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Abstract—The technology of low-power wireless sensor net-
works (WSNs) needs to become more flexible to cater to emerging
data-driven applications and the Internet of Things. For example,
WSNs need to look beyond the traditional many-to-one data
collection traffic model and begin to support multicast communi-
cations. However, efficient multicasting in WSNs is challenging.
In this paper, we propose to apply the concept of opportunistic
forwarding to create an opportunistic multicast framework for
duty-cycled WSNs. Our framework allows for any node to
directly and efficiently multicast to any subset of known potential
destinations. We propose several variations of schemes to operate
within this framework. We evaluate our framework and the
proposed schemes using simulations.

I. INTRODUCTION

With the rise of data-driven applications and the Internet of
Things, the use-cases of wireless sensor network (WSN) tech-
nologies are becoming clearer and more abundant. However,
to cater to these uses, WSNs need to become more flexible,
including in terms of traffic pattern support. A traditional
data-collection WSN supports an efficient many-to-one traffic
pattern, where many source nodes send data to a single
destination node, typically the root of a data collection tree.
Some of these data-collection protocols also support data
dissemination from the root back down the tree (one-to-many).
Also, some of these protocols can be adapted to allow sources
to send to any one of multiple potential destinations (many-
to-any). However, WSNs lack efficient protocols that support
multicasting with any node as the source and any set of nodes
as the destinations (many-to-many).

One of the challenges with designing a multicast protocol
for a WSN is that the wireless radios in a WSN are often
duty-cycled, or turned on and off, in order to satisfy energy
constraints for nodes. But for a node to receive a packet,
the radios of the sender and receiver must both be on. A
key challenge with WSNs, then, is to arrange a rendezvous
between a sender and its receiver. The longer a sender waits
for the receiver to turn its radio on, the more energy the sender
consumes. If the sender must wait for multiple receivers, as
in multicast, it will consume even more energy. Also, if a
single packet must be sent to multiple forwarders to reach all
destinations, each of these copies of the packet will consume
additional precious energy as they are forwarded through
the network. The combination of these considerations makes
efficient multicasting in WSNs challenging.

However, we believe that efficient multicasting in WSNs
will only become more desirable. Consider an application

model based on data publishers and data subscribers [1].
Publishers are source nodes that periodically produce data
from sensor readings. Subscribers are destination nodes that
need this data to perform tasks. An example of this type
of application could be an industrial monitoring and control
network, where many control nodes need to be regularly
updated on the conditions at other points in the network.
Another example could be a smart building, where multiple
actuators for lighting and HVAC may depend on readings from
occupancy, temperature, and light sensors [2].

In recent years, the key metrics of energy, delay, and
reliability of data collection have all been improved through
the use of an opportunistic framework that allows nodes
to dynamically make forwarding choices based on current
network conditions and events. This gives the sender a large
amount of flexibility in forwarding, allowing it to forward
sooner and providing more options in case of failure. We
propose to extend the concepts of opportunistic data collection
to a full-fledged opportunistic multicast framework.

In our framework, detailed in Section IV, any node may
directly and opportunistically forward a packet to any subset
of potential destinations. Routes through the network are
dynamically determined, along with decisions of when to send
a copy of a packet to multiple forwarders (referred to hereafter
as splitting the packet, for simplicity) so that it reaches all
destinations efficiently. These processes are controlled by the
forwarder set selection and destination delegation methods,
also detailed in Section IV. We use simulations to evaluate our
proposed framework in Section V. We find that our framework
provides significant reductions in energy and delay compared
to current multicasting methods for duty-cycled WSNss.

II. RELATED WORK

Energy efficiency through duty-cycling has been a con-
stant research topic for WSNs for well over a decade, as
summarized in surveys such as [3]. At the link layer, pro-
tocols such as B-MAC [4], X-MAC [5], and ContikiMAC [6]
have achieved progressively more efficient rendezvous without
the need for synchronization or explicit scheduling between
nodes, using a technique called low-power listening. Receiver-
initiated protocols such as RI-MAC [7] use low-power probing
to achieve similar results. At the network layer, protocols such
as CTP [8] and IETF’s RPL [9] natively support many-to-one
data collection. More recently, opportunistic data collection
for duty-cycled WSNs has been developed and tested in
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protocols such as ORW [10] and our own EDAD [11]. These
opportunistic data collection protocols use similar frameworks
and differ mainly in the routing metric used for forwarding
decisions, and also in the choice of either a sender- or receiver-
initiated link-layer protocol. We note that opportunistic data
collection has also been referred to as “anycast” data collection
in the past, because it uses link-layer anycasting; however, to
avoid confusion with our goal of network-layer multicasting,
we use the term “opportunistic” here.

We classify approaches to multicasting in WSNs into four
categories: optimal multicast trees (Steiner trees), flooding,
down-tree routing, and multi-tree routing. Schemes that build
(pseudo-)optimal multicast trees, such as [12]-[15], typically
either do not consider duty cycling or rely on wakeup schedul-
ing, and thus do not meet our energy efficiency and flexibility
goals. In flooding schemes, such as IETF’s MPL [16], each
multicast packet is sent to every node in the domain. These
schemes are inefficient at addressing smaller groups of nodes.
A subset of protocols related to flooding, such as LWB [17]
and Chaos [18], use the tightly synchronized transmissions of
Glossy [19] to quickly disseminate packets to all participating
nodes; however, these protocols are restrictive in terms of
applications, scalability, and interoperability, making them
unsuitable for our goal of flexible multicasting.

Down-tree routing is our name for a class of protocols that
use an existing data collection tree structure [8] (or directed
acyclic graph), rooted at the source, to support a one-to-many
traffic pattern. To enable down-tree routing, each node stores
the source addresses of the packets that it forwards up the tree
in a routing set. The RPL standard defines a storing mode that
builds these routing sets. Protocols such as SMRF [20] and
BMREF [21] use RPL’s storing mode to implement multicast.
ORPL [22] implements an opportunistic version of down-tree
routing that allows shortcuts across tree branches. REMI [23]
builds clusters on top of the RPL tree and multicasts across
clusters in addition to up and down the tree.

Even with these shortcuts, down-tree routing’s reliance on
the tree structure rooted at the source imposes limitations on its
multicasting capabilities. In contrast, the multi-tree routing ap-
proach uses multiple tree structures, one rooted at each desti-
nation. These protocols then aggregate branches of the separate
trees to form “multi-source, multi-sink” trees [2]. Examples
of these protocols include MUSTER [2] and FROMS [24].
Our proposed multicasting framework combines this approach
with opportunistic forwarding, producing a highly dynamic,
flexible, and efficient multicasting process.

III. PRELIMINARIES

Our opportunistic multicast framework is built on oppor-
tunistic data collection protocols such as ORW [10] and
EDAD [11]. Our multicast framework could operate as either
a sender-initiated or a receiver-initiated scheme; however, we
prefer receiver-initiated schemes, in part because they mitigate
the duplicate packet problem seen in opportunistic sender-
initiated schemes [10]. Therefore, in this section, we briefly

describe RI-MAC, a receiver-initiated duty-cycled MAC proto-
col, and EDAD, an opportunistic data collection scheme built
on top of RI-MAC.

A. Receiver-initiated Asynchronously Duty-Cycled MAC

RI-MAC [7] is a receiver-initiated, asynchronously duty-
cycled MAC protocol. In RI-MAC, nodes sleep (turn their
radios off) when not engaged in communication. Periodically,
nodes wake (turn their radios on) and advertise their presence
as receivers by broadcasting a beacon packet and listening
for a response. If no response arrives, the node goes back to
sleep. The time between wakeups, or wakeup interval (Tyy),
is a network-wide parameter.

Packet arrival
1

[
i DATA
DATA

Fig. 1. Overview of RI-MAC, showing a timeline for sender ¢ and receiver
7. Both nodes broadcast beacon packets (B) at an interval Ty . Shaded areas
indicate radio on-time, and hatched boxes indicate received packets.

As shown in Fig. 1, when a node has a packet to send, it
wakes and idly listens for the next hop to wake and send a
beacon. When this occurs, the sender unicasts the data packet
in response to the beacon. The receiver responds with an
acknowledgement beacon that also advertises the receiver’s
availability to receive additional packets. In case of a collision
at the receiver, this beacon may also include a backoff window
value to prevent competing senders from colliding again.

B. Opportunistic Data Collection

Traditionally, many-to-one data collection in WSNs is per-
formed by building a tree with the destination (known as the
sink) at the root [8]. This tree is built by defining a routing
metric that models the “distance” from a node to the desti-
nation and then by choosing a forwarder that minimizes the
routing metric’s value. Traditional choices for routing metrics
include hop count and the expected number of transmissions
for a forwarded packet to reach the destination (ETX). For
example, if p;; is the probability of success of a TX attempt
from 4 to 7, then node ’s ETX can be calculated as follows:

ETX,; = min (ETXj + 1) , (1)
Jer; Dij

where T'; is the set of ¢’s neighbors. As its forwarder, node
1 chooses the neighbor j € I'; that provides ETX;. The
destination’s routing metric value is zero, and other nodes
repeatedly calculate and propagate their own routing metric
values as new information arrives. In a stable state, the network
forms a routing metric gradient, and packets flow along the
gradient to the destination.

In this single-forwarder framework, a sender must wait
for its preferred forwarder to wake, which is expensive in
terms of both delay and energy. This forwarding delay can be
significantly reduced by selecting a forwarder set, composed
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Fig. 2. Single-sink opportunistic data
collection with a routing metric gra-
dient to node 1.

Fig. 3. Opportunistic multicast
framework based on gradients to
each possible destination.

of nodes that each provide “sufficient” progress toward the
sink, instead of a single forwarder [10]. The sender can then
opportunistically send to the first forwarder in the forwarder
set that wakes, reducing forwarding delay and increasing
robustness to link fluctuations and topology changes. This
type of opportunistic data collection framework transforms the
data collection tree of the single-forwarder framework into
a destination-oriented, directed, acyclic graph (DODAG). An
example of such a DODAG is shown in Fig. 2.

The challenge lies in selecting the forwarder set. In our
previous work, we proposed a new opportunistic routing metric
called EEP that models the expected energy consumed along
the path of a packet. In short, the EEP for a node i (EEF;) is
the sum of the expected energy consumed while waiting for
any forwarder in ¢’s forwarder set F; to wake, the expected
energy consumed to transmit the packet to the forwarder, and
the expected energy to send the packet from that forwarder
to the destination. FEP; thus depends on the number of
forwarders in F;, the EEP of those forwarders, and the quality
of the links with those forwarders. The set F; is selected from
the set of ¢’s neighbors such that E'E P; is minimized. We will
use EEP in our evaluations in Section V; for more details,
please refer to [11].

IV. OPPORTUNISTIC MULTICAST FRAMEWORK

Our opportunistic multicast framework builds on the oppor-
tunistic data collection framework described in the previous
section. Similar to [24], each node stores a routing metric value
for each potential destination, creating a full-fledged gradient
stack, shown in Fig. 3. The forwarding process for a multicast
packet in our framework is shown in Fig. 4. The first step is
forwarder set selection, which determines the next hops for the
sender to consider. Once a forwarder in the forwarder set has
awoken, the sender chooses which destinations will be handled
by that forwarder, called destination delegation. A copy of the
packet addressed to those destinations is sent to the forwarder,
and the forwarding process repeats until all destinations have
been delegated. The structure of the framework and the steps
in the forwarding process are described in more detail in the
following sections.

A. Gradient Stack

In our opportunistic multicast framework, each node stores
a routing metric value for each potential destination, resulting

Fig. 4. Overview of our multicast framework. In each iteration, a child packet
is sent to the first forwarder in the forwarder set (selected via either the Union
or the MCS method) to wake. The packet is addressed to some subset (selected
via either the Basic or Aggressive method) of the destinations. The process
repeats until all destinations have been delegated.

in a routing metric gradient for each potential destination. We
refer to these gradients as the gradient stack, conceptualized in
Fig. 3. The gradient stack allows for highly dynamic, oppor-
tunistic multicasting, because each node has local information
about how to reach each destination individually. This infor-
mation can be dynamically merged, depending on the relevant
destinations, to make multicasting decisions. The process of
creating these gradients is the same as that of a traditional
many-to-one gradient, with each potential destination acting
as the root of a data collection DODAG.

B. Destination Grouping and Splitting

When a source generates a multicast packet, all of the
multicast destinations are grouped into it. As shown in Fig. 5,
as the packet is forwarded, it is split into child packets, each
with a disjoint subset of the destinations, in order to reach all
destinations. The choice of when to group and when to split
destinations affects the efficiency of packet delivery and is a
key consideration of our multicast framework. Splitting too
early, as in Fig. 5a, creates excess copies of the packet that
need to be separately forwarded through the network. Splitting
too late, as in Fig. 5b, can result in unnecessary hops. In our
framework, the decisions for when to group and when to split
are made by the forwarding process, described below.

(a) Splitting too early
creates excess copies of
the packet.

(b) Splitting too late

(c) Efficient splitting
results in less network
activity.

creates
hops.

unnecessary

Fig. 5. Example of how splitting behavior affects efficiency of packet delivery.
In this example, node 0 has a multicast packet to deliver to nodes 1 and 2.

C. Forwarder Set Selection

As shown in Fig. 4, the first step of the forwarding process
is forwarder set selection: given a multicast packet addressed
to a set of destinations D, the sender must decide which
neighbors to consider as forwarders. This set of neighbors
is called the forwarder set and, for a node ¢, is denoted
F;P. Each forwarder in the forwarder set provides enough
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“progress” to warrant sending to that forwarder. If a forwarder
provides progress toward a particular destination d, we say that
forwarder covers d. For a multicast packet, multiple forwarders
may be required to cover all d € D, and at least one node in
the forwarder set must cover each destination.

Defining “progress” in a multicast sense is difficult. We first
considered extending the design of the single-sink gradient to
a multicast scenario by defining a meta-metric that combines
the metrics for each d € D to produce one multicast gradient
value. However, this approach would require knowledge of
the meta-metric for each neighbor, and since the meta-metric
would be different for each possible D, this approach is
impractical. We therefore propose two simpler, heuristic-based
methods of choosing forwarders. These methods, Union and
MCS, use only the information found in the gradient stack.

1) Union: The forwarder set F;” for a node i, given a set
of destinations D, is the union of the forwarder sets for each
individual destination d € D. The heuristic used here is that if
a node is a good enough forwarder for at least one destination,
then it is worth sending to that node.

2) MCS: The forwarder set is the union of all minimum
covering sets (MCSs), where a minimum covering set is
defined as a set with minimal members for which each d € D
is covered by at least one member. This is a local attempt
to minimize the number of packet splits. The union is taken
to allow the wakeup order of the forwarders to determine the
actual minimum covering set used.

As an example, we use the gradients shown in Fig. 6
and consider a multicast packet with D = {5,6}. Tables I
and II show the forwarder sets created using Union and MCS,
respectively. In this example, using Union, Node 1’s forwarder
set for destination 5 is {2, 3}, and for destination 6, {2,3,4}.
The forwarder set F1{5’6} is the union of these two sets,
{2,3,4}. Using MCS, node 1’s forwarder sets for destinations
5 and 6 both contain node 2, so {2} is an MCS for node 1,
because no sets exist that can cover both destinations with
fewer nodes. Likewise, {3} is also an MCS. The forwarder
set F1{5’6} is the union of these MCSs, {2, 3}.

(a) Gradient for destination 5.

(b) Gradient for destination 6.

Fig. 6. Example network with gradients shown for destinations 5 and 6.

Union naturally creates larger forwarder sets than MCS.
This gives Union an advantage in sparser networks, because
in this case, adding even one more forwarder can significantly
reduce the forwarding delay. In dense networks with many
potential forwarders, MCS is penalized less for being more
selective. Additionally, MCS’s selectivity decreases the num-
ber of splits and the amount of traffic in the network. This
analysis is supported by our simulations in Section V.

TABLE 1
FORWARDER SETS SELECTED FOR
D = {5,6} USING UNION.

TABLE 11
FORWARDER SETS SELECTED
FOR D = {5,6} USING MCS.

i g gt pleed i Mcss RO
T 12,3 {2,34) {234 T {25, 3] {2.3)
2 {5} {5} {5} 2 {5} {5}
3 {5} {56} {56} 3 {5} {5}
4 {36} {6} {3,6} 4 {6} {6}
5 {} {6} {6} 5 {6} {6}
6 {5} { {5} 6 {5} {5}

D. Destination Delegation

In our opportunistic framework, the sender ¢ sends a packet
to the first forwarder j € F;” that wakes. As shown in Fig. 4,
the next step is destination delegation, the process of choosing
which destinations to group into the packet to j. We propose
the following two methods:

1) Basic: All destinations for which the forwarder provides
sufficient progress, as determined by the gradient stack, are
delegated. Formally, assume sender ¢ has a multicast packet for
a set of destinations D), and a forwarder j € F;P is available.
Then Dj, the set of destinations delegated to j, is the set of
all destinations d for which j € Fi{d}.

2) Aggressive: All destinations for which the forwarder
provides any progress are delegated. Formally, if 3¢ is the
routing metric value for destination d at node 7, then D is
the set of all destinations d for which ,ij-l < B

An example of the two delegation methods, using the
topology of Fig. 6, is shown in Fig. 7. In this example, a packet
for 5 and 6 has arrived at node 1. The forwarder set (using
Union) is Fl{‘r”G} = {2,3,4}, and node 4 wakes first. Using
Basic delegation, the packet is split and only 6 is delegated
to node 4. Node 1 must then start a second iteration of the
cycle shown in Fig. 4, with D = {5}. But using Aggressive
delegation, both destinations are delegated to node 4.

4¢ F’
4eF*

(a) Node 4 wakes first,
and node 1 must de-
termine Dy, the set of
destinations to delegate
to node 4.

(b) Basic delegation:
Dy = {6} because
node 4 is in 1’s for-
warder set for 6, but not
for 5.

(c) Aggressive delega-
tion: Dy = {5,6} be-
cause 4’s routing metric
to both 5 and 6 is no
larger than I’s.

Fig. 7. Example of delegation mechanisms. Node 1 has a packet with D =
{5, 6}. The shaded area indicates Fi{5’6}, selected using Union.

From this example, we can see the motivation for Aggres-
sive delegation. Node 4 does not provide significant progress
toward node 5 from node 1, but there is a chance that one of
node 4’s forwarders does provide good progress to both 5 and
6. If such a forwarder wakes next, then Aggressive delegation
has both allowed node 1 to finish sending earlier and prevented
an excess packet split from occurring. If not, the drawback is
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minimal, as the packet from 1 to 4 was being sent regardless,
and the hop from node 1 to node 4 provides non-negative
routing progress toward destination 5. Our simulation results
have shown that Aggressive delegation is generally effective.

E. Summary and Example

Returning to Fig. 4, after destination delegation, a child
packet bound for D; is sent to node j. D; is then removed
from D, and if D is now empty, node ¢ is finished sending
the packet. Otherwise, node i repeats the cycle, starting with
forwarder set selection, using the updated D. We conclude
the description of our opportunistic multicast framework with
a small example, shown in Fig. 8. The gradient stack for this
example is the same as Fig. 6.

(a) A packet for D = {5,6} arrives () The forwarder set F1{5’6} is the

at node 1, which is using MCS for-
warder set selection. Both {2} and
{3} are minimum covering sets.

union of these sets. Node 3 wakes
first and provides progress to 5 and
6, so node 1 delegates 5 and 6 to 3.

(c) Node 3 now has the packet with
D = {5,6}. The minimum covering
set is {5,6}. Node 6 wakes first, so
node 3 splits the packet and sends to
node 6 with Dg = {6}.

(d) Node 3 still needs to deliver the
packet to node 5, so it waits until
node 5 wakes and then sends to node
5 with Ds = {5}. All destinations
have been reached.

Fig. 8. Example of delivery of a packet using MCS forwarder set selection
and Basic delegation.

V. EVALUATION

We evaluated our multicast scheme with an event-based
simulator written in Python. The simulator uses a distance-
based path loss model to determine received signal strength,
which is combined with a noise floor to obtain a signal-to-
noise ratio (SNR). We then use an empirically-derived function
from TOSSIM [25] to obtain packet reception ratio (PRR)
from the SNR. The simulated link layer is an opportunistic
version of RI-MAC [7]. We simulate basic channel contention
and packet retransmissions. The default simulation settings are
shown in Table III. The frame duration settings were selected
assuming a 250 kbps radio, as in IEEE 802.15.4, and packets
of less than 100 bytes.

In each simulation topology, one source node is placed at
each corner of the rectangular deployment, with a fifth source
placed in the center. The other nodes, including the destina-
tions, are randomly deployed in a connected topology. For each
topology, each source node generates a total of 100 packets at
a specified interval, with initial packets scheduled randomly.

TABLE III - -5 Union+Agg
SIMULATION DEFAULT SETTINGS. 0.012{| 4 ynion+Basic
0.011|[ % MCS+Agg
: -©- DownTree-Opp
Parameter Default 3 0010(| - SteinereTx
Path loss exponent 3.0 oaos
Noise floor -100 dBm S 0.008
Deployment area 100x100 m 20007
# nodes (n) 100 ——
# sources (s) 5 0008
# destinations (d) 10 0-0%66 400 600 avt\;ok 100_0[1203‘141:0 1600 1800 2000
Data interval (Tp) 60 s srecpmenalims
Wakeup interYal (T )|500 ms Fig. 9. Average node duty cycle vs.
Wakeup duration (Tg)|1 ms wakeup interval.
Frame duration (T7) |3 ms

Each packet is addressed to the same set of destinations. This
mimics a scenario in which the destinations are “subscribed”
to data being generated by a group of sources. The results
below are averaged over at least 50 topologies. All schemes
use the same duty-cycled link layer. All tests are performed
with the network at steady state.

We evaluate three combinations of our forwarder set se-
lection methods and destination delegation methods: Union
with Aggressive delegation (Union+Agg), Union with Basic
delegation (Union+Basic), and MCS with Aggressive delega-
tion (MCS+Agg). We use the EEP routing metric [11] for
these protocols. We do not include results for MCS with Basic
delegation, which performs worse than MCS+Agg.

We implemented a down-tree routing scheme, which we
call DownTree-Opp, to compare to our framework. DownTree-
Opp uses an opportunistic framework, similar to ORPL [22]
but with EEP as the routing metric. We use EEP to focus the
comparison on frameworks and not routing metrics; however,
we observed nearly identical performance when using EDC,
which is ORPL’s routing metric. In our simulations, each
source is the root of a data collection DODAG, a best-case
scenario for DownTree-Opp.

Finally, we implemented a scheme we call Steiner, which
represents an optimal multicast solution for a single-forwarder
framework, such as that employed by FROMS [24]. This
omniscient, centralized scheme exhaustively searches for the
minimum-cost subgraph that connects each source with all
destinations (the minimum Steiner tree on the graph). Packets
are then routed on this tree. We use ETX as the cost metric.

A. Wakeup Interval Calibration

The energy performance strongly depends on the wakeup
interval Ty, and its relation to the traffic rate. Therefore, we
first calibrate the network wakeup interval by testing a variety
of wakeup intervals to find the optimal wakeup interval for
our traffic settings. The average network duty cycle versus
Ty is shown in Fig. 9. The duty cycle is calculated as the
radio on-time divided by the total simulation time. If Ty is
too small, excessive on-time is spent on wakeups. If Ty is
too large, excessive on-time is spent on idle listening. From
this figure, we see that the best Ty, for our traffic load
is around 500 ms, which we use for the remainder of our
evaluations; however, we observed that trends in performance
remain similar, regardless of wakeup interval optimality.
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Fig. 11. Evaluation for different numbers of nodes in a fixed area.

B. Effect of the Number of Destinations

Fig. 10 shows the effect of the number of (randomly-
deployed) destinations to which each source sends each packet.
Fig. 10a shows the forwarding energy, which we define as
the energy spent on idle listening, TXs, and RXs due to
packet forwarding. This quantity does not include the baseline
energy load of periodic wakeups. In short, forwarding energy
represents the additional energy load imposed on the system
from use of the multicast scheme. We measure forwarding
energy in energy units, defined as the amount of energy
consumed in one millisecond of radio on-time.

Forwarding energy per packet increases with the number
of destinations for each packet, which is expected—more
destinations means more work. Aggressive delegation helps
energy performance for Union (and also MCS). Union+Agg
uses the least energy for the numbers of destinations shown
here. Steiner-ETX uniformly uses more energy more than
Union+Agg, meaning that the benefits of Union+Agg’s op-
portunistic framework outweigh the drawbacks of using non-
optimal forwarders. Steiner-ETX does perform better than
DownTree-Opp with five or more multicast destinations.

Fig. 10b shows delay, which we measure as the time
required to deliver a packet from the source to all of the
multicast destinations. Delay increases with the number of
destinations, which makes sense, because more destinations
increases the chance that at least one of them will be far
from each source. The Union forwarder set selection method
provides the best delay performance, because Union chooses
more forwarders, sending to the first forwarder good enough
for any one destination, whereas MCS waits for a forwarder
that is good for some number of destinations. The Aggressive
delegation mechanism provides a small delay performance
gain. DownTree-Opp’s delay is competitive with MCS+Agg,
but not Union. Steiner-ETX has the worst delay performance,
because its adherence to an optimal tree structure means that
senders must always wait for a particular forwarder to wake.

Comparing the delay and energy figures, the energy perfor-
mance of Union and MCS appears surprisingly close. Fig. 10c
provides a clue as to how MCS compensates for its lackluster
delay, showing the average total number of successful RXs
over the course of the simulations, which is directly related
to the number of times each packet is split on the way to
its destinations. MCS splits packets considerably less often
than Union or DownTree-Opp. We therefore note that MCS
may perform better than Union in a high-traffic scenario
where congestion is a factor. Steiner-ETX splits even less than
MCS, due to its optimal tree structure. The tradeoff for our
proposed opportunistic framework’s superior energy and delay
performance, then, is higher amounts of network traffic.

Fig. 10d shows the number of destinations “aggressively”
delegated, meaning those destinations assigned to a forwarder
by Aggressive delegation that would not be assigned by Basic
delegation. We see that Union makes more use of Aggressive
delegation than MCS, which is one way Union compensates
for its use of lower-quality forwarders.

C. Effect of the Network Density

Fig. 11 shows results for performance with different num-
bers of nodes in the fixed simulation area, measuring the effect
of network density. Fig. 11a shows forwarding energy. Our
proposed schemes again have better energy performance than
DownTree-Opp and Steiner-ETX. For our schemes, forward-
ing energy decreases with the number of nodes due to the
increased options for forwarder sets. Delay (Fig. 11b) also
decreases, for the same reason.

For our randomly-deployed networks, fewer nodes often
leads to irregular topologies. The effects of this irregularity can
be seen in the figures, with a “regularity threshold” emerging
around 100 nodes. For example, in Fig. 11c, the number of
splits stays fairly steady above 100 nodes. Below this point,
route options tend to be limited, forcing destinations to be
grouped together for longer. Interestingly, this forced grouping
actually helps the DownTree schemes in energy performance
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at 50 nodes. When more routes open up at 100 nodes, the
DownTree schemes split more often. Splits in a DownTree
scheme tend to be more costly because a packet from a source
to a destination in a DownTree protocol must follow a route
conforming to the existing data collection tree or DODAG
structure that is rooted at the source. The splits therefore tend
to happen earlier on the path of a packet, where more of the
tree branches overlap, which means each child packet must be
forwarded farther after the split.

D. Performance Summary

For our testing scenario, Union+Agg is the most energy-
efficient variation of our framework. Aggressive delegation
uniformly outperforms Basic delegation. Union forwarder set
selection produces less delay than MCS forwarder set selec-
tion, but MCS produces less network activity. Our frame-
work outperforms a representative state-of-the-art protocol,
DownTree-Opp (which is operating in a best-case scenario
here), showing the advantage of the gradient stack approach.
Finally, our opportunistic framework outperforms Steiner-
ETX, a single-forwarder solution operating on an optimal tree.
We conclude that our dynamic and flexible approach is more
suited to duty-cycled WSNs than rigid, “optimal” approaches.

E. Traces

To illustrate the dynamic nature of our multicast framework,
we present two traces of Union+Agg in Fig. 12. All param-
eters, including routing metric values, are the same for these
two traces, but the paths taken by the packets are different.
This random-like behavior makes the framework robust, and
also helps to balance the energy load between the nodes.

Fig. 12. Two traces of the paths taken to deliver a single multicast packet
with Union+Agg. The red triangle in the center is the source, and the blue
hexagons are destinations. Arrows show packet transmissions.

VI. CONCLUSION

We have proposed an opportunistic multicast framework for
duty-cycled wireless sensor networks that provides flexible,
efficient, and reliable multicasting. Our framework can be used
to provide low-energy, low-delay multicasting for a variety
of applications. Future work includes in-depth analysis of the
overhead of our framework, methods for reducing memory
consumption and network maintenance costs, and implemen-
tation of our framework in Contiki OS.
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