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ABSTRACT. We derive a priori estimates for the compressible free-boundary
Euler equations with surface tension in three spatial dimensions in the case of
aliquid. These are estimates for local existence in Lagrangian coordinates when
the initial velocity and initial density belong to H3, with an extra regularity
condition on the moving boundary, thus lowering the regularity of the initial
data. Our methods are direct and involve two key elements: the boundary
regularity provided by the mean curvature and a new compressible Cauchy
invariance.

1. Introduction. In this paper we derive a priori estimates for the compressible
free-boundary Euler equations with surface tension in three space dimensions (The-
orem 1.1 below) in the case of a liquid. Our a priori estimates provide bounds for the
Lagrangian velocity and Lagrangian density in H?®, an improvement in regularity
as compared to [27].

The compressible free-boundary Euler equations in a domain of R? are given by

%Z + Vou + éVp: 0 in 7, (1a)

do : .

n + Vyo+ odiviu)=0 in 92, (1b)
p=p(0) in 9, (1c)
p=oH on 09, (1d)

(O + utOpr)| 5 € TOZ, (1e)
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U(O, ) = Uo, Q(Oa ) = 0o, Q(O) = QO7 (1f)
where 7= {t} x@). (1g)
0<t<T

Above, the quantities u = u(t, z), p = p(t, z), 0 = o(t, ) are the velocity, pressure,
and density of the fluid; Q(¢#) C R? is the moving (i.e., changing over time) domain,
which may be written as Q(t) = n(¢)(€), where 7 is the flow of u; o is a non-
negative constant known as the coefficient of surface tension. Equation (1c) is the
equation of state, indicating that the pressure is a given function of the density.
In (1d), #H is the mean curvature of the moving (time-dependent) boundary 9€(t);
and TOZ is the tangent bundle of 9%. The equation (le) means that the boundary
00(t) moves at a speed equal to the normal component of u. The quantity ug is
the velocity at time zero, gg is the density at time zero, and €2y is the domain at
the initial time. The symbol V,, is the derivative in the direction of u, often written
as u - V. The unknowns in (1) are u, g, and £2(¢). Note that H, T0Z, and p are
functions of the unknowns and, therefore, are not known a priori, and have to be
determined alongside a solution to the problem.
We focus on the case when ¢ > 0 and consider the model case when

Qo =0="T2x(0,1).
Denoting coordinates on Q by (z!, 22, 23), set

I =T x {2* =1}
and

Iy =T? x {z* = 0},

so that 9 = To UTy. The general domain can then be handled as in [68, Re-
mark 4.2]. We assume that the lower boundary does not move, and thus n(¢)(Ty) =
Ty, where 7 is the flow of the vector field u. We introduce the Lagrangian velocity,
pressure, and density, respectively, by v(t,x) = u(t,n(t, x)), q(t,z) = p(t,n(t, x)),
and R(t,z) = o(t,n(t,x)), or simply v =uon, ¢ =pon, and R = pon. Therefore,

On = v. (2)
Denoting by V the derivative with respect to the spatial variables x, introduce the
matrix
a= (Vi)™
which is well defined for 7 near the identity. Equation (1c) gives ¢ = q(R), i.e., the

equation of state written in Lagrangian variables. From a we obtain the cofactor
matrix

A=Ja, (3)
where
J = det(Vn). (4)
As a consequence of these definitions, we have the Piola identity
Dp AP = 95(Ja’™) = 0. (5)

(The identity (5) can be verified by direct computation using the explicit form of
a given in (22) below, or cf. [46, p. 462].) Above and throughout we adopt the
following agreement.
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Notation 1. We denote by 9, spatial derivatives, i.e., 9, = 9/9z%, for « = 1,2, 3.
Greek indices (a, 3, etc.) range from 1 to 3 and Latin indices (¢, j, etc.), range from
1 to 2. Repeated indices are summed over their range. Indices shall be raised and
lowered with the Euclidean metric. We write 9% = §%#9;.

In terms of v, ¢, R, and a, the system (1) becomes

RO + a"“0,q= 0 in [0,T) x Q, (6a)
0:R + Ra"*0,vq =0 in [0,T) x Q, (6b)
9a*? + a9 v,a"’ = 0 in [0,T) x Q, (6¢)
g=q(R) in [0,T) x Q, (6d)
a"*N,q+ ala" N|Amn*=0 on [0,T) x T'y, (6e)
v N, =0 on [0,T) x Ty, (61)
n(0,-) =id, R(0,-) = o, v(0,)= vo, (6g)
where id is the identity diffeomorphism on 2, N is the unit outer normal to 92,
a™ is the transpose of a, | - | is the Euclidean norm, and A, is the Laplacian of the

metric g;; induced on 0§(t) by the embedding 7. Explicitly,
gij = 0in - O5m = 0" 0jny, (7)

where - is the Euclidean inner product, and

8y() = —=0K(v/3579,(), (®)
with g the determinant of the matrix (g;;). In (6e), Agn® simply means A, acting
on the scalar function n®, for each o = 1,2,3; see Lemma 2.2 below for some

important identities used to obtain (Ge).
Since 7(0, ) = id, the initial Lagrangian and Eulerian velocities agree, i.e., vo =
ug. Clearly, vg is orthogonal to T'g in view of (6f). Note that

a(0,) =1, 9)

where I is the identity matrix, in light of (6g). It also follows from the above
definitions that J satisfies

OnJ — Ja*P 9,05 =01in [0,T) x Q (10)
and
RJ = R(0) = go in [0,T) x Q. (11)

Physically, the equation of state has to satisfy ¢'(R) > 0 (pressure cannot de-
crease with an increase in density). Mathematically, this assumption guarantees the
coercivity of the kinetic term for R in the energy. Here, we shall adopt a slightly
more restrictive equation of state that allows us to simplify the estimates. We as-
sume there exists a constant A, > 0 such that for all R in a certain interval [a, b],
we have

¢ (R) > A, and (q(é%)>l > A, (12)

By Lemma 2.1(x) below, the first condition follows from the second if we allow A, to
be decreased if necessary. Importantly, the condition (12) is satisfied for equations
of state of the form ¢(R) = aR'™7, where a > 0 and v > 0 are constants (with
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further assumptions on the constants and the range of R, (12) is also satisfied by
q(R) = aR' + 3, where 8 > 0).

Notation 2. Sobolev spaces are denoted by H*(Q2) (or simply by H*® when no
confusion can arise), with the corresponding norm denoted by || - ||s; note that || - ||o
refers to the L2 norm. We denote by H*®(09) the Sobolev space of maps defined on
09, with the corresponding norm || - ||5,9, and similarly the space H*(I';) with the
norm | - ||s,r,. The LP norms on € and I'; are denoted by || - ||r(qy and || - || Lo (ry)
or || - ||z» when no confusion can arise. We use [ to denote restriction, and A is the
Euclidean Laplacian in 2.

‘We now state our main result.

Theorem 1.1. Let Q2 be as described above and let o > 0 in (6). Let vy be a
smooth vector field on Q, and o9 a smooth positive function on 2 bounded away
from zero from below. Let q: (0,00) — (0,00) be a smooth function satisfying (12),
in a neighborhood of og. Then, there exist a T, > 0 and a constant C,, depending
only on

a, |lvollss llvollary, lleolls, lleolls,ry, || curlvollz.s+5, and [[(A divwve) [Tyl -1,r,,

where § € (0,0.5], such that any smooth solution (v, R) to (6) with initial condition
(vo, 00) and defined on the time interval [0,T,), satisfies

[olls + 10ev]l2 + 1070l + 107v]lo + | Rlls + 18 Rll2 + 07 Rll1 + (10 Rllo < C..

The dependence of T, and C on a higher norm on the boundary I'; comes from
the usual problems caused by the moving boundary in free-boundary problems.
The technical difficulties leading to the necessity of including such higher norm are
similar to those in [56] (see Section 3.3 and Remark 3 below). The assumption
on (Adivwg)|T; is technical. It can be understood as a consequence of the fact
that our techniques generalize methods previously applied to incompressible fluids
in [42], where of course the condition is immediately satisfied as div vy = 0 then. A
regularity condition on the normal derivatives of the normal component of vy would
suffice, but the assumption on (A divwg)[T'y is simpler to state. We remark that
control of curlv in H?:5F follows from an argument similar to [68] combined with a
simple estimate for the divergence which is omitted here.

Without attempting to be exhaustive, we now briefly review the literature on
problem (6), and it is instructive to first recall some results for the incompressible
free-boundary Euler equations.

The first existence result for incompressible free-boundary inviscid fluids is that
of Nalimov [80], followed by [13, 34, 64, 81, 86, 87, 91, 95, 96, 99, 100]. Despite
their importance, all these works consider simplifying assumptions, mostly irrota-
tionality. It has not been until fairly recently, with the works of Lindblad [75] for
o = 0, Coutand and Shkoller [29] for o > 0, and Shatah and Zeng [89, 90], also
for ¢ > 0, and more recently by the first author and Ebin [40] for o > 0, that ex-
istence and uniqueness for the incompressible free-boundary Euler equations have
been addressed in full generality. Since the early 2000’s, research on this topic has
blossomed, as is illustrated by the sample list [1, 3, 4, 5, 6, 7, 10, 8, 2, 9, 12, 11, 15,
14, 16, 17, 18, 19, 20, 22, 23, 26, 30, 33, 35, 36, 37, 38, 39, 42, 47, 48, 49, 52, 55, 54,
53, 57, 60, 58, 59, 65, 67, 68, 69, 70, 71, 73, 77, 82, 83, 85, 88, 97, 98].

Although we are concerned here with ¢ > 0, it is worth mentioning that the
free-boundary Euler equations behave differently for ¢ = 0 and ¢ > 0. In view
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of a counter-example to well-posedness by Ebin [45], an extra condition (known as
Taylor sign condition in the incompressible case), has to be imposed when o = 0.
However, it seems more difficult to obtain local existence in lower regularity spaces
when o > 0 compared to 0 = 0 due to the presence of two space derivatives of 1 on
the free boundary.

For the compressible free-boundary Euler equations (6), besides the difference
between o0 > 0 and o = 0 referred above, a further distinction that needs to be
made is between a liquid, when gy > A > 0, where X is a constant, and a gas,
when gg can be zero, the former being the situation treated here. Existence and
uniqueness of solutions for (6) have been proved by Lindblad [74] for the case of
a liquid with o = 0, by Coutand and Shkoller [32] for a gas with o = 0 (see also
[94]), and by Coutand, Hole, and Shkoller [27] for a liquid with ¢ > 0. Earlier and
related works are [21, 24, 25, 28, 31, 62, 63, 72, 79, 92, 93]. Further, and more recent
results, are [50, 61, 76, 78|.

In this work we restricted ourselves to derive a priori estimates, hence a solution
is assumed to be given. Therefore, there is no need to state compatibility conditions
for the initial data. But we remind the reader that such conditions are necessary for
construction of solutions. We also note that in our setting, compatibility conditions
will be different on I'; and on Ty (see, e.g., [27], for the compatibility conditions on
Iy, and [41] for those on T'y).

Assumption 1. For the rest of the paper, we work under the assumptions of The-
orem 1.1 and denote by (v, q) a smooth solution to (6). We also assume that Q, 'y,
and I'y are as described above.

1.1. Strategy and organization of the paper. The paper is organized as fol-
lows. Theorem 1.1 states the main result. Section 2 contains the preliminary
estimates of the coefficients and the Lagrangian map. We also introduce the nota-
tion used in the rest of the paper. Section 3 contains the energy estimates. First,
we start with the energy equality for the third time derivatives (cf. (36) below).
Special care is required for the boundary integral, which is treated with complete
details in Subsection 3.1.4. Two time derivative energy equality is written in (71)
below, with the estimates given in Section 3.2. We emphasize that the obtained
terms are not of lower order as they contain one more space derivative. We also
point out that we can not use the H> energy equality with no time derivatives, since
there is an interior term which can not be treated by the methods from the rest of
the paper; instead, we need to rely on the div-curl estimates to obtain control of
the H? norms of the velocity and the density. Section 4 contains estimates for the
curl of the velocity; the main building block is a new Cauchy invariance formula,
generalizing the incompressible version from [56, 68]. The conclusion of the proof,
where all the bounds are suitably combined, is provided in the last section.
Several of the terms that appear in our energy identities, especially in the case of
some boundary integrals, cannot be bounded directly. To control them, we explore
the structure of the equations and make frequent use of several geometric identities.
These lead to a cancellation of top-order terms, allowing us to close the estimates.

2. Auxiliary results. In this section we state some preliminary results that are
employed in the proof of Theorem 1.1 below.

Lemma 2.1. Assume that ||v]|s, ||R|s < M, where M > 1. Then, there exists
a constant C' > 0 such that if T € [0,1/CM?] and (v,q) is defined on [0,T], the
following inequalities hold for t € [0,T):
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(i) [Inlls < C.
(i) [lall2 < C.
(iii) |8yl r < C|V||Lr, 1 < p < 0.

() |0a0tallLe < C||VV| Lr1 ||OaalLre + C||0a V| Lr, where 1/p = 1/p1 + 1/pa,
and 1 < p,p1,p2 < 6.

(v) |0salls < C[Vuls, 0 <'s <2.
(vi) [0Falls < ClIVol[s[|V]|L + Cl[VOw]s, 0 < s < 1.
(vi) |0Faly < CIVVl3,, + ClIVOw].

(vii) |3all e < OV Lo || V0|2 00 + C V00| 1 | V0| oo + C|[VO20|| o, 1 < p <
0.

(viii) J > 1/2.

(iz) Furthermore, if € is sufficiently small and T < e¢/CM? then, for t € [0,T],
we have

la®? =627y < e

and

||a°‘“aﬁﬂ — 6|y <e.
In particular, the form aa“aﬁu satisfies the ellipticity estimate

o 1

a #aﬁugafﬁ > 6|£‘2
() C-'<R<C.
Proof. The proofs of (i)—(vii) and (ix) are very similar to [56, Lemma 3.1] and [66,

Lemma 3.1], making the necessary adjustments for ||v||3 < M (in [56], ||v|lss < M
is used). The statement (x) follows from

t
/ Ra"* 8,0,
0

by (6b). The inequality (viii) is proven analogously, using (10) instead of (6b). O

t
IR() — RO)||~ < C\ < [CIRllolls < oa°T
Loo 0

Notation 3. In the rest of the paper, the symbol C denotes a positive sufficiently
large constant. It can vary from expression to expression, but it is always indepen-
dent of (v, R). We also write X <Y to mean X < CY. The a priori estimates
require for 7' to be sufficiently small so that it satisfies TM < 1/C, where M is
an upper bound on the norm of the solution (cf. Lemma 2.1 below). In several
estimates it suffices to keep track of the number of derivatives so we write 9¢ to
denote any derivative of order ¢ and 0° to denote any derivative of order ¢ on the
boundary, i.e., with respect to z¢. We use upper-case Latin indices to denote z* or
t, so 04 means 0 or 0;.

Remark 1. (Simple lower order estimates and symbolic notation) In the subsequent
sections, we use the following consequence of Lemma 2.1. Let @ be a rational
function of derivatives of n with respect to x*,

Q = Q(ohn', don', 1n?, 02n?, 01n®, D2n®).
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More precisely, we are given a map Q: D — R, where D is a domain in RS, and
consider the composition of @ with D(n[T'1), where D means the derivative. Assume
that 0 ¢ D and that (1,0,0,1,0,0) € D. Assume that the derivatives of Q belong
to H3(D'), where 1 < s < 1.5 and D’ is some small neighborhood of (1,0,0, 1,0, 0).
The application we have in mind is when @ is a combination of the terms ,/g and
¢". Tt is not difficult to check that such terms satisfy the assumptions just stated
on (). In this regard, note that at time zero g is the Euclidean metric on I'y, and
that (1,0,0,1,0,0) corresponds to D(n(0)[T1).

In what follows it suffices to keep track of the generic form of some expressions
so we write () symbolically as

Q = Q).
Then
94Q(0n) = Q4 (9m)adin°,
where the terms @Za (On) are also rational function of derivatives of 7 with respect

to 2°. Note that @;(577) are simply the partial derivatives of @ evaluated at On.
We write the last equality symbolically as

04Q(0n) = Q(dn)da0n.

For s > 1, we have the estimate
194Q(0n)[l.r, < C1]1Q(@n))|

where C; depends only on s and on the domain I'y. The term H@(é’l’])”s’r‘l can

s,I' HEAETIHSJH )

be estimated in terms of the Sobolev norm of the map @, i.e., ||Q| z+(p), and the
Sobolev norm of dn, i.e., ||0n||sr,. Under the conditions of Lemma 2.1, we have

t
10— Fn(O)l| =y < / 10 =y, < Catllolls < CaMt,

where Cy depends only on the domain I'y and we used that H'-5(I';) embeds into
C°(T'y). Therefore, if ¢ is very small, we can guarantee that

577(1—‘1) C D/,

and thus, shrinking D if necessary, we can assume that the derivatives of ) are in
H*(D) for 1 < s < 1.5, and, therefore, that ||Q||z+(p) is bounded for s < 1.5. Since
Lemma 2.1 also provides a bound for ||0n]sr,, s < 1.5, we conclude that

104Q(n)lls,ry < CllDa0n|s,r,, for 1 <s <15,

where C depends only on M, s, and I'y, and provided that ¢ is small enough. The
above also shows that

IQOMls.ry < CllOnllsr,, for 1 <s<15.

We also need some geometric identities that may be known to specialists, but
we state them below and provide some of the corresponding proofs for the reader’s
convenience.

Lemma 2.2. Let n denote the unit outer normal to n(T'y). Then
a’' N

= . 13
nomn |(ITN‘ ( )
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Denoting by T the tangent bundle of () and by v the normal bundle of n(T'1), the
canonical projection I1: 7In(T"1) — v is given by

4§ =05 — g" o omg. (14)
Furthermore, the following identities hold:
T3 = 105, (15)
Jla"N| = /3, (16)
VIAM® = /9" O™ — /99" g™ Ok O O my, (17)
—Ag(n™IT1) =Honn%on, (18)
di(ny, on) = —gF v RO, (19)
and
ai(nﬂ on) = *gklaikn‘rﬁ‘ramw (20)
Proof. Letting » = n|T'1, we know that n o7 is given by (see e.g. [51])
617“ X 327’
= - = 21
nen |81’I“><32’I"‘ ( )

By det(Vn) = J, we have
a =

1 [020205n” — 0sn?0m”  Ogn' 0o’ — 0o 0an® Do g — Dgn' 0’| 99
= | 0sn?01m® — Oun?0sm® Ot Osn® — Ot O Osmtoin® — Ountosn? | .
O 0on® — Don?Orn®  Bon'orn® — 01t don® 01t Bon® — DonrOin?

Using (22) to compute Ja’ N and comparing with 07 x 07, one verifies that
JaTN = 017 x dyr,

and then (13) follows from (21).

To prove (14), we use (13) to write
at"* N, - gklakno‘alma“)‘Nu
l[aT N | l[aT N | '

(0% — gFokm™oman® o =

Contracting gklam)\a“)‘]\fu with gpi gives
gmkgklaln)\auANu = mn)\a?))\
=01 (01m*02m® — 82n*01*) + Omm2(82m 011> — D1n' Do)
+ O3 (01m Don® — Oan'011?)
=0.
(23)

Above, the first equality follows because N = (0,0, 1) (and g,,,g*" = 4',), the second
equality uses (22), and the third equality follows upon setting m = 1 and then m = 2

and observing that in each case all the terms cancel out. Thus, contracting (23)
with g™,

g™ omya"* N, = 0,
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and hence

at*N,,

la"N|

To conclude the proof of (14), we need to verify that II(X) = 0 if X is tangent to
n(C1). Since the tangent space to n(I'1) is spanned by 9;n, for j = 1,2, it suffices
to verify the identity for these vectors. We have

(0% — gFokm™aman® on =

49,1, = (8% — g™ Oknadm*)0imu = 0ina — g™ Oknagi; = 0,

where we used g;; = 9yn"d;n,, and g*g;; = 6;“. Thus, (14) is proven.

The identity (15) follows from the fact that IT is a projection operator or, al-
ternatively, by direct computation using (14). The identity (16) follows from (13),
(21), and the standard formula (see e.g. [51])

617“ X 827“ 1
—————— = —01r X Oor.
|Oir x 1| /g el
In order to prove (17), recall that (see e.g. [51])
Agn® = gijafjn@ — giijjﬁkno‘, (24)

where Ffj are the Christoffel symbols. Recalling (7), a direct computation using
the definition of the Christoffel symbols gives

Iy = g"om oZm,, (25)

and (17) follows from (24) and (25).

The identity (18) is a standard formula for the mean curvature of an embedding
into R3 (see e.g. [51] or [84]).

The identities (19) and (20) are well-known, but we provide their proofs for the
reader’s convenience. Denote 71 = non. Since {017, dan, i} are linearly independent,
we can write

5Aﬁ = alam + a28217 + bn. (26)
Taking the dot product with 7 we see that b = 0, since 940 -7 = 0 in view of

n -1 = 1, and the fact that 0;n is tangent to the embedding. Taking the dot
product with 911 and 9d2m, and using the definition (7), we obtain

[911 912] <a1> _ (5177'3Aﬁ)
921 g22| \a@? O - Oan)
Using 9y - 0an = —040;m - 1 (which follows from 9y - 7 = 0) to eliminate 947 on

the right-hand side, solving for a' and a?, and using the result into (26), produces
(19) when 904 = 9; and (20) when 94 = 0;. O

For future reference, we record the identity

_ y 1. N
04(\/99”) =g (29”9kl - 91J91k> 0 AYkis (27)

which follows from the well-known identities (see e.g. [84]),
a9 = 99" D agn,
and

5,49” = _gljgikgAgkl-
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We also need the following result about a gain or regularity of the moving bound-
ary.

Notation 4. From here on, we use P(-), with indices attached when appropriate,
to denote a general polynomial expression of its arguments.

Proposition 1. Assume that that conditions of Lemma 2.1 are valid. We have the
estimate

Inllz.5.0, < PUIR[15.0,)-

Proof. We would like to apply elliptic estimates to (6e). While we do not know
a priori that the coefficients g;; have enough regularity for an application of stan-
dard elliptic estimates, we can use improved estimates for coefficients with lower
regularity as in [43]. For this, it suffices to check that g;; has small oscillation, in
the following sense.

Given r > 0 and x € T'y, set

osc, (g%) vol(B,(z)) /Br(x)

g”(y) - VOI(BT(IL')) /Br(x) g”(Z) dz dy

and

gr = sup sup osc,(g").
zel'y r<R

We need to verify that there exists R < 1 such that
9g < p (28)
where p is sufficiently small.
Since g% € H**(T'y), we have g¥ € C%*(T'y) with 0 < a < 0.5 fixed. Thus, for
y € By (),
1

i _ 1 () da| = ij — G (%)) dz
R e AL B T ver s G ORTAIE

< sup g7 (y) — g7 (2)| < Car.
z€B,(x)

Hence,
95 < CaRY,
and we can ensure (28). Therefore, the results of [43] imply that
11 l13.5,00 <C(lla"* Nuglls,00 + 17 [[1.5,r,)
<C(llalli.s,r, lgll5,0y + 7ll15,r,),
where C' depends on ||gi;|1.5r,. Or yet,
Im*l13.5.0, <Cllgllis.r, + Clinlls < Cligllsr, +C < P([Rll1s.r,)-

We remark that [43] deals only with Sobolev spaces of integer order, but since the
estimates are linear on the norms we can extend them to fractional order Sobolev
spaces as well. O

Corollary 1. Under the same assumptions of Proposition 1,
[nllas,0, < P([R2.5.r,)- (29)
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Proof. Since g;; involves only tangential derivatives of 1, by Proposition 1 we have
an estimate for g* in H%®(I';). We can thus use elliptic regularity to bootstrap the
estimate on 7 restricted to I'; to H*?(T'y). O

We conclude this section with a compressible version of the Cauchy invariance
(see, e.g., [68] for the incompressible case).

Proposition 2. Let (v, R) be a smooth solution to (6) defined on [0,T). Then
P90t Dy, = wi (30)

for 0 <t < T. Here, e*P7 is the totally anti-symmetric symbol with €23 = 1 and
wo s the vorticity at time zero.

Proof. Compute
D (P05 0 m,) = P90 D v, + PV D50, 0H Dyny = €*P1 050,01y,
= —%5aﬁ”85(a>‘“8,\q)3vnu + %so‘ma}‘“&\qﬁgl{ﬁwnu,
where we used the anti-symmetry of £*#7 and (6a). From aVn = I, we have
98 (a/\”aynu) = 85a/\“3777“ + aA“awﬁﬁm =0,
and thus

9, (P71 90" Dymy,) = %aAansaﬁvaBawu = %saﬂvawawuagaxq
+ %50‘675‘“&@851?8777”
=0-— %saﬁAaﬁaAq + ﬁaa%k%qaﬂ%ym
= %saﬁvawqaﬁz% = q’(R)%s“m&yRagR =0,

where we used again the anti-symmetry of ¢*#7 and the identity a>‘”8777M = (5;\.
Integrating in time yields the result. O

3. Energy estimates. In this section we derive estimates for v, R, v- N, and their
time derivatives.

Assumption 2. Throughout this section, we suppose that the hypotheses of
Lemma 2.1 hold; we make frequent use of its conclusions without mentioning it
every time. The reader is also reminded of (2), which is often going to be used with-
out mention as well. We assume further that T is as in part (iz) of that lemma,
and that (v, q) are defined on [0,T).

Notation 5. We use € to denote a small positive constant which may vary from
expression to expression. Typically, € comes from choosing the time sufficiently
small, from Lemma 2.1, or from the Cauchy inequality with epsilon. The important
point to keep in mind, which can be easily verified in the expressions containing €,
is that once all estimates are obtained, we can fix € to be sufficiently small in order
to close the estimates.

Notation 6. Recalling Notation 4, we denote
P = P(|[v]l3, [|0evll2, 107 vllv, 107 v]lo, 1R, |9 R,
107 R, 107 Rlo. |[100; vllo,r, , [IT10*Byv]lo,r, )
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and
1 .
Py =P <g, - llvoll3, lvolla.ry s leolls, ll@olls.rys I (A leUO)fF1||1,F1> ;

where we abbreviate

130203, = /F 519 60T, 0, 020 T 504 020° — /F 110/ 020 150,07 v
1 1

Notation 7. We shall use the following abbreviated notation:
N ()= A = |05 + 100ll3 + 07017 + 105015 + |RIZ + [18:R3 + 1|07 RIIF
+ 0P RI + 100703 r, + INT*00l3 r,

Before starting with a priori estimates, we record an additional regularity of 7
which is combined below with Corollary 1 and Proposition 2. As in [68], Proposi-
tion 2 implies

t
| curlnl|ga.ses < [|nll gz + €llnllmasvs + C/ [oll zallnll o546 + Ctllwoll 2545,
0
(31)
where § € (0,0.5]. In order to control the divergence of i, we start with A*?9,ns =
3J, which leads to
divny = 3J + (6% — AP) (94 — dup) + (3 — Tr A).
Now, let
n=n-—z.
Using (22), we have
Tr A =3 = 0yi°0s7° — 07" 02’ + 01" 037" — O3 "
+ 017" a1 — Doy O17)” — 2div ) + 3,

which gives
1
divij=J -1+ g(W — A°%)d,7i

(0272057" — 5i702" + 017" O — O O’ + 0177 Dui” — o D0
(32)

_1
3
Now, by (22), the entries of %% — A% are either of the form 9707 or of the form
onomn + 0n. Differentiating (32), we get
t
HV div 7~]||H1A5+6 <C+ ||J||H2A5+5 + HV div 77||H1.5+6 / P (33)
0
and thus
t t
|| div ’I7||H2.5+5 <(C+ ||J||H2.5+5 + HV div ’I’]||H1.5+5 / P +/ P. (34)
0 0
3.1. Three time derivatives. In this section we derive the estimate
t
|02l + |02 RIE + 1000l , <+ Pa+ 2 [ 2, (35)
0

where we recall that II is given by (14).
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3.1.1. Energy identity. We begin by establishing the identity

1d 3 B3 1d R(0) , 3 P2 3.7, B \93
5% R(O)@tv 8t +§% Tq (R)(at R) + - 8t (Ja q)@t UﬁNa
_ R(0) 3 afB aB a3 3 (4
- _/QT(at (Ra®%8,v3) — Ra 8t8a115)8t (E)
« q CE
+/ R(0 )(83( ﬁR) ﬂa?’( ))a3a s (36)
=1
/ R(0 ir2Ro R — [ R0y o8 p(o,y?
Q Q R
1 ) 3 >\2
+ R (at R) )
2 Ja
where
_ q(R)

To obtain it, we first multiply (6a) by J (replacing o with ), differentiate three
times in ¢, contract with 97vg, and integrate. We obtain

OB (T RO’ )DPus + / OB (Ja*P Dq) v = 0.
Q Q

Using the Piola identity (5) and integrating by parts in d,, we get

1d
—— | R(0)3}PRvs+ | 92(Ja*Pq)0}vs N, = / 2 (Ja®q)0} 0,0,
2 dt 9] Fl 9}

where we also used (11), that R(0) = 9o, and the fact that the boundary integral

vanishes on I'g.
Now we write

/Q 93(Ja®P )93 0005 = /Q R(0)? (aaﬂ%) 83005
- /Q R(0)a"5? (%) 830,05 + /Q R(0) (af (aaﬁ%) - aﬂa?’( ))330 g
:/QR](?af(Ra“ﬁaavﬂ)a? (%)
- /Q %(@3(}&10‘58&1}5)—Raaﬂafaavg>af (£)
+/QR(O) (07 (a7 L) = a0} (&) G5 0uvs

=1 +1I,+Is.

The terms Zy and Z3 correspond to the first and second terms on the right side of
(36) respectively. To handle Z;, we use the density equation (6b) to eliminate the
spatial derivative:

R(0) 5 3 (4 /R(O) 4pAa3 =
T :/ — 293 (Ra®P0,v5)08 (=) = — | —20*R8}q.
1 0 R t( B)t<R> 0 Rt t

Since
97 (q(R)) = 7 (R)O} R+ 37" (R)9; RO, R + 7" (R)(9: R)?,
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/ R(0
- / R(0) qm(m 9 R(0,R)®
Q R

=111 +Z1io + Iy3.

we have

TROZR — 3 / R(0 1(% )8fR8t2R8tR

The terms Zy5 and Z;3 give the third and the fourth terms on the right side of (36).
For 7,, we write

Iy = th/R R)2+%/QR(O)8t (q/ﬁf)) @GR (37)

The first term on the right side leads to the second term on the left side of (36),
while the second term on the right side of (37) gives the last term in (36).
Denote the terms on the right side of (36) by J1—Js.

3.1.2. Estimates of J1, J3, J1, and Js. In this section we estimate J1, J3, J1, and
Js. We begin with

R(0) q
T = —/ — (82 (Ra*Pd,v3) — Ra®P 3} d,v )83 (— ) (38
0 R ( t( /3) t B ) R> )
First observe that
% (%)
o7 (%
When the expression in parentheses in (38) involving three time derivatives is ex-

panded and one of them canceled, we obtain eight terms, which are all bounded in
a similar way. For instance, we have

08 Ra*? davs 120y < Cl|OF R 20 16 || L= (0|00 8| Lo () < P

ey S P(|107 Rl 120, 107 Rll 120y, 10:R ] £2(52), [ Bll2(0)) < 2

and
IR} Bavpl| L2 () < CIIR| Lo (@107 | L2 [0avs L 0) < 2,
as well as
107 Ra®? 0o vs]| 12 () < Cl07 Rl La(l|0a” || La() 107 Oavsl L2 () < 2.
After estimating all the terms in this manner, we obtain
J1 < 2.

Next, we treat the term

- —3/ R(0
dt( 3/93( )‘7”( ) 93 RO? RO, R )
+3/QR(0)afRat (q é )8t2R8tR>

d
= %‘731 + J32.

RO?ROR

(39)
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For the first term in (39), we have
T51(t) S NRO) || oo 1B | oo () 107 Rl L2(e) 107 Rl 22 (0 | O: Rl | o< ()
SR Lo @) 1Rl oo @) 107 Rl 22 (2 187 R(0) | L2 0y 0 Rl o< ()

t
+ ||R(0)||Lw(9)|\371HLoc(Q)||33R||L2(Q)||3tRHLoo(Q)/0 10} Rl| 12(0)-
Using Lemma 2.1(x) as well as the Sobolev and Young’s inequalities, we get
¢
Ts1(t) < €|} RII5 + €0 RI5 + Po + @/ 4
0

where we also used
2

t 2 t
< 5||atR<o>%+H/o on <o [ 2
1

t
10.R|? < ‘ O R(0) + / R
0

1
and Jensen’s inequality. Also,

T31(0) < ClIO7R(0)| 12(0) 107 R(0) || L2 (0 107 R(0) || Loe (00) < P00

The second term in (39), J39, is simpler, as we just apply Holder’s inequality and
write

q/// R
Ts2 S R(0)||Loo(9)||3§’R||L2(Q)(’ 1(% )8tR 162 R|| L2 (0 18: R ]| 1< e
L (9)
q—//(R)
T Rz R 107 Rl 2 0 Rl L= (e
L= (Q)
q//(R)
TR 107 Rl| L2010 Rl L= (02)
L=(Q)
q—//(R)
TNTRr 107 Rl %40
L>=(9)

< Z.

The term 7, is treated similarly to J3 by differentiating by parts in time. Namely,
we have

Ji = — / rO) B gi g0, r)?
Q
d

R
-4 (_ /Q R(0) ‘7”/](;%) 3?R(8tR)3) + /Q R(0)3? RO, (qﬂéR) (8tR)3> (40)

d
= 5;741 + Jao.

The pointwise terms are estimated using Holder and Sobolev inequalities as
Ta1(t) S RO e @ IR | zoe @) 107 Rl| L2 (0 10 Rl 25 0
< 197 Rllol10:RI3
t
SEOPR|G + P +/ ez
0

and
T11(0) S 107 RO0)[lo[0:R(0)[|F < Z0.
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For the second term Jyo in (40), we use Holder’s inequality, yielding
q////(R)

Tia S 1RO 1oy 108 Rl (| T 10,10
L>=(Q)
7"(R)
v 10,50
L=(Q)
7" (R)
+’ 7 10¢ RI|F o (0 107 Rl L2 (0
L>=(Q)

< 2.
Finally, the last term J5 can be bounded using Hoélder’s inequality

7= [ oo (TG0 @t ry?

()

Remark 2. (Recurrent estimates of lower order terms) Ideas similar to the above,
relying on a combination of Sobolev embedding, Young and Jensen’s inequalities,
and interpolation, shall be used throughout the paper to estimate lower order terms,
many times without explicit mention. Before proceeding further, we illustrate in
detail how a typical lower order is bounded.

Consider [|02v||o.545]|03v]|o, where § > 0 is small. Interpolating

187 vllo.5+6 < 1070l1Y >+ 107w,
and using the Cauchy inequality with e, we find
-~ —92§ 5 .~
167 vll0.5+51187vllo S C@)N107vllo™* 107011 + €l|07v]I5.

Next, choosing p = 2/(1426) and ¢ = 2/(1—20), we apply Young’s inequality with
€ to get

A

| R0)[| o ()

107 R 74 < 2.
L= (Q)

107 v]lo.5+sl10Fvllo < CE(C(ENNOFVII + € 10FIIT) + ElloFv 13
< CE NG5+ ellofvlls + ldFvlls,

where in the second step we chose €’ so small that C(€)¢’ < é. The fundamental
theorem of calculus and Jensen’s inequality provide

t 2 t
o2l < lpeo)lp + ([ tel) < Nepucoyi3+e [ legei
We conclude that for ¢ less than a certain fixed T', we have
10200545 |050]l0 S Po + EN + /Ot Z.
3.1.3. Estimate of J>. There is a part of the integral
Jo = /QR(O) (af (aaﬁ%) — P93 (%)) 930avs, (41)

which can not be estimated using integration by parts and Holder estimates and
involves a special cancellation, namely the “tricky” term

t
T = / / O3 AP 3D, v, (42)
0 Q
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where, recall, A = Ja. It obeys the following estimate.

Lemma 3.1. The term T given by (42) satisfies the estimate
t

T < E|TI0020|2 1, + & + P + @/ ».
0

Proof of Lemma 3.1. From (22), we may write

AN = N Dy Ds 1y,
A2 =~ 91\ Danr,
A3a — Ea)\'ral?,b\aznT'

Expanding the index p in (42), we have
t t
T = / / qea”agafmagmalafva +/ / qeo‘)‘TagmagafvTalé‘fva
0o Jo 0o Ja

t t
—/ /qea”alafmagmazafva—/ /qea”amaga?maﬁfua
0 Ja 0 Jo
t , @)
+/ /qe“”@lﬁfv,\agmagﬁfva—k/ /qea”&mﬁgﬁtzmagafva
o Ja 0o Ja
+ Ly
=T+ - +Ts+ L

where L denotes lower order terms, which are all of the form

t t
/ /q@@tvavaﬁf‘v:/q@@tvavaafv\é—/ /8tq38tv8v88t2v
0 Q Q 0 Q
t
—/ /q@@fv@v@@fv
0 Q
t
< Nall= V0l < IV 8ol VOZ0llo + 2 + / P
0
t
< ol 2 1olly 2 100l 1070]| + 2o + / P
t
< &loll2 + &02]|2 + Po + / 2.
0

We group the leading terms in (43) as Ty + T3, Ty + Tg, and Tz + T5. Integrating
by parts in time in T3, we find

t t
T + T3 z/ / qeo‘)‘T82ﬁfv,\83n78185’va —I—/ / qeakfalafv,\agnrﬁgafva
0 Ja 0 Jo

—/ quTalath,\ﬁgnrﬁgafva + Lo

c . (44)
= / / qeN 030203101 O vg + / / geNT 010304, 031 D200,

0 JQ 0 JQ

— / qeakTalatz’U)\a;gnTagafva + Lo
Q
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t t
= / / q€N Dy 020\ D31 0103V — / / qeN 01030,,031, 0202
0 JQ 0 JQ
— / qeaATalavaay,nTazafva + Lo
Q

— - [ 4 010 0s0un, 020 0, + L,
Q

where from the first to the second line we relabeled the indices a <+ A in the second
integral, from the second to the third we used that e’™ = —e®*7, and from the
third to the fourth we observed that the first two integrals cancel each other. The
symbol Ly denotes the lower order terms, which are treated below. We now analyze
the term

T13 = —/ qeaATalath,\a;gnTagafva.
Q

T3 = —/ qe**30, 020033020700, — / g€ 91020\ 031; 0007 v, (45)
Q Q

where the last integral may be bounded by
élopvlly
because n(0) = id, so that dsn; = O(€) for small time; we also used ¢ < C by
Lemma 2.1(x). For the first integral in (45), again by the initial condition, we have
that d3n3 = 14 O(€) and thus
—/qeakgalﬁfm@gng@gafva
Q

:—/ qeaw@l@fv,\agafva—/qeo‘)‘3818,52v>\0(€)3287520a
Q Q

where the last integral is also bounded by €||0?v||2. For the remaining integral, we
expand €**3:

7/ qeo"\3018,52v,\828t2va = */((]612331831)282331)1 +qe213818,521)1828,52v2)
Q Q

= —/(q@lafvgfbafvl — qalafvlagafvg),
Q

after using €23 = 1 = —e2!3. We integrate by parts the 0, in the first term and the

01 in the second term to find
- /Q qea’\g‘@l@fv,\ag@fva = /Q(qaﬁla,?wafvl — qafulalaza,?w)
+ /9(81831128311182(1 - 8,521)1028?1)181@
=0+ /Q(alafvgafvlazq — 83@1828,521)181@,
where the last integral obeys

/(315302831113261 — 07010,07v1019) < C||07v]11[107v 1|0Vl oo (0)
Q
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< &ovll} + Cllozol3IValf e oy < lFoll} + CloPolRIRIL | RIl5™
< 10202 + | RIZ + o + At .
The symbol Ly in (44), denotes the sum of

/ q€* 910202031, 0207 V4 |1=0 < P
Q

t t
/ / ewat(qala,?magnf)azafva < / 2.
0 Q 0

For the sum of T7 and T3, we conclude

and

t
Ty +Ts < 020l + | R + P20 + / 2.
0

The terms Ty + T and T, + T5 are handled in the same way, with one extra step.
In the last step above, we integrated d; and 0, by parts. For T + Ty we integrate
by parts the derivatives do and 0s; this last one produces the boundary term

/ qa?vgaga?’l)g.
I'y

(Note that the same integral over Ty vanishes by (6f).) To bound this term, we
recall (14), which allows us to relate [I09?v and 99%vs and write

/ q@fvgﬁgafvg
I'y

S g||Hgat20||(2),r1 + ||Q‘|%5,1‘1||3t2”||8,1“1
+ 11g07v29" OkmsOimallo 5,0, 10207 0™ | —0.5,1,
< émadzv|g r, + llalifs.r, 1070115 r,

/ q02 vy (TI3.02020™ + g™ Okn30ymr02020™)
'y

(46)

+llallsr g™ s 19n]l .0, 10ns]ls.r 107016 5 0, -

Using that Onz = 0 at t = 0, we may write Onz = f(f Ovs to estimate
t

/ q@fvgagafvg < €||H58§v||371~1 +eN + z@/ P,
Iy 0

and the proof is concluded. O

Now, we complete the treatment of J5 by estimating the rest of the terms ap-
pearing in (41), i.e., by bounding the expression

. —T:/RO 98 (aP L) — 0893 (L)) 30,0
? Q()<t( R) t(R))t 7
a?
- / R(0)5F () 520,54
Q R
which we may rewrite as

Jo—T = / R(0) (9} (a*?q) — a*P0}q — 9}a*"q) 9} Oavp
Q

— / R(0) (8} (a®’R™1) — 92a“’ R™1) 020, v54. (47)
Q
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After time integration, the first integral in (47) equals

t
3/ / R(0) (8t2a”"88t(j+8ta”‘ﬂ82q) D20avs
o Ja
= 3/ R(0) (afaaﬁatq + 8taa582q) 2005l
Q
t
— 3/ R(0)0; (8t2aaﬁ8tq’ + 6taa582q) 020, vg.
Q

The second term is bounded by fg &, while the pointwise term at t = 0 by &. It
is easy to check that the pointwise term at ¢ is bounded by
1/2 1/2
107l (19rvll " 9elly + [[v]13) 2Rl
/2, 1/2 1/2 1/2
+0Fvlllol vl (10:RIE + 197 BRIl 107 RIV®) (45

< &l0%0]2 + & O2R|2 + 2o + / 2.
0

The second integral in (47) is treated the same way, resulting in the bound as in
(48) but with an additional term

€O R[5

3.1.4. Estimate of the boundary integral. We now estimate the boundary integral
on the left-hand side of (36) or, rather, its time integral, which in view of (6e) and
(16) can be written as

t
/ Gf(Jaan)ag’vgN =—ol, (49)
o Jry
where
t
I = / A I (VIAM™) O3 v (50)
0 1

We shall repeatedly use the identity
VIAgn© = fg”l_[aamn (51)
The identity (51) follows from (24) and (25) since
V997 Agn®™ = /99" 0n™ — /99" 9" 0, 07 n* Okn™
= V99" 5t (87 — 9" Ok Oim,)

and the term inside the parentheses equals I} by (14). Using (51) and applying
the Leibniz rule, we may split

t t
I :/ A 85’(\/§Agn°‘)8fva :/ A 8?(\/§g”1'[ﬁ83jn“)8fva
0 1 0 1
t t
:/ ﬁg”l’[ﬁ@%@fv“@fva +3/ @(\/Egijﬂz)afj@tv“@fva
0 F1 0 Fl

t t
+3/ 8?(@9”1'[?7)8%1}”8?%—1—/ 83(\fg”1'[a)8mn“85’va
o Jr, 0

I
= I11 + 312 + 3113 + I14.
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Estimate of I11. In order to bound I1;, we integrate by parts in 9; and then in ¢ to
obtain

t t
Iy = — / Va9 8,020 0,08 v, — / 0i(v/99"11;})9;0; v+ 0} v
0 JI'y 0 JI

1 . 1 [t -
—3 g \/gg”r[gajafv“aiafva + 5/ /1‘ 6t(\/§g”ﬂg)6j8t2v“6i@fva
1 0 1

t
. . 1 .
7/0 g 81-(\/§g”H;f)6j3t2v“8fva + 3 g ﬁg”l’[ﬁ@@fv”@ﬁfvab
1 1
= I111 + Tiie + T11g + 1.
The first term on the right produces a coercive term, as we may write
1 17 a
Iy = 2 ) ﬁgjﬂﬁajafv“ﬂﬁaiafva
1
1 y 1 g iy
=3 g 5”1’[,6@6?1}“1’[%&@2% — 5/1“ (V99" — 5”)Hﬁajﬁfvﬂﬂgﬁiafva
1 1
= I111 + 1110

Since
V99”7 — 69 l1sr, < I1vV997 =67 |l1sr, < Ctl|0:0n]1.5,r, < Ctllv]ls <é,

the second term is absorbed in the first provided 7' < 1/CM for a sufficiently large
C. Thus

1
i < —ZHHaatQUHO,Fu
so that (recall (49))
O' —_—
—0’]111 Z Z||H68t2v||07p1.

The term I115 is rewritten as

1 [t . I i
Io = 5/0 /1“ 9 (v/99" )1130,07v" 0;0F v + 5/0 V99" O115.0;07 v 0; 0 va

I
1 [t g 1 [t g
_1 / / 01 (/39" ) 1100, 020" 120,020, + / VA9 0 II% ;0204 0,020,
2 Jo Jr, 2Jo Jr,
= I121 + I1122,

where we used IIj; = IIJ1IZ. We have

t
L < / 18, (/G5 | (e 11100202 1.,
0
and since by (27)

10:(v/ag") | (0 = 1Q@MDDenl| L ry) = [|Q@N)V]| Lo () S 1Q@) 1203,

we have

t
Ti1a) < / 2180202 ., (52)
0
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The term I1195 is more delicate. First, by Hz‘ = HZHﬁ, we have

I y
Ii122 = 5/ \/gg”atnzajafwngaiafva
o Jr,

1 rt g
+§/ g @g”ﬂjﬁ@ﬁf@“&tﬂg‘&aﬁva
1

0
t

= / V99" 0115,0;020" 12 0;07 v,
0o Jry

Since
1% = 4%, (53)
where . = non (cf. (13) and (21)), we have
0L, = Oy ™y, + N0, (54)

Therefore, I1120 may be rewritten as

t
Liige = / V99" 7T Oy, 0;0FvM TS 0,07 v,
0o Jmy

t
+ / \/ﬁgijatﬁ”ﬁﬂajafvuﬂﬁaiafva
0 JT,
= I11221 + I11222-
For the second term, we use
7, 0;070" = 2, 117,0;07v"

and thus I1299 is controlled by the right side of (52). For Ii1201, we use (recall

(19)),
Oy = —gklavaﬁTamN (55)

which gives
t
Ti190] = — / V99" 1 g o, 01, 0,020 TIZ 0,070, (56)
0 Iy

From the equation (6a) for the velocity, we have dyv® = —(J/po)a’*0,q, and by
the definition of a,

J
atvualnﬂ = —%al% (57)
from where, by applying 0;0; to both sides,
J J J
2 2 2
0;0;v"0m,, = 7%8j18tq — <8jat <p081q) — poé)ﬂ@tq)
— (9;0,(0¢v"Oymy) — 0;07v"9m,,)

which we replace in (56). The commutators are easily controlled, so we only need
to consider the main term

t
L o ra J
I1221 =/ V99777 gF o nrgajzlatqngaiagva (59)
o Jr,

(58)

where we henceforth adopt:

Notation 8. We use = to denote equality modulo lower order terms that can be

controlled. Thus, Lin (59) indicates the leading term of I11221.
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Now, we integrate by parts in z;, leading to

¢
L o . J

Ti1201 = */ \/ggljnggklavanr;alatqﬂgafjafva
0o Jr, 0

L o J
- \/Eg”nagklavanTp—@latqﬂgafjatva B
I 0

t
o g

+/ \/§g”nagkl3k07nr;alafqﬂgafjatva = I12211 + 112212
o Jry 0

At this point, we use the identity

y 1 J
g =L Loy
By o \/g H
which follows from (6¢), (16), and (51), which after applying 92 gives
g0 070" = —07 (U\@a“aNHQ) — (5?(9 ML) — g”Hif’fafjn“)

After replacing the first term in Iy12011 and Ij19912, the resulting terms may be
controlled using H'/?(T'y)-H~/2(T';) duality. We illustrate this on the term where
both time derivatives hit g, i.e., —(1/0)(J/\/g)a"*N,07q. After replacing this in
1112212, we get the term of the form

t
/ B9,0749; 4.
0 JTy
which is estimated by

t
/0 100024 1117200 | B 02l 120

t t t
< / 1024 120y |1 Bll 124502 120 < / P|02q] < / @

where § > 0 is a small parameter.
Before continuing, it is worthwhile to formalize the (55), (57), and (58) into the
identity

Oy, 05020 = gklakvfmia;atq + gMopu i, (ajat (Jalq) - Jaflatq>
Po 2] Po
+ gM kv, (9504 (90" Oymy) — 9;070"0my) - (60)
Also, similarly to (55), we have (recall (20))
aiﬁ,u = 7gklaik77‘rﬁral77ua

whence, as for (60), we have

i, 0502 0" = g’“afknfmiaflatq + gM o2, (ajat <Jﬁlq) — Jaflatq>
Po Po 2]
+ gM Oy (0;00(0pv" Oumy) — ;030" Oy ) - (61)

Next, we consider

t t
s = — / 01(v/39" TIS 0,020 O v, — / Va9 0TI, 0201 v,
0 I 0 Iy
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¢
e 2, 153
== / 9i(v/99" )17, 0;0; 0" 0; v
o Jr,

¢ t
—/ \/ggijamuajafv%aafva—/ \/ﬁg”ﬁuajafv“amo‘ﬁfva
0 J1y 0

I
= Izt + 1132 + 1133,

where we used Hfj = n*7ny,. The first term I;13; is of high order and can not be
treated directly. It cancels with a term resulting from I14 further below; cf. (68).
Using (61), we have

t
- o J R
T30 —/ ﬁgljgklafkfnr%@%atqnaafva
o Jry

. R J o
= - A ﬁglﬂg’“lafknwgafﬁtqn }va |, (62)
1

t
. o J R
[ [V G ie 00 g 3.
0 Jry Po
The first term is easily controlled since
N2 g = NN N, 0200 = NTTIY0%0,.
For the second term in (62), we use
q= _UAgnaﬁou
which follows from 7% = —oAyn® and consequently (recalling (51) and using
e = 7%,)
q=—0g”n,0}n", (63)

and we obtain
t
L . o J R R
Tige = —0/ V997 g o5 i — 0% (g™ 71,0, O ) 2 O} Ve
0 Jry Po
Integrating by parts in x; and then in x;, we get
t
L i L J . R
Ii130 = 0/ \/ﬁg”gklﬁfkanTgﬁj (gm"nua,inatv“)n“afva
0o Jr,

t
i . J R .
+ 0/ \/Z]Q”gklafkn‘rnf ;aj (gmnnuafnnatvﬂ)naalatzva
0 JI'y 0

t
i ~ J mn » oye
= —a/ \/§g”gklé)iln7n7—8i2j (g nﬂafnnatv“)n afva
0 JIy £o
¢ y J
—0o / V99" 9“32177%7;3]‘ (9" 71,03, 00" ) 2 0;07 v (64)
0 JTy 0

t
. J R .
+ J/ \/gg”g’“lafkmm—aj (gm”nuafnnatv“)na&afva.
0o Jr, Po

The last two integrals cancel by the symmetry property
2
Z (gjigkl _ gikglj) =0 (65)
i,k =1
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(which is true for any symmetric matrix); this identity is proven by using g% = g/!
in the last sum and then relabeling it. Thus we only need to treat the first term in
(64). Integrating by parts in z;, ;, and then in ¢, we get

t
L J .
Ti1322 —0/ \/ggklaiﬂfnr;(gmnnuagmatvu)(g”naa?jatzva)
o Jry 0

I o J R
= *5"/0 | V3G O e 0 g™ D Dr" g Dy 0100 )
1

[t

1 . J N . t
_50/1“ \/ggklailn‘rrnﬂ'%gmnnuaznnatv#g”naa?jatvoz |0
1

I J y
+ fa/ / Oy <\/§gkl8,3m7ﬁ7> gm"ﬁﬂainatv”gzjﬁaaéatva.
2 Jo Jr, Po

It is easy to check that both terms can be controlled. For the first term on the far
right, we use that 9%,;n vanishes at ¢ = 0. This completes the treatment of the term
Ill .

Estimates of I and I13. The term I, is split as

t ¢
Iy = / 0 (V99" TI5, 05 000" O va + / V99" 0TI 070" 0 va
0 JI'y 0 JI'y
¢
iJ «@ t 15 @
= g 6t(\/§gj)l_[u8i2jatv“8fva ’o —/O /F 3t(\/§gj)HM8i2jafv“8t2va
¢ ¢
- /0 [ au(vag oo o, - /O [ op(ag ;08,0000

t
+/ \/gg”atngafjatv“afva
o Jr,
= I191 + I122 + I123 + I124 + I125.
All the terms except 123 are estimated as above. For I123, we use (54) and obtain

¢
Ioz = */ 8t(\/§g”)fz“83jatv“amaa§va
0o Jr,

t
- /O : (/99" )0 02,0,0"71% v,

The terms are treated as I11292 and I11291 respectively. This concludes the treatment
of I12.

The term I3 is handled analogously to I15 to I14, so we omit the details.
Estimate of I 4. For I 4, we have

t
I, = / 8?(@9”113)8%77“8?%
0 Jr,

t t

é/ V99" OGO 2 0 va +/ ;7 (V99" )L}, 0711 05 va
0 Iy 0 I

L

t t
L / TGO RO 7O v + / N L
0 I 0 I

¢
+ / O} (Vgg G 075m" 0fva = Iar + Tiaz + Tias,
0o Jr,



528 MARCELO M. DISCONZI AND IGOR KUKAVICA

where we used (53) in the last step. The terms I142 and I143 are treated with similar
methods (see below); here we focus on the high order term I14;. Since, by (55), we
have

8;9’1%” = —g’“lakafvfmam — (8?(9“%1)77178;1]“) — gklﬁkﬁfvTﬁTﬁmu)

we get
T 2 — / t V99" gM0,02v™ 1, O, 0L O} . (66)
At this point we need theoidel;lltity
0i(v/99™) = —/99" ¢" 0" O, (67)

which we prove next. First, by (27), we have

©j 1 ©j n im _jn
3(\/§gj)—\/§<29jg -9y’ )&-gmn

1 17 n m  Jn n

=vg (5979 —9™g i (O Onnp)
1 17 n m  Jjn 2 . u

=9 2979 = 9™y " Oy,
1 .. . .

+ \/‘6 <291] gmn _ gzmg]’rL) amnltalnnu

In the second term on the far right side, we relabel m and n and then factor out
02, 0nmn,. We get

1
17 1 J mn im _jn
0i(v/99") = 9(29 gt =g’ )@mn Oy

+v9 ( ggmn g""gj’”> O 02y
=g (g7g™ — g™ g™ — g g"™) 02 " Oy
= =99 9" 0} " Ontly + NGO O (97 g — g g™,

Since 92, n* (g g™ — g""g?™) = 0 due to anti-symmetry in i and m in the term in
parenthesis, the identity (67) follows. Using (67) in (66), we get

t
a2 [ [ atvagtasiiicote. (68)
0 1

As pointed out earlier, this term cancels with 1131 above.
As said, the terms Ii4o and Ij43 are treated with similar ideas as above. We
illustrate this by estimating I143. Integrating by parts in time

t
Iz = T4z + i 33(\[9”)Haazg77“3t2va_/o - 3; (V99" I 07" 0 va

t
- [ [ otvasamgez ot
0o Jry
= Taz,0 + Thag1 + 1432 + T1433,
where I143, is controlled by 2. Let us handle I143;. Using (27) to write

9(v997) = g (97 g™ — 29" g"%) O O,
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we have

ijy L ij i

0} (V/99”) = 0 (Valg7 g™ — 297" ")) Okv™ B
+\/§(g239kl jl 1k)ak82 Aaln)\
We split I1431 accordingly,
L
I1431 = T14311 + 114312,

and note I14311 that can be directly estimated producing

t
Il4311§€||8t2”||%+<@/ 2.
0

For I 4310, we time differentiate (57) and integrate by parts with respect to z* to
obtain

¢
Tz < €(]|0eql|3 + ||H‘95152UH3,F1) + 9/ 2.
0

This produces an estimate for I1437 and I1433 is handled along the same lines.
Let us now investigate I1432. Taking one further time derivative of (69) and using
the resulting expression into I1432, we see that the top term is

T1432 top = // V(g7 g = 2¢7' ") 0r 0P OaTIS 02" OF v

With the help of (57), we have

Taso op = / / —Vg(g" g* — 297 ") 010,07 g1, 07" O} var-
r, 9o
Writing
(g7 g™ — 29" ’k)akazatqawn
= (97g" — ¢ g*)h0107 407" — 7' g Oh 0107 407",

we observe that the first term cancels by (65). Writing now II§; = 7“7, and invoking
(63), we see that the resulting integral is estimated as the integral I1132 (see what
follows (65)).

3.1.5. Finalizing the three time derivatives estimate. Combining the energy identity
(36) with the estimates for J;, i = 1,...,5 from Sections 3.1.2 and 3.1.3, and
with the boundary estimates of Section 3.1.4 produces (35). In doing so, we use
assumption (12) to bound the integral [,(R(0)/R)q'(R)(d}R)? from below.

3.2. Two time derivatives. In this section we derive the estimate
t
13020]2 + [02R2 + |T0200|2 . < + Py + 9/ @ (70)
0

where & inside the integral now also depends on ||9||gs.s+s. The energy equality
for two time derivatives of (v, R) reads

R(0
2ai,692 —l 2 i 2
Zdt/R 0)0;0"v (r“)(r“)zﬁ-l-th/ 7 (R)0;0'RO; O; R

+ [ 020 (Ja“Pq)d}divp N,
I
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R(0 i a o i i 4
—/S)I(%)(afa (Ra®$8,v5) — Ra®P920 aauﬁ)afa (E>

+/R(0) 030" (a7 %) = a*020" (L) ) O 0i0avs
2 / R(0 7//§%R)8381R8t8 RO,R — / R(0 WéR)aSaZRa ROZR  (71)
— / R(0) q//;(zR) 20" RO; R(O:R)?

/R ( >a2alRa2aR /aR 0)92v° 920;v5.

In order to derive (71), we multiply (6a) (with « replaced by ) by J, then differ-
entiate in ¢ twice, differentiate in in z; once, and contract with 9;07vs obtaining

/ 020 (JROWP) D2 0yvp + /Q 020" (Ja®P00q)02divs = 0
from where, using (11),
/ R(0)020°(0v”)020;v5 + /Q D20 (Ja®P0nq) 02005 = — / DiR(0)03vP 92 0v5.
Integrating by parts in z,,, we get
%% QR(O)Bfaiv’Bafaivg + . 20" (Ja®P q)020,;v5 N,
= /Q 070" (Ja*’ q)07 9;0avp, — / 9;R(0)0;}0,v" 0} 0v5

due to the boundary integral vanishing on I'g. For the term on the right side, we
have

/ 8207 (JaP q)02 0 dvs = / R(O)afai( of q)a2a Davs
Q Q

/ R(0)a® 528" (2) 920,00v5

Q

+/Q )(8281< aﬂl‘é) — 4P 2y (%))afaiaavg

/Q = 070" (Ra*00,05)0} 0 (%)

- / il )(636i(Raaﬁaav[g) ~ Ra0?0'0,05) 330; (L)

+ [ R(0) (afai (aaﬁ %) — 4P 2y (%)) 820,005,

2

from where, using (6b)

/ D' (Ja*Pq)9}0,01vp
Q

= —/QRg))afaiRafai ()



COMPRESSIBLE FREE-BOUNDARY EULER 531

- /Q @ (020" (Ra®70uv5) — Ra* 00/ 0405) 930; (L)
" /Q R(0) (370" (a7 ) — a*P}0" (55 ) ) 02 0i0vs
=11 +1Iy+ 1.

The terms Zo and Z3 give the first and second terms on the right side of (71)
respectively. In order to treat

7= / BO) 5301 Rozorq,
o R

we write

020;(q(R)) = ¢ (R)920;R + 27" (R),0; RO, R + ¢'(R)0; RO} R + ¢" (R) (0, R)*0; R

and thus
P~ —~I/
I, = — / R(O)qg%R)afaiRafaiR—2 / rRO) 25 9391 Rojo: ROLR
Q Q
=/
~ [ r0)ZB) 5390 o, Ro2R

Q

/1!
- / R(0)Z éR)afaiRaiR(atR)Q
Q

=T +Ti2 + T3 + 4.

The terms 719, Z13, and Z14 give the third, fourth, and fifth terms on the right side
of (71) respectively. For 711, we write
1d 7(R)

Ty = ———
H 2 dt QR(O) R

R@@<%?

@y3¢@3+§/

) D20'ROZO;R. (72)
Q

The first term on the right side leads to the second term on the left side of (71),
while the second term on the right side of (72) gives the sixth term in (71).

3.2.1. Treatment of the terms involving two time derivatives. The estimates for the
right side of (71) is the same as the estimates of the corresponding terms in (36)

and we thus do not provide full details. However, we still show how to treat the
most involved term

t
S:/ /8381/1“&8,528@8“%@
0 Ja

As in (43), we have
t t
S:/ /qeahﬁgo%aiwagmal8?@»1}@+/ /qe"”@zn,\ag(‘)taimal6?61»1/&
0 Q 0 Q
t t
— / / g€ 010,00\ D31 02020504 — / / q€“N D1\ D30,0'0,: 0202 v,
0 JQ 0 JQ

t t
[ aevonodivdum oo+ [ [ g oumdudie 000w + Lo
0 Q 0 Q
S 4+ So+ Lo,
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where L3 equals

¢ t
/ / q00vOVOI v = / qOOvAVAI v}y — / / 0;q00vAVOIsv
0 Ja Q 0 Jo

t
— / / 000, vOvIIOv
o Ja ) )
< lallz=[[VollLe[VOv| L2 [V Ovt] 2 + o + 2.

We group the leading terms as before; the analog for (44) is
t t

514 S5 = / / q€“N 00° 040\ D31 0102 D504 + / / g€ 010200\ D31 020,070
0o Ja 0 Jo

—/ﬁ&”m@yw%m@@a%+L4
Q

t t
:/ /qe“’\Tagat8im837776'18t26iva+/ /qe’\m81638iva837]7828t8¢v>\
0o JQ 0 JQ

7/QGa/\TalataiU)\agnTagataan+L4
Q

t t
= / / q€“N 050,00\ D31 0102050 — / / G 01020 0,,0317 020,050,
0 Q 0 Q
- [ 4000 vsdun, a0 910+ Ly
Q

=0-— / QGQAT818t6i1},\8377¢828t8i1}a + / q€a>\‘r81(9t8i1}>\63177628t8ﬂ}a|t:0 + Ly.
Q Q

The symbol L4 denotes the lower order terms, which are bounded below. The first
term on the far right side is treated as

sma:—/q&”m@yw&m@@y%
Q

= 7/ qea)‘3818t5'iv,\83173326‘tva - / qea)‘iﬁl3t3jv,\53m5‘28t8jva.
Q Q
The last integral is bounded by
él|0:v||F[lqll o (o) < CéllOrdv]|F

using 7(0) = id and thus 0sn; = O(€) for small time. Since dsns = 1 + O(€), we
have

—/ qe* 301020\ D3n30207 v, = —/ qe“ 201070\ 0207 v
0 Q

— / qeo‘>‘3818t2v>\0(€)826t2va.
Q

The last integral is bounded by €[|8;0v]|3||¢| 1= (). For the remaining integral, we
write

—/ QGa/\Salatai'U,\aQatai'Ua = —/(QEH?)alatai’Uzagatai’Ul
Q Q
+ q€213816t8i’01828t67;’02)

= - / (q010;0"v2050,0;v1 — q010;0"v1020;0;v3).
0
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We integrate by parts in both terms obtaining

—/ qea’\‘o’@l@taimag@t@iva = /(q82816t8iv28t8ivl —qataiv181(92ataﬂ)2)
Q Q
/ (818t8i028t8w182q — 8t8iv1826t8iv181q)
Q

—0+ / (010100200010 — D101 0,0,0,0101),
Q
where the last integral obeys
/(8latai")28taiv162q — 8,0'v1020,0;v101q) < C||0:0"0|1[|0:0iv|o]|0ql = (02)
Q

< €[|3:00]F + C10:005]|194|1F ~ (52)-

The symbol L4 above consists of the sum of the terms
/ qe® " 010,0'v) 0517 020, 0;va =0 < Po
Q

and

t t
/ / ea”at(qalataiwagm)agataiva < / 2.
0 Q 0

We thus conclude
t
1+ 5a < 200 Rl o) + CIOT IO~ @y + Po + | 2.
0

As above, when treating Sy + Sg and Sy + S5 we obtain an extra boundary term
of the type

/ qataiwazataivg,
I

which is bounded analogously to (46). In summary, we obtain
S < &nd*dpo|3 r, + €lld:0v|[i gl L= (o) + Cll0:0|§10a]1 7 ) + €ll0:0|T r,
+ Cllgll = [Vl = [V lol VOF vllo + €lld: v lall7 (r,)

t
+ C10D gl r,) + Po + / 2.

3.3. Estimates at t = 0. In the above estimates we had several expressions in-
volving time derivatives of v and R evaluated at zero. Here, we show that these
quantities may all be estimated in terms of Py. More precisely, we show that
18:0(0) |2 + [10: R(0) |2 + 197 v(0) |4 (73)
+ 107 R0) 1 + 1070(0) o + 107 R(0)[lo < %,
and
18:0(0) |2,6, + [1070(0)[l,r, < . (74)
In light of (11), the equation (6a) may be written as
000* + Ja**¢'(R)0, R = 0. (75)

From (75) and (6b) we get ||0,v(0)]|2 < Fp and |0, R(0)||2 < Pp. Differentiating
(75) and (6b) in time and evaluating at zero gives ||02v(0)||; < Py and ||02R(0)|; <
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Py. Taking another time derivative of (75) and (6b) and evaluating at zero produces
(73).

To obtain (74), we use (6a) to estimate terms in v?(0) and (6e) to estimate terms
in v3(0). Evaluating (6a) at ¢t = 0 with o = i and recalling (9) gives

1

§7'0; R(0), (76)

which implies ||0;v%(0)||2,r, < Py since R(0) € H?(I';). Note that the conclusion
would not be true if we had a d3R term, that is why o = 3 has to be treated
differently.

Remark 3. The estimate (76) shows why we require higher regularity for the
initial data on the boundary. We want d,v € H?(I';) in order to apply the div-curl
estimates, as explained in Section 1.1. But this would not hold even at time zero
without the regularity assumption on the boundary.

Differentiating (6e) with o = 3 in time twice gives

1 a3 N, 1 a*3N,
2 A 3y _ = e 2p Il !
9 (Agn®) o [aT N q(R)O; R O_at ( a7 N| ) ¢ (R)OR -
1 a”?’NH ” 9 1,9 a"3NM
T o ]a™N| q¢"(R)(0:R)" — ;@ Ta™N| q(R).
But from (8),
R (Agn®)|,_, =07 0700°(0) + 19" (0)07,0°(0) — 67 9*v°(0)87; vk (0) 78

= 5”812]8,51)‘3(0) + Fo,

where in light of our assumptions ||Follir, < Zo. From (6b) we obtain |0
R(0)|l1.5,r, < P9 and [|07R(0)[lo.5.0, < Po.

Using (6¢) we find

3
a3 N, 1
O <|G,TNT> = — 7|CLTN|3 |aTN|2a3’Ya#U»Ya“3 + aUSNa Z a3ﬂa378#’l)»ya“ﬂ
A=1

We now differentiate this expression in time again, use (6¢) once more, and evaluate
it at zero. Combined with the previous estimates and (77) and (78), we conclude
that, on I'y,

§9020%(0) = Fy,

where Fy satisfies the estimate ||Fi]lo5r, < Zo. By the elliptic theory, we then
obtain |[F |25, < £, which combined with the previous estimate for d;v*(0)
gives ||0¢v(0)|2.r, < Pp.

The estimate for 9?v is obtained in a similar way, upon differentiating one more
time in time and proceeding as above. We omit the details, but explain where the
assumption on (A divw)|T; is used. Proceeding as just explained, we find (writing
~ to mean “up to lower order”) §9707v*(0) ~ 97 R(0). But from (6a) and (6h)
we obtain 87 R(0) ~ A divv(0), which requires (A divv(0))[Ty in H~*(T) in order
to produce 92v3(0) in H*(T';) from the elliptic estimates.
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4. Estimates for the curl. In this section, we obtain estimates for the curl of v
and its time derivatives. First, we write (30) as
e 50, = PO (8, — D) + 5 (79)
from which we obtain
10500y = 1 0500" (8, — Oy, (80)
where we used €*#79v"9, v, = 0 and
195020, = PV 05020 (8., — Dymu) — €210 v, (81)

Since

¢
Oy = Oy = _/0 v,

the term 4., —07, can be made arbitrarily small for small time. Hence, the relevant
norm of the terms proportional to d,, — 047, on the right-hand side of (79), (80),
and (81) can be absorbed into the left-hand side. We then have to estimate the
remaining terms on the right-hand side.

From (79) we immediately get

t
I curlv||§ < Py —|—/ P, (82)
0

where we used Jensen’s inequality.
Note that (80) gives

t
| curl B0 < E|RIZ + o + 2 / 7, (83)
0
while (81) implies

t
leurldFvl[§ < e(llvll3 + IRI3) + o + 9"/0 2. (84)

5. Conclusion. The main goal of this section is to provide the necessary ingredi-
ents for the div-curl estimate and to show the concluding Gronwall argument.

5.1. Comparison between I19fv and dfv?. In order to use div-curl estimates,
we first show that our estimates for I10f'v are equivalent, modulo lower order terms,
to estimates for 9¢v3. Recalling (14), for any vector field X we have

(TIOX)? = M30X* = 9X> — gMopnomoXx ™. (85)
Using X = 9%v and estimating (85) in the H~%°(T';) norm yields
10070* 120,50, S IITOOF0 (13 r, + 19" Okn® dnalI3 5.1, 10707 1B 5.1, -
We add [|070%]|2 5 1, to both sides, use the fact that [|07v? |2 5 p, + 100702 5 1,
is equivalent to [|07v*|[§ 5 p,, invoke dn* = fOS Oxv®, which holds since 1*(0) = 1,
to conclude

t
1020312 5 1 < E1020]|2 + |TIDO20|2 ., + P + 2 / 2, (86)
0

where the term [|07v%||%, 5 1, that appeared on the right-hand side was estimated
using interpolation inequality, Young’s inequality, and the fundamental theorem of
calculus.
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Similarly, using (85) with X = 88v, estimating in the H~°(T';) norm and
adding [|8;0*[|% ¢ 5 + 00:0°||% 5 r, to both sides gives

t
[0 or, S Ellorol3 + [P0y, + Po+ 2 [ 2. (87)
0

We also need an estimate for ||v?||2.5r,. This follows directly from the boundary
condition, as we now show. Differentiating (6e) in time and setting oo = 3 yields

V997 0%0* — /99 T 010° = — 9,(\/99")05m° — 0, (\/99"T3;)Okn®
1 . 1
— ;Bta“‘sNuq — ;a’“’Nﬂﬁtq on I'y
where we also used (24).
In light of Proposition 1, we have
lgisll2.50, < C
and
51150, < C.

Thus, by the elliptic estimates for operators with coefficients bounded in Sobolev
norms (see [29, 44]) we have

[0%]l2.5,0, < CN0:(v/997)07m° [l0.5,0, + CllO: (/997 L)k [lo.5.1,
+ Cl10:a"* Nyugllo.s.r, + Clla" Nudrgllos,r,,

where C' depends on the bounds for ||gi;l2.5,r, and ||T¥[|1.5r, stated above. The
right-hand side is now estimated in a routine fashion, and we conclude

t
nﬂ&ﬂsmw%wm@+%+@lﬂ. (s8)

5.2. Gronwall-type argument via barriers. We shall show that our estimates
imply

N () < CoP(N(0)) + PN (1)) /0 PA(5)) ds (89)

where P is now a fixed polynomial and Cj is a fixed positive constant. The in-
equality (89) implies, via a routine continuity argument that we now sketch for
the reader’s convenience, the boundedness of .#(t) on a positive interval of time
(cf. [67, Section 8] where a similar inequality was treated). Assume, without loss of
generality, that P is strictly positive and non-decreasing, and denote M = .4(0).
Let

Ty = inf{t >0: (1) > 20,P(M) = Ml} € (0, 00].
If Tp = oo, then A (t) < M; for all t > 0. Otherwise, Ty € (0, 00), and thus

To
2C0P(M) = N (Tp) < CoP(M) + P(M) P(My)ds = CoP(M) + ToP(M;)?,
0
from where Ty > CoP(M)/P(M;)?. We thus conclude that
CoP(M)
<M —
'/V(t) = 1, te |:07 P(M1)2 :| ;

and the local boundedness is established.
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5.3. Closing the estimates. It remains to establish (89). Recall the standard
div-curl estimate

1X1s < I div X|s—1 4[| curl X[|s—2 4+ [|X - Nla,s—0.5 + [| X[lo- (90)

From Sections 3, 4, and 5.1, we have estimates for the curl and normal component

of v and their time derivatives, as well as estimates for ||0}v||o and |97 R]|o. In order

to apply (90), we need to estimate the divergence of v and its time derivatives.
Taking two time derivatives of the density equation (6b) leads to

1 1
00200 = (" — a"*)9,0%v, — — (af(Rawana) - Rawaﬂafua) — —OR.
R R
Taking the L? norm of both sides,
1% vallo
S 160 = @)0,07vallo + |07 (Ra"8,v4) ~ R 9, 07va

-+ 1108 Rlo,

where we used Lemma 2.1(x). By expanding the derivatives in the second term and
using Lemma 2.1(ix) we get
| div 07 vllo < €l|0fvll1 + Cl0F (Ra"*)uvallo + Cl0:(Ra"*)eduvallo + C1 0} Rllo.
Squaring and using (35) gives
t

|divo2v|2 < et + Po+ 2 | 2. (91)

0
Now, in (90), taking X = 0%v, s = 1, and squaring, recalling that v- N = 0 on
[g and v+ N = v3 on I'y, invoking (84), (91), (86), and (35), produces

t
Hafv||‘f‘5eﬂ+%+@/0 2 (92)

where the lower order term [|02v||o was estimated in a standard fashion.
We now move to estimate 92 R. First, write (6a) as

ROw® + ¢ (R)a"*9,R = 0. (93)
Taking 07 of (93) gives
R
GUOPR £ (31 — al)8,02R — ———Ov®,
t ( ) n-t ql(R) t

where we recall Notation 8. Taking o = 1,2,3 and invoking (35) produces
t
|0?R||2 < eV + Py + 3”/ Z, (94)
0

where we also used (12).
Next we estimate || div d;v|;. From (6b) we have

1 1
e L L (&(Ra“"@HUQ) - Ra”aauatva) - SOPR,
from where

10¢ div |y < (|6 = a*[|2]|0,0rva 1

)

1
+ ” Ot (Ra*“0,v4) — Ra"* 9,040,
R( 12 I ) L

1
+ HRafR

1
leading to
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t
I divaiol} < elawl + CIOERIE + 20+ | 2. (95)
0

Setting X = Jyv, s = 2 and squaring (90), invoking (83), (95), (87), (70), and (94)
produces

18013 S €N+ Po + 9/; 2. (96)
From (93) we may now estimate 9; R in terms of 92v, so (96) gives
10, R||2 §€W+@0+9/0t@. (97)
Finally, to bound || divv||2, note that
0%q = (M — al*)0yva — %@R
whence

)

. 0 e 1
Jaivola < 15 ~ @ al0,0all + | o0
2

so that
t
| divells < &lolls + CllOR]2 + Po + / 2. (98)
0

In the same spirit as above, choosing now X = v, s = 2 and squaring (90), invoking
(82), (98), (88), and (97) leads to

t
||u||§§g/+,%+,@/0 P, (99)

Similarly to the foregoing, (93) gives an estimate for R in light of the estimate (96)
for dyv, so

t
IR||3 S EN + Py + 9/ 2. (100)
0
Estimates (92), (96), (99), (94), (97), (100), (35), and (70) now imply
t
JV§€JV+<@0+W/ L. (101)
0

Note that & inside the integral also depends on ||9||gs.s+s. Using successive ap-
plications of Young’s inequality, we can trade the polynomial expressions & by
polynomials in .4’; choosing € small enough produces (89). Now, combining (29),
(31), and (34) with the div-curl inequality (90) provides a Gronwall inequality for
In]l g3.5+5. Coupling it with (101) then concludes the proof of Theorem 1.1.
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