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Abstract We study the set of Davis (marginal utility-based) prices of a financial
derivative in the case where the investor has a non-replicable random endowment.
We give a new characterisation of the set of all such prices, and provide an example
showing that even in the simplest of settings – such as Samuelson’s geometric Brown-
ian motion model –, the interval of Davis prices is often a non-degenerate subinterval
of the set of all no-arbitrage prices. This is in stark contrast to the case with a con-
stant or replicable endowment where non-uniqueness of Davis prices is exceptional.
We provide formulas for the endpoints of these intervals and illustrate the theory with
several examples.

Dedicated to the memory of Mark Davis.

The authors would like to thank Martin Schweizer, Pietro Siorpaes, Mihai Sîrbu, Kim Weston, our
Co-Editor Alex Schied, and our anonymous AE and reviewers for numerous and helpful suggestions.
During the preparation of this work, the first author has been supported by the National Science
Foundation under Grant No. DMS-1411809 (2014–2017) and Grant No. DMS-1812679
(2018–2021), the second author has been supported by the Swiss National Foundation through the
grant SNF 200021_153555 and by the Swiss Finance Institute, and the third author has been
supported by the National Science Foundation under Grant No. DMS-1107465 (2012–2017), Grant
No. DMS-1516165 (2015–2018), and Grant No. DMS-1815017 (2018–2021). Any opinions,
findings and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation (NSF).

B K. Larsen
KL756@math.rutgers.edu

H.M. Soner
soner@princeton.edu

G. Žitković
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1 Introduction

We consider an investor trading in a frictionless but incomplete financial market with
stock price dynamics modelled by a locally bounded semimartingale S. The investor
receives a random endowment B > 0 at a future time T > 0, and we seek to price a
contingent claim with payoff ϕ at time T . In many cases of interest, the interval of
arbitrage-free prices of ϕ takes on an extreme form: it is open and its endpoints are
given by the (essential) infimum and supremum of ϕ. To reduce the size of this inter-
val – ideally to a single point –, additional input is needed. Classically, this comes via
utility theory and leads to the notion of indifference (reservation) prices. Its proper
home within microeconomic theory is in the context of Hicksian demand theory (see
e.g. Hicks [17, Chap. 3.D] and Mas-Colell et al. [31, Sect. 3.E]). We refer the reader
to Carmona [4, Chap. 2] and Föllmer and Schied [15, Chap. 8] for further general
information and thorough historical overviews of various ways to price unspanned
payoffs in incomplete models (in Appendix A, we discuss several related derivative
pricing methods including reservation prices). For example, Cochrane and Saá Re-
quejo [6] and the extension Björk and Slinko [3] use so-called good deal bounds
based on the Hansen–Jagannathan bound for the Sharpe ratio to reduce the width of
the interval of arbitrage-free prices.

Reservation prices often come with a high computational overhead which reduces
their tractability and applicability (see e.g. Munk [32]). However, when |ϕ| � |B|,
asymptotic analysis can be used to simplify the problem. A formal linearisation of
the indifference pricing equation (A.3) in Appendix A around q = 0 produces the
derivative pricing method introduced into mathematical finance by Mark Davis in
[9]; it goes by the names Davis pricing and marginal utility-based pricing.

Let us briefly and informally describe the conditional version of Davis’ construc-
tion, which is the focus of this paper. Its main ingredients are a utility function
U : (0,∞) → R, a random endowment B , and the claim with payoff ϕ to be priced.
Consider an agent who receives the endowment B at a future time T > 0, but also has
access to any quantity q of the claim ϕ for the unit price p, as well as to a financial
market with a zero-interest bond and a risky asset with price process S. In an effort
to invest optimally in the resulting market, the agent faces the optimisation problem

sup
q∈R

sup
π∈A

E

[
U

(
q(ϕ − p) + B +

∫ T

0
πtdSt

)]
(1.1)

with π in a suitable set A of admissible trading strategies (defined in Sect. 2 below).
A constant p ∈ R is then called a conditional Davis price of ϕ (conditional on the
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presence of the random endowment B) if the (first) supremum in (1.1) is attained at
q = 0. In other words, p is a Davis price if the agent is indifferent between being able
to buy or sell any quantity of ϕ at unit price p, and not having access to trade ϕ at all.

Conditional Davis prices as described above can also be seen as a variation of the
classical case where the random endowment B is replaced by a constant initial wealth
x > 0, but where the utility function is no longer deterministic. We could consider the
random endowment B as a part of the preference structure of the agent, i.e., think of
x �→ U(x + B(ω)) as a stochastic utility function and view E[U(qϕ + B)] as the
expected utility of the position qϕ.

As mentioned above, the defining equation for Davis prices can be seen as a lin-
earised version of the defining equation for indifference prices. In Appendix A below,
we show that the extremal solutions to the linearised equation provide good approxi-
mations to the solutions of the indifference-pricing equation (as well as other related
derivative prices). This shows that conditional Davis prices can be seen as a limit
of several standard utility-based pricing concepts. We expand more on this idea in
Appendix A, but we note that this interpretation gains additional traction in the con-
ditional case with an unspanned endowment B . Because the random endowment B

is the totality of the investor’s endowed holdings, B is typically orders of magnitude
larger than the size of the claim’s payoff ϕ.

Due to the typical strict concavity of utility functions, one expects in (1.1) at least
some non-trivial demand for ϕ (q > 0) at prices p′ < p and at least some non-trivial
supply (q < 0) when p′ > p; this heuristic observation leads to a generic expectation
of uniqueness of Davis prices. While uniqueness of Davis prices holds for utilities
defined on the entire real line,1 it can fail for utilities defined only on (0,∞). The-
orem 3.1(ii) in Hugonnier et al. [20] gives an example of an incomplete model, a
constant endowment B ≡ x > 0 and a payoff ϕ with a non-trivial interval of Davis
prices. This is often treated as a rare pathological case as the construction requires so-
phisticated functional-theoretic machinery, and a hope remained that “most” relevant
models do not exhibit such behaviour and that Davis pricing can still be used to assign
a single price to any “reasonable” payoff ϕ. As we show in the present paper, even
such a hope is unfounded: We show that in Samuelson’s geometric Brownian motion
model with constant coefficients, there exists a whole spectrum of explicit random en-
dowments B > 0 and payoffs ϕ with a non-trivial and explicitly computable interval
of Davis prices (and both B and ϕ are bounded random variables).

Even though the concept of a Davis price has been around for several decades,
previous studies do not cover the conditional case where the endowment B > 0 is
unspanned beyond some special cases and under strong regularity conditions. For ex-
ample, Hugonnier and Kramkov [19] define Davis prices in their Remark 1, but only
investigate the underlying utility maximisation problem; Hugonnier et al. [20] study
Davis prices when the random endowment B ≡ x > 0 is constant; and Kramkov and
Sîrbu [24] study asymptotic expansions under a stringent decay assumption which
forces Davis prices to be unique (the decay condition is from [20, Theorem 3.1(i)]).

1The theory of Davis pricing is simpler for utility functions, such as the exponential utility, defined on R.
For example, in any such model, Davis prices are unique because Bellini and Frittelli [2] have shown that
the dual utility minimiser is a countably additive probability measure.
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In Siorpaes [34], non-uniqueness of Davis prices is established for “extreme” random
endowments B (a class we rule out by assuming that B ∈ L

∞++).
There exist natural conditions on the market model (see Kramkov and Weston

[25]) such that every contingent claim with a bounded payoff ϕ admits a unique Davis
price. However, these conditions apply only in the case with spanned endowment
and, as we shall see, no longer guarantee uniqueness in the presence of a general
unspanned random endowment B .

The goal of the present paper is to develop the theory of Davis pricing in the condi-
tional case with a bounded random endowment B > 0 described above under minimal
assumptions, and to look into uniqueness issues such as the one raised in [20].

Assuming throughout that the utility function U is defined only on the positive
half-line, our main results fall into several categories:

1) For an arbitrary bounded endowment B , we give a new, simple and natural
characterisation (Theorem 3.5) of Davis prices of the payoff ϕ ∈ L

∞(P) as the set

of all numbers of the form 〈ϕ, Q̂

Q̂[�] 〉 ∈ R, where Q̂ ∈ ba(P) ranges through the set

of finitely additive minimisers of the associated dual utility problem (as introduced
in Cvitanić et al. [7]). Here 〈·, ·〉 denotes the dual pairing between L

∞(P) and its
topological dual ba(P) := (L∞(P))∗.

2) We give a whole class of non-pathological non-uniqueness examples (Exam-
ple 6.3) of Davis prices in the conditional case. In fact, we show that the interval
of Davis prices is non-trivial in the standard Samuelson–Black–Scholes model and
with any utility function in the power (CRRA) family, as soon as both B and ϕ are
non-constant, bounded and uniformly Lipschitz (W 1,∞) functions of an independent
Brownian motion.

3) As is well known, questions of uniqueness, existence and computability of
Davis prices are intimately linked to differentiability properties of the value function
U given by

U(X) := sup
π∈A

E

[
U

(
X +

∫ T

0
πt dSt

)]
. (1.2)

In this context, we give an example (Example 4.3) showing that this function need
not be differentiable, even in “constant” ϕ-directions, and even when U(ξ) := log ξ ,
ξ > 0. More precisely, the restriction U(B + ·) to the set R (identified with the set of
deterministic ϕ) can fail to be differentiable at 0, which is in the interior of its effective
domain. This is in contrast to Kramkov and Schachermayer [23, Theorem 2.2] which
ensures differentiability of such a restriction when there is no random endowment
(B ≡ 0). The same example also serves as a counterexample to a statement in [7],
which is further discussed in the Erratum by Cvitanić et al. [8].

4) On the constructive side, we show that under a mild growth condition on the
utility function U(ξ) around ξ = 0, one-sided directional derivatives of U exist on
L

∞++ and can be characterised as values of a new linear stochastic control problem
(Proposition 4.7). We solve this problem explicitly under the additional assumption of
minimal (unique) superreplicability from Larsen et al. [28] placed on B and ϕ. This
gives us explicit formulas for the two endpoints of the interval of Davis prices. As
an offshoot, we show additionally that U is Gâteaux-differentiable at each minimally
superreplicable B .
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5) We show in Appendix A that the endpoints of the set of Davis prices of the
payoff ϕ correspond to the positive and negative small-quantity limits of indifference
prices (as well as certainty equivalents and marginal utility-based prices). This univer-
sal limiting property holds even when Davis prices are not unique and thereby gives
an additional economic justification for the use of Davis pricing in our conditional
setting.

The paper is organised as follows. The model is described, the terminology set,
standing assumptions are imposed and the preliminary analysis of our central util-
ity maximisation problem is performed in Sect. 2. In Sect. 3, we define conditional
Davis prices, characterise them from the dual point of view and lay out some of the
first consequences of this characterisation. Directional derivatives of the primal utility
maximisation problem are studied in Sect. 4, which also contains the explicit example
of non-smoothness mentioned in 3) above. Section 4 also gives a characterisation of
the directional derivative in terms of a linear stochastic control problem. Section 5 re-
calls the definition of unique superreplicability from [28] (now called minimal super-
replicability) and provides a family of examples of minimally superreplicable claims.
The main result of Sect. 5 gives an explicit expression for the directional derivative
of the utility maximisation value function under the minimal superreplicability con-
dition. This result is subsequently used in Sect. 6 to give explicit formulas for the
interval of conditional Davis prices in a general setting. We use these formulas in
two examples, one of which supports our claim that non-uniqueness of conditional
Davis prices occurs even in the simplest of settings. Appendix A discusses some pop-
ular utility-based pricing methods and relates them to conditional Davis prices in the
small-quantity limit.

2 The setup and assumptions

2.1 Notation

We fix a filtered probability space (�,F , (Ft )t∈[0,T ],P) with a finite time horizon
T ∈ (0,∞); L2 denotes the family of all progressively measurable processes π with∫ T

0 |πu|2 du < ∞ a.s. For a semimartingale S, L(S) denotes the set of all predictable
S-integrable processes, and the stochastic integral of π ∈ L(S) with respect to S is
denoted by either π · S or

∫ ·
0 πu dSu. The stochastic exponential of a semimartingale

Y is denoted by E(Y ).
The subspaces of various L

p-spaces consisting of nonnegative random variables
(or sets of set functions taking nonnegative values) get a subscript +, while L

∞++
denotes the family of all nonnegative essentially bounded random variables which
are essentially bounded away from 0, i.e., L∞++ := ⋃

x>0(x + L
∞+ ). The space of

finite finitely additive set functions on (�,F), absolutely continuous with respect
to P, is denoted by ba(P) (or simply ba if no confusion can arise). The space of
finite σ -additive measures absolutely continuous with respect to P is often iden-
tified with L

1+, while the space ba is identified with the topological dual (L∞)∗
of L

∞. For μ ∈ ba+, μr denotes the regular part of μ, i.e, the (set-wise) largest
σ -additive measure dominated by μ. The singular part μ − μr is denoted by μs ,
making μ = μr + μs the Yosida–Hewitt decomposition of μ.
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For a concave (convex) function u, ∂u denotes its superdifferential (subdifferen-
tial), while ∂x+u and ∂x−u denote the right and left derivative, respectively, in the
argument x.

2.2 The market model

Let (�,F , (Ft )t∈[0,T ],P) be a filtered probability space which satisfies the usual
conditions and (St )t∈[0,T ] a locally bounded semimartingale; M denotes the set of
all P-equivalent (countably additive) probability measures Q on F for which S is a
Q-local martingale.

Standing Assumption 2.1 (NFLVR) M �= ∅.

Remark 2.2 We assume that the asset price process S is locally bounded and pos-
tulate the existence of a local martingale measure. While it is possible to relax our
setting to the non-locally-bounded case (as used in e.g. [7]), it is not possible to relax
Assumption 2.1 to the existence of a supermartingale deflator only. Indeed, the pres-
ence of a non-replicable endowment B makes the admissibility class which produces
only nonnegative wealth processes too small to host an optimiser. This delicate issue
is discussed and illustrated in Larsen [27, Example 2.2]. To keep the focus of the cur-
rent paper on the issues directly related to conditional Davis pricing, we have opted
for a set of assumptions which is slightly stronger than absolutely necessary.

Standing Assumption 2.3 B ∈ L
∞++ and ϕ ∈ L

∞.

Remark 2.4 In the spirit of Remark 2.2 above, Standing Assumption 2.3 may be
replaced by only requiring B and ϕ to be bounded in absolute value by a constant plus
the outcome of a maximal wealth process. We do not implement that generalisation,
but simply point the reader to [19, Lemma 1] for details and terminology.

2.3 Gains and admissibility

The investor’s gains process has the dynamics

(π · S)t :=
∫ t

0
πu dSu, t ∈ [0, T ],

for some π ∈ L(S). We call π ∈ L(S) admissible if the gains process is uniformly
bounded below by a constant, in which case we write π ∈ A. The set of terminal
outcomes (gains) of admissibly strategies is denoted by K, i.e., we define

K := {(π · S)T : π ∈A}.

2.4 The primal problem

While all the necessary notation is defined below, we refer the reader to [23] and [7]
for a wider context of and further references to the utility maximisation theory within
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mathematical finance. Let U be a utility function on (0,∞) — a strictly concave,
strictly increasing and continuously differentiable function with U ′(0+) = +∞ and
U ′(+∞) = 0. When necessary, we extend the domain of U artificially to R by setting
U(x) = −∞ for x < 0 and U(0) = infx>0 U(x). Finally, U is said to be reasonably
elastic (as defined in [23]) if

lim sup
x→∞

xU ′(x)

U(x)
< 1.

Even though we need this for some of our results, we do not impose the condition of
reasonable elasticity from the start.

For a random variable X ∈ L
∞++, we set

U(X) := sup
G∈K

E[U(X + G)], (2.1)

where we use the convention that E[U(X)] = −∞ if E[U(X)−] = +∞. We note
that this definition is a restatement of (1.2) in the introduction. For X ∈ L

∞++, we
have U(X) ≥ U(essinfX) > −∞, which implies that U is (−∞,∞]-valued on L

∞++.
In (2.5) below, we impose a dual properness assumption which among other things
ensures that U is finitely valued on L

∞++.

2.5 The dual utility maximisation problem

The set M of equivalent local martingale measures can be identified – via Radon–
Nikodým derivatives with respect to P – with a subset of L1+(P) and embedded natu-

rally into ba(P) = L
∞(P)∗ ⊇ L

1(P). We define M∗
as the weak∗-closure of M and

D ⊆ ba+(P) as the family of all yQ, where y ∈ [0,∞) are constants and Q ∈ M∗
.

For B ∈ L
∞++, the dual utility functional can now be defined by

VB(μ) := sup
X∈L∞

(
E[U(B + X)] − 〈μ,X〉), μ ∈ ba(P).

In particular, VB is convex, lower weak∗-semicontinuous on ba(P) and bounded from
below by E[U(B)] ∈ R. For the remainder of the paper, we impose a properness
assumption. While not the weakest possible in our setting, this allows us to deal
swiftly, and yet with only a minor loss of generality, with several technical points that
are not central to the message of the paper.

Standing Assumption 2.5 (Properness) There exist y0 ∈ (0,∞) and Q0 ∈ M such
that μ0 := y0Q0 satisfies

VB(μ0) < ∞. (2.2)

Thanks to a minimal modification of Owen and Žitković [33, Lemma 2.1] and the
discussion before it, VB admits the representation

VB(μ) = E

[
V

(
dμr

dP

)]
+ 〈μ,B〉, μ ∈ D, (2.3)
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where V is the (strictly convex) dual utility function defined by

V (y) := sup
x>0

(
U(x) − xy

)
, y > 0.

Consequently, Fenchel’s inequality and (2.2) guarantee that the primal value func-
tion U satisfies U(X) < ∞ for all X ∈ L

∞++. Furthermore, (2.2) also ensures that the
corresponding dual value function defined by

V(B) := inf
μ∈D

VB(μ), B ∈ L
∞++, (2.4)

is finitely valued. For B ∈ L
∞++, we let D̂(B) denote the set of all minimisers, i.e.,

D̂(B) = {μ ∈D : V(B) = VB(μ)}.
The next two results collect some basic facts that we need in the sequel.

Lemma 2.6 Assume that B ∈ L
∞++ and that A :D → [0,∞) is a nonnegative weak∗-

lower semicontinuous functional. Then we have:
(1) Any minimising sequence for VB +A is bounded in total mass.
(2) The set of all minimisers of VB +A is nonempty and weak∗-compact.

Proof For (1), we let (μn)n∈N be a minimising sequence for VB +A. By the defini-
tion of D, it can be written in the form

μn = ynQn, where Qn ∈ M∗
and (yn)n∈N ⊆ [0,∞).

Using the representation (2.3) and the Standing Assumption (2.2), we get the estimate

VB(μ0) +A(μ0) ≥ lim sup
n→∞

(
E

[
V

(
yn

dQr
n

dP

)]
+ yn〈Qn,B〉

)

≥ lim sup
n→∞

(
V (yn) + yn essinfB

)
,

where the first inequality follows from the positivity of A and the minimising property
of the sequence (μn)n∈N, and the second is produced by Jensen’s inequality and the
decreasing property of V . Since limy→∞ V ′(y) = 0 and essinfB > 0, we conclude
that the sequence (yn)n∈N is bounded from above, which establishes (1). Note that
this bound is universal because it only depends on μ0 from Assumption 2.5.

For (2), we pick a minimising sequence (μn)n∈N and use (1) to establish the ex-
istence of a constant ȳ > 0 such that μn(�) ≤ ȳ for all n. Therefore, the family
(μn)n∈N lives in a bounded subset ȳM∗

of ba, and we can use the Banach–Alaoglu
theorem to conclude that there is a subnet (μα)α of (μn)n∈N with μα → μ̂ ∈ ba in
the weak∗-sense. It remains to use the weak∗-closedness of D and the lower semi-
continuity of the functional VB +A to conclude that μ̂ is a minimiser over D.

We denote by D̂ ⊆ D the non-empty and closed set of all minimisers for VB +A.
We use (1) to see that the set {μ(�) : μ ∈ D̂} is bounded. That in turn allows us to
use the Banach–Alaoglu theorem to conclude that D̂ is weak∗-compact. �



Conditional Davis pricing 573

Lemma 2.7 For B ∈ L
∞++, the set D̂(B) is a nonempty weak∗-compact subset

of ba(P), and there exists a nonnegative random variable Ŷ = Ŷ (B) such that
P[Ŷ > 0] > 0 and

Ŷ = dμr

dP
for all μ ∈ D̂(B).

Furthermore, the strong duality U(B) = V(B) holds for all B ∈ L
∞++.

Proof The nonemptyness and compactness of D̂(B) follow directly from Lemma 2.6
with A := 0. From Cvitanić et al. [7, Theorem 3.1], the regular part Ŷ of all dual op-
timisers is known to be unique. To see that Ŷ �≡ 0, we argue by contradiction and
suppose that P[Ŷ = 0] = 1. In that case, Standing Assumption 2.5 and the repre-
sentation (2.3) imply that V (0) < ∞ and so, thanks to Jensen’s inequality, we have
VB(μ) < ∞ for all μ ∈ D. In particular, we have for some Q ∈ M and μ̂ ∈ D̂(B)

that

VB(με) < ∞, where με := εQ+ (1 − ε)μ̂, ε ∈ [0,1].
Because the regular-part functional is additive, we have

μr
ε = εQ+ (1 − ε)μ̂r = εQ.

Therefore, the minimality of μ̂ implies that

E

[
V

(
ε
dQ

dP

)]
+ 〈με,B〉 = VB(με) ≥VB(μ̂) ≥ V (0) + 〈μ̂,B〉.

Fatou’s lemma then yields

〈Q− μ̂,B〉 ≥ lim inf
ε↘0

1

ε

(
V (0) −E

[
V

(
ε
dQ

dP

)])
= −V ′(0) = +∞.

This is a contradiction because B ∈ L
∞++ ensures that the left-hand side is finite.

Finally, to establish the strong duality property, we define the nested sequence of
weak∗-compact dual sets

Dn := {μ ∈D : μ(�) ≤ n}, n ∈N,

as well as the primal set

C := (K −L
0+) ∩L

∞ = {X ∈ L
∞ : 〈Q,X〉 ≤ 0 for all Q ∈ M}.

For a proof of the last identity, see e.g. Larsen and Žitković [29, Corollary 3.4(1)]. As
a consequence, we have for X ∈ L

∞(P) the identity

lim
n→∞ sup

μ∈Dn

〈μ,X〉 = sup
μ∈D

〈μ,X〉 =
{

0, X ∈ C,

+∞, X /∈ C.
(2.5)
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The minimax theorem (see e.g. Zălinescu [35, Theorem 2.10.2]) can then be used to
conclude that

V(B) = lim
n→∞ inf

μ∈Dn

sup
X∈L∞(P)

(
E[U(X + B)] − 〈μ,X〉) = sup

X∈C
E[U(X + B)],

with the last equality justified by the monotone convergence theorem. �

3 Conditional Davis prices and a dual characterisation

After the introduction of the necessary terminology and notation, we turn to the defi-
nition of the central concept of the paper. A wider economic context and a compari-
son to other arbitrage- and utility-based pricing concepts are provided in Appendix A
below.

Definition 3.1 Given a random endowment B ∈ L
∞++, a number p ∈ R is said to be

a B-conditional Davis price (or simply a conditional Davis price if B is clear from
the context) for a contingent claim ϕ ∈ L

∞ if

U
(
B + q(ϕ − p)

) ≤ U(B), ∀q ∈ R. (3.1)

The set of all B-conditional Davis prices of ϕ is denoted by P(ϕ|B).

3.1 A dual characterisation

The following characterisation in Theorem 3.5 of the set of Davis prices in terms of
the dual set D̂(B) is going to play a central role throughout the paper. It rests on
several lemmas given below.

Definition 3.2 For B ∈ L
∞++, a random variable R ∈ L

∞ is said to be B-irrelevant,
denoted by R ∈ I(B), if

U(B + qR) ≤ U(B), ∀q ∈R. (3.2)

Lemma 3.3 I(B) is a nonempty, weak∗-closed linear subspace in L
∞, and p is a

B-conditional Davis price of p if and only if ϕ − p ∈ I(B).

Proof The function U is concave at B , so I(B) is the set of those directions R with
the property that the directional derivative of U in both directions R and −R are
nonpositive. In other words, we have

sup
μ∈∂U(B)

〈R,μ〉 ≤ 0 and sup
μ∈∂U(B)

−〈R,μ〉 ≤ 0,

where ∂U(B) ⊆ ba(P) is the superdifferential of U. Therefore I(B) is the annihilator
of ∂U(B), i.e.,

I(B) = {R ∈ L
∞ : 〈μ,R〉 = 0 for all μ ∈ ∂U(B)},
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which implies the first statement. The second statement is just restating the defini-
tion. �

Lemma 3.4 A random variable R ∈ L
∞ is B-irrelevant if and only if

inf
μ∈D

(
VB(μ) + |〈μ,R〉|) = inf

μ∈D
VB(μ). (3.3)

Proof Because I(B) is a vector space, we can scale R so that without loss of
generality, we can assume that B ± R ∈ L

∞++. Then by the minimax theorem (see
[35, Theorem 2.10.2]), we have

inf
μ∈D

(
VB(μ) + |〈μ,R〉|) = inf

μ∈D
sup
|q|≤1

(
VB(μ) + q〈μ,R〉)

= sup
|q|≤1

inf
μ∈D

(
VB(μ) + q〈μ,R〉) = sup

|q|≤1
U(B + qR).

The same equality with R = 0 implies that (3.3) is equivalent to

U(B) = sup
|q|≤1

U(B + qR). (3.4)

Since the function U is finite-valued at B as well as in an L
∞-open ball around B ,

both sides of (3.2) are finite-valued for small enough q . Thanks to the concavity of U,
it is enough to check (3.2) only for q in a neighbourhood of 0 to determine whether
R ∈ I(B), and this is exactly what (3.4) provides. �

By Lemma 2.7, we have μ(�) > 0 for each μ ∈ D̂(B). Therefore the family

D̂0(B) :=
{

1

μ(�)
μ : μ ∈ D̂(B)

}
(3.5)

is a well-defined nonempty family of finitely additive probabilities. We now have
everything set up for our main characterisation of conditional Davis prices.

Theorem 3.5 For ϕ ∈ L
∞(P), the following two statements are equivalent:

(1) p ∈ P(ϕ|B), i.e., p is a B-conditional Davis price of ϕ.
(2) p = 〈Q, ϕ〉 for some Q ∈ D̂0(B).

In particular, P(ϕ|B) is a nonempty compact subinterval of R.

Proof (1) ⇒ (2) According to Lemma 2.6 with A(μ) := |〈μ,ϕ − p〉|, the functional
μ �→VB(μ) + |〈μ,ϕ − p〉| admits a minimiser μ̂. By Lemma 3.4, the same μ̂ must
minimise the functional μ �→ VB(μ) as well, and so μ̂ ∈ D̂(B) and 〈μ̂, ϕ − p〉 = 0.

(2) ⇒ (1) Suppose that p is such that 〈μ∗, ϕ − p〉 = 0 for some μ∗ ∈ D̂(B). Then
for any μ, we have

VB(μ∗) + |〈μ∗, ϕ − p〉| = VB(μ∗) ≤ VB(μ) ≤ VB(μ) + |〈μ,ϕ − p〉|,
and Lemma 3.4 can be used.

Finally, Lemma 2.6 and the continuity of the map μ �→ 〈μ,ϕ〉 ensure that the set
P(ϕ|B) is compact. �
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3.2 First consequences

A reinterpretation in the setting of portfolios with convex constraints leads to the
following dual characterisation which is used in proof of Proposition 3.7 below.

Corollary 3.6 Suppose that U is reasonably elastic. Then for each constant c ≥ 0
and each R ∈ L

∞, we have

inf
μ∈D

(
VB(μ) + c|〈μ,R〉|) = inf

y≥0,Q∈M
(
VB(yQ) + c|〈yQ,R〉|).

Proof Let C := (K − L
0+) ∩ L

∞ and let C′ be the family of all random variables
X′ ∈ L

∞ of the form

X′ = B + X + qR, where X ∈ C, q ∈ [−c, c].
The support function αC′ for the set C′ is then given by

αC′(μ) = sup
X′∈C′

〈μ,X′〉

= 〈μ,B〉 + sup
X∈C, q∈[−c,c]

(〈μ,X〉 + q〈μ,R〉)

= 〈μ,B〉 + c|〈μ,R〉| +
{

0, μ ∈ D,

+∞, μ /∈ D,

where the last equality follows from (2.5) above. Therefore,

inf
μ∈D

(
VB(μ) + c|〈μ,R〉|) = inf

μ∈ba(P)

(
V0(μ) + αC′(μ)

)
. (3.6)

Moreover, the set C is weak∗-closed by Theorem 4.2 in Delbaen and Schachermayer
[10]; hence so is C′. Hence the assumptions of [29, Proposition 3.14] are satisfied
(via [29, Corollary 3.4]), and so the infimum on the right-hand side of (3.6) can be
replaced by an infimum over σ -additive measures. �

Our next two consequences of Theorem 3.5 provide a partial generalisation and
an alternative method of proof for [20, Theorem 3.1].

Proposition 3.7 Suppose that B ∈ L
∞++, U is reasonably elastic and the dual prob-

lem (2.4) admits a non-σ -additive optimiser. Then there exists A ∈ F such that
ϕ = 1A has multiple B-conditional Davis prices.

Proof Let (μn)n∈N be a minimising sequence for infμ∈DVB(μ). By Corollary 3.6,
we can assume that each μ is countably additive. Moreover, Lemma 2.6, (1) guar-
antees that the total-mass sequence (μn(�))n∈N is bounded. By extracting a sub-
sequence, we can assume that (μn(�))n∈N converges to a constant y ≥ 0. By
Lemma 2.7, this conclusion can be strengthened to y > 0.

We suppose first that (μn)n∈N is not weak∗-convergent. Then two of its convergent
subnets have different limits, and both of these are elements of D̂(B) with the same
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total mass y > 0. Hence the set D̂0(B) of (3.5) is not a singleton and by Theorem 3.5,
there exists ϕ = 1A, with A ∈ F , with two different conditional Davis prices.

On the other hand, if (μn)n∈N converges to μ̂ in the weak∗-sense, then μ̂ ∈ D̂(B).
Furthermore, by the Vitali–Hahn–Saks theorem (see Dunford and Schwartz
[13, Corollary III.7.3]), the limit μ̂ is countably additive. Hence the set D̂(B) has
at least two different elements — one countably additive and one, by assumption,
not. Then a random variable ϕ = 1A with two different conditional Davis prices can
be constructed as above. �

The next consequence of Theorem 3.5 gives a sufficient condition (analogous to
that of [20, Theorem 3.1]) for the uniqueness of conditional Davis prices. Before we
state it, we recall that, under the condition of reasonable elasticity, Cvitanić et al. [7]
show that there exists a process π̂ ∈A such that X̂ := (π̂ · S)T + B satisfies

E[U(X̂)] = U(B) and U ′(X̂) = dμ̂r

dP
, (3.7)

where μ̂ ∈ D̂(B). The random variable X̂ with this property is P-a.s. unique.

Corollary 3.8 Suppose U is reasonably elastic and that |ϕ| ≤ cX̂ for some constant
c ≥ 0, where X̂ is as in (3.7). Then the set P(ϕ|B) of B-conditional Davis prices for
ϕ ∈ L

∞ is a singleton.

Proof In view of Lemma 2.7 and Theorem 3.5, it is enough to show that 〈μ̂s, X̂〉 = 0
for each μ̂ ∈ D̂(B). This in turn follows directly from the first part of Eq. (4.7) in [7].

�

4 Differentiability of the primal value function

The purpose of this section is to study differentiability properties of the primal value
function u :R2 → [−∞,∞) defined by

u(x, q) := U(B + x + qϕ), (4.1)

where U is defined in (2.1). We start by providing some motivation in Sect. 4.1. Then
we present an example which shows that directional differentiability – even in the
most “benign” directions – cannot be expected in general. Next we give a character-
isation of the one-sided directional derivatives in terms of a linear control problem.
We hope that both our counterexample and the later characterisation hold some inde-
pendent interest outside of the context of Davis pricing. We use the obtained results in
later sections to give a workable characterisation of the interval of conditional Davis
prices.

4.1 Relevance of differentiability

The value function u in (4.1) is a standard object of interest in the context of Davis
pricing, and the relevance of its differentiability properties has been noted by several
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authors (including Davis in [9]). To explain why that is the case, we start by giving a
characterisation of Davis prices in terms of superdifferentials in Proposition 4.1, and
then provide a short discussion in Remark 4.2 that follows it. The case B ≡ x > 0
can already be found in Hugonnier and Kramkov [19, Remark 1] and Hugonnier
et al. [20, Eq. (3.12)]. Consequently, Proposition 4.1 is relevant because it covers the
case of an unspanned endowment B ∈ L

∞++.

Proposition 4.1 For each (y, r) ∈ ∂u(0,0), we have y > 0, and

P(ϕ|B) = {r/y : (y, r) ∈ ∂u(0,0)}, (4.2)

where ∂u(0,0) denotes the supergradient of u at (0,0).

Proof Since B ∈ L
∞++, u is concave and finite-valued around (0,0), and the first

statement follows from the fact that x �→ u(x,0) is strictly increasing on its effective
domain which contains 0 in its interior.

Definition 3.1 translates into the statement that

p ∈ P(ϕ|B) if and only if u(0,0) ≥ u(−q ′p,q ′) for all q ′.

By concavity, this is equivalent to the nonpositivity of the directional derivative of u

at (0,0) in the directions (p,−1) and (−p,1), i.e.,

inf
(y,r)∈∂u(0,0)

(−r + py) ≤ 0 and inf
(y,r)∈∂u(0,0)

(r − py) ≤ 0.

By the convexity of the supergradient, this is equivalent to the existence of a pair
(y, r) in ∂u(0,0) such that py = r . �

Remark 4.2 Equation (4.2) is often used to explain the relationship between differ-
entiability of the value function u and the uniqueness of the Davis price in the uncon-
ditional setting. Indeed, when B is replicable, the function u(x,0) is differentiable in
the variable x (by Kramkov and Schachermayer [23, Theorem 2.1]) so that all ele-
ments (y, r) of ∂u(0,0) have the same y, given by y = ∂

∂x
u(x,0)|x=0. Therefore, we

have multiple Davis prices if and only if we have multiple values of the r-components
in elements of the supergradient ∂u(0,0). That occurs if and only if the left and the
right derivatives of q �→ u(0, q) at q = 0 do not match, which is in turn equivalent to
the lack of differentiability at 0.

The case where B is unspanned is more subtle. As we shall see in Example 4.3 be-
low, when a non-replicable random endowment is present, u is no longer necessarily
differentiable in x. That means that both y and r are potentially allowed to vary across
different elements (y, r) of the supergradient. To complicate the situation even more,
it may happen, however, that each such pair has the same quotient, making the Davis
price unique. A simple example is when (as in Example 4.3 below) u is not differen-
tiable in x at x = 0 and ϕ ≡ 1. Indeed, in that case, (x, q) �→ u(x, q) = u(x + q,0)

is clearly not differentiable at (0,0), but the unique conditional Davis price of ϕ ≡ 1
is 1 (the latter claim follows from Corollary 5.9 below and can also be found in
[20, Remark 3.2]).
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4.2 An example of non-differentiability

Our next example shows that the value function u may fail to be differentiable in x,
i.e., that U may fail to be differentiable even in “constant directions”. The same exam-
ple exhibits another, equivalent property: The set D̂(B) of dual minimisers may con-
tain measures with different total masses. In other words, μ̂(�) need not be constant
over μ̂ ∈ D̂(B). As a supplement to the rigorous argument in Example 4.3 below, we
note that the total mass of a dual optimiser carries the interpretation of a Lagrange
multiplier corresponding to the initial wealth. Multiple Lagrange multipliers translate
directly to multiple elements in the x-superdifferential of the primal value function,
and hence imply the failure of the value function’s differentiability at x. Once we
introduce the concept of minimal superreplicability in the next section, we shall see
how we can regain differentiability in certain cases of interest.

For simplicity and concreteness, we base the example on Kramkov and Schacher-
mayer [23, Example 5.1’] and use the following notation and conventions. All ran-
dom variables X are defined on the sample space � := N0 := N ∪ {0}, measures are
identified with sequences in �1+, and for Q = (qn)n∈N0 ∈ �1+, we write 〈Q,X〉 for∑∞

n=0 qnXn whenever X = (Xn)n∈N0 ∈ �∞.

Example 4.3 We start by recalling the elements of (a special case of) the one-period
model in [23, Example 5.1’], where � := N0 and P= (pn)n∈N0 with

p0 := 3

4
, pn := 2−n

4
for n ∈N.

The one-period stock price increment 
S = (
Sn) is defined as


S0 := 1 and 
Sn := 1 − n

n
for n ∈ N.

With U := log, we consider the utility maximisation problem

sup
π∈[−x,x]

E[U(x + π
S)], x > 0. (4.3)

Let Q denote the set of all finite martingale measures, i.e.,

Q := {Q ∈ �1+ : 〈Q,
S〉 = 0},
and let M := {Q ∈Q : 〈Q,1〉 = 1}. Because the conjugate utility function V is given
by V (y) = −1 − logy, the dual problem to (4.3) is given by

v(y) := inf
Q∈M

E

[
V

(
y

dQ

dP

)]
= V (y) + v∗, where v∗ := inf

Q∈M
E

[
− log

dQ

dP

]
.

Let (QN)N∈N ⊆ M be a minimising sequence for v∗ (equivalently, for v(y)). We
claim that there exists a function f ∈ �∞ such that 〈QN,f 〉 does not converge in R.
Indeed, if not, the sequence (QN)N∈N – interpreted as a sequence in �1+ – would be
weakly Cauchy in �1. By a theorem of Steinhaus (see Wojatszcyk [36, Corollary 14])
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which states that �1 is weakly sequentially complete, the sequence (QN)N∈N would
admit a weak limit Q∗ in �1+. Since any weak limit of any minimising sequence must
also belong to M, Q∗ would necessarily be a minimiser for v∗. However, as shown in
[23, Example 5.1’], this contradicts the strict supermartingale property of the (unique)
dual minimiser.

As a consequence of the above, for a given minimising sequence (QN)N∈N, there
exists a random variable H ∈ �∞ such that

〈QN,H 〉 does not converge in R as N → ∞.

Because 〈QN,1〉 = 1 for each N , we can assume that H ≥ 1. Moreover, there exist
two subsequences (Q1,N )N∈N and (Q2,N )N∈N of (QN)N∈N such that the limits

y1 = lim
N→∞〈Q1,N ,H 〉 and y2 = lim

N→∞〈Q2,N ,H 〉 exist with y1 �= y2. (4.4)

With H as above, we define B := 1/H and a new stock price process with the incre-
ment


S̃ := B 
S.

Then we consider the log-utility maximisation problem with the random endowment
B , the stock price increment 
S̃ and the value function

ũ(x) := sup
π∈R

E[U(B + x + π
S̃)], x ∈ R, (4.5)

with the convention E[U(x + π
S̃ + B)] = −∞ if E[U(x + π
S̃ + B)−] = +∞.
We note that ũ is the section at q = 0 of the function u(x, q) defined in (4.1) in this
particular setup.

The associated dual problem2 is given by

ṽ(y) := inf
Q̃∈M̃

E

[
V

(
y

dQ̃

dP

)]
+ y〈Q̃,B〉

= −1 + inf
Q̃∈M̃

(
E

[
− log

(
y

dQ̃

dP

)]
+ y〈Q̃,B〉

)

= −1 +E[logB] + inf
Q̃∈M̃

(
E

[
− log

(
y

dQ̃

dP
B

)]
+ y〈Q̃B,1〉

)

= E[logB] + inf
Q̃∈M̃

(
E

[
V

(
y

dQ̃

dP
B

)]
+ y〈Q̃B,1〉

)
, y > 0,

where the sets of measures Q̃ and M̃ are defined by

Q̃ := {Q̃ ∈ �1+ : 〈Q̃,
S̃〉 = 0} and M̃ := {Q̃ ∈ Q̃ : 〈Q̃,1〉 = 1},

2It has been shown in Larsen and Žitković [29, Lemma 3.12] that under the reasonable elasticity condition,
infimisation over the set of countably additive martingale measures – as opposed to its finitely additive
enlargement as in Cvitanić et al. [7] – leads to the same value function.
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and the measure Q̃B ∈ �1+ is defined by

Q̃B(�) := E
Q̃[B1�], � ⊆ �.

Because Q̃ ∈ Q̃ if and only if Q = Q̃B ∈Q, we have

inf
y>0

ṽ(y) = E[logB] + inf
y>0

inf
Q∈M

(
E

[
V

(
y

dQ

dP

)]
+ y

)

= E[logB] + inf
y>0

(
v(y) + y

)

= E[logB] + inf
y>0

(
V (y) + y + v∗)

= E[logB] + v∗.

By using the minimising sequences (Q1,N )N∈N and (Q2,N )N∈N constructed
above, we define the sequence of probability measures

Q̃
i,N := Q

i,NH

〈Qi,NH,1〉 ∈ M̃ for i = 1,2.

In other words, we define the probability measures

Q̃
i,N (�) := E

Q
i,N [H1�]

EQi,N [H ] for � ⊆ �, i = 1,2, N ∈N.

We can use (4.4) and the fact that (Qi,N )N∈N, i = 1,2, are minimising sequences for
v∗ to see that

E

[
V

(
yi

dQ̃i,N

dP

)]
+ yi〈Q̃i,N ,B〉 = E

[
V

(
yiH

〈Qi,NH,1〉
dQi,N

dP

)]
+ yi

〈Qi,NH,1〉

= E

[
V

(
yiH

〈Qi,NH,1〉
)]

+ yi

〈qi,NH,1〉

−E

[
log

dQi,N

dP

]

−→ E[logB] + v∗

= inf
y>0

ṽ(y).

Clearly, ṽ(yi) ≥ infy>0 ṽ(y) for i = 1,2, which implies that (Q̃i,N )N∈N is a minimis-
ing sequence for ṽ(yi). Therefore, ṽ(y1) = ṽ(y2) = infy>0 ṽ(y) which implies that ṽ

is constant on [y1, y2]. This in turn implies that the conjugate function to ṽ (and by
duality, this conjugate function equals the primal value function) fails to be differen-
tiable at 0. Indeed, the entire segment [y1, y2] belongs to the primal value function’s
supergradient at zero. �
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Remark 4.4 1) The construction of the random endowment B in Example 4.3 above
rests on the weak sequential completeness property of �1, which in fact holds for any
L

1-space. Example 4.3 above is therefore generic in the sense that it can be applied
to any model which produces non-trivial singular components in the dual optimiser
for the log-investor (with constant endowment). This implies that there also exist
random endowments in the Brownian setting of [23, Example 5.1] which produce a
non-differentiable primal utility function.

2) Example 4.3 contradicts the claimed continuous differentiability of the primal
value function stated in Cvitanić et al. [7, Theorem 3.1(i)] (we also refer the reader
to the Erratum [8] for further discussion): the function ũ defined in (4.5) within Ex-
ample 4.3 is not differentiable at x = 0 which is an interior point of its domain.

4.3 A characterisation via a linear stochastic control problem

Even though the supergradient of U at B consists of finitely additive measures related
to the solution of the dual problem, it is possible to give a characterisation of direc-
tional derivatives without any recourse to finite additivity. This is the most attractive
feature of our linear characterisation in Proposition 4.7 below; moreover, as we shall
see later, it also leads to explicit computations in many cases. The price we pay is the
increased complexity of the linearised problem’s domain.

Throughout the remainder of the paper, we impose the following assumption,
where X̂ is the primal optimiser characterised by (3.7), and whose existence is guar-
anteed by the assumption of reasonable elasticity.

Assumption 4.5 U is reasonably elastic, and there exists a constant b > 0 such that

X̂ U ′((1 − b)X̂
) ∈ L

1(P). (4.6)

Remark 4.6 Assumption 4.5 holds automatically if U belongs to the class of CRRA
(power) utilities

U(x) := xp

p
for p ∈ (−∞,1) \ {0} or U(x) := logx, x > 0.

More generally, suppose that U admits an upper bound on the relative risk-aversion,
i.e., U ∈ C2(0,∞) and there exists a constant c ∈ (0,∞) such that

−xU ′′(x)

U ′(x)
≤ c for all x > 0.

It follows directly that xcU ′′(x)+cxc−1U ′(x) ≥ 0 for all x > 0 which implies that the
function xcU ′(x) is nondecreasing on (0,∞). Therefore, ( 1

2x)cU ′( 1
2x) ≤ xcU ′(x),

and so U ′( 1
2x) ≤ 2cU ′(x) for all x > 0. By combining this inequality with the first-

order condition (3.7), we see that

X̂U ′
(

1

2
X̂

)
≤ 2cX̂U ′(X̂) = 2cX̂

dμ̂r

dP
.
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Consequently, we have

E

[
X̂U ′

(
1

2
X̂

)]
≤ 2c

E

[
X̂

dμ̂r

dP

]
≤ 2c〈X̂, μ̂〉 < ∞.

Hence (4.6) holds with b := 1
2 .

Given the optimiser π̂ ∈ A and the random variable X̂, set 
(ϕ) := ⋃
ε>0 
ε(ϕ),

where 
ε(ϕ) denotes the class of all δ ∈ L(S) such that

π̂ + εδ ∈ A and X̂ + ε
(
ϕ + (δ · S)T

) ≥ 0. (4.7)

Because A is a convex cone and X̂ ≥ 0, the family 
ε(ϕ) is nonincreasing in ε ≥ 0
in the sense that

ε1 ≤ ε2 implies 
ε2(ϕ) ⊆ 
ε1(ϕ).

Similarly, the family 
ε(ϕ) is nondecreasing in ϕ ∈ L
∞ in the sense that

ϕ1 ≤ ϕ2 implies 
ε(ϕ1) ⊆ 
ε(ϕ2).

Proposition 4.7 Under Assumption 4.5, we have for ϕ ∈ L
∞(P) that

lim
ε↘0

1

ε

(
u(0, ε) − u(0,0)

) = sup
δ∈
(ϕ)

E
[
Ŷ

(
(δ · S)T + ϕ

)]
,

where Ŷ := dμ̂r

dP
.

Proof For small enough ε > 0, we can find πε ∈A such that Xε = (πε ·S)T +B+εϕ

has the property that

E[U(Xε
T )] ≥ U(B + εϕ) − ε2.

For such an ε > 0, we define

δε = 1

ε
(πε − π̂).

Since π̂ +εδε = πε ∈A, the first part of (4.7) above holds. To see that the second part
of (4.7) holds, we note that X̂ + ε((δε · S)T + ϕ) = Xε and E[U(Xε)] > −∞ which
implies X̂ + ε((δε · S)T + ϕ) ≥ 0. Therefore, we have δε ∈ 
ε(ϕ). The concavity of
U then implies that

U(B + εϕ) ≤ E[U(Xε)] + ε2

≤ E[U(X̂)] + εE
[
U ′(X̂)

(
ϕ + (δε · S)T

)] + ε2

≤ U(B) + ε sup
δ∈
ε(ϕ)

E
[
Ŷ

(
(δ · S)T + ϕ

)] + ε2

≤ U(B) + ε sup
δ∈
(ϕ)

E
[
Ŷ

(
(δ · S)T + ϕ

)] + ε2.
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This produces the upper bound

lim sup
ε↘0

1

ε

(
U(B + εϕ) − U(B)

) ≤ sup
δ∈
(ϕ)

E
[
Ŷ

(
(δ · S)T + ϕ

)]
.

To prove the opposite inequality, we pick ε0 > 0 and δ ∈ 
ε0(ϕ) so that
π̂ + ε0δ ∈A and X̂ + ε0D ≥ 0, where

D = (δ · S)T + ϕ.

Because b > 0, we also have

X̂ + bε0D ≥ (1 − b)X̂.

Therefore, for ε ∈ (0, ε1) with ε1 := bε0, we have

X̂ + εD ≥ (1 − b)X̂ > 0. (4.8)

The concavity of U implies that for ε ∈ (0, ε1), we have

U(X̂ + εD) ≥ U(X̂) + εY εD, where Y ε = U ′(X̂ + εD).

Therefore, for ε ∈ (0, ε1), we obtain

U(B + εϕ) ≥ E[U(X̂ + εD)] ≥ U(B) + εE[Y εD].
In order to pass ε to zero, we note that (4.8) gives

(Y εD)− ≤ U ′((1 − b)X̂
)
D− ≤ U ′((1 − b)X̂

) 1

ε0
X̂, (4.9)

which is integrable by assumption. The uniform bound in (4.9) allows us to use Fa-
tou’s lemma together with Y ε → U ′(X̂) =: Ŷ P-a.s. to conclude that

lim inf
ε↘0

1

ε

(
U(B + εϕ) − U(ϕ)

) ≥ lim inf
ε↘0

E[Y εD] ≥ E[ŶD]. �

The goal of the following example is to show just how non-standard the linear
optimisation problem of Proposition 4.7 is: Even under non-pathological conditions
such as log-utility and a constant random endowment, its maximisers can be strict
local martingales.

Example 4.8 Let (�,F ,P) be a probability space supporting two independent
Brownian motions (Z,W) and (Ft )t∈[0,T ] their augmented filtration up to some ma-
turity T > 0. We define the stock price dynamics to be

dSt := St (λtdt + dZt ), S0 > 0,

where the process λ ∈ L2 is such that the minimal martingale density (see Föllmer
and Schweizer [16] for the definition and further discussion)

E(−λ · Z)t := e− ∫ t
0 λudZu− 1

2

∫ t
0 λ2

udu, t ∈ [0, T ],
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fails the martingale property even though the set M of equivalent local martingale
measures is nonempty. (An example of such a process λ can be found in Delbaen
and Schachermayer [11, Theorem 2.1], but its exact form it not important for this
example.) As a consequence, the log-investor’s dual optimiser Ŷ := Ŷ0E(−λ · Z),
where Ŷ0 > 0 is a Lagrange multiplier, is a strict local martingale (see Kramkov and
Schachermayer [23, Example 5.1 and Proposition 5.1] for details). We consider the
constant endowment case where B ≡ 1 and the claim ϕ is a positive constant. The
fact that we are working with the log-utility function implies that Ŷ0 = 1, which in
our notation translates to

lim
ε↘0

1

ε

(
u(0, ε) − u(0,0)

) = ϕ.

The log-utility function satisfies Assumption 4.5, which allows us to use Proposi-
tion 4.7 to conclude that

sup
δ∈
(ϕ)

E
[
ŶT

(
(δ · S)T + ϕ

)] = ϕ. (4.10)

For any δ ∈ 
(ϕ) for which the local martingale Ŷ (δ · S) is a martingale, we have
E[ŶT

(
(δ · S)T + ϕ

)] = E[ŶT ϕ]. Since Ŷ is a strict local martingale, this value

E[ŶT ϕ] = ϕE[ŶT ] is strictly smaller than the value ϕ of the supremum in (4.10).
On the other hand, the supremum in (4.10) is attained at any δ ∈ 
(ϕ) which satisfies
the requirement E[ŶT ((δ · S)T +ϕ)] = ϕ. This requirement is in turn satisfied by any
δ ∈ 
(ϕ) such that (δ · S)T + ϕ = ϕX̂T . �

5 Minimally superreplicable random variables

While the linear control problem of Proposition 4.7 provides a useful characterisa-
tion of U’s directional derivatives, it seems difficult to solve explicitly in full gen-
erality. The present section outlines a relevant class of payoffs ϕ for which such a
tractable solution is available. It involves the concept of minimal superreplicabil-
ity, which is similar to the notion of unique superreplicability from Larsen et al.
[28, Condition (B1)].

Definition 5.1 A random variable ψ ∈ L
∞(P) is said to be boundedly replicable if

there exist a constant ψ0 ∈ R and πψ ∈ A∩ (−A) such that

ψ = ψ0 + (πψ · S)T .

It is called minimally superreplicable (by �) if � ∈ L
∞(P) is boundedly replicable,

� ≥ ψ and

x + (π · S)T ≥ ψ implies x + (π · S)T ≥ �

for all x ∈ R and π ∈ A.
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Remark 5.2 1) The need to use uniformly bounded gains processes for replication
purposes such as in Definition 5.1 has long been recognised; see e.g. Shiryaev and
Cherny [5, Definition 1.15] and the first part of Remark 3.2 in Hugonnier et al. [20].
To highlight the need to have πψ ∈A∩(−A) instead of just πψ ∈A, we offer the fol-
lowing example. Consider a claim with the constant (deterministic) payoff ϕ ∈ (0,∞)

in a Samuelson model with the stock price process dSt := StdBt . According to Duffie
[12, Chap. 6C], there exists a portfolio π such that −π ∈ A and 0 + ∫ T

0 πtdSt = ϕ,
which produces the representation

2ϕ −
∫ T

0
πtdSt = ϕ.

This implies that both ϕ and 2ϕ qualify as initial claim prices, and so this weaker
notion of replicability fails the law of one price.

2) The representation in Definition 5.1 of a boundedly replicable claim ψ in terms
of (ψ0,πψ) is unique. Moreover, the process πψ · S is a bounded Q-martingale for
each Q ∈ M. Consequently, because each μ ∈ D is the weak∗-limit of a net (yαQα)

with yα ∈ [0,∞) and Qα ∈ M, we have

〈μ, (πψ · S)t 〉 = lim
α

yα〈Qα, (πψ · S)t 〉 = 0.

3) Provided it exists, the random variable � in Definition 5.1 is unique. If the
random variable � = �0 + (π� · S)T minimally superreplicates ψ , we have the rep-
resentation

�0 = sup
Q∈M

E
Q[ψ].

4) Minimal superreplicability is scale invariant: If ψ is minimally superreplicable
by � , then αψ is minimally superreplicable by α� for α ≥ 0. It is also invariant
under translation by boundedly replicable random variables. In particular, boundedly
replicable random variables are minimally superreplicable.

Example 5.3 Let (�,F ,P) be a probability space supporting two independent
Brownian motions (B,W) and (Ft )t∈[0,T ] their augmented filtration up to some ma-
turity T > 0. We let S be the Itô process

dSt := Stσt (λtdt + dBt ), S0 > 0,

where σ,λ ∈ L2 are such that NFLVR holds. We focus on payoffs of the form ϕ(WT ),
where ϕ :R → R is a bounded uniformly Lipschitz function. To show that such con-
tingent claims ϕ(WT ) are minimally superreplicable by the constant supa ϕ(a), we
start by assuming that

x + (π · S)T ≥ ϕ(WT ) a.s.

for some x ∈ R and π ∈ A. Then for each t ∈ [0, T ), we have

x + (π · S)t ≥ esssup
Q∈M

E
Q[x + (π · S)T |Ft ] ≥ esssup

Q∈M
E
Q[ϕ(WT )|Ft ]. (5.1)
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Lemma 5.4 below gives conditions under which the limit as t ↑ T of the right-hand
side of (5.1) equals supa ϕ(a). When these conditions are met, the continuity of the
paths of the stochastic integral with respect to S implies that x+(π ·S)T ≥ supa ϕ(a).
This in turn confirms that ϕ(WT ) is minimally superreplicable by the constant
supa ϕ(a).

Lemma 5.4 In the setting of Example 5.3 above with ϕ : R → R bounded and uni-
formly Lipschitz, assume that there exist a nonnegative function f ∈ L

1([0, T ]) and
a predictable process ν(0) ∈ L2 such that

1) |ν(0)
u | ≤ f (u) for Lebesgue-almost all u ∈ [0, T ], P-a.s.;

2) the stochastic exponential Z
(0)
T := E(−λ ·B −ν(0) ·W)T is the Radon–Nikodým

density of some Q
(0) ∈ M with respect to P.

Then

lim
t↑T

esssup
Q∈M

E
Q[ϕ(WT )|Ft ] = sup

a
ϕ(a). (5.2)

Proof For a bounded and predictable process δ, we define the process Z(δ) by

dZ
(δ)
t = −Z

(δ)
t

(
λt dBt + (ν

(0)
t + δt ) dWt

)
, Z

(δ)
0 = 1.

A simple calculation yields the expression

Z
(δ)
T = Z

(0)
T E(−δ · W(0))T ,

where W
(0)
t := Wt + ∫ t

0 ν
(0)
u du, 0 ≤ t ≤ T , is a Q

(0)-Brownian motion. With E
(0)

denoting the expectation with respect to Q
(0), we have

E[Z(δ)
T ] = E

(0)[E(−δ · W(0))T ] = 1,

where the last equality follows from the boundedness of δ. Hence Z(δ) is a (true)
martingale and can be used as the density of a probability measure Q

(δ) ∈ M.
To proceed, we fix t0 ∈ (0, T ) and a ∈ R and define

δ
(a)
t := 1

T − t0
(Wt01{|Wt0 |≤1/(T −t0)} − a)1{t≥t0}, t ∈ [t0, T ],

W
(a)
t := Wt +

∫ t

0
(ν(0)

u + δ(a)
u ) du, t ∈ [0, T ].

Then we have

WT − a = W
(a)
T − W

(a)
t0

−
∫ T

t0

ν(0)
u du + Wt01{|Wt0 |>1/(T −t0)}.

The process W(a) is a Q(a)-Brownian motion, where Q(a) is a short for Q(δ(a)). There-
fore the bound |ν(0)| ≤ f implies that

E
Q

(a)[|WT − a|∣∣Ft0

] ≤ C(t0),
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where

C(t0) :=
√

2(T − t0)

π
+

∫ T

t0

fu du + |Wt0 |1{|Wt0 |>1/(T −t0)}.

With Lϕ denoting the uniform Lipschitz constant of ϕ, we have

∣∣EQ
(a)[ϕ(WT )|Ft0 ] − ϕ(a)

∣∣ ≤ Lϕ E
Q

(a)[|WT − a|∣∣Ft0

] ≤ LϕC(t0).

Therefore,

lim sup
t0↗T

esssup
Q∈M

E
Q[ϕ(WT )|Ft0 ] ≥ lim sup

t0↗T

E
Q

(a)[ϕ(WT )|Ft0 ]

≥ lim sup
t0↗T

(
ϕ(a) − LϕC(t0)

) = ϕ(a).

It remains to note that the left-hand side above does not depend on a and that
supa ϕ(a) is a trivial upper bound in (5.2). �

Example 5.5 We continue Example 5.3 by examining two cases in which Lemma
5.4 applies. In the first one, we simply take f ≡ 0. That can be done if and only if
the minimal martingale density E(−λ · B) defines a martingale, which is the case in
many popular models including the incomplete models developed in Kraft [22] and
Kim and Omberg [26].

In the second case, E(−λ · B) is a strict local martingale, but NFLVR neverthe-
less still holds. A famous example of a model where this occurs is given in Delbaen
and Schachermayer [11]. We present here a time-changed version (using the standard
logarithmic time transform t �→ − log(1 − t)), as the original version in [11, Theo-
rem 2.1] is defined on an infinite horizon. Using the notation of Example 5.3 with
T := 1, we define the local martingales (B ′

t )t∈[0,1) and (W ′
t )t∈[0,1) by

B ′
t :=

∫ t

0

1√
1 − u

dBu and W ′
t :=

∫ t

0

1√
1 − u

dWu, t ∈ [0,1),

as well as the stopping times

τ := inf

{
t > 0 : E(B ′) = 1

2

}
and σ := inf{t > 0 : E(W ′) = 2}.

With the processes (λt )t∈[0,1] and (ν
(0)
t )t∈[0,1] defined by

λt := −1[0,σ∧τ ](t)√
1 − t

, ν
(0)
t := −1[0,σ∧τ ](t)√

1 − t
,

it remains to apply [11, Theorem 2.1] to conclude that the NFLVR condition is sat-
isfied, but that the minimal martingale density E(−λ · B) is a strict local martingale.
Our Lemma 5.4 applies because |ν(0)

t | ≤ 1√
1−t

∈ L
1([0,1]).

We mention that Examples 5.3 and 5.5 as well as Lemma 5.4 will be used again
in the examples in Sect. 6.
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The next example shows that it is quite easy to construct bounded payoffs ψ which
fail to be minimally superreplicable.

Example 5.6 We consider the one-period model with three states given by


S := (1,0,−1)′, ψ := (−1,0,−1)′,

where a′ denotes the transpose of the vector a. The set of pairs (x,π) for which
x +π
S ≥ ψ is given by x ≥ 0 and π ∈ [−1−x,1+x]. However, the corresponding
set of gain outcomes (x + π,x, x − π)′ with x ≥ 0 and π ∈ [−1 − x,1 + x] does
not contain a smallest element. Indeed, if (a, b, c) is a smallest element, we have
a ≤ −1, b ≤ 0 and c ≤ −1, but such an element (a, b, c) is not the outcome of any
gains process x + π
S with x ≥ 0 and π ∈ [−1 − x,1 + x].

The main technical result of this section is the following proposition.

Proposition 5.7 Under Assumption 4.5, suppose that −B and −(B + εϕ) are min-
imally superreplicable by −B and −(B + εϕ), respectively, for all ε > 0 in some

neighbourhood of 0. Then for each μ̂ ∈ D̂(B), we have

lim
ε↘0

1

ε

(
u(0, ε) − u(0,0)

) = E[Ŷ ϕ] + lim
ε↘0

1

ε
〈μ̂s,B + εϕ − B〉, (5.3)

where Ŷ = dμ̂r

dP
.

Proof For ε > 0, we let xε , x0 ∈ R and πε,π0 ∈A∩ (−A) be such that

B + εϕ = εxε + ε (πε · S)T and B = x0 + (π0 · S)T .

Because B is bounded away from zero and ϕ ∈ L
∞(P), we can consider ε > 0 so

small that xε, x0 > 0. For δ ∈ 
ε(ϕ), we have εδ + π̂ ∈A and

ε(δ · S)T + (π̂ · S)T ≥ −εϕ − B.

Therefore, by the minimal superreplicability of B + εϕ, we have

0 ≤ xε + (δ · S)T + 1

ε
(π̂ · S)T + (πε · S)T . (5.4)

Since B minimally superreplicates B , we have B + (π̂ · S)T ≥ 0. Therefore, for any
μ̂ ∈ D̂(B), the first part of Cvitanić et al. [7, Eq. (4.7)] produces

0 ≤ 〈μ̂s,B + (π̂ · S)T 〉 ≤ 〈μ̂s,B + (π̂ · S)T 〉 = 0. (5.5)

The second part of [7, Eq. (4.7)] ensures that 〈μ̂, (π̂ · S)T 〉 = 0, and combining this
with 〈μ̂s,B + (π̂ · S)T 〉 = 0, we see

〈μ̂r ,B + (π̂ · S)T 〉 = 〈μ̂,B + (π̂ · S)T 〉 = 〈μ̂,B〉.
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Because Ŷ = dμ̂r

dP
, we obtain the representation

E[Ŷ (π̂ · S)T ] = 〈μ̂s,B〉.
The property εδ + π̂ ∈ A gives 〈μ̂, ε(δ · S)T + (π̂ · S)T 〉 ≤ 0 and 〈μ̂, (πε · S)T 〉 = 0
for each ε > 0. Therefore, by (5.4), we find

E

[
Ŷ

(
xε + (πε · S)T + (δ · S)T + 1

ε
(π̂ · S)T

)]

≤
〈
μ̂, xε + (πε · S)T + (δ · S)T + 1

ε
(π̂ · S)T

〉

≤ 〈μ̂, xε〉. (5.6)

To show that the upper bound in (5.6) above is attained, we pick

δε =
(

xε

x0
− 1

ε

)
π̂ + xε

x0
π0 − πε.

Because xε > 0 and x0 > 0, one can check that δε ∈ 
ε(ϕ). Then we have

E

[
Ŷ

(
xε + (πε · S)T + (δε · S)T + 1

ε
(π̂ · S)T

)]

= E

[
Ŷ

(
xε + xε

x0

(
(π̂ + π0) · S)

T

)]

= xε

x0
E

[
Ŷ

(
B + (π̂ · S)T

)]

= xε

x0
〈μ̂,B + (π̂ · S)T 〉

= 〈μ̂, xε〉,
where the last equality follows from 〈μ̂,B〉 = 〈μ̂, x0〉 and 〈μ̂, (π̂ · S)T 〉 = 0. There-
fore, δε indeed attains the upper bound of (5.6), and so we get

sup
δ∈
ε(ϕ)

E
[
Ŷ

(
(δ · S)T + ϕ

)]

= 〈μ̂, xε〉 − 1

ε
E[Ŷ (B + εϕ)] − 1

ε
E[Ŷ (π̂ · S)T ] +E[Ŷ ϕ]

= 〈μ̂r , ϕ〉 + 1

ε
〈μ̂s,B + εϕ − B〉.

The sets 
ε(ϕ) monotonically increase to 
(ϕ) as ε ↘ 0. This implies

sup
δ∈
ε(ϕ)

E
[
Ŷ

(
(δ · S)T + ϕ

)] ↗ sup
δ∈
(ϕ)

E
[
Ŷ

(
(δ · S)T + ϕ

)]
(5.7)

as ε ↘ 0. Because the left-hand side of (5.7) equals 〈μ̂r , ϕ〉 + 1
ε
〈μ̂s,B + εϕ − B〉,

we see that (5.3) holds by Proposition 4.7. �
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A first consequence of Proposition 5.7 is that the situation encountered in Exam-
ple 4.3 cannot happen if −B if minimally superreplicable. Indeed, the primal value
function U is then differentiable in all boundedly replicable directions.

Corollary 5.8 Suppose that Assumption 4.5 holds and that −B is minimally super-
replicable. Then there exists a constant yB > 0 such that

yB = μ̂(�) for each μ̂ ∈ D̂(B).

Moreover, for each boundedly replicable claim ϕ, the two-sided limit

lim
ε→0

1

ε

(
u(0, ε) − u(0,0)

) = 〈μ̂, ϕ〉 for each μ̂ ∈ D̂(B) (5.8)

exists.

Proof First observe that for boundedly replicable ϕ, we have B + εϕ = B +εϕ. Then
we can apply Proposition 5.7 to both ϕ and −ϕ to conclude that (5.8) holds. The first
claim follows by setting ϕ ≡ 1. �

Now that we have identified the circumstances under which all dual minimisers
μ̂ ∈ D̂(B) have the same total mass, the following result follows directly from Theo-
rem 3.5 and Corollary 5.8 above.

Corollary 5.9 Suppose that Assumption 4.5 holds and that −B is minimally super-
replicable. Then each boundedly replicable ϕ ∈ L

∞(P) has the unique B-conditional
Davis price 〈μ̂, ϕ〉/μ̂(�).

When B is a constant (and more generally, when B is boundedly replicable), it
is known that the product of the primal and dual optimisers is a martingale (see
e.g. [23, Theorem 2.2]). When the dual optimiser is only a finitely additive mea-
sure, the following corollary may serve as a surrogate. The result relies on Karatzas
and Žitković [21] where a positive supermartingale deflator (Ŷt )t∈[0,T ] is constructed
from μ̂ ∈ D̂(B) (see [21, Eq. (2.5)]).

Corollary 5.10 Suppose that Assumption 4.5 holds, that −B is minimally superrepli-
cable by −B , and write

B = x0 + (π0 · S)T .

Let π̂ ∈ A denote the optimiser for the problem supπ∈AE[U(B + (π · S)T )]. Then
the process

Ŷt

(
x0 + (

(π0 + π̂ ) · S)
t

)
, t ∈ [0, T ],

is a nonnegative martingale, where (Ŷt )t∈[0,T ] is the supermartingale deflator corre-
sponding to μ̂ ∈ D̂(B).
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Proof From [21, Theorem 2.10], we know that the process in question is a nonnega-
tive supermartingale. Furthermore, also from [21], we have ŶT = dμr

dP
and Ŷ0 ≤ μ̂(�).

To obtain the constant expectation property, we use (5.5) to get

〈μ̂, x0〉 = 〈μ̂, (π̂ · S)T + B〉 = 〈μ̂r , (π̂ · S)T + B〉
= E

[
ŶT

(
(π̂ · S)T + B

)] ≤ Ŷ0x0 ≤ μ̂(�)x0,

and the claimed martingale property follows. �

6 The interval of conditional Davis prices

This section closes the loop and gives an explicit expression for the interval of con-
ditional Davis prices under the assumption of minimal superreplicability. The super-
gradient characterisation in Proposition 4.1, together with the properties of minimally
superreplicable claims, allows us to compute the interval of conditional Davis prices
quite explicitly in many cases of interest.

Theorem 6.1 Suppose that Assumption 4.5 holds and that −B and −(B + εϕ) are
minimally superreplicable by −B and −(B + εϕ), respectively, for all ε in some
neighbourhood of 0. Then the interval of B-conditional Davis prices of ϕ is given by

1

yB

E[Ŷ ϕ] + 1

yB

[
lim
ε↘0

1

ε
〈μ̂s,B + εϕ − B〉, lim

ε↗0

1

ε
〈μ̂s,B + εϕ − B〉

]
, (6.1)

where yB is the common value of μ̂(�) for all μ̂ ∈ D̂(B).

Proof By Corollary 5.8, the function u(x, q) defined in (4.1) is differentiable in x

at (x, q) = (0,0) with derivative yB > 0. The interval of B-conditional Davis prices,
according to Proposition 4.1, is given by

1

yB

[∂q+u(0,0), ∂q−u(0,0)].

This in turn coincides with the expression in (6.1) thanks to Proposition 5.7. �

6.1 Two illustrative examples

We conclude by giving two illustrative examples, both in an incomplete Brownian
setting, of situations where our results can be applied directly and lead to explicit
formulas for the non-trivial interval of conditional Davis prices.

Let (�,F ,P) be a probability space supporting two independent Brownian mo-
tions (Z,W) and (Ft )t∈[0,T ] their augmented filtration up to some maturity T > 0. In
both examples, the stock price dynamics are given by a one-dimensional Itô process

dSt = Stσt (λtdt + dZt ), S0 > 0, (6.2)
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with processes σ,λ ∈ L2. With more driving Brownian motions than assets, this leads
to an incomplete financial model. Both examples will feature an (unspanned) contin-
gent claim paying out ϕ(WT ) at time T , where ϕ : R →R is a non-constant, bounded
and uniformly Lipschitz function. The major difference between the examples is that
in the first, the random endowment degenerates (B ≡ x for a constant x > 0), while
in the second, the random endowment B is not replicable.

The first example illustrates that even when B ≡ x > 0 is constant, our set-
ting differs from that of Kramkov and Sîrbu [24] because the corresponding Davis
prices are non-unique, whereas the growth condition placed on the claim’s payoff in
[24, Assumption 4] always produces unique Davis prices (the growth condition used
in [24] originates from Hugonnier et al. [20, Theorem 3.1(i)]). In other words, the
payoffs considered in the first example are not included in [24].

The second example backs up the claim we made in both the abstract and in the
introduction: When the endowment B is not replicable, the generic case is that Davis
prices are non-unique.

Example 6.2 We adopt the setting used in Example 5.3 above which is based on Del-
baen and Schachermayer [11]. The endowment is taken to be B ≡ x > 0. It follows
from Example 5.3 that the interval of arbitrage-free prices for ϕ(WT ) is given by
(ϕ,ϕ), where

ϕ := inf
a∈Rϕ(a), ϕ := sup

a∈R
ϕ(a).

Theorem 6.1 with B ≡ x > 0 shows that the interval of the log-investor’s Davis prices
for ϕ(WT ) is given by [p,p], where

p := 1

Ŷ0
E[ŶT (ϕ − ϕ)] + ϕ, p := ϕ − 1

Ŷ0
E[ŶT (ϕ − ϕ)].

Therefore, since the function ϕ is not constant, we have

p − p = (ϕ − ϕ)(1 −E[ŶT ]/Ŷ0) > 0.

Example 6.3 In this example, we consider the Samuelson model used in Larsen
et al. [28, Sect. 2] where the stock price dynamics are given by (6.2) with both
σt ≡ σ > 0 and λt ≡ λ > 0 being constants. Let U(ξ) := ξγ

γ
, ξ > 0, γ < 1, be an

arbitrary utility function in the “power” family, with constant relative risk-aversion
parameter (as usual γ := 0 is interpreted as the log-investor).

The investor receives a random endowment of the form B(WT ) at time T > 0,
where B is a non-constant, bounded and uniformly Lipschitz function. The payoff ϕ

whose B-conditional Davis prices we are computing as well as the quantities ϕ and
ϕ are defined exactly as in Example 6.2 above. We also define the quantities

B(ε) := inf
a∈R

(
B(a) + εϕ(a)

)
, B(ε) := sup

a∈R
(
εϕ(a) − B(a)

)
, ε ≥ 0.

Larsen et al. [28, Proposition 2.4] states that the dual optimiser Q̂ ∈ ba(P) for the
utility maximisation problem with the random endowment of the form B(WT ) has
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a non-trivial singular part in the Yosida–Hewitt decomposition Q̂ = Q̂
r + Q̂

s after a
possible shift of the function B by a constant. Moreover, such a shift can always be
arranged so as to keep the values of B positive and bounded away from 0. Therefore
we assume without loss of generality that such a shift has already been performed,
so that in particular we have B(0) > 0. This loss-of-mass property for Q̂

r can be
partially quantified as follows. Gu et al. [14, Theorem 3.7] and Larsen and Žitković

[30, Proposition 3.2] allow us to write dQ̂r

dP
= ŶT , where

dŶt = −Ŷt

(
μ

σ
dZt + ν̂t dWt

)
, Ŷ0 > 0,

for some process ν̂ ∈ L2. The presence of the non-trivial singular part Q̂s implies that
Ŷ is a strict local martingale, i.e., E[ŶT ] < Ŷ0.

Example 5.3 takes care of the conditions of Theorem 6.1 dealing with minimal
superreplicability. Indeed, both −B and −(B + εϕ) are of the form treated there and
are therefore minimally superreplicable by −B and −B(ε), respectively, for ε ≥ 0.

The last step before Theorem 6.1 is applied is to simplify the two ε-limits ap-
pearing in (6.1). That is an easy task thanks to the fact that the random variable
1
ε
(B + εϕ − B) is constant and equal to 1

ε
(B(ε) − B(0)). Theorem 6.1 guarantees

that this quotient admits a left and a right limit at ε = 0, and we introduce the nota-
tion

B ′(0+) := lim
ε↘0

1

ε

(
B(ε) − B(0)

)
and B ′(0−) := lim

ε↗0

1

ε

(
B(ε) − B(0)

)
.

The total mass in Q̂
s is given by Ŷ0 −E[ŶT ], and so the interval of B(WT )-conditional

Davis prices for the payoff ϕ(WT ) is given by [p,p], where

p := 1

Ŷ0
E

[
ŶT

(
ϕ(WT ) − B ′(0+)

)] + B ′(0+),

p := B
′
(0+) − 1

Ŷ0
E

[
ŶT

(
B

′
(0+) − ϕ(WT )

)]
.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Appendix A: Davis prices and related derivative prices

The purpose of this appendix is to place the notion of Davis pricing within the wider
framework of arbitrage- and utility-based pricing concepts. We start by noting that
conditional Davis prices are always arbitrage-free in the sense of the following defi-
nition from Siorpaes [34, Sect. 2].
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Definition A.1 A constant p = p(ϕ) ∈ R is called an arbitrage-free price of ϕ if for
all π ∈ A and q ′ ∈R, we have that

q ′(ϕ − p) +
∫ T

0
πudSu ≥ 0 implies q ′(ϕ − p) +

∫ T

0
πudSu = 0, P-a.s.

(A.1)

Proposition A.2 Given B ∈ L
∞++, each B-conditional Davis price p for a contingent

claim ϕ ∈ L
∞ is also an arbitrage-free price of ϕ.

Proof Let p be a conditional Davis price and suppose to the contrary of (A.1) that
we can find q ′ ∈R and π ∈A such that the nonnegative random variable

A := q ′(ϕ − p) +
∫ T

0
πudSu

is strictly positive with strictly positive probability, i.e., that we have P[A ≥ 0] = 1
and P[A > 0] > 0. Then for n ∈N, the inequality (3.1) implies that

U(B) ≥ U
(
B + nq ′(ϕ − p)

)

≥ E

[
U

(
B + nq ′(ϕ − p) + n

∫ T

0
πu dSu

)]

= E[U(B + nA)].
It remains to let n → ∞ and use the monotone convergence theorem to reach a con-
tradiction with the fact that U(B) < ∞. �

Next, we relate several popular utility-based pricing methods to Davis prices (see
e.g. Becherer [1]). As always, B ∈ L

∞++ is the random endowment and ϕ ∈ L
∞ is

the claim’s payoff. However, we also allow a dependence on the quantity q of claims
held.

Definition A.3 Let q �= 0. A constant m is called a utility-based derivative price for
the payoff ϕ at quantity q if

q ∈ argmax
q ′∈R

U
(
B + q ′(ϕ − m)

)
. (A.2)

A constant h = h(q) = h(q;ϕ|B) is called a utility indifference (Hicks, reservation)
price for ϕ at quantity q if

U

(
B + q

(
ϕ − h(q)

)) = U(B). (A.3)

Up to a sign convention, these prices are further divided into utility indifference buy
and sell prices (see e.g. [4, Chap. 2]). Finally, a constant c = c(q) = c(q;ϕ|B) is
called a certainty equivalent for ϕ at quantity q if

U(B + qϕ) = U
(
B + qc(q)

)
.
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While the three concepts introduced above differ from each other in general, we
show that under appropriate conditions, their limits as q → 0± coincide with the
endpoints of the interval P(ϕ|B) of conditional Davis prices.3 To streamline the pre-
sentation, we define pmin and pmax by

[pmin,pmax] = P(ϕ|B).

Similarly, let mmin(q) ≤ mmax(q) be the endpoints of the interval of utility-based
derivative prices at quantity q defined in (A.2) above.

In Proposition A.4 below, we assume that both ϕ and B are positive, bounded and
bounded away from zero. This entails virtually no loss of generality, but makes the
value function u(x, q) defined in (4.1) strictly increasing in each argument. On the
other hand, the assumption that −B is minimally superreplicable is a major one. We
leave the question of the validity of Proposition A.4 without this for future research.

Proposition A.4 Suppose that Assumption 4.5 holds, B,ϕ ∈ L
∞++ and −B is mini-

mally superreplicable. Then

lim
q↘0

c(q) = lim
q↘0

h(q) = lim
q↘0

mmax(q) = lim
q↘0

mmin(q) = pmax (A.4)

and

lim
q↗0

c(q) = lim
q↗0

h(q) = lim
q↗0

mmax(q) = lim
q↗0

mmin(q) = pmin. (A.5)

Proof We prove only (A.4) as the proof of (A.5) is completely analogous. Since the
value function u from (4.1) is strictly increasing in each argument, h(q) and c(q) are
well defined and unique for q �= 0. Moreover, we have for all q > 0 the bounds

0 < essinfϕ ≤ c(q) ≤ esssupϕ < ∞,

0 < essinfϕ ≤ h(q) ≤ esssupϕ < ∞. (A.6)

Hence limq↘0 qc(q) = 0 and we can let q ↘ 0 in

u(0, q) − u(0,0)

q
= U(B + qϕ) − U(B)

q

= U(B + qc(q)) − U(B)

q

= U(B + qc(q)) − U(B)

qc(q)
c(q),

and use Corollary 5.8 (where the constant yB > 0 is defined) to obtain

∂q+u(0,0) = lim
q↘0

yBc(q).

3We thank our AE and a referee for this suggestion.
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It remains to use Proposition 4.1 to conclude that limq↘0 c(q) is indeed the right
endpoint of the interval of B-conditional Davis prices.

To deal with the indifference price h, we use its definition together with the con-
cavity of the value function u to conclude that for q > 0 and λ ∈ (0,1), we have

u
( − λq h(λq),λq

) = u(0,0)

= λu
( − q h(q), q

) + (1 − λ)u(0,0)

≤ u
( − λq h(q), λq

)
.

Since u is strictly increasing in its second argument, we have h(λq) ≥ h(q).
Therefore q �→ h(q) is a nonincreasing function and by (A.6), its limit
h(0+) := limq↘0 h(q) exists in (0,∞). We use that fact to pass to the limit q ↘ 0 in
both sides of the equality

0 = u(−q h(q), q) − u(0,0)

q
.

So the directional derivative of u at (0,0) in the direction (−h(0+),1) is 0, and

inf
(y,r)∈∂u(0,0)

(
r − h(0+)y

) = 0.

Corollary 5.8 implies that we have (y, r) ∈ ∂u(0,0) only if y = yB , which then yields
h(0+) = 1

yB
∂q+u(0,0). Proposition 4.1 completes the argument.

Finally, we treat utility-based derivative prices. Let (qn)n∈N be a sequence of pos-
itive numbers decreasing to 0 and define the sequence (mn)n∈N by mn := mmax(qn).
Because the lower endpoints mmin(qn) can be treated similarly, we omit the details
for that case. By (A.2), the concave function

q ′ �→ u(−mnq
′, q ′)

admits a maximum at q ′ = qn. Therefore the partial derivatives of u at (−mnqn, qn)

are nonpositive in the directions (−mn,1) and (mn,−1). The proof of Proposition 4.1
produces a pair (yn, rn) ∈ ∂u(−mnqn, qn) such that rn = mnyn.

Because of (A.6), we have 0 < mn ≤ esssupϕ so that (−mnqn, qn) → (0,0). The
graph of the supergradient correspondence of a concave function is closed (see e.g.
Hiriart-Urruty and Lemaréchal [18, Proposition 6.2.1]) and locally bounded (see e.g.
[18, Proposition 6.2.2]). Therefore, by passing to a subsequence if necessary, we may
conclude that (yn, rn) → (y∗, r∗) for some (y∗, r∗) ∈ ∂u(0,0). By Corollary 5.8, the
value y∗ must equal yB > 0, and so yn > 0 for large enough n. This implies that
mn → m, where m = r∗/yB , and Proposition 4.1 guarantees that m is a Davis price
for the payoff ϕ.

On the other hand, for any conditional Davis price p ∈ P(ϕ|B) and for any
(y, rB) ∈ ∂u(0,0) such that p = r/yB , the monotonicity of the supergradient cor-
respondence, i.e.,

〈(−mnqn, qn) − (0,0), (yn, rn) − (y, rB)〉 ≥ 0,
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see e.g. [18, Proposition 6.1.1], implies that

(rn − r) − mn(yn − yB) ≥ 0 for all n ∈N.

Since yn → yB , rn → r∗ and (mn)n∈N is a bounded sequence, we conclude that
p = r/yB ≤ r∗/yB = m. Consequently, m = pmax.

It remains to show that mmax(q) → pmax as q → 0. If it did not, there would
exist a sequence (qn)n∈N with qn ↘ 0 such that mmax(qn) → p0 �= pmax. The same
would be true for any subsequence of (qn)n∈N, which contradicts the conclusion of
the previous paragraph. �
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