =n* do

15:  Activate nodes in g

16: if Jw, € g such that ¢(w,) < Py then
17: g g—{w}, W+ W —{w,}

18:  end if

19: end while

20: Go to line:1

hand, GNS chooses nodes to activate by iteratively searching
for a node with the highest residual energy (lines 8-12).
At line 10, the idx(-) function returns the index set; e.g.,
idx({wy,ws,wr}) = {1,2,7}. When g is determined, all
nodes in the group become activated (line 15), while the others
stay in the sleep mode to minimize the energy consumption.
The ¢y, (lines 16) is the battery threshold such that if the
residual energy of a node drops below the threshold, the
node can no longer function properly. Any battery-drained
nodes will be removed from both ¢ and W (line 17), and
the algorithm starts over (line 20) from the beginning.

V. PERFORMANCE EVALUATION

We have implemented five different node activation schedul-
ing algorithms and compared their performances with each
other: ONS (Optimal Node Scheduling), GNS (Greedy Node
Scheduling), RNS (Random Node Scheduling), SNS (Sequen-
tial Node Scheduling), and invGNS (inverse GNS). RNS
activates nodes uniformly at random, SNS activates nodes with
the smallest AID* first (which is similar to first-come, first-
served), and invGNS activates nodes with the least amount of
nodal residual energy first, which is the exact opposite of GNS.
All five algorithms activate n* number of nodes at a time. We
used Matlab [4] to solve the optimization problem P. 3 as well
as to implement a simulator and the five algorithms.

A. Simulation Setup

Unless stated otherwise, we use the following default sim-
ulation configuration. The FC is associated with [W| = 50
nodes, and can buffer up to B = 50 data. Each node has a
fixed rate of 0.3 = A/|W)| (data per second, from the node

4As a reminder, when a node joins a 802.11ah-compatible network, it is
assigned a unique identifier, called AID.

Authorized licensed use limited to: lowa State University. Downloaded on August 01,2020 at 20:36:08 UTC from IEEE Xplore. Restrictions apply.



20 5

3 —+— 11=0.500

Elerror]

E[reporting interval] (seconds)

0
15 10 20 30 40 50
Number of active nodes

1 6 10 20 30 40 50
Number of active nodes

(a) Reporting interval decreases (b) Error in a report decreases as
as the number of active nodes the number of active nodes in-
increases for each given p. creases for each given pu.

Fig. 3. Expectation of the reporting interval and report error
with respect to the number of active nodes.

to the FC). The variance of the sensed readings (i.e., the
measurement error) is o2 = 25. We assume the following
requirements: ey = %0, and 7., = 6 seconds (i.e., the
AP expects at least one report every six seconds on average).
For p (reports per seconds, from the FC to the AP), we have
Hmin = 0.1, pmax = 0.5, and A, = 0.001. Considering
that the radio module is one of the major sources of energy
consumption [5], we assume the following simplified energy
model. At the beginning, each node is assumed to have a
random amount of energy drawn from a uniform distribution,
U (0, max], Where ¢max = 100. Each node consumes one unit
of power for generating one sensed reading or transmitting one
sensed reading to the FC; in this regard, ¢:p, is set to one.
All results are averaged over 50 simulation runs. We also have
measured the 95% confidence intervals of the results, which,
however, are omitted from the figures as they are very small.

B. Identification of Optimal p* and n*

We first show how to find the optimal p* and n*. The
analytical results in Fig. 3a and Fig. 3b show the expected
reporting interval and report error, respectively, as the number
of active nodes increases. As shown in Fig. 3a, with an in-
creased number of active nodes, the expected reporting interval
decreases for each given p. This is because the FC spends
less and less time in state O as the total incoming data rate
increases. The reporting interval 7 is the sum of the holding
time in state 0 (denoted by 7) and the sum of holding times in
non-zero states (denoted by 7x;) until the CTMC returns to the
state O for the first time. While 7 is a function of both y and
Aact> Where Ager = (the number of active nodes) x A/|W)|, 7o
is dependent on A, since there is no transition from state O
to itself. As the number of active nodes increases, so does the
rate of data arrivals from nodes to the FC. Thus, the waiting
time until the first data arrival also decreases, resulting in the
reduced reporting interval.

As shown in Fig. 3a, if p is too small, e.g., 0.100, the
reporting interval requirement cannot be satisfied. On the other
hand, for larger p’s, we can identify the smallest number of
active nodes, beyond which the reporting interval requirement
can always be satisfied. Similarly, as shown in Fig. 3b, the
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Fig. 4. Optimal number of nodes 7* (1) to activate with respect
to w, where n%,; (1) and Ny pr(1) are the smallest number of
nodes to activate to satisfy reporting interval and report error
requirements, respectively, and p* = 0.184.

report error decreases as the number of active nodes increases.
This is because, during each reporting interval, the FC collects
more and more data from nodes as A, increases.

Since both reporting interval and report error requirements
have to be satisfied at the same time for a given i, we first take
the smallest number of active nodes from each requirement,
and then, take the larger one to find n*(u) for a given p,
ie., n* (1) = max{ngrr(1), N5 (1)} The trace of n*(u) for
Vi € [fimin, fmax] is shown in Fig. 4. For small values of
i € [lmin,0.168], the FC cannot satisfy the reporting interval
requirement, and thus, n* is set to 0 to signify infeasibility.
When p > 0.168, there exists a feasible n*(u) for each p,
and in the end, we have found that p* = 0.184 to yield the
smallest n* = 6. Note that the reporting interval requirement
is the dominating factor in determining n* for pu* = 0.184;
this can be observed from Fig. 3.

C. Validation of the Proposed Markov Model

To validate the Markov model we used, we compare the
results from the analytical model with the simulation results,
as shown in Fig. 5. It is clear that the simulation results, i.e.,
reporting interval in Fig. 5a and report error in Fig. 5b, are
close to the analytical results, which validates our analytical
model of the network. Since the reporting interval require-
ment is the dominating factor when determining n*, expected
reporting interval is very close to 7,.q, While there is a gap
between expected report error and ..

D. Performance Comparison

We also have compared the cluster lifetime with respect to
the number of nodes in a cluster, and the results are plotted in
Fig. 6a. As shown in the figure, both ONS and GNS result in
the longest lifetime than other schemes. Also, the performance
of GNS equals that of ONS with a much lower complexity.
The invGNS has the worst performance as it activates node in
the exactly opposite way of the GNS. The RNS outperforms
SNS, showing that the randomization in node activation yields
a better performance than both SNS and invGNS. In addition,
we have compared the cluster lifetime with different maximum
battery capacity when |W| = 50. That is, the initial nodal
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Fig. 6. Comparison of the cluster lifetime with five different
node scheduling methods.

energy of each node is drawn uniformly at random from the
range (0, Pmax], where dmax = 100, 300, - - - ,900. The results
are shown in Fig. 6b. Again, both ONS and GNS outperform
the rest with invGNS being the worst.

VI. RELATED WORK

It has been widely studied how to prolong the network
lifetime and/or satisfy certain requirements for wireless sensor
or IoT networks. The key challenge in such studies is to
determine which nodes to activate so that the rest can switch to
the sleep mode without violating given constraints. In addition,
energy harvesting [6] or simultaneous missions [7] [8] have
been considered when designing a node scheduling algorithm.
One drawback of these works is that, it is usually assumed
the requirements can be represented as simple equations in
the problem formulation. Such approaches may not be realistic
because some of the practical requirements are tightly coupled
with the specifications of individual nodes or the underlying
network. Thus, it is non-trivial to derive a practical and
efficient solution to the node activation/sleeping scheduling
problem under realistic requirements.

Studies on energy-efficient node scheduling are often based
on the mathematical understanding of the network. For exam-
ple, by using Markov chain [9] or the study on the correla-
tion between the sensed readings [10] [11], node scheduling
schemes have been developed. However, these studies either
focus on the energy-efficiency of each individual node [9]

or use an indirect metric when designing a network lifetime
maximization problem [10] [11], instead of considering the
direct relation between the nodal residual energy and the
expected network lifetime. In addition, different node schedul-
ing problems have been studied, in [12] by optimizing the
transmission time but without exploiting the sleep mode, in [5]
for multi-hop networks, and in [13] for coverage optimization,
respectively.

VII. CONCLUSION

In this paper, we studied the problem of activation schedul-
ing of IoT devices for environment monitoring applications.
We first analyzed the network of our interest by using a
Markov process. From the stationary distribution of CTMC,
we computed the minimum number of devices to activate to
satisfy both report-accuracy and timely-update requirements.
Then, we derived an optimal scheduling algorithm for device
activation that maximizes the cluster lifetime by taking into
consideration the nodal residual energy. We also proposed a
greedy scheduling algorithm to produce the optimal perfor-
mance but with a significantly lower complexity. Evaluation
results show that the proposed schemes, ONS and GNS, can
effectively prolong the network lifetime. The security issue in
data collection and fusion is beyond the scope of this paper,
and is left for future work.
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