
EVOLUTION EQUATIONS AND doi:10.3934/eect.2019025
CONTROL THEORY
Volume 8, Number 3, September 2019 pp. 503–542

A PRIORI ESTIMATES FOR THE 3D COMPRESSIBLE

FREE-BOUNDARY EULER EQUATIONS WITH SURFACE

TENSION IN THE CASE OF A LIQUID

Marcelo M. Disconzi∗

Department of Mathematics, Vanderbilt University

Nashville, TN 37240, USA

Igor Kukavica

Department of Mathematics, University of Southern California
Los Angeles, CA 91107, USA

(Communicated by Vlad Vicol )

Abstract. We derive a priori estimates for the compressible free-boundary
Euler equations with surface tension in three spatial dimensions in the case of

a liquid. These are estimates for local existence in Lagrangian coordinates when

the initial velocity and initial density belong to H3, with an extra regularity
condition on the moving boundary, thus lowering the regularity of the initial

data. Our methods are direct and involve two key elements: the boundary

regularity provided by the mean curvature and a new compressible Cauchy
invariance.

1. Introduction. In this paper we derive a priori estimates for the compressible
free-boundary Euler equations with surface tension in three space dimensions (The-
orem 1.1 below) in the case of a liquid. Our a priori estimates provide bounds for the
Lagrangian velocity and Lagrangian density in H3, an improvement in regularity
as compared to [27].

The compressible free-boundary Euler equations in a domain of R3 are given by

∂u

∂t
+∇uu+

1

%
∇p= 0 in D , (1a)

∂%

∂t
+∇u%+ %div(u) = 0 in D , (1b)

p= p(%) in D , (1c)

p= σH on ∂D , (1d)

(∂t + uµ∂xµ)|∂D ∈T∂D , (1e)
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u(0, ·) = u0, %(0, ·) = %0, Ω(0) = Ω0, (1f)

where D =
⋃

0≤t<T

{t} × Ω(t). (1g)

Above, the quantities u = u(t, x), p = p(t, x), % = %(t, x) are the velocity, pressure,
and density of the fluid; Ω(t) ⊂ R3 is the moving (i.e., changing over time) domain,
which may be written as Ω(t) = η(t)(Ω0), where η is the flow of u; σ is a non-
negative constant known as the coefficient of surface tension. Equation (1c) is the
equation of state, indicating that the pressure is a given function of the density.
In (1d), H is the mean curvature of the moving (time-dependent) boundary ∂Ω(t);
and T∂D is the tangent bundle of ∂D . The equation (1e) means that the boundary
∂Ω(t) moves at a speed equal to the normal component of u. The quantity u0 is
the velocity at time zero, %0 is the density at time zero, and Ω0 is the domain at
the initial time. The symbol ∇u is the derivative in the direction of u, often written
as u · ∇. The unknowns in (1) are u, %, and Ω(t). Note that H, T∂D , and p are
functions of the unknowns and, therefore, are not known a priori, and have to be
determined alongside a solution to the problem.

We focus on the case when σ > 0 and consider the model case when

Ω0 ≡ Ω = T2 × (0, 1).

Denoting coordinates on Ω by (x1, x2, x3), set

Γ1 = T2 × {x3 = 1}
and

Γ0 = T2 × {x3 = 0},

so that ∂Ω = Γ0 ∪ Γ1. The general domain can then be handled as in [68, Re-
mark 4.2]. We assume that the lower boundary does not move, and thus η(t)(Γ0) =
Γ0, where η is the flow of the vector field u. We introduce the Lagrangian velocity,
pressure, and density, respectively, by v(t, x) = u(t, η(t, x)), q(t, x) = p(t, η(t, x)),
and R(t, x) = %(t, η(t, x)), or simply v = u ◦ η, q = p ◦ η, and R = % ◦ η. Therefore,

∂tη = v. (2)

Denoting by ∇ the derivative with respect to the spatial variables x, introduce the
matrix

a = (∇η)−1,

which is well defined for η near the identity. Equation (1c) gives q = q(R), i.e., the
equation of state written in Lagrangian variables. From a we obtain the cofactor
matrix

A = Ja, (3)

where

J = det(∇η). (4)

As a consequence of these definitions, we have the Piola identity

∂βA
βα = ∂β(Jaβα) = 0. (5)

(The identity (5) can be verified by direct computation using the explicit form of
a given in (22) below, or cf. [46, p. 462].) Above and throughout we adopt the
following agreement.



COMPRESSIBLE FREE-BOUNDARY EULER 505

Notation 1. We denote by ∂α spatial derivatives, i.e., ∂α = ∂/∂xα, for α = 1, 2, 3.
Greek indices (α, β, etc.) range from 1 to 3 and Latin indices (i, j, etc.), range from
1 to 2. Repeated indices are summed over their range. Indices shall be raised and
lowered with the Euclidean metric. We write ∂α = δαβ∂β .

In terms of v, q, R, and a, the system (1) becomes

R∂tv
α + aµα∂µq= 0 in [0, T )× Ω, (6a)

∂tR+Raµα∂µvα = 0 in [0, T )× Ω, (6b)

∂ta
αβ + aαγ∂µvγa

µβ = 0 in [0, T )× Ω, (6c)

q= q(R) in [0, T )× Ω, (6d)

aµαNµq + σ|aTN |∆gη
α = 0 on [0, T )× Γ1, (6e)

vµNµ = 0 on [0, T )× Γ0, (6f)

η(0, ·) = id, R(0, ·) = %0, v(0, ·) = v0, (6g)

where id is the identity diffeomorphism on Ω, N is the unit outer normal to ∂Ω,
aT is the transpose of a, | · | is the Euclidean norm, and ∆g is the Laplacian of the
metric gij induced on ∂Ω(t) by the embedding η. Explicitly,

gij = ∂iη · ∂jη = ∂iη
µ∂jηµ, (7)

where · is the Euclidean inner product, and

∆g(·) =
1
√
g
∂i(
√
ggij∂j(·)), (8)

with g the determinant of the matrix (gij). In (6e), ∆gη
α simply means ∆g acting

on the scalar function ηα, for each α = 1, 2, 3; see Lemma 2.2 below for some
important identities used to obtain (6e).

Since η(0, ·) = id, the initial Lagrangian and Eulerian velocities agree, i.e., v0 =
u0. Clearly, v0 is orthogonal to Γ0 in view of (6f). Note that

a(0, ·) = I, (9)

where I is the identity matrix, in light of (6g). It also follows from the above
definitions that J satisfies

∂tJ − Jaαβ∂αvβ = 0 in [0, T )× Ω (10)

and

RJ = R(0) = %0 in [0, T )× Ω. (11)

Physically, the equation of state has to satisfy q′(R) > 0 (pressure cannot de-
crease with an increase in density). Mathematically, this assumption guarantees the
coercivity of the kinetic term for R in the energy. Here, we shall adopt a slightly
more restrictive equation of state that allows us to simplify the estimates. We as-
sume there exists a constant Aq > 0 such that for all R in a certain interval [a, b],
we have

q′(R) ≥ Aq and

(
q(R)

R

)′
≥ Aq. (12)

By Lemma 2.1(x) below, the first condition follows from the second if we allow Aq to
be decreased if necessary. Importantly, the condition (12) is satisfied for equations
of state of the form q(R) = αR1+γ , where α > 0 and γ > 0 are constants (with
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further assumptions on the constants and the range of R, (12) is also satisfied by
q(R) = αR1+γ + β, where β > 0).

Notation 2. Sobolev spaces are denoted by Hs(Ω) (or simply by Hs when no
confusion can arise), with the corresponding norm denoted by ‖ · ‖s; note that ‖ · ‖0
refers to the L2 norm. We denote by Hs(∂Ω) the Sobolev space of maps defined on
∂Ω, with the corresponding norm ‖ · ‖s,∂ , and similarly the space Hs(Γ1) with the
norm ‖ · ‖s,Γ1

. The Lp norms on Ω and Γ1 are denoted by ‖ · ‖Lp(Ω) and ‖ · ‖Lp(Γ1)

or ‖ · ‖Lp when no confusion can arise. We use � to denote restriction, and ∆ is the
Euclidean Laplacian in Ω.

We now state our main result.

Theorem 1.1. Let Ω be as described above and let σ > 0 in (6). Let v0 be a
smooth vector field on Ω, and %0 a smooth positive function on Ω bounded away
from zero from below. Let q : (0,∞)→ (0,∞) be a smooth function satisfying (12),
in a neighborhood of %0. Then, there exist a T∗ > 0 and a constant C∗, depending
only on

σ, ‖v0‖3, ‖v0‖3,Γ1 , ‖%0‖3, ‖%0‖3,Γ1 , ‖ curl v0‖2.5+δ, and ‖(∆ div v0)�Γ1‖−1,Γ1 ,

where δ ∈ (0, 0.5], such that any smooth solution (v,R) to (6) with initial condition
(v0, %0) and defined on the time interval [0, T∗), satisfies

‖v‖3 + ‖∂tv‖2 + ‖∂2
t v‖1 + ‖∂3

t v‖0 + ‖R‖3 + ‖∂tR‖2 + ‖∂2
tR‖1 + ‖∂3

tR‖0 ≤ C∗.

The dependence of T∗ and C∗ on a higher norm on the boundary Γ1 comes from
the usual problems caused by the moving boundary in free-boundary problems.
The technical difficulties leading to the necessity of including such higher norm are
similar to those in [56] (see Section 3.3 and Remark 3 below). The assumption
on (∆ div v0)�Γ1 is technical. It can be understood as a consequence of the fact
that our techniques generalize methods previously applied to incompressible fluids
in [42], where of course the condition is immediately satisfied as div v0 = 0 then. A
regularity condition on the normal derivatives of the normal component of v0 would
suffice, but the assumption on (∆ div v0)�Γ1 is simpler to state. We remark that
control of curl v in H2.5+ follows from an argument similar to [68] combined with a
simple estimate for the divergence which is omitted here.

Without attempting to be exhaustive, we now briefly review the literature on
problem (6), and it is instructive to first recall some results for the incompressible
free-boundary Euler equations.

The first existence result for incompressible free-boundary inviscid fluids is that
of Nalimov [80], followed by [13, 34, 64, 81, 86, 87, 91, 95, 96, 99, 100]. Despite
their importance, all these works consider simplifying assumptions, mostly irrota-
tionality. It has not been until fairly recently, with the works of Lindblad [75] for
σ = 0, Coutand and Shkoller [29] for σ ≥ 0, and Shatah and Zeng [89, 90], also
for σ ≥ 0, and more recently by the first author and Ebin [40] for σ > 0, that ex-
istence and uniqueness for the incompressible free-boundary Euler equations have
been addressed in full generality. Since the early 2000’s, research on this topic has
blossomed, as is illustrated by the sample list [1, 3, 4, 5, 6, 7, 10, 8, 2, 9, 12, 11, 15,
14, 16, 17, 18, 19, 20, 22, 23, 26, 30, 33, 35, 36, 37, 38, 39, 42, 47, 48, 49, 52, 55, 54,
53, 57, 60, 58, 59, 65, 67, 68, 69, 70, 71, 73, 77, 82, 83, 85, 88, 97, 98].

Although we are concerned here with σ > 0, it is worth mentioning that the
free-boundary Euler equations behave differently for σ = 0 and σ > 0. In view
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of a counter-example to well-posedness by Ebin [45], an extra condition (known as
Taylor sign condition in the incompressible case), has to be imposed when σ = 0.
However, it seems more difficult to obtain local existence in lower regularity spaces
when σ > 0 compared to σ = 0 due to the presence of two space derivatives of η on
the free boundary.

For the compressible free-boundary Euler equations (6), besides the difference
between σ > 0 and σ = 0 referred above, a further distinction that needs to be
made is between a liquid, when %0 ≥ λ > 0, where λ is a constant, and a gas,
when %0 can be zero, the former being the situation treated here. Existence and
uniqueness of solutions for (6) have been proved by Lindblad [74] for the case of
a liquid with σ = 0, by Coutand and Shkoller [32] for a gas with σ = 0 (see also
[94]), and by Coutand, Hole, and Shkoller [27] for a liquid with σ ≥ 0. Earlier and
related works are [21, 24, 25, 28, 31, 62, 63, 72, 79, 92, 93]. Further, and more recent
results, are [50, 61, 76, 78].

In this work we restricted ourselves to derive a priori estimates, hence a solution
is assumed to be given. Therefore, there is no need to state compatibility conditions
for the initial data. But we remind the reader that such conditions are necessary for
construction of solutions. We also note that in our setting, compatibility conditions
will be different on Γ1 and on Γ0 (see, e.g., [27], for the compatibility conditions on
Γ1, and [41] for those on Γ0).

Assumption 1. For the rest of the paper, we work under the assumptions of The-
orem 1.1 and denote by (v, q) a smooth solution to (6). We also assume that Ω, Γ1,
and Γ0 are as described above.

1.1. Strategy and organization of the paper. The paper is organized as fol-
lows. Theorem 1.1 states the main result. Section 2 contains the preliminary
estimates of the coefficients and the Lagrangian map. We also introduce the nota-
tion used in the rest of the paper. Section 3 contains the energy estimates. First,
we start with the energy equality for the third time derivatives (cf. (36) below).
Special care is required for the boundary integral, which is treated with complete
details in Subsection 3.1.4. Two time derivative energy equality is written in (71)
below, with the estimates given in Section 3.2. We emphasize that the obtained
terms are not of lower order as they contain one more space derivative. We also
point out that we can not use the H3 energy equality with no time derivatives, since
there is an interior term which can not be treated by the methods from the rest of
the paper; instead, we need to rely on the div-curl estimates to obtain control of
the H3 norms of the velocity and the density. Section 4 contains estimates for the
curl of the velocity; the main building block is a new Cauchy invariance formula,
generalizing the incompressible version from [56, 68]. The conclusion of the proof,
where all the bounds are suitably combined, is provided in the last section.

Several of the terms that appear in our energy identities, especially in the case of
some boundary integrals, cannot be bounded directly. To control them, we explore
the structure of the equations and make frequent use of several geometric identities.
These lead to a cancellation of top-order terms, allowing us to close the estimates.

2. Auxiliary results. In this section we state some preliminary results that are
employed in the proof of Theorem 1.1 below.

Lemma 2.1. Assume that ‖v‖3, ‖R‖3 ≤ M , where M ≥ 1. Then, there exists
a constant C > 0 such that if T ∈ [0, 1/CM2] and (v, q) is defined on [0, T ], the
following inequalities hold for t ∈ [0, T ]:
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(i) ‖η‖3 ≤ C.

(ii) ‖a‖2 ≤ C.

(iii) ‖∂ta‖Lp ≤ C‖∇v‖Lp , 1 ≤ p ≤ ∞.

(iv) ‖∂α∂ta‖Lp ≤ C‖∇v‖Lp1‖∂αa‖Lp2 + C‖∂α∇v‖Lp , where 1/p = 1/p1 + 1/p2,
and 1 ≤ p, p1, p2 ≤ 6.

(v) ‖∂ta‖s ≤ C‖∇v‖s, 0 ≤ s ≤ 2.

(vi) ‖∂2
t a‖s ≤ C‖∇v‖s‖∇v‖L∞ + C‖∇∂tv‖s, 0 ≤ s ≤ 1.

(vi)′ ‖∂2
t a‖1 ≤ C‖∇v‖25/4 + C‖∇∂tv‖1.

(vii) ‖∂3
t a‖Lp ≤ C‖∇v‖Lp‖∇v‖2L∞+C‖∇∂tv‖Lp‖∇v‖L∞+C‖∇∂2

t v‖Lp , 1 ≤ p <
∞.

(viii) J ≥ 1/2.

(ix) Furthermore, if ε is sufficiently small and T ≤ ε/CM2 then, for t ∈ [0, T ],
we have

‖aαβ − δαβ‖2 ≤ ε

and

‖aαµaβµ − δαβ‖2 ≤ ε.

In particular, the form aαµaβµ satisfies the ellipticity estimate

aαµaβµξαξβ ≥
1

C
|ξ|2.

(x) C−1 ≤ R ≤ C.

Proof. The proofs of (i)–(vii) and (ix) are very similar to [56, Lemma 3.1] and [66,
Lemma 3.1], making the necessary adjustments for ‖v‖3 ≤M (in [56], ‖v‖3.5 ≤M
is used). The statement (x) follows from

‖R(t)−R(0)‖L∞ ≤ C
∥∥∥∥∫ t

0

Raµα∂µvα

∥∥∥∥
L∞
≤ C

∫ t

0

‖R‖3‖v‖3 ≤ CM2T

by (6b). The inequality (viii) is proven analogously, using (10) instead of (6b).

Notation 3. In the rest of the paper, the symbol C denotes a positive sufficiently
large constant. It can vary from expression to expression, but it is always indepen-
dent of (v,R). We also write X . Y to mean X ≤ CY . The a priori estimates
require for T to be sufficiently small so that it satisfies TM ≤ 1/C, where M is
an upper bound on the norm of the solution (cf. Lemma 2.1 below). In several
estimates it suffices to keep track of the number of derivatives so we write ∂` to
denote any derivative of order ` and ∂` to denote any derivative of order ` on the
boundary, i.e., with respect to xi. We use upper-case Latin indices to denote xi or
t, so ∂A means ∂t or ∂i.

Remark 1. (Simple lower order estimates and symbolic notation) In the subsequent
sections, we use the following consequence of Lemma 2.1. Let Q be a rational
function of derivatives of η with respect to xi,

Q = Q(∂1η
1, ∂2η

1, ∂1η
2, ∂2η

2, ∂1η
3, ∂2η

3).
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More precisely, we are given a map Q : D → R, where D is a domain in R6, and
consider the composition of Q with D(η�Γ1), where D means the derivative. Assume
that 0 /∈ D and that (1, 0, 0, 1, 0, 0) ∈ D. Assume that the derivatives of Q belong
to Hs(D′), where 1 < s ≤ 1.5 and D′ is some small neighborhood of (1, 0, 0, 1, 0, 0).
The application we have in mind is when Q is a combination of the terms

√
g and

gij . It is not difficult to check that such terms satisfy the assumptions just stated
on Q. In this regard, note that at time zero g is the Euclidean metric on Γ1, and
that (1, 0, 0, 1, 0, 0) corresponds to D(η(0)�Γ1).

In what follows it suffices to keep track of the generic form of some expressions
so we write Q symbolically as

Q = Q(∂η).

Then

∂AQ(∂η) = Q̃iα(∂η)∂A∂iη
α,

where the terms Q̃iα(∂η) are also rational function of derivatives of η with respect

to xi. Note that Q̃iα(∂η) are simply the partial derivatives of Q evaluated at ∂η.
We write the last equality symbolically as

∂AQ(∂η) = Q̃(∂η)∂A∂η.

For s > 1, we have the estimate

‖∂AQ(∂η)‖s,Γ1
≤ C1‖Q̃(∂η)‖s,Γ1

‖∂A∂η‖s,Γ1
,

where C1 depends only on s and on the domain Γ1. The term ‖Q̃(∂η)‖s,Γ1 can

be estimated in terms of the Sobolev norm of the map Q̃, i.e., ‖Q̃‖Hs(D), and the

Sobolev norm of ∂η, i.e., ‖∂η‖s,Γ1
. Under the conditions of Lemma 2.1, we have

‖∂η − ∂η(0)‖L∞(Γ1) ≤
∫ t

0

‖∂t∂η‖L∞(Γ1) ≤ C2t‖v‖3 ≤ C2Mt,

where C2 depends only on the domain Γ1 and we used that H1.5(Γ1) embeds into
C0(Γ1). Therefore, if t is very small, we can guarantee that

∂η(Γ1) ⊂ D′,
and thus, shrinking D if necessary, we can assume that the derivatives of Q are in

Hs(D) for 1 < s ≤ 1.5, and, therefore, that ‖Q̃‖Hs(D) is bounded for s ≤ 1.5. Since

Lemma 2.1 also provides a bound for ‖∂η‖s,Γ1
, s ≤ 1.5, we conclude that

‖∂AQ(∂η)‖s,Γ1 ≤ C‖∂A∂η‖s,Γ1 , for 1 < s ≤ 1.5,

where C depends only on M , s, and Γ1, and provided that t is small enough. The
above also shows that

‖Q(∂η)‖s,Γ1
≤ C‖∂η‖s,Γ1

, for 1 < s ≤ 1.5.

We also need some geometric identities that may be known to specialists, but
we state them below and provide some of the corresponding proofs for the reader’s
convenience.

Lemma 2.2. Let n denote the unit outer normal to η(Γ1). Then

n ◦ η =
aTN

|aTN |
. (13)
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Denoting by τ the tangent bundle of η(Ω) and by ν the normal bundle of η(Γ1), the
canonical projection Π: τ�η(Γ1)→ ν is given by

Πα
β = δαβ − gkl∂kηα∂lηβ . (14)

Furthermore, the following identities hold:

Πα
λΠλ

β = Πα
β , (15)

J |aTN | = √g, (16)

√
g∆gη

α =
√
ggij∂2

ijη
α −√ggijgkl∂kηα∂lηµ∂2

ijηµ, (17)

−∆g(η
α�Γ1) = H ◦ η nα ◦ η, (18)

∂t(nµ ◦ η) = −gkl∂kvτ n̂τ∂lηµ, (19)

and

∂i(nµ ◦ η) = −gkl∂ikητ n̂τ∂lηµ. (20)

Proof. Letting r = η�Γ1, we know that n ◦ η is given by (see e.g. [51])

n ◦ η =
∂1r × ∂2r

|∂1r × ∂2r|
. (21)

By det(∇η) = J , we have

a =

1

J

∂2η
2∂3η

3 − ∂3η
2∂2η

3 ∂3η
1∂2η

3 − ∂2η
1∂3η

3 ∂2η
1∂3η

2 − ∂3η
1∂2η

2

∂3η
2∂1η

3 − ∂1η
2∂3η

3 ∂1η
1∂3η

3 − ∂3η
1∂1η

3 ∂3η
1∂1η

2 − ∂1η
1∂3η

2

∂1η
2∂2η

3 − ∂2η
2∂1η

3 ∂2η
1∂1η

3 − ∂1η
1∂2η

3 ∂1η
1∂2η

2 − ∂2η
1∂1η

2

 . (22)

Using (22) to compute JaTN and comparing with ∂1r × ∂2r, one verifies that

JaTN = ∂1r × ∂2r,

and then (13) follows from (21).
To prove (14), we use (13) to write

(δαλ − gkl∂kηα∂lηλ)nλ ◦ η =
aµαNµ
|aTN |

− gkl∂kη
α∂lηλa

µλNµ
|aTN |

.

Contracting gkl∂lηλa
µλNµ with gmk gives

gmkg
kl∂lηλa

µλNµ = ∂mηλa
3λ

= ∂mη1(∂1η
2∂2η

3 − ∂2η
2∂1η

3) + ∂mη2(∂2η
1∂1η

3 − ∂1η
1∂2η

3)

+ ∂mη3(∂1η
1∂2η

2 − ∂2η
1∂1η

2)

= 0.

(23)

Above, the first equality follows becauseN = (0, 0, 1) (and gmkg
kl = δlm), the second

equality uses (22), and the third equality follows upon setting m = 1 and then m = 2
and observing that in each case all the terms cancel out. Thus, contracting (23)
with gmn,

gnl∂lηλa
µλNµ = 0,
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and hence

(δαλ − gkl∂kηα∂lηλ)nλ ◦ η =
aµαNµ
|aTN |

.

To conclude the proof of (14), we need to verify that Π(X) = 0 if X is tangent to
η(Γ1). Since the tangent space to η(Γ1) is spanned by ∂jη, for j = 1, 2, it suffices
to verify the identity for these vectors. We have

Πµ
α∂jηµ = (δµα − gkl∂kηα∂lηµ)∂jηµ = ∂jηα − gkl∂kηαglj = 0,

where we used glj = ∂lη
µ∂jηµ and gklglj = δkj . Thus, (14) is proven.

The identity (15) follows from the fact that Π is a projection operator or, al-
ternatively, by direct computation using (14). The identity (16) follows from (13),
(21), and the standard formula (see e.g. [51])

∂1r × ∂2r

|∂1r × ∂2r|
=

1
√
g
∂1r × ∂2r.

In order to prove (17), recall that (see e.g. [51])

∆gη
α = gij∂2

ijη
α − gijΓkij∂kηα, (24)

where Γkij are the Christoffel symbols. Recalling (7), a direct computation using
the definition of the Christoffel symbols gives

Γkij = gkl∂lη
µ∂2

ijηµ, (25)

and (17) follows from (24) and (25).
The identity (18) is a standard formula for the mean curvature of an embedding

into R3 (see e.g. [51] or [84]).
The identities (19) and (20) are well-known, but we provide their proofs for the

reader’s convenience. Denote n̂ = n◦η. Since {∂1η, ∂2η, n̂} are linearly independent,
we can write

∂An̂ = a1∂1η + a2∂2η + bn̂. (26)

Taking the dot product with n̂ we see that b = 0, since ∂An̂ · n̂ = 0 in view of
n̂ · n̂ = 1, and the fact that ∂iη is tangent to the embedding. Taking the dot
product with ∂1η and ∂2η, and using the definition (7), we obtain[

g11 g12

g21 g22

](
a1

a2

)
=

(
∂1η · ∂An̂
∂2η · ∂An̂

)
.

Using ∂lη · ∂An̂ = −∂A∂lη · n̂ (which follows from ∂lη · n̂ = 0) to eliminate ∂An̂ on
the right-hand side, solving for a1 and a2, and using the result into (26), produces
(19) when ∂A = ∂t and (20) when ∂A = ∂i.

For future reference, we record the identity

∂A(
√
ggij) =

√
g

(
1

2
gijgkl − gljgik

)
∂Agkl, (27)

which follows from the well-known identities (see e.g. [84]),

∂Ag = ggkl∂Agkl,

and

∂Ag
ij = −gljgik∂Agkl.
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We also need the following result about a gain or regularity of the moving bound-
ary.

Notation 4. From here on, we use P (·), with indices attached when appropriate,
to denote a general polynomial expression of its arguments.

Proposition 1. Assume that that conditions of Lemma 2.1 are valid. We have the
estimate

‖η‖3.5,Γ1
≤ P (‖R‖1.5,Γ1

).

Proof. We would like to apply elliptic estimates to (6e). While we do not know
a priori that the coefficients gij have enough regularity for an application of stan-
dard elliptic estimates, we can use improved estimates for coefficients with lower
regularity as in [43]. For this, it suffices to check that gij has small oscillation, in
the following sense.

Given r > 0 and x ∈ Γ1, set

oscx(gij) =
1

vol(Br(x))

∫
Br(x)

∣∣∣∣gij(y)− 1

vol(Br(x))

∫
Br(x)

gij(z) dz

∣∣∣∣ dy
and

gR = sup
x∈Γ1

sup
r≤R

oscx(gij).

We need to verify that there exists R̃ ≤ 1 such that

gR̃ ≤ ρ, (28)

where ρ is sufficiently small.
Since gij ∈ H1.5(Γ1), we have gij ∈ C0,α(Γ1) with 0 < α < 0.5 fixed. Thus, for

y ∈ Br(x),∣∣∣∣gij(y)− 1

vol(Br(x))

∫
Br(x)

gij(z) dz

∣∣∣∣ =

∣∣∣∣ 1

vol(Br(x))

∫
Br(x)

(gij(y)− gij(z)) dz
∣∣∣∣

≤ sup
z∈Br(x)

|gij(y)− gij(z)| ≤ Cαrα.

Hence,

gR̃ ≤ CαR
α,

and we can ensure (28). Therefore, the results of [43] imply that

‖ηα‖3.5,Γ1 ≤C(‖aµαNµq‖1.5,Γ1 + ‖ηα‖1.5,Γ1)

≤C(‖a‖1.5,Γ1
‖q‖1.5,Γ1

+ ‖η‖1.5,Γ1
),

where C depends on ‖gij‖1.5,Γ1 . Or yet,

‖ηα‖3.5,Γ1 ≤C‖q‖1.5,Γ1 + C‖η‖3 ≤ C‖q‖1.5,Γ1 + C ≤ P (‖R‖1.5,Γ1).

We remark that [43] deals only with Sobolev spaces of integer order, but since the
estimates are linear on the norms we can extend them to fractional order Sobolev
spaces as well.

Corollary 1. Under the same assumptions of Proposition 1,

‖η‖4.5,Γ1
≤ P (‖R‖2.5,Γ1

). (29)
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Proof. Since gij involves only tangential derivatives of η, by Proposition 1 we have
an estimate for gij in H2.5(Γ1). We can thus use elliptic regularity to bootstrap the
estimate on η restricted to Γ1 to H4.5(Γ1).

We conclude this section with a compressible version of the Cauchy invariance
(see, e.g., [68] for the incompressible case).

Proposition 2. Let (v,R) be a smooth solution to (6) defined on [0, T ). Then

εαβγ∂βv
µ∂γηµ = ωα0 (30)

for 0 ≤ t < T . Here, εαβγ is the totally anti-symmetric symbol with ε123 = 1 and
ω0 is the vorticity at time zero.

Proof. Compute

∂t(ε
αβγ∂βv

µ∂γηµ) = εαβγ∂βv
µ∂γvµ + εαβγ∂β∂tv

µ∂γηµ = εαβγ∂β∂tv
µ∂γηµ

= − 1

R
εαβγ∂β(aλµ∂λq)∂γηµ +

1

R2
εαβγaλµ∂λq∂βR∂γηµ,

where we used the anti-symmetry of εαβγ and (6a). From a∇η = I, we have

∂β(aλµ∂γηµ) = ∂βa
λµ∂γηµ + aλµ∂γ∂βηµ = 0,

and thus

∂t(ε
αβγ∂βv

µ∂γηµ) =
1

R
∂λqa

λµεαβγ∂β∂γηµ −
1

R
εαβγaλµ∂γηµ∂β∂λq

+
1

R2
εαβγaλµ∂λq∂βR∂γηµ

= 0− 1

R
εαβλ∂β∂λq +

1

R2
εαβγaλµ∂λq∂βR∂γηµ

=
1

R2
εαβγ∂γq∂βR = q′(R)

1

R2
εαβγ∂γR∂βR = 0,

where we used again the anti-symmetry of εαβγ and the identity aλµ∂γηµ = δλγ .
Integrating in time yields the result.

3. Energy estimates. In this section we derive estimates for v, R, v ·N , and their
time derivatives.

Assumption 2. Throughout this section, we suppose that the hypotheses of
Lemma 2.1 hold; we make frequent use of its conclusions without mentioning it
every time. The reader is also reminded of (2), which is often going to be used with-
out mention as well. We assume further that T is as in part (ix) of that lemma,
and that (v, q) are defined on [0, T ).

Notation 5. We use ε̃ to denote a small positive constant which may vary from
expression to expression. Typically, ε̃ comes from choosing the time sufficiently
small, from Lemma 2.1, or from the Cauchy inequality with epsilon. The important
point to keep in mind, which can be easily verified in the expressions containing ε̃,
is that once all estimates are obtained, we can fix ε̃ to be sufficiently small in order
to close the estimates.

Notation 6. Recalling Notation 4, we denote

P = P (‖v‖3, ‖∂tv‖2, ‖∂2
t v‖1, ‖∂3

t v‖0, ‖R‖3, ‖∂tR‖2,
‖∂2
tR‖1, ‖∂3

tR‖0, ‖Π∂∂2
t v‖0,Γ1

, ‖Π∂2∂tv‖0,Γ1
)
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and

P0 = P

(
σ,

1

σ
, ‖v0‖3, ‖v0‖3,Γ1

, ‖%0‖3, ‖%0‖3,Γ1
, ‖(∆ div v0)�Γ1‖−1,Γ1

)
,

where we abbreviate

‖Π∂∂2
t v‖20,Γ1

=

∫
Γ1

δijδβγΠµγ∂j∂
2
t v
µΠβα∂i∂

2
t v
α =

∫
Γ1

Πβ
µ∂

i∂2
t v
µΠα

β∂i∂
2
t vα.

Notation 7. We shall use the following abbreviated notation:

N (t) ≡ N = ‖v‖23 + ‖∂tv‖22 + ‖∂2
t v‖21 + ‖∂3

t v‖20 + ‖R‖23 + ‖∂tR‖22 + ‖∂2
tR‖21

+ ‖∂3
tR‖20 + ‖Π∂∂2

t v‖20,Γ1
+ ‖Π∂2∂tv‖20,Γ1

.

Before starting with a priori estimates, we record an additional regularity of η
which is combined below with Corollary 1 and Proposition 2. As in [68], Proposi-
tion 2 implies

‖ curl η‖H2.5+δ ≤ ‖η‖H3 + ε̃‖η‖H3.5+δ + C

∫ t

0

‖v‖H3‖η‖H3.5+δ + Ct‖ω0‖H2.5+δ ,

(31)

where δ ∈ (0, 0.5]. In order to control the divergence of η, we start with Aαβ∂αηβ =
3J , which leads to

div η = 3J + (δαβ −Aαβ)(∂αη − δαβ) + (3− TrA).

Now, let

η̃ = η − x.
Using (22), we have

TrA = 3 = ∂2η̃
2∂3η̃

3 − ∂3η̃
2∂2η̃

3 + ∂1η̃
1∂3η̃

3 − ∂3η̃
1∂1η̃

3

+ ∂1η̃
1∂2η̃

2 − ∂2η̃
1∂1η̃

2 − 2 div η + 3,

which gives

div η̃ = J − 1 +
1

3
(δαβ −Aαβ)∂αη̃β

− 1

3

(
∂2η̃

2∂3η̃
3 − ∂3η̃

2∂2η̃
3 + ∂1η̃

1∂3η̃
3 − ∂3η̃

1∂1η̃
3 + ∂1η̃

1∂2η̃
2 − ∂2η̃

1∂1η̃
2
)
.

(32)

Now, by (22), the entries of δαβ − Aαβ are either of the form ∂η̃∂η̃ or of the form
∂η̃∂η̃ + ∂η̃. Differentiating (32), we get

‖∇div η̃‖H1.5+δ ≤ C + ‖J‖H2.5+δ + ‖∇div η̃‖H1.5+δ

∫ t

0

P (33)

and thus

‖div η‖H2.5+δ ≤ C + ‖J‖H2.5+δ + ‖∇div η‖H1.5+δ

∫ t

0

P +

∫ t

0

P. (34)

3.1. Three time derivatives. In this section we derive the estimate

‖∂3
t v‖20 + ‖∂3

tR‖20 + ‖Π∂∂2
t v‖20,Γ1

≤ ε̃N + P0 + P

∫ t

0

P, (35)

where we recall that Π is given by (14).



COMPRESSIBLE FREE-BOUNDARY EULER 515

3.1.1. Energy identity. We begin by establishing the identity

1

2

d

dt

∫
Ω

R(0)∂3
t v
β∂3

t vβ +
1

2

d

dt

∫
Ω

R(0)

R
q̄′(R)(∂3

tR)2 +

∫
Γ1

∂3
t (Jaαβq)∂3

t vβNα

= −
∫

Ω

R(0)

R

(
∂3
t (Raαβ∂αvβ)−Raαβ∂3

t ∂αvβ

)
∂3
t

( q
R

)
+

∫
Ω

R(0)
(
∂3
t

(
aαβ

q

R

)
− aαβ∂3

t

( q
R

))
∂3
t ∂αvβ

− 3

∫
Ω

R(0)
q̄′′(R)

R
∂4
tR∂

2
tR∂tR−

∫
Ω

R(0)
q̄′′′(R)

R
∂4
tR(∂tR)3

+
1

2

∫
Ω

R(0)∂t

(
q̄′(R)

R

)
(∂3
tR)2,

(36)

where

q̄(R) =
q(R)

R
.

To obtain it, we first multiply (6a) by J (replacing α with β), differentiate three
times in t, contract with ∂3

t vβ , and integrate. We obtain∫
Ω

∂3
t (JR∂tv

β)∂3
t vβ +

∫
Ω

∂3
t (Jaαβ∂αq)∂

3
t vβ = 0.

Using the Piola identity (5) and integrating by parts in ∂α, we get

1

2

d

dt

∫
Ω

R(0)∂3
t v
β∂3

t vβ +

∫
Γ1

∂3
t (Jaαβq)∂3

t vβNα =

∫
Ω

∂3
t (Jaαβq)∂3

t ∂αvβ ,

where we also used (11), that R(0) = %0, and the fact that the boundary integral
vanishes on Γ0.

Now we write∫
Ω

∂3
t (Jaαβq)∂3

t ∂αvβ =

∫
Ω

R(0)∂3
t

(
aαβ

q

R

)
∂3
t ∂αvβ

=

∫
Ω

R(0)aαβ∂3
t

( q
R

)
∂3
t ∂αvβ +

∫
Ω

R(0)
(
∂3
t

(
aαβ

q

R

)
− aαβ∂3

t

( q
R

))
∂3
t ∂αvβ

=

∫
Ω

R(0)

R
∂3
t (Raαβ∂αvβ)∂3

t

( q
R

)
−
∫

Ω

R(0)

R

(
∂3
t (Raαβ∂αvβ)−Raαβ∂3

t ∂αvβ

)
∂3
t

( q
R

)
+

∫
Ω

R(0)
(
∂3
t

(
aαβ

q

R

)
− aαβ∂3

t

( q
R

))
∂3
t ∂αvβ

= I1 + I2 + I3.

The terms I2 and I3 correspond to the first and second terms on the right side of
(36) respectively. To handle I1, we use the density equation (6b) to eliminate the
spatial derivative:

I1 =

∫
Ω

R(0)

R
∂3
t (Raαβ∂αvβ)∂3

t

( q
R

)
= −

∫
Ω

R(0)

R
∂4
tR∂

3
t q̄.

Since

∂3
t (q̄(R)) = q̄′(R)∂3

tR+ 3q̄′′(R)∂2
tR∂tR+ q̄′′′(R)(∂tR)3,
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we have

I1 = −
∫

Ω

R(0)
q̄′(R)

R
∂4
tR∂

3
tR− 3

∫
Ω

R(0)
q̄′′(R)

R
∂4
tR∂

2
tR∂tR

−
∫

Ω

R(0)
q̄′′′(R)

R
∂4
tR(∂tR)3

= I11 + I12 + I13.

The terms I12 and I13 give the third and the fourth terms on the right side of (36).
For I11, we write

I11 = −1

2

d

dt

∫
Ω

R(0)
q̄′(R)

R
(∂3
tR)2 +

1

2

∫
Ω

R(0)∂t

(
q̄′(R)

R

)
(∂3
tR)2. (37)

The first term on the right side leads to the second term on the left side of (36),
while the second term on the right side of (37) gives the last term in (36).

Denote the terms on the right side of (36) by J1–J5.

3.1.2. Estimates of J1, J3, J4, and J5. In this section we estimate J1, J3, J4, and
J5. We begin with

J1 = −
∫

Ω

R(0)

R

(
∂3
t (Raαβ∂αvβ)−Raαβ∂3

t ∂αvβ

)
∂3
t

( q
R

)
. (38)

First observe that∥∥∥∂3
t

( q
R

)∥∥∥
L2(Ω)

≤ P (‖∂3
tR‖L2(Ω), ‖∂2

tR‖L2(Ω), ‖∂tR‖L2(Ω), ‖R‖L2(Ω)) ≤P.

When the expression in parentheses in (38) involving three time derivatives is ex-
panded and one of them canceled, we obtain eight terms, which are all bounded in
a similar way. For instance, we have

‖∂3
tRa

αβ∂αvβ‖L2(Ω) ≤ C‖∂3
tR‖L2(Ω)‖aαβ‖L∞(Ω)‖∂αvβ‖L∞(Ω) ≤P

and

‖R∂3
t a
αβ∂αvβ‖L2(Ω) ≤ C‖R‖L∞(Ω)‖∂3

t a
αβ‖L2(Ω)‖∂αvβ‖L∞(Ω) ≤P,

as well as

‖∂3
tRa

αβ∂αvβ‖L2(Ω) ≤ C‖∂2
tR‖L4(Ω)‖∂taαβ‖L4(Ω)‖∂2

t ∂αvβ‖L2(Ω) ≤P.

After estimating all the terms in this manner, we obtain

J1 ≤P.

Next, we treat the term

J3 = −3

∫
Ω

R(0)
q̄′′(R)

R
∂4
tR∂

2
tR∂tR

=
d

dt

(
−3

∫
Ω

R(0)
q̄′′(R)

R
∂3
tR∂

2
tR∂tR

)
+ 3

∫
Ω

R(0)∂3
tR∂t

(
q̄′′(R)

R
∂2
tR∂tR

)
=

d

dt
J31 + J32.

(39)
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For the first term in (39), we have

J31(t) . ‖R(0)‖L∞(Ω)‖R−1‖L∞(Ω)‖∂3
tR‖L2(Ω)‖∂2

tR‖L2(Ω)‖∂tR‖L∞(Ω)

. ‖R(0)‖L∞(Ω)‖R−1‖L∞(Ω)‖∂3
tR‖L2(Ω)‖∂2

tR(0)‖L2(Ω)‖∂tR‖L∞(Ω)

+ ‖R(0)‖L∞(Ω)‖R−1‖L∞(Ω)‖∂3
tR‖L2(Ω)‖∂tR‖L∞(Ω)

∫ t

0

‖∂3
tR‖L2(Ω).

Using Lemma 2.1(x) as well as the Sobolev and Young’s inequalities, we get

J31(t) ≤ ε̃‖∂3
tR‖20 + ε̃‖∂tR‖22 + P0 + P

∫ t

0

P

where we also used

‖∂tR‖21 ≤
∥∥∥∥∂tR(0) +

∫ t

0

∂tR

∥∥∥∥2

1

. ‖∂tR(0)‖21 +

∥∥∥∥∫ t

0

∂tR

∥∥∥∥2

1

≤P0 +

∫ t

0

P

and Jensen’s inequality. Also,

J31(0) . C‖∂3
tR(0)‖L2(Ω)‖∂2

tR(0)‖L2(Ω)‖∂2
tR(0)‖L∞(Ω) ≤P0.

The second term in (39), J32, is simpler, as we just apply Hölder’s inequality and
write

J32 . ‖R(0)‖L∞(Ω)‖∂3
tR‖L2(Ω)

(∥∥∥∥ q̄′′′(R)

R
∂tR

∥∥∥∥
L∞(Ω)

‖∂2
tR‖L2(Ω)‖∂tR‖L∞(Ω)

+

∥∥∥∥ q̄′′(R)

R2
∂tR

∥∥∥∥
L∞(Ω)

‖∂2
tR‖L2(Ω)‖∂tR‖L∞(Ω)

+

∥∥∥∥ q̄′′(R)

R

∥∥∥∥
L∞(Ω)

‖∂3
tR‖L2(Ω)‖∂tR‖L∞(Ω)

+

∥∥∥∥ q̄′′(R)

R

∥∥∥∥
L∞(Ω)

‖∂2
tR‖2L4(Ω)

)
≤P.

The term J4 is treated similarly to J3 by differentiating by parts in time. Namely,
we have

J4 = −
∫

Ω

R(0)
q̄′′′(R)

R
∂4
tR(∂tR)3

=
d

dt

(
−
∫

Ω

R(0)
q̄′′′(R)

R
∂3
tR(∂tR)3

)
+

∫
Ω

R(0)∂3
tR∂t

(
q̄′′′(R)

R
(∂tR)3

)
=

d

dt
J41 + J42.

(40)

The pointwise terms are estimated using Hölder and Sobolev inequalities as

J41(t) . ‖R(0)‖L∞(Ω)‖R−1‖L∞(Ω)‖∂3
tR‖L2(Ω)‖∂tR‖3L6(Ω)

. ‖∂3
tR‖0‖∂tR‖31

. ε̃‖∂3
tR‖20 + P0 +

∫ t

0

P

and

J41(0) . ‖∂3
tR(0)‖0‖∂tR(0)‖31 ≤P0.
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For the second term J42 in (40), we use Hölder’s inequality, yielding

J42 . ‖R(0)‖L∞(Ω)‖∂3
tR‖L2(Ω)

(∥∥∥∥ q̄′′′′(R)

R

∥∥∥∥
L∞(Ω)

‖∂tR‖3L6(Ω)

+

∥∥∥∥ q̄′′′(R)

R2

∥∥∥∥
L∞(Ω)

‖∂tR‖4L8(Ω)

+

∥∥∥∥ q̄′′′(R)

R

∥∥∥∥
L∞(Ω)

‖∂tR‖2L∞(Ω)‖∂
2
tR‖L2(Ω)

)
≤P.

Finally, the last term J5 can be bounded using Hölder’s inequality

J5 =
1

2

∫
Ω

R(0)∂t

(
q̄′(R)

R

)
(∂3
tR)2

. ‖R(0)‖L∞(Ω)

∥∥∥∥∂t( q̄′(R)

R

)∥∥∥∥
L∞(Ω)

‖∂3
tR‖2L4(Ω) ≤P.

Remark 2. (Recurrent estimates of lower order terms) Ideas similar to the above,
relying on a combination of Sobolev embedding, Young and Jensen’s inequalities,
and interpolation, shall be used throughout the paper to estimate lower order terms,
many times without explicit mention. Before proceeding further, we illustrate in
detail how a typical lower order is bounded.

Consider ‖∂2
t v‖0.5+δ‖∂3

t v‖0, where δ > 0 is small. Interpolating

‖∂2
t v‖0.5+δ . ‖∂2

t v‖0.5+δ
1 ‖∂2

t v‖0.5−δ0 ,

and using the Cauchy inequality with ε, we find

‖∂2
t v‖0.5+δ‖∂3

t v‖0 . C(ε̃)‖∂2
t v‖1−2δ

0 ‖∂2
t v‖1+2δ

1 + ε̃‖∂3
t v‖20.

Next, choosing p = 2/(1+2δ) and q = 2/(1−2δ), we apply Young’s inequality with
ε to get

‖∂2
t v‖0.5+δ‖∂3

t v‖0 . C(ε̃)(C(ε′)‖∂2
t v‖20 + ε′‖∂2

t v‖21) + ε̃‖∂3
t v‖20

. C(ε̃, ε′)‖∂2
t v‖20 + ε̃‖∂2

t v‖21 + ε̃‖∂3
t v‖20,

where in the second step we chose ε′ so small that C(ε̃)ε′ ≤ ε̃. The fundamental
theorem of calculus and Jensen’s inequality provide

‖∂2
t v‖20 . ‖∂2

t v(0)‖20 +

(∫ t

0

‖∂3
t v‖0

)2

. ‖∂2
t v(0)‖20 + t

∫ t

0

‖∂3
t v‖20.

We conclude that for t less than a certain fixed T , we have

‖∂2
t v‖0.5+δ‖∂3

t v‖0 .P0 + ε̃N +

∫ t

0

P.

3.1.3. Estimate of J2. There is a part of the integral

J2 =

∫
Ω

R(0)
(
∂3
t

(
aαβ

q

R

)
− aαβ∂3

t

( q
R

))
∂3
t ∂αvβ , (41)

which can not be estimated using integration by parts and Hölder estimates and
involves a special cancellation, namely the “tricky” term

T =

∫ t

0

∫
Ω

∂3
tA

µα∂3
t ∂µvαq, (42)
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where, recall, A = Ja. It obeys the following estimate.

Lemma 3.1. The term T given by (42) satisfies the estimate

T ≤ ε̃‖Π∂∂2
t v‖20,Γ1

+ ε̃N + P0 + P

∫ t

0

P.

Proof of Lemma 3.1. From (22), we may write

A1α = εαλτ∂2ηλ∂3ητ ,

A2α = −εαλτ∂1ηλ∂3ητ ,

A3α = εαλτ∂1ηλ∂2ητ .

Expanding the index µ in (42), we have

T =

∫ t

0

∫
Ω

qεαλτ∂2∂
2
t vλ∂3ητ∂1∂

3
t vα +

∫ t

0

∫
Ω

qεαλτ∂2ηλ∂3∂
2
t vτ∂1∂

3
t vα

−
∫ t

0

∫
Ω

qεαλτ∂1∂
2
t vλ∂3ητ∂2∂

3
t vα −

∫ t

0

∫
Ω

qεαλτ∂1ηλ∂3∂
2
t vτ∂2∂

3
t vα

+

∫ t

0

∫
Ω

qεαλτ∂1∂
2
t vλ∂2ητ∂3∂

3
t vα +

∫ t

0

∫
Ω

qεαλτ∂1ηλ∂2∂
2
t vτ∂3∂

3
t vα

+ L1

= T1 + · · ·+ T6 + L1

(43)

where L1 denotes lower order terms, which are all of the form∫ t

0

∫
Ω

q∂∂tv∂v∂∂
3
t v =

∫
Ω

q∂∂tv∂v∂∂
2
t v|t0 −

∫ t

0

∫
Ω

∂tq∂∂tv∂v∂∂
2
t v

−
∫ t

0

∫
Ω

q∂∂2
t v∂v∂∂

2
t v

≤ ‖q‖L∞‖∇v‖L∞‖∇∂tv‖0‖∇∂2
t v‖0 + P0 +

∫ t

0

P

. ‖v‖1/22 ‖v‖
1/2
3 ‖∂tv‖1‖∂2

t v‖1 + P0 +

∫ t

0

P

. ε̃‖v‖23 + ε̃‖∂2
t v‖21 + P0 +

∫ t

0

P.

We group the leading terms in (43) as T1 + T3, T4 + T6, and T2 + T5. Integrating
by parts in time in T3, we find

T1 + T3 =

∫ t

0

∫
Ω

qεαλτ∂2∂
2
t vλ∂3ητ∂1∂

3
t vα +

∫ t

0

∫
Ω

qεαλτ∂1∂
3
t vλ∂3ητ∂2∂

2
t vα

−
∫

Ω

qεαλτ∂1∂
2
t vλ∂3ητ∂2∂

2
t vα + L2

=

∫ t

0

∫
Ω

qεαλτ∂2∂
2
t vλ∂3ητ∂1∂

3
t vα +

∫ t

0

∫
Ω

qελατ∂1∂
3
t vα∂3ητ∂2∂

2
t vλ

−
∫

Ω

qεαλτ∂1∂
2
t vλ∂3ητ∂2∂

2
t vα + L2

(44)
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=

∫ t

0

∫
Ω

qεαλτ∂2∂
2
t vλ∂3ητ∂1∂

3
t vα −

∫ t

0

∫
Ω

qεαλτ∂1∂
3
t vα∂3ητ∂2∂

2
t vλ

−
∫

Ω

qεαλτ∂1∂
2
t vλ∂3ητ∂2∂

2
t vα + L2

= −
∫

Ω

qεαλτ∂1∂
2
t vλ∂3ητ∂2∂

2
t vα + L2,

where from the first to the second line we relabeled the indices α↔ λ in the second
integral, from the second to the third we used that ελατ = −εαλτ , and from the
third to the fourth we observed that the first two integrals cancel each other. The
symbol L2 denotes the lower order terms, which are treated below. We now analyze
the term

T13 = −
∫

Ω

qεαλτ∂1∂
2
t vλ∂3ητ∂2∂

2
t vα.

We have

T13 = −
∫

Ω

qεαλ3∂1∂
2
t vλ∂3η3∂2∂

2
t vα −

∫
Ω

qεαλi∂1∂
2
t vλ∂3ηi∂2∂

2
t vα, (45)

where the last integral may be bounded by

ε̃‖∂2
t v‖21

because η(0) = id, so that ∂3ηi = O(ε̃) for small time; we also used q ≤ C by
Lemma 2.1(x). For the first integral in (45), again by the initial condition, we have
that ∂3η3 = 1 +O(ε̃) and thus

−
∫

Ω

qεαλ3∂1∂
2
t vλ∂3η3∂2∂

2
t vα

= −
∫

Ω

qεαλ3∂1∂
2
t vλ∂2∂

2
t vα −

∫
Ω

qεαλ3∂1∂
2
t vλO(ε̃)∂2∂

2
t vα

where the last integral is also bounded by ε̃‖∂2
t v‖21. For the remaining integral, we

expand εαλ3:

−
∫

Ω

qεαλ3∂1∂
2
t vλ∂2∂

2
t vα = −

∫
Ω

(qε123∂1∂
2
t v2∂2∂

2
t v1 + qε213∂1∂

2
t v1∂2∂

2
t v2)

= −
∫

Ω

(q∂1∂
2
t v2∂2∂

2
t v1 − q∂1∂

2
t v1∂2∂

2
t v2),

after using ε123 = 1 = −ε213. We integrate by parts the ∂2 in the first term and the
∂1 in the second term to find

−
∫

Ω

qεαλ3∂1∂
2
t vλ∂2∂

2
t vα =

∫
Ω

(q∂2∂1∂
2
t v2∂

2
t v1 − q∂2

t v1∂1∂2∂
2
t v2)

+

∫
Ω

(∂1∂
2
t v2∂

2
t v1∂2q − ∂2

t v1∂2∂
2
t v1∂1q)

= 0 +

∫
Ω

(∂1∂
2
t v2∂

2
t v1∂2q − ∂2

t v1∂2∂
2
t v1∂1q),

where the last integral obeys∫
Ω

(∂1∂
2
t v2∂

2
t v1∂2q − ∂2

t v1∂2∂
2
t v1∂1q) ≤ C‖∂2

t v‖1‖∂2
t v‖0‖∇q‖L∞(Ω)
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≤ ε̃‖∂2
t v‖21 + C‖∂2

t v‖20‖∇q‖2L∞(Ω) ≤ ε̃‖∂
2
t v‖21 + C‖∂2

t v‖20‖R‖
1/2
2 ‖R‖

1/2
3

≤ ε̃‖∂2
t v‖21 + ε̃‖R‖23 + P0 +

∫ t

0

P.

The symbol L2 in (44), denotes the sum of∫
Ω

qεαλτ∂1∂
2
t vλ∂3ητ∂2∂

2
t vα|t=0 ≤P0

and ∫ t

0

∫
Ω

εαλτ∂t

(
q∂1∂

2
t vλ∂3ητ

)
∂2∂

2
t vα ≤

∫ t

0

P.

For the sum of T1 and T3, we conclude

T1 + T3 ≤ ε̃‖∂2
t v‖21 + ε̃‖R‖23 + P0 +

∫ t

0

P.

The terms T4 +T6 and T2 +T5 are handled in the same way, with one extra step.
In the last step above, we integrated ∂1 and ∂2 by parts. For T4 + T6 we integrate
by parts the derivatives ∂2 and ∂3; this last one produces the boundary term∫

Γ1

q∂2
t v2∂2∂

2
t v3.

(Note that the same integral over Γ0 vanishes by (6f).) To bound this term, we
recall (14), which allows us to relate Π∂∂2

t v and ∂∂2
t v3 and write∣∣∣∣∫

Γ1

q∂2
t v2∂2∂

2
t v3

∣∣∣∣ =

∣∣∣∣∫
Γ1

q∂2
t v2(Π3

λ∂2∂
2
t v
λ + gkl∂kη3∂lηλ∂2∂

2
t v
λ)

∣∣∣∣
. ε̃‖Π∂∂2

t v‖20,Γ1
+ ‖q‖21.5,Γ1

‖∂2
t v‖20,Γ1

+ ‖q∂2
t v2g

kl∂kη3∂lηλ‖0.5,Γ1
‖∂2∂

2
t v
λ‖−0.5,Γ1

. ε̃‖Π∂∂2
t v‖20,Γ1

+ ‖q‖21.5,Γ1
‖∂2
t v‖20,Γ1

+ ‖q‖1.5,Γ1‖g−1‖1.5,Γ1‖∂η‖1.5,Γ1‖∂η3‖1.5,Γ1‖∂2
t v‖20.5,Γ1

.

(46)

Using that ∂η3 = 0 at t = 0, we may write ∂η3 =
∫ t

0
∂v3 to estimate∫

Γ1

q∂2
t v2∂2∂

2
t v3 . ε̃‖Π∂∂2

t v‖20,Γ1
+ ε̃N + P

∫ t

0

P,

and the proof is concluded.

Now, we complete the treatment of J2 by estimating the rest of the terms ap-
pearing in (41), i.e., by bounding the expression

J2 − T =

∫
Ω

R(0)
(
∂3
t

(
aαβ

q

R

)
− aαβ∂3

t

( q
R

))
∂3
t ∂αvβ

−
∫

Ω

R(0)∂3
t

(
aαβ

R

)
∂3
t ∂αvβq

which we may rewrite as

J2 − T =

∫
Ω

R(0)
(
∂3
t

(
aαβ q̄

)
− aαβ∂3

t q̄ − ∂3
t a
αβ q̄
)
∂3
t ∂αvβ

−
∫

Ω

R(0)
(
∂3
t

(
aαβR−1

)
− ∂3

t a
αβR−1

)
∂3
t ∂αvβq. (47)
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After time integration, the first integral in (47) equals

3

∫ t

0

∫
Ω

R(0)
(
∂2
t a
αβ∂tq̄ + ∂ta

αβ∂2
t q̄
)
∂3
t ∂αvβ

= 3

∫
Ω

R(0)
(
∂2
t a
αβ∂tq̄ + ∂ta

αβ∂2
t q̄
)
∂2
t ∂αvβ |t0

− 3

∫ t

0

∫
Ω

R(0)∂t
(
∂2
t a
αβ∂tq̄ + ∂ta

αβ∂2
t q̄
)
∂2
t ∂αvβ .

The second term is bounded by
∫ t

0
P, while the pointwise term at t = 0 by P0. It

is easy to check that the pointwise term at t is bounded by

‖∂2
t v‖1

(
‖∂tv‖1/21 ‖∂tv‖

1/2
2 + ‖v‖22

)
‖∂tR‖1

+ ‖∂2
t v‖1‖v‖

1/2
1 ‖v‖

1/2
2

(
‖∂tR‖21 + ‖∂2

tR‖
1/2
0 ‖∂2

tR‖
1/2
1

)
. ε̃‖∂2

t v‖21 + ε̃‖∂2
tR‖21 + P0 +

∫ t

0

P.

(48)

The second integral in (47) is treated the same way, resulting in the bound as in
(48) but with an additional term

ε̃‖∂3
tR‖20.

3.1.4. Estimate of the boundary integral. We now estimate the boundary integral
on the left-hand side of (36) or, rather, its time integral, which in view of (6e) and
(16) can be written as ∫ t

0

∫
Γ1

∂3
t (Jaαβq)∂3

t vβNα = −σI1, (49)

where

I1 =

∫ t

0

∫
Γ1

∂3
t (
√
g∆gη

α)∂3
t vα. (50)

We shall repeatedly use the identity
√
g∆gη

α =
√
ggijΠα

µ∂
2
ijη

µ. (51)

The identity (51) follows from (24) and (25) since
√
ggij∆gη

α =
√
ggij∂2

ijη
α −√ggijgkl∂lηµ∂2

ijη
µ∂kη

α

=
√
ggij∂2

ijη
µ(δαµ − gkl∂kηα∂lηµ)

and the term inside the parentheses equals Πα
µ by (14). Using (51) and applying

the Leibniz rule, we may split

I1 =

∫ t

0

∫
Γ1

∂3
t (
√
g∆gη

α)∂3
t vα =

∫ t

0

∫
Γ1

∂3
t (
√
ggijΠα

µ∂
2
ijη

µ)∂3
t vα

=

∫ t

0

∫
Γ1

√
ggijΠα

µ∂
2
ij∂

2
t v
µ∂3

t vα + 3

∫ t

0

∫
Γ1

∂t(
√
ggijΠα

µ)∂2
ij∂tv

µ∂3
t vα

+ 3

∫ t

0

∫
Γ1

∂2
t (
√
ggijΠα

µ)∂2
ijv

µ∂3
t vα +

∫ t

0

∫
Γ1

∂3
t (
√
ggijΠα

µ)∂2
ijη

µ∂3
t vα

= I11 + 3I12 + 3I13 + I14.
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Estimate of I11. In order to bound I11, we integrate by parts in ∂i and then in t to
obtain

I11 = −
∫ t

0

∫
Γ1

√
ggijΠα

µ∂j∂
2
t v
µ∂i∂

3
t vα −

∫ t

0

∫
Γ1

∂i(
√
ggijΠα

µ)∂j∂
2
t v
µ∂3

t vα

= −1

2

∫
Γ1

√
ggijΠα

µ∂j∂
2
t v
µ∂i∂

2
t vα +

1

2

∫ t

0

∫
Γ1

∂t
(√
ggijΠα

µ

)
∂j∂

2
t v
µ∂i∂

2
t vα

−
∫ t

0

∫
Γ1

∂i(
√
ggijΠα

µ)∂j∂
2
t v
µ∂3

t vα +
1

2

∫
Γ1

√
ggijΠα

µ∂j∂
2
t v
µ∂i∂

2
t vα|0

= I111 + I112 + I113 + I114.

The first term on the right produces a coercive term, as we may write

I111 = −1

2

∫
Γ1

√
ggijΠβ

µ∂j∂
2
t v
µΠα

β∂i∂
2
t vα

= −1

2

∫
Γ1

δijΠβ
µ∂j∂

2
t v
µΠα

β∂i∂
2
t vα −

1

2

∫
Γ1

(
√
ggij − δij)Πβ

µ∂j∂
2
t v
µΠα

β∂i∂
2
t vα

= I1111 + I1112.

Since

‖√ggij − δij‖1.5,Γ1 ≤ ‖
√
ggij − δij‖1.5,Γ1 ≤ Ct‖∂t∂η‖1.5,Γ1 ≤ Ct‖v‖3 ≤ ε̃,

the second term is absorbed in the first provided T ≤ 1/CM for a sufficiently large
C. Thus

I111 ≤ −
1

4
‖Π∂∂2

t v‖0,Γ1
,

so that (recall (49))

−σI111 ≥
σ

4
‖Π∂∂2

t v‖0,Γ1
.

The term I112 is rewritten as

I112 =
1

2

∫ t

0

∫
Γ1

∂t
(√
ggij

)
Πα
µ∂j∂

2
t v
µ∂i∂

2
t vα +

1

2

∫ t

0

∫
Γ1

√
ggij∂tΠ

α
µ∂j∂

2
t v
µ∂i∂

2
t vα

=
1

2

∫ t

0

∫
Γ1

∂t
(√
ggij

)
Πσ
µ∂j∂

2
t v
µΠα

σ∂i∂
2
t vα +

1

2

∫ t

0

∫
Γ1

√
ggij∂tΠ

α
µ∂j∂

2
t v
µ∂i∂

2
t vα

= I1121 + I1122,

where we used Πα
µ = Πσ

µΠα
σ . We have

I1121 .
∫ t

0

‖∂t(
√
ggij)‖L∞(Γ1)‖Π∂̄∂2

t v‖20,Γ1
,

and since by (27)

‖∂t(
√
ggij)‖L∞(Γ1) = ‖Q(∂̄η)∂̄∂tη‖L∞(Γ1) = ‖Q(∂̄η)∂̄v‖L∞(Γ1) . ‖Q(∂̄η)‖2‖v‖3,

we have

I1121 ≤
∫ t

0

P‖Π∂̄∂2
t v‖20,Γ1

. (52)
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The term I1122 is more delicate. First, by Πα
µ = Πσ

µΠα
σ , we have

I1122 =
1

2

∫ t

0

∫
Γ1

√
ggij∂tΠ

σ
µ∂j∂

2
t v
µΠα

σ∂i∂
2
t vα

+
1

2

∫ t

0

∫
Γ1

√
ggijΠσ

µ∂j∂
2
t v
µ∂tΠ

α
σ∂i∂

2
t vα

=

∫ t

0

∫
Γ1

√
ggij∂tΠ

σ
µ∂j∂

2
t v
µΠα

σ∂i∂
2
t vα.

Since

Πα
µ = n̂αn̂µ, (53)

where n̂ = n ◦ η (cf. (13) and (21)), we have

∂tΠ
α
µ = ∂tn̂

αn̂µ + n̂α∂tn̂µ. (54)

Therefore, I1122 may be rewritten as

I1122 =

∫ t

0

∫
Γ1

√
ggij n̂σ∂tn̂µ∂j∂

2
t v
µΠα

σ∂i∂
2
t vα

+

∫ t

0

∫
Γ1

√
ggij∂tn̂

σn̂µ∂j∂
2
t v
µΠα

σ∂i∂
2
t vα

= I11221 + I11222.

For the second term, we use

n̂µ∂j∂
2
t v
µ = n̂τΠτ

µ∂j∂
2
t v
µ

and thus I11222 is controlled by the right side of (52). For I11221, we use (recall
(19)),

∂tn̂µ = −gkl∂kvτ n̂τ∂lηµ (55)

which gives

I11221 = −
∫ t

0

∫
Γ1

√
ggij n̂σgkl∂kv

τ n̂τ∂lηµ∂j∂
2
t v
µΠα

σ∂i∂
2
t vα. (56)

From the equation (6a) for the velocity, we have ∂tv
α = −(J/ρ0)aµα∂µq, and by

the definition of a,

∂tv
µ∂lηµ = − J

ρ0
∂lq, (57)

from where, by applying ∂j∂t to both sides,

∂j∂
2
t v
µ∂lηµ = − J

ρ0
∂2
jl∂tq −

(
∂j∂t

(
J

ρ0
∂lq

)
− J

ρ0
∂2
jl∂tq

)
−
(
∂j∂t(∂tv

µ∂lηµ)− ∂j∂2
t v
µ∂lηµ

)
,

(58)

which we replace in (56). The commutators are easily controlled, so we only need
to consider the main term

I11221
L
=

∫ t

0

∫
Γ1

√
ggij n̂σgkl∂kv

τ n̂τ
J

ρ0
∂2
jl∂tqΠ

α
σ∂i∂

2
t vα (59)

where we henceforth adopt:

Notation 8. We use
L
= to denote equality modulo lower order terms that can be

controlled. Thus,
L
= in (59) indicates the leading term of I11221.
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Now, we integrate by parts in xj , leading to

I11221
L
= −

∫ t

0

∫
Γ1

√
ggij n̂σgkl∂kv

τ n̂τ
J

ρ0
∂l∂tqΠ

α
σ∂

2
ij∂

2
t vα

L
= −

∫
Γ1

√
ggij n̂σgkl∂kv

τ n̂τ
J

ρ0
∂l∂tqΠ

α
σ∂

2
ij∂tvα

∣∣t
0

+

∫ t

0

∫
Γ1

√
ggij n̂σgkl∂kv

τ n̂τ
J

ρ0
∂l∂

2
t qΠ

α
σ∂

2
ij∂tvα = I112211 + I112212.

At this point, we use the identity

gijΠα
µ∂

2
ijη

µ = − 1

σ

J
√
g
aµαNµq,

which follows from (6e), (16), and (51), which after applying ∂2
t gives

gijΠα
µ∂t∂

2
ijv

µ = −∂2
t

(
1

σ

J
√
g
aµαNµq

)
−
(
∂2
t (gijΠµ

α∂
2
ijη

µ)− gijΠµ
α∂

2
t ∂

2
ijη

µ

)
.

After replacing the first term in I112211 and I112212, the resulting terms may be
controlled using H1/2(Γ1)-H−1/2(Γ1) duality. We illustrate this on the term where
both time derivatives hit q, i.e., −(1/σ)(J/

√
g)aµαNµ∂

2
t q. After replacing this in

I112212, we get the term of the form∫ t

0

∫
Γ1

Bjl∂l∂
2
t q∂

2
t q,

which is estimated by∫ t

0

‖∂l∂2
t q‖H−1/2(Γ1)‖Bjl∂2

t q‖H1/2(Γ1)

.
∫ t

0

‖∂2
t q‖H1/2(Γ1)‖B‖H1/2+δ‖∂2

t q‖H1/2(Γ1) ≤
∫ t

0

P‖∂2
t q‖1 ≤

∫ t

0

P

where δ > 0 is a small parameter.
Before continuing, it is worthwhile to formalize the (55), (57), and (58) into the

identity

∂tn̂µ∂j∂
2
t v
µ = gkl∂kv

τ n̂τ
J

ρ0
∂2
jl∂tq + gkl∂kv

τ n̂τ

(
∂j∂t

(
J

ρ0
∂lq

)
− J

ρ0
∂2
jl∂tq

)
+ gkl∂kv

τ n̂τ
(
∂j∂t(∂tv

µ∂lηη)− ∂j∂2
t v
µ∂lηη

)
. (60)

Also, similarly to (55), we have (recall (20))

∂in̂µ = −gkl∂ikητ n̂τ∂lηµ,

whence, as for (60), we have

∂in̂µ∂j∂
2
t v
µ = gkl∂2

ikη
τ n̂τ

J

ρ0
∂2
jl∂tq + gkl∂2

ikη
τ n̂τ

(
∂j∂t

(
J

ρ0
∂lq

)
− J

ρ0
∂2
jl∂tq

)
+ gkl∂2

ikη
τ n̂τ

(
∂j∂t(∂tv

µ∂lηη)− ∂j∂2
t v
µ∂lηη

)
. (61)

Next, we consider

I113 = −
∫ t

0

∫
Γ1

∂i(
√
ggij)Πα

µ∂j∂
2
t v
µ∂3

t vα −
∫ t

0

∫
Γ1

√
ggij∂iΠ

α
µ∂j∂

2
t v
µ∂3

t vα
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= −
∫ t

0

∫
Γ1

∂i(
√
ggij)n̂αn̂µ∂j∂

2
t v
µ∂3

t vα

−
∫ t

0

∫
Γ1

√
ggij∂in̂µ∂j∂

2
t v
µn̂α∂3

t vα −
∫ t

0

∫
Γ1

√
ggij n̂µ∂j∂

2
t v
µ∂in̂

α∂3
t vα

= I1131 + I1132 + I1133,

where we used Πα
µ = n̂αn̂µ. The first term I1131 is of high order and can not be

treated directly. It cancels with a term resulting from I14 further below; cf. (68).
Using (61), we have

I1132
L
= −

∫ t

0

∫
Γ1

√
ggijgkl∂2

ikη
τ n̂τ

J

ρ0
∂2
jl∂tqn̂

α∂3
t vα

L
= −

∫
Γ1

√
ggijgkl∂2

ikη
τ n̂τ

J

ρ0
∂2
jl∂tqn̂

α∂2
t vα

∣∣t
0

+

∫ t

0

∫
Γ1

√
ggijgkl∂2

ikη
τ n̂τ

J

ρ0
∂2
jl∂

2
t qn̂

α∂2
t vα.

(62)

The first term is easily controlled since

n̂α∂2
t vα = n̂αn̂τ n̂τ∂

2
t vα = n̂τΠα

τ ∂
2
t vα.

For the second term in (62), we use

q = −σ∆gη
αn̂α,

which follows from n̂αq = −σ∆gη
α and consequently (recalling (51) and using

Πα
µ = n̂αn̂µ)

q = −σgij n̂µ∂2
ijη

µ, (63)

and we obtain

I1132
L
= −σ

∫ t

0

∫
Γ1

√
ggijgkl∂2

ikη
τ n̂τ

J

ρ0
∂2
jl

(
gmnn̂µ∂

2
mn∂tv

µ
)
n̂α∂2

t vα.

Integrating by parts in xl and then in xi, we get

I1132
L
= σ

∫ t

0

∫
Γ1

√
ggijgkl∂3

iklη
τ n̂τ

J

ρ0
∂j
(
gmnn̂µ∂

2
mn∂tv

µ
)
n̂α∂2

t vα

+ σ

∫ t

0

∫
Γ1

√
ggijgkl∂2

ikη
τ n̂τ

J

ρ0
∂j
(
gmnn̂µ∂

2
mn∂tv

µ
)
n̂α∂l∂

2
t vα

= −σ
∫ t

0

∫
Γ1

√
ggijgkl∂2

klη
τ n̂τ

J

ρ0
∂2
ij

(
gmnn̂µ∂

2
mn∂tv

µ
)
n̂α∂2

t vα

− σ
∫ t

0

∫
Γ1

√
ggijgkl∂2

klη
τ n̂τ

J

ρ0
∂j
(
gmnn̂µ∂

2
mn∂tv

µ
)
n̂α∂i∂

2
t vα

+ σ

∫ t

0

∫
Γ1

√
ggijgkl∂2

ikη
τ n̂τ

J

ρ0
∂j
(
gmnn̂µ∂

2
mn∂tv

µ
)
n̂α∂l∂

2
t vα.

(64)

The last two integrals cancel by the symmetry property

2∑
i,k,l=1

(
gjigkl − gikglj

)
= 0 (65)
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(which is true for any symmetric matrix); this identity is proven by using glj = gjl

in the last sum and then relabeling it. Thus we only need to treat the first term in
(64). Integrating by parts in xi, xj , and then in t, we get

I11322
L
= −σ

∫ t

0

∫
Γ1

√
ggkl∂2

klη
τ n̂τ

J

ρ0
(gmnn̂µ∂

2
mn∂tv

µ)(gij n̂α∂2
ij∂

2
t vα)

= −1

2
σ

∫ t

0

∫
Γ1

√
ggkl∂2

klη
τ n̂τ

J

ρ0
∂t
(
gmnn̂µ∂

2
mn∂tv

µgij n̂α∂2
ij∂tvα

)
L
= −1

2
σ

∫
Γ1

√
ggkl∂2

klη
τ n̂τ

J

ρ0
gmnn̂µ∂

2
mn∂tv

µgij n̂α∂2
ij∂tvα

∣∣t
0

+
1

2
σ

∫ t

0

∫
Γ1

∂t

(
√
ggkl∂2

klη
τ n̂τ

J

ρ0

)
gmnn̂µ∂

2
mn∂tv

µgij n̂α∂2
ij∂tvα.

It is easy to check that both terms can be controlled. For the first term on the far
right, we use that ∂2

klη vanishes at t = 0. This completes the treatment of the term
I11.
Estimates of I12 and I13. The term I12 is split as

I12 =

∫ t

0

∫
Γ1

∂t(
√
ggij)Πα

µ∂
2
ij∂tv

µ∂3
t vα +

∫ t

0

∫
Γ1

√
ggij∂tΠ

α
µ∂

2
ij∂tv

µ∂3
t vα

=

∫
Γ1

∂t(
√
ggij)Πα

µ∂
2
ij∂tv

µ∂2
t vα

∣∣t
0
−
∫ t

0

∫
Γ1

∂t(
√
ggij)Πα

µ∂
2
ij∂

2
t v
µ∂2

t vα

−
∫ t

0

∫
Γ1

∂t(
√
ggij)∂tΠ

α
µ∂

2
ij∂tv

µ∂2
t vα −

∫ t

0

∫
Γ1

∂2
t (
√
ggij)Πα

µ∂
2
ij∂tv

µ∂2
t vα

+

∫ t

0

∫
Γ1

√
ggij∂tΠ

α
µ∂

2
ij∂tv

µ∂3
t vα

= I121 + I122 + I123 + I124 + I125.

All the terms except I123 are estimated as above. For I123, we use (54) and obtain

I123 = −
∫ t

0

∫
Γ1

∂t(
√
ggij)n̂µ∂2

ij∂tv
µ∂tn̂

α∂2
t vα

−
∫ t

0

∫
Γ1

∂t(
√
ggij)∂tn̂

µ∂2
ij∂tv

µn̂α∂2
t vα.

The terms are treated as I11222 and I11221 respectively. This concludes the treatment
of I12.

The term I13 is handled analogously to I12 to I14, so we omit the details.
Estimate of I14. For I14, we have

I14 =

∫ t

0

∫
Γ1

∂3
t (
√
ggijΠα

µ)∂2
ijη

µ∂3
t vα

L
=

∫ t

0

∫
Γ1

√
ggij∂3

t Πα
µ∂

2
ijη

µn̂α∂3
t vα +

∫ t

0

∫
Γ1

∂3
t (
√
ggij)Πα

µ∂
2
ijη

µ∂3
t vα

L
=

∫ t

0

∫
Γ1

√
ggij∂3

t n̂µ∂
2
ijη

µn̂α∂3
t vα +

∫ t

0

∫
Γ1

√
ggij n̂µ∂

2
ijη

µ∂3
t n̂

α∂3
t vα

+

∫ t

0

∫
Γ1

∂3
t (
√
ggij)Πα

µ∂
2
ijη

µ∂3
t vα = I141 + I142 + I143,
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where we used (53) in the last step. The terms I142 and I143 are treated with similar
methods (see below); here we focus on the high order term I141. Since, by (55), we
have

∂3
t n̂µ = −gkl∂k∂2

t v
τ n̂τ∂lηµ −

(
∂2
t (gkl∂kv

τ n̂τ∂lηµ)− gkl∂k∂2
t v
τ n̂τ∂lηµ

)
we get

I141
L
= −

∫ t

0

∫
Γ1

√
ggijgkl∂k∂

2
t v
τ n̂τ∂lηµ∂

2
ijη

µn̂α∂3
t vα. (66)

At this point we need the identity

∂i(
√
ggik) = −√ggijgkl∂2

ijη
µ∂lηµ, (67)

which we prove next. First, by (27), we have

∂i(
√
ggij) =

√
g

(
1

2
gijgmn − gimgjn

)
∂igmn

=
√
g

(
1

2
gijgmn − gimgjn

)
∂i(∂mη

µ∂nηµ)

=
√
g

(
1

2
gijgmn − gimgjn

)
∂2
imη

µ∂nηµ

+
√
g

(
1

2
gijgmn − gimgjn

)
∂mη

µ∂2
inηµ.

In the second term on the far right side, we relabel m and n and then factor out
∂2
imη

µ∂nηµ. We get

∂i(
√
ggij) =

√
g

(
1

2
gijgmn − gimgjn

)
∂2
imη

µ∂nηµ

+
√
g

(
1

2
gijgmn − gingjm

)
∂nη

µ∂2
imηµ

=
√
g
(
gijgmn − gimgjn − gingjm

)
∂2
imη

µ∂nηµ

= −√ggimgjn∂2
imη

µ∂nηµ +
√
g∂2
imη

µ∂nηµ(gijgmn − gingjm).

Since ∂2
imη

µ(gijgmn − gingjm) = 0 due to anti-symmetry in i and m in the term in
parenthesis, the identity (67) follows. Using (67) in (66), we get

I141
L
=

∫ t

0

∫
Γ1

∂i(
√
ggik)∂k∂

2
t v
τ n̂τ n̂

α∂3
t vα. (68)

As pointed out earlier, this term cancels with I1131 above.
As said, the terms I142 and I143 are treated with similar ideas as above. We

illustrate this by estimating I143. Integrating by parts in time

I143 = I143,0 +

∫
Γ1

∂3
t (
√
ggij)Πα

µ∂
2
ijη

µ∂2
t vα −

∫ t

0

∫
Γ1

∂4
t (
√
ggij)Πα

µ∂
2
ijη

µ∂2
t vα

−
∫ t

0

∫
Γ1

∂3
t (
√
ggij)∂t(Π

α
µ∂

2
ijη

µ)∂2
t vα

= I143,0 + I1431 + I1432 + I1433,

where I143,0 is controlled by P0. Let us handle I1431. Using (27) to write

∂t(
√
ggij) =

√
g
(
gijgkl − 2gljgik

)
∂kv

λ∂lηλ,
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we have

∂3
t (
√
ggij)

L
= ∂2

t (
√
g(gijgkl − 2gjlgik))∂kv

λ∂lηλ

+
√
g(gijgkl − 2gjlgik)∂k∂

2
t v
λ∂lηλ.

(69)

We split I1431 accordingly,

I1431
L
= I14311 + I14312,

and note I14311 that can be directly estimated producing

I14311 ≤ ε̃‖∂2
t v‖21 + P

∫ t

0

P.

For I14312, we time differentiate (57) and integrate by parts with respect to xk to
obtain

I14311 ≤ ε̃(‖∂tq‖22 + ‖Π∂∂2
t v‖20,Γ1

) + P

∫ t

0

P.

This produces an estimate for I1431 and I1433 is handled along the same lines.
Let us now investigate I1432. Taking one further time derivative of (69) and using

the resulting expression into I1432, we see that the top term is

I1432,top =

∫ t

0

∫
Γ1

√
g(gijgkl − 2gjlgik)∂k∂

3
t v
λ∂lηλΠα

µ∂
2
ijη

µ∂2
t vα.

With the help of (57), we have

I1432,top
L
=

∫ t

0

∫
Γ1

J

%0

√
g(gijgkl − 2gjlgik)∂k∂l∂

2
t qΠ

α
µ∂

2
ijη

µ∂2
t vα.

Writing

(gijgkl − 2gjlgik)∂k∂l∂
2
t q∂

2
ijη

µ

= (gijgkl − gjlgik)∂k∂l∂
2
t q∂

2
ijη

µ − gjlgik∂k∂l∂2
t q∂

2
ijη

µ,

we observe that the first term cancels by (65). Writing now Πα
µ = n̂αn̂µ and invoking

(63), we see that the resulting integral is estimated as the integral I1132 (see what
follows (65)).

3.1.5. Finalizing the three time derivatives estimate. Combining the energy identity
(36) with the estimates for Ji, i = 1, . . . , 5 from Sections 3.1.2 and 3.1.3, and
with the boundary estimates of Section 3.1.4 produces (35). In doing so, we use
assumption (12) to bound the integral

∫
Ω

(R(0)/R)q̄′(R)(∂3
tR)2 from below.

3.2. Two time derivatives. In this section we derive the estimate

‖∂∂2
t v‖20 + ‖∂∂2

tR‖20 + ‖Π∂2∂tv‖20,Γ1
≤ ε̃N + P0 + P

∫ t

0

P, (70)

where P inside the integral now also depends on ‖η‖H3.5+δ . The energy equality
for two time derivatives of (v,R) reads

1

2

d

dt

∫
Ω

R(0)∂2
t ∂

ivβ∂2
t ∂ivβ +

1

2

d

dt

∫
Ω

R(0)

R
q̄′(R)∂2

t ∂
iR∂2

t ∂iR

+

∫
Γ1

∂2
t ∂

i(Jaαβq)∂2
t ∂ivβNα
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= −
∫

Ω

R(0)

R

(
∂2
t ∂

i(Raαβ∂αvβ)−Raαβ∂2
t ∂

i∂αvβ

)
∂2
t ∂

i
( q
R

)
+

∫
Ω

R(0)
(
∂2
t ∂

i
(
aαβ

q

R

)
− aαβ∂2

t ∂
i
( q
R

))
∂2
t ∂i∂αvβ

− 2

∫
Ω

R(0)
q̄′′(R)

R
∂3
t ∂

iR∂t∂iR∂tR−
∫

Ω

R(0)
q̄′′(R)

R
∂3
t ∂

iR∂iR∂
2
tR

−
∫

Ω

R(0)
q̄′′′(R)

R
∂3
t ∂

iR∂iR(∂tR)2

+
1

2

∫
Ω

R(0)∂t

(
q̄′(R)

R

)
∂2
t ∂

iR∂2
t ∂iR−

∫
∂iR(0)∂3

t v
β∂2

t ∂ivβ .

(71)

In order to derive (71), we multiply (6a) (with α replaced by β) by J , then differ-
entiate in t twice, differentiate in in xi once, and contract with ∂i∂

2
t vβ obtaining∫

∂2
t ∂

i(JR∂tv
β)∂2

t ∂ivβ +

∫
Ω

∂2
t ∂

i(Jaαβ∂αq)∂
2
t ∂ivβ = 0

from where, using (11),∫
R(0)∂2

t ∂
i(∂tv

β)∂2
t ∂ivβ +

∫
Ω

∂2
t ∂

i(Jaαβ∂αq)∂
2
t ∂ivβ = −

∫
∂iR(0)∂3

t v
β∂2

t ∂ivβ .

Integrating by parts in xα, we get

1

2

d

dt

∫
Ω

R(0)∂2
t ∂

ivβ∂2
t ∂ivβ +

∫
Γ1

∂2
t ∂

i(Jaαβq)∂2
t ∂ivβNα

=

∫
Ω

∂2
t ∂

i(Jaαβq)∂2
t ∂i∂αvβ ,−

∫
∂iR(0)∂3

t ∂tv
β∂2

t ∂ivβ

due to the boundary integral vanishing on Γ0. For the term on the right side, we
have ∫

Ω

∂2
t ∂

i(Jaαβq)∂2
t ∂α∂ivβ =

∫
Ω

R(0)∂2
t ∂

i
(
aαβ

q

R

)
∂2
t ∂i∂αvβ

=

∫
Ω

R(0)aαβ∂2
t ∂

i
( q
R

)
∂2
t ∂i∂αvβ

+

∫
Ω

R(0)
(
∂2
t ∂

i
(
aαβ

q

R

)
− aαβ∂2

t ∂
i
( q
R

))
∂2
t ∂i∂αvβ

=

∫
Ω

R(0)

R
∂2
t ∂

i(Raαβ∂αvβ)∂2
t ∂i

( q
R

)
−
∫

Ω

R(0)

R

(
∂2
t ∂

i(Raαβ∂αvβ)−Raαβ∂2
t ∂

i∂αvβ

)
∂2
t ∂i

( q
R

)
+

∫
Ω

R(0)
(
∂2
t ∂

i
(
aαβ

q

R

)
− aαβ∂2

t ∂
i
( q
R

))
∂2
t ∂i∂αvβ ,

from where, using (6b), ∫
Ω

∂2
t ∂

i(Jaαβq)∂2
t ∂α∂ivβ

= −
∫

Ω

R(0)

R
∂3
t ∂

iR∂2
t ∂i

( q
R

)
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−
∫

Ω

R(0)

R

(
∂2
t ∂

i(Raαβ∂αvβ)−Raαβ∂2
t ∂

i∂αvβ

)
∂2
t ∂i

( q
R

)
+

∫
Ω

R(0)
(
∂2
t ∂

i
(
aαβ

q

R

)
− aαβ∂2

t ∂
i
( q
R

))
∂2
t ∂i∂αvβ

= I1 + I2 + I3.

The terms I2 and I3 give the first and second terms on the right side of (71)
respectively. In order to treat

I1 = −
∫

Ω

R(0)

R
∂3
t ∂

iR∂2
t ∂iq̄,

we write

∂2
t ∂i(q̄(R)) = q̄′(R)∂2

t ∂iR+ 2q̄′′(R)∂t∂iR∂tR+ q̄′′(R)∂iR∂
2
tR+ q̄′′′(R)(∂tR)2∂iR

and thus

I1 = −
∫

Ω

R(0)
q̄′(R)

R
∂3
t ∂

iR∂2
t ∂iR− 2

∫
Ω

R(0)
q̄′′(R)

R
∂3
t ∂

iR∂t∂iR∂tR

−
∫

Ω

R(0)
q̄′′(R)

R
∂3
t ∂

iR∂iR∂
2
tR

−
∫

Ω

R(0)
q̄′′′(R)

R
∂3
t ∂

iR∂iR(∂tR)2

= I11 + I12 + I13 + I14.

The terms I12, I13, and I14 give the third, fourth, and fifth terms on the right side
of (71) respectively. For I11, we write

I11 = −1

2

d

dt

∫
Ω

R(0)
q̄′(R)

R
∂2
t ∂

iR∂2
t ∂iR+

1

2

∫
Ω

R(0)∂t

(
q̄′(R)

R

)
∂2
t ∂

iR∂2
t ∂iR. (72)

The first term on the right side leads to the second term on the left side of (71),
while the second term on the right side of (72) gives the sixth term in (71).

3.2.1. Treatment of the terms involving two time derivatives. The estimates for the
right side of (71) is the same as the estimates of the corresponding terms in (36)
and we thus do not provide full details. However, we still show how to treat the
most involved term

S =

∫ t

0

∫
Ω

∂2
t ∂

iAµα∂2
t ∂i∂µvαq.

As in (43), we have

S =

∫ t

0

∫
Ω

qεαλτ∂2∂t∂
ivλ∂3ητ∂1∂

2
t ∂ivα +

∫ t

0

∫
Ω

qεαλτ∂2ηλ∂3∂t∂
ivτ∂1∂

2
t ∂ivα

−
∫ t

0

∫
Ω

qεαλτ∂1∂t∂
ivλ∂3ητ∂2∂

2
t ∂ivα −

∫ t

0

∫
Ω

qεαλτ∂1ηλ∂3∂t∂
ivτ∂2∂

2
t ∂ivα

+

∫ t

0

∫
Ω

qεαλτ∂1∂t∂
ivλ∂2ητ∂3∂

2
t ∂ivα +

∫ t

0

∫
Ω

qεαλτ∂1ηλ∂2∂tvτ∂3∂
2
t ∂ivα + L3

= S1 + · · ·+ S6 + L3,
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where L3 equals∫ t

0

∫
Ω

q∂∂̄v∂v∂∂2
t ∂̄v =

∫
Ω

q∂∂̄v∂v∂∂̄∂tv|t0 −
∫ t

0

∫
Ω

∂tq∂∂̄v∂v∂∂̄∂tv

−
∫ t

0

∫
Ω

q∂∂̄∂tv∂v∂∂̄∂tv

≤ ‖q‖L∞‖∇v‖L∞‖∇∂̄v‖L2‖∇∂̄vt‖L2 + P0 + P.

We group the leading terms as before; the analog for (44) is

S1 + S3 =

∫ t

0

∫
Ω

qεαλτ∂2∂
i∂tvλ∂3ητ∂1∂

2
t ∂ivα +

∫ t

0

∫
Ω

qεαλτ∂1∂
2
t ∂

ivλ∂3ητ∂2∂t∂ivα

−
∫

Ω

qεαλτ∂1∂t∂
ivλ∂3ητ∂2∂t∂ivα + L4

=

∫ t

0

∫
Ω

qεαλτ∂2∂t∂
ivλ∂3ητ∂1∂

2
t ∂

ivα +

∫ t

0

∫
Ω

qελατ∂1∂
2
t ∂

ivα∂3ητ∂2∂t∂ivλ

−
∫

Ω

qεαλτ∂1∂t∂
ivλ∂3ητ∂2∂t∂ivα + L4

=

∫ t

0

∫
Ω

qεαλτ∂2∂t∂
ivλ∂3ητ∂1∂

2
t ∂ivα −

∫ t

0

∫
Ω

qεαλτ∂1∂
2
t ∂

ivα∂3ητ∂2∂t∂ivλ

−
∫

Ω

qεαλτ∂1∂t∂
ivλ∂3ητ∂2∂t∂ivα + L4

= 0−
∫

Ω

qεαλτ∂1∂t∂
ivλ∂3ητ∂2∂t∂ivα +

∫
Ω

qεαλτ∂1∂t∂
ivλ∂3ητ∂2∂t∂ivα|t=0 + L4.

The symbol L4 denotes the lower order terms, which are bounded below. The first
term on the far right side is treated as

S13,∂ = −
∫

Ω

qεαλτ∂1∂t∂
ivλ∂3ητ∂2∂t∂

ivα

= −
∫

Ω

qεαλ3∂1∂t∂
ivλ∂3η3∂2∂tvα −

∫
Ω

qεαλi∂1∂t∂
jvλ∂3ηi∂2∂t∂jvα.

The last integral is bounded by

ε̃‖∂t∂̄v‖21‖q‖L∞(Ω) ≤ Cε̃‖∂t∂̄v‖21
using η(0) = id and thus ∂3ηi = O(ε̃) for small time. Since ∂3η3 = 1 + O(ε̃), we
have

−
∫

Ω

qεαλ3∂1∂
2
t vλ∂3η3∂2∂

2
t vα = −

∫
Ω

qεαλ3∂1∂
2
t vλ∂2∂

2
t vα

−
∫

Ω

qεαλ3∂1∂
2
t vλO(ε̃)∂2∂

2
t vα.

The last integral is bounded by ε̃‖∂t∂̄v‖21‖q‖L∞(Ω). For the remaining integral, we
write

−
∫

Ω

qεαλ3∂1∂t∂
ivλ∂2∂t∂ivα = −

∫
Ω

(qε123∂1∂t∂
iv2∂2∂t∂iv1

+ qε213∂1∂t∂
iv1∂2∂t∂iv2)

= −
∫

Ω

(q∂1∂t∂
iv2∂2∂t∂iv1 − q∂1∂t∂

iv1∂2∂t∂iv2).
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We integrate by parts in both terms obtaining

−
∫

Ω

qεαλ3∂1∂t∂
ivλ∂2∂t∂ivα =

∫
Ω

(q∂2∂1∂t∂
iv2∂t∂iv1 − q∂t∂iv1∂1∂2∂t∂iv2)∫

Ω

(∂1∂t∂
iv2∂t∂iv1∂2q − ∂t∂iv1∂2∂t∂iv1∂1q)

= 0 +

∫
Ω

(∂1∂t∂
iv2∂t∂iv1∂2q − ∂t∂iv1∂2∂t∂iv1∂1q),

where the last integral obeys∫
Ω

(∂1∂t∂
iv2∂t∂iv1∂2q − ∂t∂iv1∂2∂t∂iv1∂1q) ≤C‖∂t∂iv‖1‖∂t∂iv‖0‖∂q‖L∞(Ω)

≤ ε̃‖∂t∂̄v‖21 + C‖∂t∂̄v‖20‖∂q‖2L∞(Ω).

The symbol L4 above consists of the sum of the terms∫
Ω

qεαλτ∂1∂t∂
ivλ∂3ητ∂2∂t∂ivα|t=0 ≤P0

and ∫ t

0

∫
Ω

εαλτ∂t

(
q∂1∂t∂

ivλ∂3ητ

)
∂2∂t∂ivα ≤

∫ t

0

P.

We thus conclude

S1 + S3 ≤ ε̃‖∂t∂̄v‖21‖q‖L∞(Ω) + C‖∂t∂̄v‖20‖∂q‖2L∞(Ω) + P0 +

∫ t

0

P.

As above, when treating S4 +S6 and S2 +S5 we obtain an extra boundary term
of the type ∫

Γ1

q∂t∂
iv2∂2∂t∂iv3,

which is bounded analogously to (46). In summary, we obtain

S ≤ ε̃‖Π∂2∂tv‖20,Γ1
+ ε̃‖∂t∂̄v‖21‖q‖L∞(Ω) + C‖∂t∂̄v‖20‖∂q‖2L∞(Ω) + ε̃‖∂t∂̄v‖21,Γ1

+ C‖q‖L∞‖∇v‖L∞‖∇∂tv‖0‖∇∂2
t v‖0 + ε̃‖∂t∂̄v‖21‖q‖2L∞(Γ1)

+ C‖∂t∂̄v‖20‖q‖2L∞(Γ1) + P0 +

∫ t

0

P.

3.3. Estimates at t = 0. In the above estimates we had several expressions in-
volving time derivatives of v and R evaluated at zero. Here, we show that these
quantities may all be estimated in terms of P0. More precisely, we show that

‖∂tv(0)‖2 + ‖∂tR(0)‖2 + ‖∂2
t v(0)‖1

+ ‖∂2
tR(0)‖1 + ‖∂3

t v(0)‖0 + ‖∂3
tR(0)‖0 ≤P0,

(73)

and

‖∂tv(0)‖2,Γ1 + ‖∂2
t v(0)‖1,Γ1 ≤P0. (74)

In light of (11), the equation (6a) may be written as

%0∂tv
α + Jaµαq′(R)∂µR = 0. (75)

From (75) and (6b) we get ‖∂tv(0)‖2 ≤ P0 and ‖∂tR(0)‖2 ≤ P0. Differentiating
(75) and (6b) in time and evaluating at zero gives ‖∂2

t v(0)‖1 ≤P0 and ‖∂2
tR(0)‖1 ≤
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P0. Taking another time derivative of (75) and (6b) and evaluating at zero produces
(73).

To obtain (74), we use (6a) to estimate terms in vi(0) and (6e) to estimate terms
in v3(0). Evaluating (6a) at t = 0 with α = i and recalling (9) gives

∂tv
i(0) = − 1

R(0)
δji∂jR(0), (76)

which implies ‖∂tvi(0)‖2,Γ1
≤ P0 since R(0) ∈ H3(Γ1). Note that the conclusion

would not be true if we had a ∂3R term, that is why α = 3 has to be treated
differently.

Remark 3. The estimate (76) shows why we require higher regularity for the
initial data on the boundary. We want ∂tv ∈ H2(Γ1) in order to apply the div-curl
estimates, as explained in Section 1.1. But this would not hold even at time zero
without the regularity assumption on the boundary.

Differentiating (6e) with α = 3 in time twice gives

∂2
t (∆gη

3) = − 1

σ

aµ3Nµ
|aTN |

q′(R)∂2
tR−

1

σ
∂t

(
aµ3Nµ
|aTN |

)
q′(R)∂tR

− 1

σ

aµ3Nµ
|aTN |

q′′(R)(∂tR)2 − 1

σ
∂2
t

(
aµ3Nµ
|aTN |

)
q(R).

(77)

But from (8),

∂2
t (∆gη

3)
∣∣
t=0

= δij∂2
ij∂tv

3(0) + ∂tg
ij(0)∂2

ijv
3(0)− δij∂kv3(0)∂2

ijvk(0)

= δij∂2
ij∂tv

3(0) + F0,
(78)

where in light of our assumptions ‖F0‖1,Γ1
≤ P0. From (6b) we obtain ‖∂t

R(0)‖1.5,Γ1
≤P0 and ‖∂2

tR(0)‖0.5,Γ1
≤P0.

Using (6c) we find

∂t

(
aµ3Nµ
|aTN |

)
= − 1

|aTN |3

|aTN |2a3γ∂µvγa
µ3 + aσ3Nσ

3∑
β=1

a3βa3γ∂µvγa
µβ

 .

We now differentiate this expression in time again, use (6c) once more, and evaluate
it at zero. Combined with the previous estimates and (77) and (78), we conclude
that, on Γ1,

δij∂2
ijv

3(0) = F1,

where F1 satisfies the estimate ‖F1‖0.5,Γ1
≤ P0. By the elliptic theory, we then

obtain ‖F1‖2.5,Γ1 ≤ P0, which combined with the previous estimate for ∂tv
i(0)

gives ‖∂tv(0)‖2,Γ1 ≤P0.
The estimate for ∂2

t v is obtained in a similar way, upon differentiating one more
time in time and proceeding as above. We omit the details, but explain where the
assumption on (∆ div v0)�Γ1 is used. Proceeding as just explained, we find (writing
∼ to mean “up to lower order”) δij∂2

ij∂
2
t v

3(0) ∼ ∂3
tR(0). But from (6a) and (6b)

we obtain ∂3
tR(0) ∼ ∆ div v(0), which requires (∆ div v(0))�Γ1 in H−1(Γ1) in order

to produce ∂2
t v

3(0) in H1(Γ1) from the elliptic estimates.
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4. Estimates for the curl. In this section, we obtain estimates for the curl of v
and its time derivatives. First, we write (30) as

εαβγ∂βvγ = εαβγ∂βv
µ(δγµ − ∂γηµ) + ωα0 , (79)

from which we obtain

εαβγ∂β∂tvγ = εαβγ∂β∂tv
µ(δγµ − ∂γηµ), (80)

where we used εαβγ∂βv
µ∂γvµ = 0 and

εαβγ∂β∂
2
t vγ = εαβγ∂β∂

2
t v
µ(δγµ − ∂γηµ)− εαβγ∂β∂tvµ∂γvµ. (81)

Since

δγµ − ∂γηµ = −
∫ t

0

∂γvµ,

the term δγµ−∂γηµ can be made arbitrarily small for small time. Hence, the relevant
norm of the terms proportional to δγµ − ∂γηµ on the right-hand side of (79), (80),
and (81) can be absorbed into the left-hand side. We then have to estimate the
remaining terms on the right-hand side.

From (79) we immediately get

‖ curl v‖22 .P0 +

∫ t

0

P, (82)

where we used Jensen’s inequality.
Note that (80) gives

‖ curl ∂tv‖21 . ε̃‖R‖23 + P0 + P

∫ t

0

P, (83)

while (81) implies

‖ curl ∂2
t v‖20 . ε̃(‖v‖23 + ‖R‖23) + P0 + P

∫ t

0

P. (84)

5. Conclusion. The main goal of this section is to provide the necessary ingredi-
ents for the div-curl estimate and to show the concluding Gronwall argument.

5.1. Comparison between Π∂at v and ∂at v
3. In order to use div-curl estimates,

we first show that our estimates for Π∂at v are equivalent, modulo lower order terms,
to estimates for ∂at v

3. Recalling (14), for any vector field X we have

(Π∂X)3 = Π3
λ∂X

λ = ∂X3 − gkl∂kη3∂lηλ∂X
λ. (85)

Using X = ∂2
t v and estimating (85) in the H−0.5(Γ1) norm yields

‖∂∂2
t v

3‖2−0.5,Γ1
. ‖Π∂∂2

t v‖20,Γ1
+ ‖gkl∂kη3∂lηλ‖21.5,Γ1

‖∂2
t v
λ‖20.5,Γ1

.

We add ‖∂2
t v

3‖2−0.5,Γ1
to both sides, use the fact that ‖∂2

t v
3‖2−0.5,Γ1

+‖∂∂2
t v

3‖2−0.5,Γ1

is equivalent to ‖∂2
t v

3‖20.5,Γ1
, invoke ∂kη

3 =
∫ 3

0
∂kv

3, which holds since η3(0) = 1,
to conclude

‖∂2
t v

3‖20.5,Γ1
. ε̃‖∂2

t v‖21 + ‖Π∂∂2
t v‖20,Γ1

+ P0 + P

∫ t

0

P, (86)

where the term ‖∂2
t v

3‖2−0.5,Γ1
that appeared on the right-hand side was estimated

using interpolation inequality, Young’s inequality, and the fundamental theorem of
calculus.
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Similarly, using (85) with X = ∂∂tv, estimating in the H−0.5(Γ1) norm and
adding ‖∂tv3‖2−0.5 + ‖∂∂tv3‖2−0.5,Γ1

to both sides gives

‖∂tv3‖21.5,Γ1
. ε̃‖∂tv‖22 + ‖Π∂2∂tv‖20,Γ1

+ P0 + P

∫ t

0

P. (87)

We also need an estimate for ‖v3‖2.5,Γ1
. This follows directly from the boundary

condition, as we now show. Differentiating (6e) in time and setting α = 3 yields
√
ggij∂2

ijv
3 −√ggijΓkij∂kv3 =− ∂t(

√
ggij)∂2

ijη
3 − ∂t(

√
ggijΓkij)∂kη

3

− 1

σ
∂ta

µ3Nµq −
1

σ
aµσNµ∂tq on Γ1

where we also used (24).
In light of Proposition 1, we have

‖gij‖2.5,Γ1 ≤ C

and

‖Γkij‖1.5,Γ1
≤ C.

Thus, by the elliptic estimates for operators with coefficients bounded in Sobolev
norms (see [29, 44]) we have

‖v3‖2.5,Γ1
≤C‖∂t(

√
ggij)∂2

ijη
3‖0.5,Γ1 + C‖∂t(

√
ggijΓkij)∂kη

3‖0.5,Γ1

+ C‖∂taµ3Nµq‖0.5,Γ1
+ C‖aµσNµ∂tq‖0.5,Γ1

,

where C depends on the bounds for ‖gij‖2.5,Γ1
and ‖Γkij‖1.5,Γ1

stated above. The
right-hand side is now estimated in a routine fashion, and we conclude

‖v3‖22.5,Γ1
. ε̃(‖v‖23 + ‖R‖23) + P0 + P

∫ t

0

P. (88)

5.2. Gronwall-type argument via barriers. We shall show that our estimates
imply

N (t) ≤ C0P (N (0)) + P (N (t))

∫ t

0

P (N (s)) ds (89)

where P is now a fixed polynomial and C0 is a fixed positive constant. The in-
equality (89) implies, via a routine continuity argument that we now sketch for
the reader’s convenience, the boundedness of N (t) on a positive interval of time
(cf. [67, Section 8] where a similar inequality was treated). Assume, without loss of
generality, that P is strictly positive and non-decreasing, and denote M = N (0).
Let

T0 = inf
{
t ≥ 0 : N (t) ≥ 2C0P (M) = M1

}
∈ (0,∞].

If T0 =∞, then N (t) ≤M1 for all t ≥ 0. Otherwise, T0 ∈ (0,∞), and thus

2C0P (M) = N (T0) ≤ C0P (M) + P (M1)

∫ T0

0

P (M1) ds = C0P (M) + T0P (M1)2,

from where T0 ≥ C0P (M)/P (M1)2. We thus conclude that

N (t) ≤M1, t ∈
[
0,
C0P (M)

P (M1)2

]
,

and the local boundedness is established.
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5.3. Closing the estimates. It remains to establish (89). Recall the standard
div-curl estimate

‖X‖s . ‖divX‖s−1 + ‖ curlX‖s−1 + ‖X ·N‖∂,s−0.5 + ‖X‖0. (90)

From Sections 3, 4, and 5.1, we have estimates for the curl and normal component
of v and their time derivatives, as well as estimates for ‖∂3

t v‖0 and ‖∂3
tR‖0. In order

to apply (90), we need to estimate the divergence of v and its time derivatives.
Taking two time derivatives of the density equation (6b) leads to

∂α∂2
t vα = (δµα − aµα)∂µ∂

2
t vα −

1

R

(
∂2
t (Raµα∂µvα)−Raµα∂µ∂2

t vα

)
− 1

R
∂3
tR.

Taking the L2 norm of both sides,

‖∂α∂2
t vα‖0

. ‖(δµα − aµα)∂µ∂
2
t vα‖0 +

∥∥∥∂2
t (Raµα∂µvα)−Raµα∂µ∂2

t vα

∥∥∥
0

+ ‖∂3
tR‖0,

where we used Lemma 2.1(x). By expanding the derivatives in the second term and
using Lemma 2.1(ix) we get

‖div ∂2
t v‖0 ≤ ε̃‖∂2

t v‖1 + C‖∂2
t (Raµα)∂µvα‖0 + C‖∂t(Raµα)∂t∂µvα‖0 + C‖∂3

tR‖0.

Squaring and using (35) gives

‖div ∂2
t v‖20 ≤ ε̃N + P0 + P

∫ t

0

P. (91)

Now, in (90), taking X = ∂2
t v, s = 1, and squaring, recalling that v ·N = 0 on

Γ0 and v ·N = v3 on Γ1, invoking (84), (91), (86), and (35), produces

‖∂2
t v‖21 . ε̃N + P0 + P

∫ t

0

P, (92)

where the lower order term ‖∂2
t v‖0 was estimated in a standard fashion.

We now move to estimate ∂2
tR. First, write (6a) as

R∂tv
α + q′(R)aµα∂µR = 0. (93)

Taking ∂2
t of (93) gives

∂α∂2
tR

L
= (δµα − aµα)∂µ∂

2
tR−

R

q′(R)
∂3
t v
α,

where we recall Notation 8. Taking α = 1, 2, 3 and invoking (35) produces

‖∂2
tR‖21 . ε̃N + P0 + P

∫ t

0

P, (94)

where we also used (12).
Next we estimate ‖div ∂tv‖1. From (6b) we have

∂α∂tvα = (δµα − aµα)∂µ∂tvα −
1

R

(
∂t(Ra

µα∂µvα)−Raµα∂µ∂tvα
)
− 1

R
∂2
tR,

from where

‖∂t div v‖1 ≤ ‖δµα − aµα‖2‖∂µ∂tvα‖1

+

∥∥∥∥ 1

R

(
∂t(Ra

µα∂µvα)−Raµα∂µ∂tvα
)∥∥∥∥

1

+

∥∥∥∥ 1

R
∂2
tR

∥∥∥∥
1

,

leading to
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‖div ∂tv‖21 ≤ ε̃‖∂tv‖22 + C‖∂2
tR‖21 + P0 +

∫ t

0

P. (95)

Setting X = ∂tv, s = 2 and squaring (90), invoking (83), (95), (87), (70), and (94)
produces

‖∂tv‖22 . ε̃N + P0 + P

∫ t

0

P. (96)

From (93) we may now estimate ∂tR in terms of ∂2
t v, so (96) gives

‖∂tR‖22 . ε̃N + P0 + P

∫ t

0

P. (97)

Finally, to bound ‖div v‖2, note that

∂αvα = (δµα − aµα)∂µvα −
1

R
∂tR

whence

‖div v‖2 ≤ ‖δµα − aµα‖2‖∂µvα‖2 +

∥∥∥∥ 1

R
∂tR

∥∥∥∥
2

,

so that

‖div v‖2 ≤ ε̃‖v‖3 + C‖∂tR‖2 + P0 +

∫ t

0

P. (98)

In the same spirit as above, choosing now X = v, s = 2 and squaring (90), invoking
(82), (98), (88), and (97) leads to

‖v‖23 . ε̃N + P0 + P

∫ t

0

P. (99)

Similarly to the foregoing, (93) gives an estimate for R in light of the estimate (96)
for ∂tv, so

‖R‖23 . ε̃N + P0 + P

∫ t

0

P. (100)

Estimates (92), (96), (99), (94), (97), (100), (35), and (70) now imply

N . ε̃N + P0 + P

∫ t

0

P. (101)

Note that P inside the integral also depends on ‖η‖H3.5+δ . Using successive ap-
plications of Young’s inequality, we can trade the polynomial expressions P by
polynomials in N ; choosing ε̃ small enough produces (89). Now, combining (29),
(31), and (34) with the div-curl inequality (90) provides a Gronwall inequality for
‖η‖H3.5+δ . Coupling it with (101) then concludes the proof of Theorem 1.1.
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Basel, 2007, 229–246, http://dx.doi.org/10.1007/978-3-7643-7742-7_13.

[94] Y. Trakhinin, Local existence for the free boundary problem for nonrelativistic and relativis-

tic compressible Euler equations with a vacuum boundary condition, Comm. Pure Appl.

Math., 62 (2009), 1551–1594, http://dx.doi.org/10.1002/cpa.20282.
[95] S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D, Invent.

Math., 130 (1997), 39–72.
[96] S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer.

Math. Soc., 12 (1999), 445–495.

[97] S. Wu, Almost global wellposedness of the 2-D full water wave problem, Invent. Math., 177

(2009), 45–135.
[98] S. Wu, Global wellposedness of the 3-D full water wave problem, Invent. Math., 184 (2011),

125–220.
[99] H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite

depth, Publ. Res. Inst. Math. Sci., 18 (1982), 49–96.

[100] H. Yosihara, Capillary-gravity waves for an incompressible ideal fluid, J. Math. Kyoto Univ.,
23 (1983), 649–694.

Received April 2018; Revised January 2019

E-mail address: marcelo.disconzi@vanderbilt.edu

E-mail address: kukavica@usc.edu

http://www.ams.org/mathscinet-getitem?mr=MR2543328&return=pdf
http://dx.doi.org/10.1142/S021989160900185X
http://dx.doi.org/10.1142/S021989160900185X
http://dx.doi.org/10.1007/s40818-018-0057-9
http://arxiv.org/pdf/1701.03987
http://www.ams.org/mathscinet-getitem?mr=MR882389&return=pdf
http://dx.doi.org/10.1016/S0168-2024(08)70142-5
http://dx.doi.org/10.1016/S0168-2024(08)70142-5
http://www.ams.org/mathscinet-getitem?mr=MR0609882&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR861489&return=pdf
http://dx.doi.org/10.1002/cpa.3160390712
http://dx.doi.org/10.1002/cpa.3160390712
http://www.ams.org/mathscinet-getitem?mr=MR1946720&return=pdf
http://dx.doi.org/10.1142/S0218202502002306
http://dx.doi.org/10.1142/S0218202502002306
http://www.ams.org/mathscinet-getitem?mr=MR2002401&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR3524106&return=pdf
http://dx.doi.org/10.1007/978-3-319-27698-4
http://dx.doi.org/10.1007/978-3-319-27698-4
http://dx.doi.org/10.1007/978-3-319-27698-4
http://www.ams.org/mathscinet-getitem?mr=MR2812146&return=pdf
http://dx.doi.org/10.1142/S021989161100241X
http://dx.doi.org/10.1142/S021989161100241X
http://www.ams.org/mathscinet-getitem?mr=MR0431918&return=pdf
http://dx.doi.org/10.1512/iumj.1976.25.25085
http://dx.doi.org/10.1512/iumj.1976.25.25085
http://www.ams.org/mathscinet-getitem?mr=MR528692&return=pdf
http://dx.doi.org/10.1016/0022-247X(79)90028-3
http://dx.doi.org/10.1016/0022-247X(79)90028-3
http://dx.doi.org/10.1016/0022-247X(79)90028-3
http://dx.doi.org/10.1016/0022-247X(79)90028-3
http://www.ams.org/mathscinet-getitem?mr=MR2172858&return=pdf
http://dx.doi.org/10.1016/j.anihpc.2004.11.001
http://dx.doi.org/10.1016/j.anihpc.2004.11.001
http://www.ams.org/mathscinet-getitem?mr=MR2388661&return=pdf
http://dx.doi.org/10.1002/cpa.20213
http://dx.doi.org/10.1002/cpa.20213
http://www.ams.org/mathscinet-getitem?mr=MR2763036&return=pdf
http://dx.doi.org/10.1007/s00205-010-0335-5
http://www.ams.org/mathscinet-getitem?mr=MR0403400&return=pdf
http://dx.doi.org/10.1512/iumj.1976.25.25023
http://www.ams.org/mathscinet-getitem?mr=MR2187618&return=pdf
http://dx.doi.org/10.1007/s00205-005-0364-7
http://dx.doi.org/10.1007/s00205-005-0364-7
http://dx.doi.org/10.1007/s00205-005-0364-7
http://dx.doi.org/10.1007/s00205-005-0364-7
http://www.ams.org/mathscinet-getitem?mr=MR2331342&return=pdf
http://dx.doi.org/10.1007/978-3-7643-7742-7_13
http://dx.doi.org/10.1007/978-3-7643-7742-7_13
http://dx.doi.org/10.1007/978-3-7643-7742-7_13
http://www.ams.org/mathscinet-getitem?mr=MR2560044&return=pdf
http://dx.doi.org/10.1002/cpa.20282
http://dx.doi.org/10.1002/cpa.20282
http://dx.doi.org/10.1002/cpa.20282
http://www.ams.org/mathscinet-getitem?mr=MR1471885&return=pdf
http://dx.doi.org/10.1007/s002220050177
http://www.ams.org/mathscinet-getitem?mr=MR1641609&return=pdf
http://dx.doi.org/10.1090/S0894-0347-99-00290-8
http://www.ams.org/mathscinet-getitem?mr=MR2507638&return=pdf
http://dx.doi.org/10.1007/s00222-009-0176-8
http://www.ams.org/mathscinet-getitem?mr=MR2782254&return=pdf
http://dx.doi.org/10.1007/s00222-010-0288-1
http://www.ams.org/mathscinet-getitem?mr=MR660822&return=pdf
http://dx.doi.org/10.2977/prims/1195184016
http://dx.doi.org/10.2977/prims/1195184016
http://www.ams.org/mathscinet-getitem?mr=MR728155&return=pdf
http://dx.doi.org/10.1215/kjm/1250521429
mailto:marcelo.disconzi@vanderbilt.edu
mailto:kukavica@usc.edu

	1. Introduction
	1.1. Strategy and organization of the paper

	2. Auxiliary results
	3. Energy estimates
	3.1. Three time derivatives
	3.2. Two time derivatives
	3.3. Estimates at t=0

	4. Estimates for the curl
	5. Conclusion
	5.1. Comparison between ta v and ta v3
	5.2. Gronwall-type argument via barriers
	5.3. Closing the estimates

	REFERENCES

