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Abstract

In this paper we establish the incompressible limit for the compressible free-
boundary Euler equations with surface tension in the case of a liquid. Compared
to the case without surface tension treated recently in Lindblad and Luo (Commun
Pure Appl Math 71:1273–1333, 2018) and Luo (Ann PDE 4(2):1–71, 2018), the
presence of surface tension introduces severe new technical challenges, in that
several boundary terms that automatically vanish when surface tension is absent
now contribute at top order. Combined with the necessity of producing estimates
uniform in the sound speed in order to pass to the limit, such difficulties imply that
neither the techniques employed for the case without surface tension, nor estimates
previously derived for a liquid with surface tension and fixed sound speed, are
applicable here. In order to obtain our result, we devise a suitable sound-speed-
weighted energy that takes into account the coupling of the fluid motion with the
boundary geometry. Estimates are closed by exploiting the full non-linear structure
of the Euler equations and invoking several geometric properties of the boundary in
order to produce some remarkable cancellations. We stress that we do not assume
the fluid to be irrotational.
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1. Introduction

We consider the motion of a compressible liquid with free surface boundary in
R
3. We use the notation Dt to represent the bounded domain occupied by the fluid

at each time t , whose boundary is advected by the fluid. The motion of the fluid is
described by the compressible Euler equations

⎧
⎪⎨

⎪⎩

ρ(∂t u + ∇uu) = −∇ p, in D,

∂tρ + ∇uρ + ρdiv u = 0, in D,

p = p(ρ), in D.

(1.1)
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Here, D = ∪0≤t≤T {t} × Dt , u = u(t, x) is the velocity of the fluid, whereas
p = p(t, x) and ρ = ρ(t, x) are the pressure and density, respectively. The density
is bounded from below away from zero, that is, ρ ≥ constant > 0. This condition
on the density is what characterizes the fluid as a liquid. The initial and boundary
conditions are

{
{x : (0, x) ∈ D} = D0,

u = u0, ρ = ρ0 in {0} × D0,

{
(∂t + ∇u)|∂D ∈ T (∂D),

p|∂D = σH,
(1.2)

where H is the mean curvature of ∂Dt , σ ≥ 0 is a constant, and T (∂D) is the
tangent bundle of ∂D (the condition (∂t + ∇u)|∂D ∈ T (∂D) expresses the fact that
the boundary moves with speed equal to the normal component of the velocity).
Finally, the equation of state is assumed to be a strictly increasing function of the
density, that is,

p = p(ρ), p′(ρ) > 0.

We shall consider the specific equation of state given by (1.3) in this manuscript.
The unknowns in (1)–(1) are u, ρ and Dt , and hence, H and p are function of the
unknowns, and therefore, are not known a priori.

Problem (1)–(1) behaves significantly different depending on whether σ = 0 or
σ > 0. The former is known as the case without surface tension whereas the latter is
the case with surface tension, which is the situation treated in this manuscript. Our
goal is to show that, for σ > 0, the motion of a free-boundary incompressible fluid
with surface tension (corresponding to the idealized situation of a constant density
fluid) is well-approximated by (1)–(1) when an appropriate notion of compressibil-
ity is very small. It is well-known that solutions to the incompressible equations,
written in section 1.2 below, cannot be obtained by simply setting ρ to a constant
in (1)–(1) (see, for example, [46]). The correct way of setting the incompressible
limit is via the fluid’s sound speed introduced in section 1.3.

The study of the incompressible limit has a long history in fluid dynamics; see
section 1.2. For the case of a motion with free-boundary, the only results we are
aware are the recent works [46,48] by Lindblad and the second author, both treating
the case σ = 0. In particular, to the best of our knowledge this is the first proof of
the incompressible limit for the free-boundary compressible Euler equations with
surface tension, that is, σ > 0. Despite many new difficulties introduced by the
presence of surface tension, which are discussed in section 1.6, it is important to
consider the case σ > 0 because real fluids have surface tension. Thus, this feature
has to be incorporated in the construction of more realistic models. We remark that
we do not assume that the fluid is irrotational.

1.1. Lagrangian Coordinate and the Reference Domain

We introduce Lagrangian coordinates, under which the moving domain be-
comes fixed. Let � be a bounded domain in R

3. Denoting coordinates on � by
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y = (y1, y2, y3), we define η : [0, T ] × � → D to be the flow of the velocity u,
that is,

∂tη(t, y) = u(t, η(t, y)),

η(0, y) = y.

We introduce the Lagrangian velocity, density and pressure, respectively, by v(t, y)

:= u(t, η(t, y)), R(t, y) := ρ(t, η(t, y)) and q(t, y) := p(t, η(t, y)). Therefore,

∂tη = v.

For the sake of simplicity and clean notation, here we consider the model case when
D0 = � = T

2 × (0, 1). We set

�0 := T
2 × {x3 = 0}, �1 := T

2 × {x3 = 1}
so that � := ∂� = �0 ∪ �1. Using a partition of unity, as in, for example, [9,40],
a general domain can be treated with the same tools we shall present. Choosing
� as above, however, allows us to focus on the real issues of the problem without
being distracted by the cumbersomeness of the partition of the unity. We also note
that one might want to consider a situation more akin the finite-depth water waves
problem, where the bottom boundary, �0, remains fixed. This case requires only
minor modifications from our presentation but, again, we believe that this would
be a distraction from the main problem.

Let ∂ be the spatial derivativewith respect to the spatial variable y.We introduce
the matrix a = (∂η)−1. This is well-defined since η(t, ·) is almost id (that is, the
identity diffeomorphism on�) whenever t is sufficiently small. Define the cofactor
matrix

A = Ja,

where J = det(∂η). Then, A satisfies the Piola identity

∂μ Aμα = 0.

Here, the summation convention is used for repeated upper and lower indices, and
in above and throughout, we adopt the convention that the Greek indices range over
1, 2, 3, while the Latin indices range over 1 and 2.

In terms of v, R, q and a, the system (1)–(1) becomes
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R∂tv
α + aμα∂μq = 0, in [0, T ] × �

∂t R + Raμα∂μvα = 0, in [0, T ] × �

q = q(R), in [0, T ] × �

Aμα Nμq + σ
√

g
gη
α = 0, on [0, T ] × �,

η(0, ·) = id, R(0, ·) = R0(= ρ0), v(0, ·) = v0,

(1.3)

where N is the unit outward normal to �, and 
g is the Laplacian of the metric gi j

induced on �(t) = η(t, �) by the embedding η, that is,

gi j = ∂iη
μ∂ jημ, 
g(·) = 1√

g
∂i (

√
ggi j∂ j (·)),
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where g = det g. Since η(0, ·) = id, the initial Eulerian and Lagrangian velocities
(that is, u0 and v0) agree. In addition, we also have a(0, ·) = I , where I is the
identity matrix. Finally, J = det(∂η) satisfies

∂t J = Jaμν∂μvν, [0, T ] × �. (1.4)

This, together with the second equation of (1.1), implies

R J = ρ0, [0, T ] × �, (1.5)

and hence the first equation in (1.1) is equivalent to

ρ0∂tv
α + Aμα∂μq = 0, in [0, T ] × �. (1.6)

1.2. Background

The studyof themotion of afluid has a longhistory inmathematics. In particular,
the study of free-boundary fluid problems has blossomed over the past decade or
so. However, much of this activity has focused on the study of the incompressible
free-boundary Euler equations, that is,

⎧
⎪⎨

⎪⎩

βvα
t + aμα∂μq = 0, in [0, T ] × �

div v = 0, in [0, T ] × �

Aμα Nμq + σ
√
g
gη̃

α = 0, on [0, T ] × �,

(1.7)

where β is a positive constant corresponding to the fluid’s constant density, v and
q are the incompressible Lagrangian velocity and pressure, a = (∂η̃)−1, A =
det(∂η̃)a, where η̃ is the Lagrangian map associated with v.

It is well-known that for the incompressible equations, q is not determined by an
equation of state. Rather, it is a Lagrangemultiplier enforcing the constraint div v =
0. The local well-posedness for the incompressible free-boundary Euler equations
has been studied by many authors, see [7,8,11,12,16,17,19,31,41,42,45,47,52,
54–57,65,66,69] and references therein. It is worth mentioning here that when
D0 is unbounded (with finite or infinite depth) and the velocity v0 is irrotational
(that is, curl v0 = 0, a condition that is preserved by the evolution), this problems
is called the water-waves problem, which has received a great deal of attention
[4–6,15,24–30,32–35,59,61–63,67,68].

However, the theory of the free-boundary compressible Euler equations is far
less developed. It is known that for suitable initial data, the system (1) modeling a
liquid admits a local (in time) solution, for example, [9,20,21,43,44,60], and for the
gas model, the existence of a local solution was obtained in [10,13,14,36,37,49].

In this paperwe study how the solutions to (1.1) and (1.2) are related. Intuitively,
one expects that the solution of (1.1) should converge to that of (1.2) when the
“compressibility vanishes”. The proper way to define this problem is via the fluid’s
sound speed (see (1.3) below), which corresponds to the speed of propagation of
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sound waves inside the fluid and captures the fluid’s compressibility in that stiffer
fluids have larger sound speed.1

The incompressible limit problem consists in proving that if a sequence (v0,κ ,

R0,κ ) of well-prepared initial data for (1.1) converges to (v0, β), where v0 is the
initial data for the incompressible problem (1.2), and the sound speed at time zero
diverges to infinity, then the respective solution (v, R) of (1) converges to (v, β),
where v solves (1.2). Here, well-prepared initial data means that, in addition to
satisfying the compatibility conditions, the initial data has to be tailored to the
above limit (see Theorem 1.4).

The incompressible limit for the compressible Euler equations in a fixed do-
main (that is,Dt = D0 or the whole space) was established by several authors under
different assumptions; see [2,3,18,22,23,38,39,50,53] and references therein. In
addition, the incompressible limit for the compressible free-boundary Euler equa-
tions was solved by Lindblad and the second author in [46] with σ = 0 in a bounded
domain, and by the second author [48] in the same case but with unbounded do-
main. To our best knowledge, the aforementionedworks [46,48] are the only known
results in the study of the incompressible limit for equations (1.1). In particular,
no result is available for the case with σ > 0. We will establish a priori estimates
for (1.1) that are uniform in the sound speed (see sections 3, 4). In addition, we
will construct a sequence of well-prepared data for (1.1) which converges to that of
(1.2) when the sound speed tends to infinity (see section 5). As a consequence, we
conclude the convergence of the compressible solution to the incompressible one
by an Arzelà-Ascoil-type theorem.

1.3. The Sound Speed

Physically, the sound speed is defined as c = √
q ′ ◦ R. To set up the incom-

pressible limit, it is conveninet to view the sound speed as a paramenter. As in
[18,23], we consider a family {qκ(R)} parametrized by κ ∈ [0,∞), where

κ := q ′
κ(R)|R=β. (1.8)

Here, ′ = d
d R , and

qκ(R) = cγ κ(Rγ − βγ ), cγ = γ −1 > 0, β > 0, γ ≥ 1. (1.9)

We slightly abuse terminology and call κ the sound speed. In order to consider
the incompressible limit, we view the density as a function of the pressure, that is,
Rκ = Rκ(q) = [(cγ κ)−1q + βγ ]1/γ , and we see that R′

κ(q) satisfies

1

c0
Rκ ≤ R′

κ(q) ≤ c0Rκ (1.10)

for some fixed constant c0 > 0, where Rκ = (cγ κ)
− 1

γ . Also, for 0 ≤ k ≤ 4, we
have that

|R(k)
κ (q)| ≤ c0, |R(k)

κ (q)| ≤ c0|R′
κ(q)|k ≤ c0|R′

κ(q)|,

1 This is an experimental fact, see, for example, [64].
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|q(k)
κ (R)| ≤ c0|q ′

κ(R)| (1.11)

hold uniformly in κ .

1.4. The Main Results

Notations. All notations will be defined as they are introduced. In addition, a
list of symbols is given at the end of this section for a quick reference.

Definition 1.1. The L2-based Sobolev spaces are denoted by Hs(�), with the cor-
responding norm denoted by || · ||s ; note that || · ||0 = || · ||L2(�). We denote by
Hs(�) the Sobolev space of functions defined on �, with norm || · ||s,� .
Theorem 1.2. Let � = T

2 × (0, 1) and v0,κ be a smooth vector field.2 Let ρ0,κ
be a smooth function satisfying ρ0,κ ≥ c > 0 and q0,κ be the associated pressure
given by (1.3). Suppose that for some m ∈ R such that

||v0,κ ||4, ||v0,κ ||4,�, ||q0,κ ||4, ||q0,κ ||4,� ≤ m, for all κ > 0 (1.12)

holds. Then there exist a T > 0 and a constant M such that any smooth solution
(vκ , Rκ) to (1.1) defined on the time interval [0, T ] satisfies

N (t) ≤ M,

where

N = ||vκ ||24 + ||Rκ∂tvκ ||23 + ||Rκ∂2t vκ ||22 + ||R
3
2
κ ∂3t vκ ||21

+ ||Rκ ||24 + ||∂t Rκ ||23 + ||√Rκ∂2t Rκ ||22 + ||Rκ∂3t Rκ ||21
+ ||∂tvκ ||22 + ||√Rκ∂2t vκ ||21 + ||∂2t Rκ ||21 + E, (1.13)

where E is defined as Definition 3.6.
The next theorem is a direct consequence of Theorem 1.2 together with the

Arzelà-Ascoli theorem.

Theorem 1.3. Let v0 ∈ H6.5(�) be a divergence free vector field and let v be the
solution to the incompressible free-boundary Euler equations (1.2) with data v0
defined on a small time interval [0, T ]. Let (v0,κ , R0,κ ) ∈ H4(�) × H4(�) be a
sequence of initial data for the compressible free-boundary Euler equations (1.1)
satisfying the compatibility conditions up to order 3 (see section 5.1 for a statement
of the compatibility conditions). Furthermore, assume that (v0,κ , R0,κ ) → (v0, β)

in C2(�) as κ → ∞ and that (1.1) holds. Let (vκ , Rκ) be the solution for (1.1)
with the equation of state (1.3). Then:

1. For κ sufficiently large, (vκ , Rκ) is defined on [0, T ].

2 By “smooth” we mean “as smooth as necessary for the qualitative arguments (such as
integration by parts) to go through.” However, all of our quantitative estimates depend only
on the Sobolev norms mentioned in Theorem 1.2.
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2. (vκ , Rκ ) → (v, β) in C0([0, T ], C2(�)) after possibly passing to a subse-
quence.

Remark. v0 ∈ H6.5(�) is required so that the initial norms are uniformly bounded.
We refer the proof of Theorem 5.1 for details.

Finally, we need the following theorem to show that the data required in Theo-
rem 1.2 and Theorem 1.3 exists:

Theorem 1.4. Let v0 ∈ H6.5(�) be a divergence free vector field in �. Then there
exists initial data (v0,κ , R0,κ ) ∈ H4(�)× H4(�) satisfying the compatibility con-
ditions up to order 3 (see section 5.1 for a statement of the compatibility conditions)
such that (v0,κ , R0,κ ) → (v0, β) in C2(�) as κ → ∞, and (1.1) holds.

Notation 1.5. For the sake of clean notations, we will drop the κ-indices on vκ, Rκ ,

qκ , that is, we will denote (vκ , Rκ , qκ ) = (v, R, q) when no confusion can arise.

1.5. On Existence of Solutions

In Theorems 1.2 and 1.3 we have assumed that a solution is given in the stated
function spaces, whereas in Theorem1.4we showed how to construct initial data for
solutions in the corresponding spaces without, however, establishing the existence
of solutions. In this section we show that existence of solutions in the spaces we
use follow from the existence result of [9], although such an existence result and
its corresponding estimates do not suffice to obtain the incompressibe limit, as we
also discuss further below.

We begin noticing that given a solution with regularity as in [9], for each fixed
κ , the norms appearing inN are well-defined, whereN is given in equation (1.1).
The issue is that the time of existence of the solutions obtained in [9], as well as the
a priori bounds in [9], depend on κ , whereas one needs bounds and a time interval
that is uniform on κ in order to pass to the limit κ → ∞.

The crucial point is that while our estimates hold on a small time interval [0, T ],
the smallness of T does not depend on κ provided that κ is sufficiently large. In a
nutshell, the logic to obtain solutions in the spaceswherewe take the incompressible
limit is the following: (i) [9] is used to obtain, for each κ , a solution defined on a
time interval [0, Tκ); (ii) We apply our estimates to show that the solution from [9]
can be controlled on a time interval [0, T ) that is uniform on the sound speed κ . This
uniform control follows from the use of our weighted-in-κ estimates (that is, the
estimates with Rκ -weights) and, in fact, cannot be obtained from the energy used
in [9], as we also show below; (iii) A more or less standard continuation argument
is then used to obtain that Tκ ≥ T for all κ sufficiently large. In this way we obtain
a family of solutions parametrized by κ and defined on a common time interval.
(iv) Our estimates show that on this common time interval the family of solutions
converges (up to a subsequence) to the incompressible solution.

Remark. We stress that the uniformity of T on the sound speed κ comes from the
fact that we can close our estimate for N (defined in equation (1.13)) uniformly
on κ (for large κ). This can only be done because of the use of Rκ -weights in our
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energy which is, furthermore, tailored to the incompressible limit.3 After we have
obtained such a uniform-in-κ estimate, we can derive further estimates which can
in principle depend on κ . In fact, estimates of this type are used below. They are
harmless because they are used in arguments that only require finiteness of some
quantities. However we again insist that the entire argument given below relies on
the fact that we are able to derive estimates independent of κ (or, more precisely,
independent of κ for all κ sufficiently large).

We will now elaborate on the argument summarized in above. We will present
its logic step-by-step, but for the sake of brevity will not write down explicitly many
of the estimates involved. After that, we will show that this uniform control of T
that we obtained does not follow from the result in [9].

In what follows, denote by EC H S the energy used in [9], that is, equation (1.9)
of [9].

Claim I. Continuation criteria.We begin with the following statement: let (v, R)

be a solution defined on a time interval [0, T∗) and with regularity given by the
norms in EC H S .4 Set M := sup0≤t<T∗ EC H S(t). We claim that if M < ∞, then
the solution (v, R) can be continued pass T∗.

Suppose thatM < ∞. Because ||∂tv||3 is controlled by EC H S , the fundamental
theorem of calculus combined with M < ∞ shows that v ∈ C0([0, T∗), H3). Let
{t�}∞�=1 be a sequence of times such that t� → T∗. Using again the fundamental
theorem of calculus and the triangle inequality, we have

||v(t�+ j ) − v(t�)||3 ≤ M|t�+ j − t�|,

showing that v(t�) is a Cauchy sequence in H3 so it converges. Since this is true
for any sequence t� → T∗, we have that there exists a v∗ ∈ C0([0, T∗], H3) that
extends v ∈ C0([0, T∗), H3). Moreover, since v(t�) converges to v∗(T∗) in H3 and
is bounded in H4 (because the H4-norm is controlled by EC H S), we obtain that in
fact v∗(T∗) ∈ H4. Using the equations of motion, which give ∂t R ∼ ∂v, and the
fact that ||v||4 is controlled by EC H S , we similarly obtain an extension of R to the
closed interval. The same argument also gives that the flow η∗ of v∗, whose H5

norm is controlled by EC H S on [0, T∗), satisfies η∗(T∗) ∈ H5. Repeating exactly
the same argument for the boundary norms in EC H S (that is, the last sum of (1.9)
in [9] and the next-to-the-last term of (1.9) in [9]), we finally conclude that v and R
extend to functions on the closed interval [0, T∗] and that EC H S(T∗) < ∞. We can
now apply Theorem 1.6 of [9], which says that if EC H S(T∗) < ∞, then a solution
exists on [T∗, T∗ + ε) for some ε > 0.

3 In particular, as we discuss in this section and in section 1.6, our energy is related to that
used in [9], but it also differs from it in important aspects.
4 To avoid confusion, we stress that by “regularity given by the norms” we mean that

the maps belong to the function spaces of the corresponding norms, but we do not mean
finiteness of the corresponding energy over the time interval. For example, if we say that v
has regularity given by the norms ||v||s +||∂tv||s−1, we mean that v ∈ Hs and ∂tv ∈ Hs−1,
but we do not assert that the supremum in t of ||v||s + ||∂tv||s−1 is finite.
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Claim II. Control of ECHS from N for fixed κ . Let (v, R) be a solution defined
on a time interval [0, T ) with the regularity given by the norms in EC H S . We will
show that if sup0≤t<T N (t) < ∞, then sup0≤t<T EC H S(t) < ∞, where N is the
quantity introduced in (1.1).

We begin noticing that the solution (v, R) has enough regularity so that N is
well-defined. Assume that N0 := sup0≤t<T N (t) < ∞. This immediately gives
that sup0≤t<T ||∂k

t v||4−k , k = 0, . . . , 4, is bounded in terms ofN0. We remark that
this bound, and the ones that follow in this part of the argument, may depend on
κ . However, here this is not a problem since we only want to show the finiteness
of sup0≤t<T EC H S(t) for fixed κ . Thus, we obtain that all terms in the first sum of
(1.9) in [9] are controlled by N0, except for the case a = 0, that is, ||η||5.

We next bound ||η||5 by controlling its curl, divergence, and normal component.
For the curl, we use the compressible Cauchy invariance, equation (2.7). We note
that this requires having curl v|t=0 ∈ H4, which is true in the assumptions of the
existence result of [9] (see equation (4.7) in [9] and the discussion surrounding it).
We therefore obtain a bound of || curl η||4 in terms of N0 and EC H S(0). For the
divergence, we apply estimate (34) of [21], except that instead of the H2.5+δ norm
on the LHS, we use the H4 norm (it is not difficult to see that the same argument
as in [21] goes through with the H4 norm on the LHS). This gives control of
|| div η||4 in terms of N and div η|t=0, where the latter is smooth in view of the
initial condition η(0) = id. Thus, we conclude that || div η||4 can be controlled in
terms ofN0. Finally, we need to control η · N on �. For this, we use the boundary
condition in (1.3) and apply elliptic estimates. We remark that the coefficients do
not have enough regularity for an application of the “standard” elliptic estimates,
but we can apply estimates with coefficients in Sobolev spaces (see Theorem 4 and
Remark 2 in [51]). Invoking div-curl estimates, we conclude that we can control
||η||5 in terms of N0 and EC H S(0).

Remark. The presence of EC H S(0) above comes from the fact that the energy
EC H S requires an extra derivative for η, which we do not include in N . In fact,
we cannot include this term in N , otherwise we would not be able to close our
estimates uniformly in κ , as we discuss in more detail in section 1.6. However,
above we showed that if a solution with such extra differentiability is given, then
we can update our estimates to control such extra derivative in terms of N , with
bounds possibly depending on κ . A similar remark applies to the boundary terms
in the last sum of EC H S controlled below, which are more regular in the energy
EC H S than in our N .

The term vt t t · n ∈ H1(�) appearing in EC H S , where n is the unit outer normal
to the moving boundary, is directly controlled by the boundary term in our energy
E which enters in the definition of N (see Definition 3.6; see also Lemma 2.2 for
identities relating n with the projection � appearing in E) with D4 = (Rκ)2∂4t
(again, with a bound depending on κ).

Finally, we need to bound the terms in the last sum of EC H S (equation (1.9) of
[9]). For this, we time differentiate the boundary condition in (1.3) up to three times,
and apply elliptic estimates for operators with coefficients in Sobolev spaces (see
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above). 5 We also need control of up to three time derivatives of q restricted to � in
terms of N . Such bounds are immediately available (with constants depending on
κ) from the bounds for R and its time derivatives provided byN . We thus conclude
that the last sum in EC H S can be controlled in terms of N0.

From the foregoing, we conclude that sup0≤t<T EC H S(t) < ∞ if sup0≤t<T N
(t) < ∞, as desired.

Claim III. Uniformity of the interval where the a priori estimates hold. This
is just a restatement of Theorem 1.2, but we include it here for clarity of the pre-
sentation. The time interval [0, T ] in Theorem 1.2 is uniform on κ in the following
sense: T has to be chosen sufficiently small, but the smallness of T depends only
on a fixed large κ0. In other words, Theorem 1.2 says that there exists a κ0 and a
T = T (κ0), such that if κ ≥ κ0 and (v, R) is a solution defined on [0, T ) and with
the regularity given by the norms in N , then N ≤ M, where the constant M in
Theorem 1.2 (which is a constant depending on norms of the initial data).

Claim IV. Existence of solutions in the spaces where one takes the incompress-
ible limit.The results of [9], in particular Theorem 1.6, say that given data such that
EC H S(0) < ∞, there exists a solution (vκ , Rκ ) defined on a short time interval with
regularity given by the norms in EC H S . Let [0, Tκ) be the maximal interval where
the solution (vκ , Rκ) exists and has the regularity given by the norms in EC H S .
We use the subscript κ to indicate that the solution as well as the time interval in
principle depend on the sound speed κ . Let T be given by Claim III (that is, by
Theorem 1.1) and κ0 be as in Claim III. We will show that Tκ ≥ T for all κ ≥ κ0.

Suppose that Tκ < T . We remark that the solutions (vκ , Rκ ) have enough
regularity so that the estimates of our Theorem 1.1 can be applied, that is, all
quantities entering in the definition of N (equation (1.1)) are well defined for the
solutions (vκ , Rκ). Since Tκ < T , Claim III implies that sup0≤t<Tκ

Nκ(t) < ∞,
where we write Nκ to emphasize that this corresponds to the quantity N for the
solution (vκ , Rκ). By Claim II we then obtain sup0≤t<T EC H S

κ (t) < ∞, where we
write EC H S

κ to emphasize that this corresponds to the energy EC H S for the solution
(vκ , Rκ) (as in Claim II, the resulting bound on sup0≤t<T EC H S

κ (t) depends on κ ,
but only the finiteness of this quantity matters here). By Claim I, the solution
(vκ , Rκ) can be extended pass Tκ , which contradicts the maximality of Tκ .

Thus, we obtained a family of solutions parametrized by κ , κ ≥ κ0 and defined
on [0, T ); shrinking T a bit if necessary we can consider the close interval [0, T ].
Moreover, the estimate of Theorem 1.1, N (t) ≤ M, holds on [0, T ] for each
solution in this family, withM independent of κ in view of Theorem 1.2.

Existence of initial data compatible with the regularity of ECHS. The constant
M in Theorem 1.2 depends on norms of the initial data. It will be uniform on
κ , for all κ sufficiently large, if the corresponding norms of the initial data are
uniform on κ , as assumed in Theorem 1.2. To show that this assumption is not

5 Using the boundary condition gives control over v · N , whereas the corresponding terms
in EC H S are v · n. But it is not difficult to see that control of the latter follows from control
of the former; see the proof of Theorem 4.3.
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empty, in Theorem 1.4, we constructed initial data satisfying such uniformity on
κ . However, for the existence of solutions given above, we actually need data
such that ECHS(0) < ∞. Since EC H S(0) requires more regularity than (v0, q0) ∈
(H4(�) ∩ H4(�)) × (H4(�) ∩ H4(�)), which is what we stated in Theorem 1.4,
we need to explain how data satisfying EC H S(0) < ∞ and that is uniform on the
sound speed can be obtained. This, however, follows from the proof of Theorem1.4.
Indeed, the data constructed in Theorem 1.4 is regular enough so that EC H S(0)
is well-defined for it. However, only the (H4(�) ∩ H4(�)) norms of this data
are needed to be controlled uniformly on κ for Theorem 1.2, so the statement of
Theorem 1.4 is restricted to this situation.
ECHS cannot be controlled uniformly on κ . The foundation of our result on the
incompressible limit is the fact thatwe can derive estimates that are uniform in κ (for
large κ). On the other hand, in order to obtain solutions to the equations of motion
with the desired regularity, we relied on [9]. This raises the natural question of
whether the incompressible limit could not be obtained directly from the estimates
derived in [9]. Here we show that this is not the case, that is, that the energy EC H S

cannot be closed uniformly in κ solely within the framework of [9].
The relevant fact is that the energy estimates in [9] are non-uniform in κ and

diverge when κ → ∞. In particular, the interval of existence obtained in [9] could
in principle shrink to zero when κ → ∞ (that this is not the case is what we showed
above using our uniform-in-κ estimates).

Let us now provide details. We will show that Proposition 4.1 in [9] is not
uniform in κ . To see this, we take q = κ(R2 − β) and so q ′(R) = 2κ R. Plugging
the identity R = ρ0/J to the Euler’s equations we obtain

ρovt + κ Aμα∂μ(ρ2
0 J−2) = 0,

Rt + Raμα∂μvα = 0. (1.14)

Testing four time-derivatives of (1.5) against ∂4t v in the L2 and then integrating by
parts yields the energy

sup
t∈[0,T ]

||vt t t t (t)||20 + sup
t∈[0,T ]

||√κ∂4t J (t)||20 + sup
t∈[0,T ]

||vt t t · n(t)||21,�. (1.15)

However, to control this energy, we need to control
∫

�

κ∂4t (ρ2 J−2)([∂4t , aμα]∂μvα).

In [9] this term is part of the error term R and it can be controlled directly by the
energy by Hölder’s inequality. But there is a mismatch of κ1/2 between this term
and (1.5). In fact, this term is associated with our term I3 (see section 3.3.3), which
requires our Rκ -weighted energy to be controlled.

1.6. Strategy, Organization of the Paper, and Discussion of the Difficulties

In this section we overview the main arguments of the paper, summarize the
main difficulties, and explain how they are confronted.
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1.6.1. Special Cancellations As mentioned, having σ > 0 leads to several new
difficulties not present when σ = 0. This can be immediately seen from the bound-
ary terms appearing in the energy estimates (see sections 3.4 and 3.5), since all
these terms are proportional to σ and, therefore, automatically vanish when σ = 0.
(Incidentally, we do not set σ to 1 as it is customary but keep it explicit in order to
highlight all the terms that would be absent had σ been zero.) Not only are these
terms present but, as we discuss below, they are some of the most difficult terms to
handle. As a consequence, the methods used in the second author’s previous papers
to study the problem with σ = 0 [46,48] cannot be applied when σ > 0.

At first sight one might think that the surface tension should help with closing a
priori estimates since it has a regularizing effect on the boundary. This regulariza-
tion, however, it is not enough to produce control of the velocity on the boundary.
After differentiating the equations with respect to Dk , where Dk is a kth order
derivative, possibly mixing space and time derivatives, contracting with Dkv and
integrating by parts, one is left with a boundary term that reads, schematically,

∫

�

DkvDkq dS.

It is not difficult to see that we can only hope to control this term by employing the
boundary condition so that (again, schematically)

∫

�

DkvDkq dS ∼
∫

�

DkvDk(
gη) dS. (1.16)

The presence of the boundary Laplacian and the fact that v = ∂tη suggest that
we should integrate by parts in space and factor a ∂t . Although this is the strategy,
we end up with a commutator term that is not of lower order. This is because the
coefficients of
g involve one derivative of g which, in turn, involves one derivative
of η (so that the coefficients depend on as many derivatives of η as the order of the
equation). Thus, commuting Dk and 
g still leaves a top order term that cannot be
written as a perfect derivative (in time or space) to be integrated away. Moreover,
this top order term does not seem to have any good structure. In fact, one should not
expect such term to have a good structure, since differentiating the coefficients of

g corresponds to differentiate gi j , and, thus, to take derivatives of some non-linear
combinations of the components gi j and its determinant.

The above difficulties are overcome by observing some remarkable cancella-
tions among the bad top order terms in (1.6.1). Such cancellations are not visible
in any way in the expressions that appear by simply manipulating (1.6.1). Rather,
they are identified after some judicious and lengthy analysis that relies heavily on
some geometric properties, expressed in the form of several geometric identities, of
the boundary. The first cancellation appears in (3.5.1.2). The reader can check that
the terms that cancel out are top order and that there does not seem to be possible
to bound them individually. The second cancellation happens between a term in
(3.5.1.2) and (3.5.1.3). This second cancellation is even more remarkable because
the terms involved come from completely different parts of Dk
gη: one fromwhen
all derivatives fall on the coefficient

√
ggi j of
g , the other fromwhen we integrate

one derivative in 
g by parts.
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We also need a special cancellation for interior terms. This comes from when
we take Dk of the first equation in (1.1) and all derivatives fall on a. Since the
matrix a already involves one derivative of η, we find terms in Dk+1η, which have
one too many derivatives of the Lagrangian map. Exploiting the explicit structure
of a, however, we are able to show that, when appropriately grouped, these bad
terms cancel each other after some careful integration by parts (see (3.3.2) and what
follows).

As this point one may ask if all such cancellations are indeed necessary since a
priori estimates for (1.1) have been derived in the literature. The relevant work in
this regard is [9]. There, the authors construct initial data where η is everywhere one
degree more differentiable than v, and then prove that this extra regularity is prop-
agated by the evolution. They rely on such extra regularity to close the estimates.
However, this does not seem possible here because such an extra differentiability
is not compatible with the Rκ -weights we need to introduce in order to obtain
estimates uniform in the sound speed (see section 1.6.2).

A crucial aspect of all the cancellations mentioned above is that they require the
derivatives Dk to contain at least one time derivative. As a consequence, only the
Sobolev norms of time-derivatives of v on the boundary are controlled from the en-
ergy estimates (we remark that the energy does involve time derivatives of the vari-
ables; it does not seem possible to close the estimates without time-differentiating
the equations). To obtain control of non-time differentiated v on the boundary, we
rely directly on the boundary condition which, after a time derivative, produces
an equation of the form 
gv = . . . which is amenable to elliptic estimates. (One
might wonder why we do not take further time derivatives of the boundary condi-
tion to obtain estimates for ∂k

t v on the boundary. The reason is that, as mentioned
above, 
g does not commute well with derivatives due to the dependence of the
coefficients on two derivatives of η, so that we obtain an equation of worsening
structure with each derivative.6 However, for only one time derivative, the resulting
equation still has some good structure that can be used to derive estimates.)

1.6.2. Rκ -weightedEstimates Another difficulty to establish the incompressible
limit is that one has to derive estimates that are uniform in the sound speed, since
the goal is to take the sound speed to infinity. This is substantially different than es-
timates for (1.1) (with σ > 0 ) currently available [9,21]. Establishing the required
uniform-in-κ a priori estimate does not seem to be possible solely by the methods
used to derive the currently available estimates. In particular, a crucial element to
derive such uniform estimates is the use of a non-linear wave equation satisfied
by the density, whereas non-uniform-in-κ estimates have been proven without this
wave equation. In fact, the known a priori energy bounds rely heavily on the fact
that whenRκ is bounded from below (as κ is bounded from above), ∂q ≈ ∂ R and

6 Taking several time derivatives of the boundary condition, in particular, would lead
to a source term that can only be bounded with κ-dependent bounds, preventing us from
closing the argument uniformly on κ . See section 1.6.2 below for more on the need for
uniform bounds. Compare also with the use of the boundary condition to derive estimates
for boundary terms in Claim II of section 1.5, where the resulting bounds depend on κ .
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||q||r ≈ ||R||r , which is a direct consequence of the equation of state. In particular,
the energy used in [21] controls ||∂k

t q||3−k for free as a lower order term. However,
this fact no longer holds whenRκ → 0. Indeed, since ∂ R = R′∂q, ||R||r is merely
equivalent to ||Rκq||r ; in other words, we have to take extra effort to control the full
Sobolev norms of ∂k

t q. In [46] and [48], where σ = 0, these norms are controlled
by elliptic estimate. This relies on the fact that one is able to control ||qt ||r by the
r -th order energy Er since

∂r qt ∼ ∂r qt + ∂r−2qt + lower order terms,

where ∂ denotes derivatives tangent to the boundary. The first term, ∂r qt , vanishes
due to q|� = 0. However, this method does not work when σ > 0, which is simply
due to the fact that q ∼ 
gη on �, and so ∂r qt ∼ ∂r+2v on the boundary which
has two derivatives too many.

To resolve the above difficulties, our energy is defined using the Rκ -weighted
derivatives Dr (1 ≤ r ≤ 4), where

D = ∂, ∂t ; D2 = ∂2, ∂∂t ,
√
Rκ∂2t ; D3 = ∂2∂t ,

√
Rκ(∂∂2t ),Rκ∂3t ;

D4 = Rκ(∂3∂t ),Rκ(∂2∂2t ), (Rκ)
3
2 (∂∂3t ), (Rκ)2∂4t .

The energy E = E(t) is defined by employing these Rκ -weighted derivatives,
which is of the form:

E =
∑

1≤�≤4
||D�v||2L2(�)

+
∑

1≤�≤4

√
Rκ ||D�q||2L2(�)

+ σ
∑

1≤�≤4
||�∂D�η||2L2(�)

+ W,

where� is the projection onto the normal to the moving boundary (see Lemma 2.2)
and W stands for the energy of the wave equation satisfied by q, which is defined
in sections 2.3, 2.4.

The energy estimate for E cannot be closed by itself; in fact, the energy estimate
requires control of

||v||4, ||Rκvt ||3, ||Rκvt t ||2, ||(Rκ)
3
2 vt t t ||1, (1.17)

and

||R||4, ||Rt ||3, ||
√
Rκ Rtt ||2, ||Rκ Rttt ||1. (1.18)

These quantities are not part of the energy sinceD� for � = 1, 2, 3, 4 do not involve
non-tangential derivatives, nor the full tangential spatial derivative ∂4. Suchmissing
derivatives, however, cannot be included in the energy because they would lead to
the presence of non-tangential derivatives on the boundary. As a consequence, we
need to estimate E together with the quantities above in order to close the a priori
estimate. This is done with the help of elliptic estimates.

We now schematically show how to get the correctRκ -weights for our energy,
since they are crucial for the desired uniform-in-κ estimates. We differentiate the
equations

R∂tvα + q ′(R)aμα∂μ R = 0 (1.19)
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and

∂t R + Raμα∂μvα = 0 (1.20)

with respect to time. Since R′ = R′(q) = 1
q ′(R)

, equation (1.6.2) implies

∂∂k
t R ∼ R′∂k+1

t v; (1.21)

in other words, we can trade one (full) spatial derivative on R by one time derivative
of v multiplied by R′. On the other hand, in view of the standard div-curl estimate
(that is, (A.1) in Appendix), ∂k

t v is estimated via div ∂k
t v, curl ∂k

t v and ∂k
t v · N .

While in the reference domain� = T
2 × (0, 1), ∂k

t v · N = ±∂k
t v3, which is almost

�∂k
t v, where � denotes the projection to the normal direction, and hence this can

be controlled by E . In addition, curl ∂k
t v is estimated via Cauchy invariance which

can be treated by adapting the method introduced in [21]. Finally, the equation
(1.6.2) yields

aμα∂μ∂k
t vα ∼ ∂k+1

t R;

in other words, we can estimate div ∂k
t v using ∂k+1

t R. Hence,

∂4v
div−−→ ∂3Rt

(1.6.2)−−−→ R′∂2∂2t v
div−−→ R′∂∂3t R

(1.6.2)−−−→ (R′)2∂4t v,

where (R′)2∂4t v is part of E . In addition, we have

R′∂3∂tv
div−−→ R′∂2∂2t R

(1.6.2)−−−→ (R′)2∂∂3t v
div−−→ (R′)2∂4t R.

This algorithm also provides

R′∂2∂2t v
div−−→ R′∂∂3t R

(1.6.2)−−−→ (R′)2∂4t v,

(R′)
3
2 ∂∂3t v

div−−→ (R′)
3
2 ∂4t R.

Here, (R′) 3
2 ∂4t R can be controlled directly by E since it is equal to (R′) 5

2 ∂4t q up to
lower order terms. On the other hand, applying this algorithm starting from ∂4R,
we get

∂4R
(1.6.2)−−−→ R′∂3∂tv

div−−→ R′∂2∂2t R
(1.6.2)−−−→ (R′)2∂∂3t v

div−−→ (R′)2∂4t R,

∂3∂t R
(1.6.2)−−−→ R′∂2∂2t v

div−−→ R′∂∂3t R
(v)−→ (R′)2∂4t v,

√
R′∂2∂2t R

(1.6.2)−−−→ (R′)
3
2 ∂∂3t v

div−−→ (R′)
3
2 ∂4t R,

R′∂∂3t R
(1.6.2)−−−→ (R′)2∂4t v.

The detailed analysis can be found in section 4. But the above algorithm provides
good guideline for the choice of Rκ -weights in (1.6.2) and (1.6.2) using (1.3), as
well as in Dr .
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Remark. The condition (1.3) allows us to define the weighted Sobolev norms
(for example, (1.1)) with constant Rκ -weights. It is convenient to have constant
weights for the boundary estimates in section 3.4 to avoid derivatives falling on
R′. In addition, the condition (1.3) allows us to distribute Rκ -weights in order to
obtain an uniform control in κ .

The definition of theRκ -weighted derivativeDr allows us to control the highest
order (that is, 4th order) mixed norms of q directly by the energy. However, in order
to pass to the incompressible limit, we have to control ||v||4 directly without Rκ -
weights, and this requires the control of ||qt ||2. In section 3.2, we control ||qt ||2
by the elliptic estimate, which requires the control of ||qt ||1 first. This is indeed of
lower order but we need to take extra effort to prove that they can be controlled
uniformly as Rκ → 0. In addition, we remark here that in [21], the authors were
able to close the a priori energy estimate in H3. However, in our case, the bound
for ||qt ||1 require the control of ||v||4 and ||η||4. This is because control of ||∂qt ||20
requires integration by parts, which yields ||∂2η||1.5,� and ||∂2v||1.5,� at the top
order, and these quantities require H4 control of v, η.

1.6.3. The Initial Data As with the estimates themselves, the initial data has to
be constructed uniform in the sound speed in order to allow the passage to the limit
κ → 0. This was done for σ = 0 in [46], but that method relied heavily on the
fact that q vanishes on the boundary when surface tension is absent. Instead, we
employ the method used in [9]: For each 1 ≤ k ≤ 3, the data that satisfies the k-th
order compatibility condition is obtained via solving an elliptic equation of order
2k, which is acquired by time differentiating the boundary condition q = σH for
k times and then restrict at t = 0, where the previous 0, . . . , k − 1-th compatibility
conditions are served as the boundary conditions. This construction process allows
one to show that the initial data is uniformly bounded for all sound speed κ , so that
one can take the limit κ → ∞.

1.7. List of Notations

• ∇: Eulerian spatial derivative.
• ∂: Lagrangian spatial derivative.
• ∂: Tangential spatial derivative. In particular, ∂ = (∂1, ∂2) in � and we will
emphasize that these derivatives are tangential by denoting (∂1, ∂2) = (∂1, ∂2).

• D: Either ∂ or ∂t .
• � and �: The reference domain (0, 1) × T

2 in Lagrangian coordinate, whose
boundary ∂� = �.

• The matrices a and A: a = (∂η)−1, and A = Ja, where J = det(∂η).
• κ: The sound speed.
• Rκ : Rκ ≈ R′

κ → 0 as κ → ∞.
• || · ||s = || · ||Hs (�) and || · ||s,� = || · ||Hs (�).
• P(·): A smooth function expression in its arguments.

• L=: Equality modulo lower order terms that can be controlled appropriately.
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2. Preliminary Results

In this section, we give some auxiliary results providing the bounds on the
flow map η and the matrix a. In addition, we record several facts, expressions and
inequalities that will come in handy in the later sections. These results will be
employed in the proof of Theorem 1.2.

Lemma 2.1. Assume that ||v||L∞([0,T ],H4(�)) +||R||L∞([0,T ],H4(�)) ≤ M. Let p ∈
[1,∞), then there exists a sufficiently large constant C > 0, such that if T ∈
[0, 1

C M2 ] and (v, q) is defined on [0, T ], the following statements hold:

1. ||η||4 ≤ C.
2. ||a||3 ≤ C.
3. ||at ||L p(�) ≤ C ||∂v||L p(�), and ||at ||s ≤ C ||∂v||s, 0 ≤ s ≤ 3.
4. ||∂αat ||L p(�) ≤ C ||∂v||L p1 ||∂αa||L p2 + C ||∂α∂v||L p , where 1

p = 1
p1

+ 1
p2

.
5. ||att ||s ≤ C ||∂v||s ||∂v||L∞ + C ||∂vt ||s, 0 ≤ s ≤ 2.
6. ||attt ||s ≤ C ||∂vt ||s ||∂v||L∞ + C ||∂vt t ||s, 0 ≤ s ≤ 1.
7. ||∂4t a||L p(�) ≤ C ||∂v||L p ||∂v||2L∞+C ||∂vt ||L p ||∂vt ||L∞+C ||∂vt t ||L p ||∂v||L∞

+ C ||∂vt t t ||L p .
8. J ≥ 1

2 .
9. If ε is sufficiently small and for t ∈ [0, ε

C M2 ], we have ||aαβ − δαβ ||3 ≤ ε,

and ||aαμaβ
μ − δαβ ||3 ≤ ε. In particular, the form aαμaβ

μ is elliptic, that is,

aαμaβ
μξαξβ ≥ C−1|ξ |2.

10. C−1 ≤ R ≤ C.

Proof. We refer [21] and [31] for the detailed proof. We point out that the proof
follows directly from the equations, interpolation, and the fundamental theorem of
calculus. ��
We record here the explicit form of the matrix a which will be needed:

a = J−1

⎛

⎝
∂2η

2∂3η
3 − ∂3η

2∂2η
3 ∂3η

1∂2η
3 − ∂2η

1∂3η
3 ∂2η

1∂3η
2 − ∂3η

1∂2η
2

∂3η
2∂1η

3 − ∂1η
2∂3η

3 ∂1η
1∂3η

3 − ∂3η
1∂1η

3 ∂1η
1∂1η

2 − ∂1η
1∂3η

2

∂1η
2∂2η

3 − ∂2η
2∂1η

3 ∂2η
1∂1η

3 − ∂1η
1∂2η

3 ∂1η
1∂2η

2 − ∂2η
1∂1η

2

⎞

⎠

(2.1)

Moreover, since A = Ja, and in view of (2.1), we can write

A1α = εαλτ ∂2ηλ∂3ητ , A2α = −εαλτ ∂1ηλ∂3ητ , A3α = εαλτ ∂1ηλ∂2ητ . (2.2)

Here, εαλτ is the fully antisymmetric symbol with ε123 = 1. This representation
will be used to create a special cancellation scheme that leads to control of the
energy when all derivatives fall on the cofactor matrix (recall the discussion in
section 1.6.1).

We also need some geometric identities to treat the boundary terms in the energy
estimate. We record these identities in the next lemma.
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Lemma 2.2. Let n be the outward unit normal to η(�). Let τ be the tangent bundle
of η(�) and ν be the normal bundle of η(�), the canonical projection is given by

�α
β = δα

β − gkl∂kη
α∂ lηβ,

and on � it holds that

1. −
gη
α = H ◦ η nα ◦ η.

2. n ◦ η = aT N
|aT N | .

3. J |aT N | = √
g.

Above, aT is the transpose of a. Furthermore, setting n̂ = n ◦ η, the following
identities hold on �:

4. �α
β = n̂β n̂α .

5. �α
λ�λ

β = �α
β .

6. n̂α = n̂τ�
τ
α .

7.
√

g
gη
α = √

ggi j�α
μ∂2i jη

μ.

8. ∂t n̂μ = −gkl∂kv
τ n̂τ ∂ lημ.

9. ∂i n̂μ = −gkl∂2ikη
τ n̂τ ∂ lημ.

10. ∂ i (
√

ggik) = −√
ggi j gkl∂ i∂ jη

μ∂lημ.
11. ∂t (

√
ggi j ) = √

g(gi j gkl − 2gl j gik)∂kv
λ∂ lηλ.

Proof. These identities are well-known. The interested reader can consult, for ex-
ample, [21] for their proof. ��
The equation of state q = q(R) allows us to control R′q and R interchangeably.

Lemma 2.3. Suppose R′ := R′(q) satisfies (1.3), and let ∂ be either ∂t or ∂α , then
for each 1 ≤ r ≤ 4, we have:

|R′∂r q| � |∂r R| +
∑

j1+···+ jk=r
2≤k≤r

|∂ j1 R| · · · |∂ jk R|. (2.3)

Proof. A direct computation yields

R′∂r q = ∂r R +
∑

j1+···+ jk=r
2≤k≤r

C j1,..., jm ,k R(k)∂ j1q · · · ∂ jk q,

and invoking (1.3) and the fact R′∂q = ∂ R, (2.3) then follows. ��

2.1. The Boundary Condition

The identities of Lemma 2.2 imply that the boundary condition

Aμα Nμq + σ
√

g
gη
α = 0, on �, (2.4)

can be expressed in the following equivalent ways:

1.
√

ggi j∂2i jη
α −√

ggi j gi j∂kη
α∂lη

μ∂2i jημ = − 1
σ

Aμα Nμq, where gkl∂ lη
μ∂2i jημ

= �k
i j .
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2.
√

ggi j�α
μ∂2i jη

μ = − 1
σ

Aμα Nμq.

3. q = −σ(A3α n̂α)−1√ggi j n̂μ∂2i jη
μ = −σgi j n̂μ∂2i jη

μ, since (A3α n̂α)−1√g
simplifies to 1.

These identities follow directly from the definition. Interested readers can consult
[21] for their proof. The above expressions will be frequently used to deal with the
boundary estimates.

2.2. The Interpolation Inequality

Besides standard interpolation, we will also use the following interpolation
inequality throughout this paper:

Theorem 2.4. Let u : � → R be a H1 function. Then,

||u||L4(�) � ||u||
1
2
0 ||u||

1
2
1 .

Proof. See Theorem 5.8 in [1]. ��

2.3. The Wave Equations of Order 3 or Less

The second equation in (1.1) can be re-expressed as

aμα∂μvα = − R′∂t q

R
, (2.5)

where R′ = R′
κ(q) ∼ Rκ via assumption (1.3). Identity (2.3) and (1.1) yield, after

commuting ∂r−1
t for 1 ≤ r ≤ 3 and then aνα∂ν , that

J R′∂r+1
t q − aνα Aμ

α∂ν∂μ∂r−1
t q = Fr , (2.6)

where

Fr = −
∑

j1+ j2=r
j1≥1

(
∂

j1
t (J R′)

)
(∂

j2+1
t q) + aνα(∂νρ0)∂

r
t vα

+
∑

j1+ j2=r−1
j1≥1

aνα∂ν(∂
j1

t Aμ
α · ∂μ∂

j2
t q)

− ρ0
∑

j1+ j2=r−1
(∂

j1+1
t aνα)(∂

j2
t ∂νvα) + aνα(∂ν Aμ

α)∂μ∂r−1
t q. (2.7)

Thewave equation (2.3) yields an energy identitywhich is essentialwhen estimating
||q||2 and ||qt ||2 in section 3.2.

Theorem 2.5. For 1 ≤ r ≤ 3, let

W 2
r = 1

2

∫

�

ρ−1
0 (J R′∂r

t q)2 dy + 1

2

∫

�

ρ−1
0 R′(Aνα∂ν∂

r−1
t q)(Aμ

α∂μ∂r−1
t q) dy

+ σ

2

∫

�

Rκ
√

ggi j�α
μ(∂ i∂

r
t ημ)(∂ j∂

r
t ηα) dS. (2.8)
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Then,
∑

1≤r≤3
W 2

r ≤ εP(N ) + ε(||q||22 + ||qt ||22) + P0 + P
∫ t

0
P, t ∈ [0, T ],

(2.9)

where T > 0 is sufficiently small.

Proof. See Appendix B. ��

2.4. The Rκ -weighted Wave Equations

We consider the following Rκ -weighted derivatives:

Rκ∂3t ,
√
Rκ∂2t ∂, ∂t∂

2.

Writing these derivatives as R�
κ D3 (� = 1, 1

2 , 0), and the identity (2.3) and (1.1)
yield, after commuting R�

κ D3 and then aνα∂ν , that

R�
κ R′ J D3∂2t q − R�

κaνα Aμ
α∂ν∂μD3q = F̃ ,

where

F̃ = −R�
κ [D3∂t , J R′]∂t q + R�

κ [D3, ρ0]∂t (R−1R′∂t q)

+ R�
κaνα(∂νρ0)D3∂tvα+R�

κaνα∂ν

([D3, Aμ
α]∂μq

)+R�
κaνα∂ν

([D3, ρ0]∂tvα

)

− R�
κρ0[D3∂t , aνα]∂νvα + R�

κaνα(∂ν Aμ
α)∂μD3q.

We need these Rκ -weighted wave equations since their energies yield a better
control of certain Rκ -weighted energy terms.

Theorem 2.6. Let

W 2
4 = 1

2

∫

�

ρ−1
0 R2�

κ (J R′ D3∂t q)2 dy

+ 1

2

∫

�

ρ−1
0 R2�

κ R′(Aνα∂ν D3q)(Aμ
α∂μ D3q) dy

+ σ

2

∫

�

R2�+1
κ

√
ggi j�α

μ(∂ i D3∂tη
μ)(∂ j D3∂tηα) dS. (2.10)

Then,

W 2
4 ≤ εP(N ) + P0 + P

∫ t

0
P, t ∈ [0, T ],

where T > 0 is sufficiently small.

Proof. See Appendix C. ��
Remark. The energy (2.6) yields a better control of q with 1/2 less Rκ -weights,

for example, when D = ∂t , W4 controls ||R2
κ∂4t q||0 and ||R

3
2
κ ∂∂3t q||0. The corre-

sponding terms in E control merely ||R
5
2
κ ∂4t q||0 and ||R2

κ∂∂3t q||0. This observation
is crucial to control I3 in section 3.3 when D4 = R

3
2
κ ∂∂3t or Rκ∂2∂2t .
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2.5. The Cauchy Invariance

We conclude this section with a compressible version of the Cauchy invariance,
which was introduced in [21].

Theorem 2.7. Let (v, R) be a smooth solution to (1.1). Then

εαβγ ∂βvμ∂γ ημ = ωα
0 +

∫ t

0
εαβγ aλμ∂λq∂γ ημ

∂β R

R2 (2.11)

for t ∈ [0, T ). Here, eαβγ is the totally antisymmetric symbol with ε123 = 1 and
ω0 us the vorticity at t = 0.

3. Energy Estimates

In this section we provide estimates for (v, q) and their time derivatives. We
shall make frequent use of the assumptions (1.3)–(1.3) and of the two preliminary
lemmas (that is, Lemma 2.1 and Lemma 2.2) in section 2 throughout this section
without mentioning them every time.

Notation 3.1. Let E be defined as in Definition 3.6, and let

P= P(||v||4, ||Rκvt ||3, ||vt ||2, ||Rκvt t ||2, ||
√
Rκvt t ||1, ||(Rκ)

3
2 vt t t ||1, ||Rκvt t t ||0,

||R||4, ||Rt ||3, ||
√
Rκ Rtt ||2, ||Rtt ||1, ||Rκ Rttt ||1, ||

√
Rκ Rttt ||0,

||Rκ�∂3vt ||0,�, ||Rκ�∂2vt t ||0,�, ||(Rκ)
3
2 �∂vt t t ||0,�, ||�∂2vt ||0,�,

||√Rκ�∂vt t ||0,�)

and P0 = P(||η0||7.5, ||v0||4, ||v0||4,�, ||q0||4, ||q0||4,�, ||div v0|�||3,�, ||
v0|�
||2,�), where we abbreviate

||�w||20,� =
∫

�

�β
μwμ�α

βwα.

Here (and throughout this paper), we use P(·) to denote a smooth function in its
arguments. In addition, we define N to be

N (t) = ||v||24 + ||Rκvt ||23 + ||Rκvt t ||22 + ||(Rκ)
3
2 vt t t ||21 + ||R||24 + ||Rt ||23

+ ||√Rκ Rtt ||22 + ||Rκ Rttt ||21 + ||vt ||22 + ||√Rκvt t ||21 + ||Rtt ||1 + E .

The rest of this section is devoted to proving:

Theorem 3.2. (Energy estimate for E) For sufficiently large κ > 0, we have

E(t) ≤ εP(N (t)) + P0 + P
∫ t

0
P, (3.1)

where t ∈ [0, T ] for some T > 0 chosen sufficiently small, provided that the a
priori assumption

||∂η||L∞ + ||∂2η||L∞ + ||gi j ||L∞ ≤ M (3.2)

holds.
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Notation 3.3. Here and thereafter, we use ε to denote a small positive constant
which may very from expression to expression. Typically ε comes from choosing
the time sufficiently small (for example, Lemma 2.1 (9)) and the Young’s inequality
with ε. When all estimates are obtained, we can fix ε sufficiently small in order to
close the estimates.

3.1. The Energy Identity for the Euler Equations

Notation 3.4. (Weighted tangential mixed derivatives) We let Dr , r = 1, 2, 3, 4 to
be the mixed tangential differential operator defined as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

D = ∂, ∂t ,

D2 = ∂2, ∂∂t ,
√
Rκ∂2t ,

D3 = ∂2∂t ,
√
Rκ(∂∂2t ),Rκ∂3t ,

D4 = Rκ(∂3∂t ),Rκ(∂2∂2t ), (Rκ)
3
2 (∂∂3t ), (Rκ)2∂4t .

Notation 3.5. Here and in sequel, we use R to denote lower order terms whose
time integral

∫ t
0 R can be controlled by the right hand side of (3.1).

Definition 3.6. For each fixed 1 ≤ r ≤ 4, let E = ∑
r=1,2,3,4(Er + W 2

r ), where

Er = 1

2

∫

�

ρ0(D
rvα)(Drvα) dy + 1

2

∫

�

J R′ R−1(Dr q)2 dy

+ σ

2

∫

�

√
ggi j�α

μ(∂ iD
rημ)(∂ jD

rηα) dS.

Here, W 2
r (1 ≤ r ≤ 4) is defined as (2.5) and (2.6), and � is the normal projection

operator defined in Lemma 2.2.

Remark. We use throughout that ||R�
κ�∂m∂ l

t η||20,� is comparable with the coer-

cive term coming from the boundary part of the energy.We use that gi j is almost the
Euclidean metric to make this comparison. For example, in the boundary estimates
(section 3.4) we control ||R2

κ�∂∂3t v||20,� by E .

The energy defined above is derived by differentiating 1
2

∫
�

R(Drvα)(Drvα) dy
in time, invoking (1.1), (1.1), (1.1), (1.1), (1.3), (2.3) and the Piola identity

∂μ Aμα = ∂μ(Jaμα) = 0,

which follows from a direct computation using (2.1), so we have

d

dt

1

2

∫

�

ρ0(D
rvα)(Drvα) dy = −

∫

�

J R
(
Drvα

)(
Dr (aμα ∂μq

R
)
)
dy

= −
∫

�

(Drvα)
(
Dr (Aμα∂μq)

)
dy +

∫

�

(Drvα)
(
[Dr , R J ](aμα ∂μq

R
)
)
dy

︸ ︷︷ ︸
I1
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=
∫

�

(Dr∂μvα)
(
Dr (Aμαq)

)
dy −

∫

�

(Drvα)
(

NμD
r (Aμαq)

)
dy

︸ ︷︷ ︸
B D

+I1

=
∫

�

(Dr∂μvα)(AμαDr q) dy +
∫

�

(Dr∂μvα)
(
[Dr , Aμα]q

)
dy

︸ ︷︷ ︸
I2

+B D + I1.

(3.3)

The term
∫
�
(Dr∂μvα)(AμαDr q) dy is equal to

∫

�

Dr (Aμα∂μvα)Dr q dy +
∫

�

([Dr , Aμα]∂μvα

)
Dr q dy

︸ ︷︷ ︸
I3

,

where, after invoking (2.3), we obtain
∫

�

Dr (Aμα∂μvα)Dr q dy = −
∫

�

Dr (
J R′∂t q

R
)Dr q dy

= −
∫

�

J R′ R−1(∂tD
r q)Dr q dy +

∫

�

([Dr , J R′ R−1]∂t q
)
Dr q dy

︸ ︷︷ ︸
I4

. (3.4)

The first term in the second line of (3.1) is equal to

− d

dt

1

2

∫

�

J R′ R−1(Dr q)2 dy + R,

where the main term is moved to the left hand side of (3.1).
On the other hand, invoking the boundary condition Aμα Nμq = −σ

√
g
gη

α ,
as well as the seventh identity in Lemma 2.2, B D is equal to

B D = −
∫

�
Dr vαD

r (Aμα Nμq) dy

= σ

∫

�
Dr vαD

r (
√

g
gηα) dy = σ

∫

�
Dr vαD

r (
√

ggi j �α
μ∂2i j η

μ) dS

= σ

∫

�

√
ggi j �α

μ(Dr vα)(Dr ∂2i j η
μ) dS + σ

∫

�
Dr vα

([Dr ,
√

ggi j �α
μ]∂2i j η

μ
)
dS

︸ ︷︷ ︸
B1

.

(3.5)

Integrating by parts the first term in the very last line of (3.1), we have

σ

∫

�

√
ggi j�α

μ(Drvα)(Dr∂2i jη
μ) dS = −σ

∫

�

√
ggi j�α

μ(∂ i∂tD
rηα)(∂ jD

rημ) dS

− σ

∫

�

∂ i (
√

ggi j�α
μ)(∂tD

rηα)(∂ jD
rημ) dS

︸ ︷︷ ︸
B2

. (3.6)
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The first term on the right hand side of (3.1) is equal to

− d
dt

σ
2

∫
�

√
ggi j�α

μ(∂ iD
rημ)(∂ jD

rηα) dS

+ 1
2 σ

∫

�

∂t (
√

ggi j�α
μ)(∂ iD

rηα)(∂ jD
rημ) dS

︸ ︷︷ ︸
B3

,

where the main term is moved to the left hand side of (2.5). Summing things up,
we have shown that

dEr

dt
=

∑

1≤ j≤4
I j +

∑

j=1,2,3
B j + R.

Thus, Theorem 3.2 follows if the terms I1,2,3,4 and B1,2,3 can be controlled by the
right hand side of (3.2), which shall be treated in sections 3.3, 3.4 below. However,
before doing this, we need to control ||q||2 and ||qt ||2.

3.2. Bounds for ||q||2 and ||qt ||2
SinceDr symbolizes bothRκ -weighted and non-Rκ -weighted derivatives, we

need to bound ||q||2 and ||qt ||2 in order to control I3. Also, the bound for ||qt ||2
is required to control ||v||4 in section 4. Taking X = ∂q and X = ∂qt , s = 1, the
standard div-curl estimate (A.1) yields that we need to control the lower order terms
||∂q||0 and ||∂qt ||0.We remark here that in the casewhen σ = 0 (for example, [46]),
these terms are controlled via ||
q||0 and ||
qt ||0, respectively, after integrating
by parts and applying the Poincaré’s inequality. However, we need to work a bit
harder in order to control these quantities when σ > 0.

Notation 3.7. We write X � Y to mean X ≤ CY , where C > 0 is a large constant.

Notation 3.8. We are going to identify Pn = P (n ≥ 1) by a slight abuse of
notations. Also, when 0 ≤ t < 1, (

∫ t
0 P)n ≤ tn−1

∫ t
0 Pn ≤ t

∫ t
0 P, via Jensen’s

inequality.

Lemma 3.9. Let Fr be defined as (2.3). Assuming the a priori assumption (3.2)
holds, then for sufficiently large κ > 0 (that is, Rκ � 1), we have

||F1||0 � εN + P0 + P
∫ t

0
P.

Proof. First, invoking (1.1) and the assumption (1.3), we have

||∂t (J R′)(∂t q)||0 � P0 + P
∫ t

0
P.

Second, invoking Lemma 2.1(1–4), since ∂μq = R(a−1)μβ∂tv
β and ∂νρ0 �

Rκ |∂νq0| ≤ ε|∂νq0| for sufficiently small Rκ , we get

||(∂t a
να)(∂νvα)||0 + ||aνα(∂νρ0)∂tvα||0 + ||aνα(∂ν Aμ

α)∂μq||0
� εN + P0 + P

∫ t

0
P.

��
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Lemma 3.10. Let Fr be defined as (2.3), Assuming the a priori assumption (3.2)
holds, then for sufficiently large κ > 0 (that is, Rκ << 1), we have

||F2||0 � ε||qt ||2 + ε(
√
N + N ) + P0 + P

∫ t

0
P.

Proof. First, there is no problem to control
∑

j1+ j2=2
j1≥1

||∂ j1
t (J R′)(∂ j2+1

t q)||0 appro-
priately when j1 = 1 using (1.1) and the assumption (1.3). Moreover, when j1 = 2,
one writes J = ρ0R−1 and then ||∂2t (ρ0R−1R′)qt ||0 = ||ρ0R′∂2t (R−1)qt ||0 mod-
ulo controllable terms, where

||ρ0R′∂2t (R−1)qt ||0 � ||∂2t (R−1)||
1
2
1 ||∂2t (R−1)||

1
2
0 ||Rt ||

1
2
1 ||Rt ||

1
2
0

≤ ε(
√
N + N ) + P0 + P

∫ t

0
P.

Here, we have applied the interpolation inequality (that is, Theorem 2.4) and the
fact R′∂t q = ∂t R. Second, invoking Lemma 2.1(1–6) we get

∑

j1+ j2=1
||(∂ j1+1

t aνα)(∂
j2

t ∂νvα)||0 � εN + P0 + P
∫ t

0
P,

and since ∂ν Aμ
α = O(ε) for small time and ∂νρ0 � Rκ |∂νq0| ≤ ε|∂νq0| for

sufficiently small Rκ , we have

||aνα(∂νρ0)∂
2
t vα||0 + ||aνα(∂ν Aμ

α)∂μ∂t q||0 � ε||qt ||2 + ε
√
N + P0 + P

∫ t

0
P.

Third, since ∂μq = R(a−1)μβ∂tv
β , ||aνα∂ν(∂t a

μ
α · ∂μq)||0 can be controlled ap-

propriately by interpolation. ��
Lemma 3.11. We have

||∂q(t, ·)||20 + ||∂qt (t, ·)||20 ≤ ε||qt (t, ·)||22 + εP(N ) + W 2
3 + P0 + P

∫ t

0
P

(3.7)

for t ∈ [0, T ] where T > 0 is chosen sufficiently small.

Proof. It suffices to consider ||∂qt ||0 only. Integrating by parts yield

||∂qt ||20 =
∫

�

(∂μqt )(∂
μqt ) = −

∫

�

qt
qt +
∫

�

(Nμ∂μqt )qt ,

and so we need to bound
∫
�

qt
qt and
∫
�
(Nμ∂μqt )qt , respectively.

Bound for
∫
�

qt
qt : Since t ∈ [0, T ] and T > 0 is small, as well as


qt = (δμν − aμαaν
α)∂μ∂νqt + aμαaν

α∂μ∂νqt

Lemma 2.1 implies that
∫

�

qt (
qt ) ≤ ε||qt ||22 +
∫

�

qt (a
μαaν

α∂μ∂νqt ).
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Now, invoking the wave equation (2.3) and Lemma 3.9, we have
∫

�

qt (a
μαaν

α∂μ∂νqt )

=
∫

�

R′qt qttt −
∫

�

(qtF2)J−1 � ||qt ||0(||R′qttt ||0 + ||F2||0)

≤ ||qt ||0
(

W3 + ε||qt ||2 + ε(
√
N + N ) + P0 + P

∫ t

0
P

)
.

On the other hand, since

||qt ||0 ≤ ||∂qt ||0 +
∫

�

qt

by Poincaré’s inequality, if we let Y = (0, 0, y3), then

||qt ||0 ≤ ||∂qt ||0 +
∫

�

∂μY μq = ||∂qt ||0 −
∫

�

Y μ∂μqt +
∫

�

NμY μqt

≤ Cvol�||∂qt ||0 +
∫

�

y3qt . (3.8)

To control the last integral
∫
�

y3qt , time differentiating the boundary condition

q = −σgi j n̂μ∂2i jημ, on �

gives

qt = −σgi j n̂μ∂2i jvμ + Rqt , on � (3.9)

where Rqt consists of terms of the form either

σgi j gkl(∂kv
τ n̂τ ∂lημ)∂2i jη

μ or σ(∂ ivν)(∂
jην)n̂μ∂2i jη

μ.

Now, invoking Lemma 2.1, Lemma 2.2, and the a priori assumption (3.2), we have
∫

�

y3qt � εN + P0 + P
∫ t

0
P. (3.10)

Wrapping these up, we get
∫

�

qt
qt � ε||qt ||22 + ε||∂qt ||20 + εP(N ) + W 2
3 + P0 + P

∫ t

0
P.

Bound for
∫
�
(Nμ∂μqt )qt : We have

∫

�

(Nμ∂μqt )qt ≤ ||qt ||0,�||∂3qt ||0,� ≤ C(ε−1)||qt ||20,� + ε||∂qt ||20,�.

Here, we bound ε||∂qt ||20,� by ε||qt ||22 using the trace lemma, which is part of the
right hand side of (3.10). On the other hand, invoking (3.10), we have

||qt ||20,� � ε(N 2 + N ) + P0 + P
∫ t

0
P.



856 M. M. Disconzi & C. Luo

To see this, note that in ||qt ||20,� , the top order term is
√

ggi j n̂μ∂2i jvμ. Using the

trace inequality, it suffices to bound ||√ggi j n̂μ∂∂2i jvμ||20. We control this top order

term by the Young’s inequality, which leads to the appearance of εN 2. In addition,
the lower order terms are controlled by εN +P0 +P

∫ t
0 P using the interpolation.

Hence,

∫

�

(Nμ∂μqt )qt � ε||qt ||22 + ε(N 2 + N ) + P0 + P
∫ t

0
P.

Therefore,

||∂qt ||20 = −
∫

�

qt
qt +
∫

�

qt (Nμ∂μqt )

� ε||qt ||22 + ε(N + N 2) + W 2
3 + P0 + P

∫ t

0
P.

In addition, we are able to control ||∂q||20 appropriately by integrating ||∂qt ||20 in
time, which, together with the estimate for ||∂qt ||20, conclude the proof of (3.10).��

In fact, the above proof implies the control for the lowest order norms ||q||0
and ||qt ||0.
Corollary 3.12. We have

||q||20 + ||qt ||20 � ||∂q||20 + ||∂qt ||20 + εN + P0 + P
∫ t

0
P. (3.11)

Proof. Let Y = (0, 0, y3), the Poincaré’s inequality implies

||q||0 + ||qt ||0 � ||∂q||0 + ||∂qt ||0 +
∫

�

∂μY μq +
∫

�

∂μY μqt .

Now, we proceed as in (3.10)–(3.10) and get

∫

�

∂μY μq +
∫

�

∂μY μqt � ||∂q||0 + ||∂qt ||0 + ε
√
N + P0 + P

∫ t

0
P,

and hence (3.11) follows after squaring the above estimate. ��

Theorem 3.13. We have

||q(t, ·)||22 + ||qt (t, ·)||22 � εP(N ) + P0 + P
∫ t

0
P, (3.12)

for t ∈ [0, T ] where T > 0 is chosen sufficiently small.
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Proof. It suffices to control ||qt ||22 by the right hand side of (3.12) since the control of||q||22 follows from time integrating ||qt ||22. To control ||qt ||22, it suffices to consider||∂qt ||21 only thanks to Lemma 3.11 and Corollary 3.12. Now, invoking the div-curl
estimate (A.1) with X = ∂qt and s = 1, we have

||∂qt ||21 � ||
qt ||20 + ||∂qt ||20.5,� + ||∂qt ||20.
Bound for ||
qt ||20:Invoking Lemma 2.1, since t ∈ [0, T ] and T is sufficiently
small, we have

||
qt ||20 ≤ ||aμαaν
α∂μ∂νqt ||20 + ||(δμν − aμαaν

α)∂μ∂νqt ||20
≤ ||aμαaν

α∂μ∂νqt ||20 + ε||∂2qt ||0.
Furthermore, the wave equation (2.3) and Lemma 3.10 yield

||aμαaν
α∂μ∂νqt ||20 ≤ ||R′qttt ||20 + ||F2 J−1||20

≤ W 2
3 + ε(N + N 2) + P0 + P

∫ t

0
P + ε||qt ||22.

Bound for ||∂qt ||20.5,�: Invoking (3.10) and taking one more tangential derivative,
we have

∂qt = σgi j n̂μ∂∂2i jvμ − σgi j gkl(∂kv
τ n̂τ ∂lημ)∂∂2i jη

μ + R∂qt
,

where R∂qt
consists products of ∂kη and ∂kv, k = 1, 2. To be more specific, R∂qt

consists terms of the forms

σgi j gkl(∂k∂vτ n̂τ ∂ lημ)∂2i j η
μ, σgi j gkl(∂k∂ητ n̂τ ∂ lημ)∂2i j v

μ,

σ (∂ i vμ)(∂ j ημ)gkl(∂k∂ητ n̂τ ∂ lημ)∂2i j η
μ, σ (∂∂ i ημ)(∂ j ημ)gkl(∂k∂ητ n̂τ ∂ lημ)∂2i j v

μ.

Given these, we have

||∂qt ||20.5,� � ε(N 2 + N ) + P0 + P
∫ t

0
P,

by interpolation and the Young’s inequality. Here, εN 2 appears since

||√ggi j n̂μ∂∂3vμ||20 � ε||v||44 + ||√ggi j n̂||42 � εN 2 + P0 + P
∫ t

0
P,

and we remark here that the interpolation cannot be applied since ∂∂3v is of the top
order. Wrapping these up and invoking Lemma 3.11 and Corollary 3.12, we get

||qt ||22 � W 2
3 + P0 + P

∫ t

0
P + ε||qt ||22 + ε(N 2 + N ),

which proves the estimate for ||qt ||22 by invoking (2.5) and then absorbing ε||qt ||22
to the left hand side. ��
Remark. We are unable to control ||∂qtt ||1 when surface tension is present. This
is due to that the div-curl estimate yields the boundary term ||∂qtt ||0.5,� , where
∂qtt ∼ ∂3vt on �, and hence ||∂qtt ||0.5,� yields a loss of derivative. Therefore, one
has to define the energy using theRκ -weighted derivatives and so the corresponding
term can then be controlled by the energy.
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3.3. Bounds for
∫ t
0 I1,2,3,4

This section is devoted to control
∫ t
0 I1,2,3,4. We recall

I1 =
∫

�

(Drvα)
(
[Dr , R J ](aμα ∂μq

R
)
)
, I2 =

∫

�

(Dr∂μvα)
(
[Dr , Aμα]q

)
,

I3 =
∫

�

([Dr , Aμα]∂μvα

)
Dr q, I4 =

∫

�

(
[Dr , J R′ R−1]∂t q

)
Dr q.

Notation 3.14. In what follows, we use D to denote either ∂ or ∂t . This allows us
to represent Dr as (Rκ)� Dr , where r = 1

2 , 1,
3
2 , 2.

3.3.1. Control of
∫ t
0 I1 For non-Rκ -weightedDr : We recall that there are four

mixed derivatives which are notRκ -weighted, which are ∂ , ∂2,∂∂t and ∂2∂t . Hence,
it suffices to consider only the case when Dr = ∂2∂t . Invoking (1.1) and Theo-
rem 3.13, We have

I1 =
∑

j1+ j2=2
j1≥1

∫

�

(∂2∂tvα)(∂ j1ρ0)(∂
j2∂t (a

μα ∂μq

R
)).

Since, to the highest order, the last term on the right hand side is R−1aμα∂∂qt ,
which can be controlled by invoking Theorem 3.13. Therefore,

∫ t

0
I1 ≤ P0 + P

∫ t

0
P.

The εP(N ) term introduced in Theorem 3.13 does not figure here since I1 is
estimated under the time integral.
ForRκ -weightedDr : It suffices to consider derivatives of the form (Rκ )� Dr−2∂∂t ,
where � = 1

2 , 1,
3
2 and r ≤ 4, since otherwise I1 would be 0 due to (1.1).

I1 =
∑

j1+ j2=r−2

∫

�

(Rκ)2�(Dr−2∂∂tvα)(∂ D j1ρ0)(D j2∂t (a
μα ∂μq

R
)).

We henceforth adopt

Notation 3.15. We use
L= to denote equality modulo lower order terms that can be

controlled, that is, A
L= B mean A = B + error terms, where the “error terms”

can be controlled by the bound of B plus P0 + P
∫ t
0 P .

Invoking (1.3) and (1.3) at t = 0 lead to

∫ t

0
I1

L=
∑

j1+ j2=r−2

∫ t

0

∫

�

(Rκ )2�+1(Dr−2∂∂tvα)(∂ D j1 p0)(D j2∂t (a
μα ∂μq

R
))

=
∫ t

0

∫

�

(∂ D j1 p0)
(
(Rκ )�+

1
2 Dr−2∂∂tvα

)(
(Rκ )�+

1
2 D j2∂t (a

μα ∂μq

R
)
)

≤ P0 + P
∫ t

0
P.

Remark. The above expression yields a slightly better bound for Dr−2∂∂tv, since
P requires only ||(R′)� Dr−2∂∂tv||0.
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3.3.2. Control of
∫ t
0 I2 For each r ,

∫ t
0 I2 contains a term which is of the order

r + 1, that is,
∫ t

0
T =

∫

�

(Dr∂μvα)(Dr Aμα)q.

There is no problem to control T when r ≤ 2, and when r = 3, we need to put
extra effort to control T when D3 = ∂2∂t since there are terms which cannot
be controlled directly without Rκ -weights, and one needs to integrate by parts in
(tangential) spatial derivative and time derivative, respectively. On the other hand,
when r = 4, this term is of above the top order, but it can be controlled using one
of the special cancellations referred to in section 1.6.1, as we now show.
For non-Rκ -weighted Dr : As mentioned above, we consider only the case when
r = 3 and D3 = ∂2∂t . In this case,

T =
∫

�

(∂2∂μ∂tvα)(∂2∂t Aμα)q.

Although this term is of the correct order, ∂2∂μ∂tv cannot be controlled without
Rκ -weights. Hence, we integrate by parts with respect to the tangential derivative
and get

T = −
( ∫

�

(∂∂μ∂tvα)(∂3∂t Aμα)q +
∫

�

(∂∂μ∂tvα)(∂2∂t Aμα)∂q
)

≤ ||∂∂vt ||0||∂3∂t A||0||q||L∞ + ||∂∂vt ||0||∂2∂t A||L4 ||∂q||L4 .

Here, one adapts Theorem 3.13 to control ||q||2. Integrating with respect to time,
we obtain

∫ t

0
T � P0 + P

∫ t

0
P.

We next consider I2 − T. All terms involved in I2 − T can be controlled
straightforwardly after integrating by part with respect to ∂ thanks to Theorem
3.13, except for

∫

�

(∂2∂μ∂tvα)(∂t Aμα)(∂2q).

This is due to that integrating by part in ∂ yields ∂3q which cannot be controlled
without Rκ -weights. To deal with this issue, we consider

∫ t

0

∫

�

(∂2∂μ∂tvα)(∂t Aμα)(∂2q).

Integrating by part in time, we get
∫

�

(∂2∂μvα)(∂t Aμα)(∂2q)|t0 −
∫ t

0

∫

�

(∂2∂μvα)(∂2t Aμα)(∂2q)

−
∫ t

0

∫

�

(∂2∂μvα)(∂t Aμα)(∂2∂t q).
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The last two terms are bounded by P0 +P
∫ t
0 P thanks to Theorem 3.13, while the

pointwise term at t = 0 by P0. The pointwise term at t is bounded by

||η||3||∂2q||0||∂2v||
1
2
1 ||∂2v||

1
2
2 ||v||

1
2
1 ||v||

1
2
2 � εP(N ) + P0 + P

∫ t

0
P,

which is controlled by the right hand side of (3.2).
For Rκ -weighted Dr : I2 contains a term above the top order, that is,

T =
∫

�

(Dr∂μvα)(Dr Aμα)q.

This term is controlled using the aforementioned special cancellation (see sec-
tion 1.6.1). ForRκ -weighted derivatives, it suffices to consider only the case when
r = 4, that is, the derivatives are of the form (Rκ)� D3∂t , for � = 1, 3

2 , 2. Then the
“tricky” term to be bounded is

L =
∫ t

0
T =

∫ t

0

∫

�

(Rκ)2�(D3∂t∂μvα)(D3∂t Aμα)q. (3.13)

In view of (2.1), expanding the index μ in (3.3.2), we have

L =
∫ t

0

∫

�
(Rκ )2�qεαλτ ∂2D3vλ∂3ητ ∂1D3∂t vα

︸ ︷︷ ︸
L1

+
∫ t

0

∫

�
(Rκ )2�qεαλτ ∂2ηλ∂3D3vτ ∂1D3∂t vα

︸ ︷︷ ︸
L2

−
∫ t

0

∫

�
(Rκ )2�qεαλτ ∂1D3vλ∂3ητ ∂2D3∂t vα

︸ ︷︷ ︸
L3

−
∫ t

0

∫

�
(Rκ )2�qεαλτ ∂1ηλ∂3D3vτ ∂2D3∂t vα

︸ ︷︷ ︸
L4

∫ t

0

∫

�
(Rκ )2�qεαλτ ∂1D3vλ∂2ητ ∂3D3∂t vα

︸ ︷︷ ︸
L5

+
∫ t

0

∫

�
(Rκ )2�qεαλτ ∂1ηλ∂2D3vτ ∂3D3∂t vα

︸ ︷︷ ︸
L6

+Llow,

(3.14)

where Llow are lower order terms, which are all of the form

∑
j1+ j2=3
j1, j2≤2

∫ t

0

∫

�

(Rκ)2�q(∂ D j1v)(∂ D j2η)(∂ D3∂tv)

=
∑

j1+ j2=3
j1, j2≤2

( ∫

�

(Rκ)2�q(∂ D j1v)(∂ D j2η)(∂ D3v)

−
∫ t

0

∫

�

(Rκ)2�qt (∂ D j1v)(∂ D j2η)(∂ D3v)

−
∫ t

0

∫

�

(Rκ)2�q(∂ D j1vt )(∂ D j2η)(∂ D3v)

∫ t

0

∫

�

(Rκ)2�q(∂ D j1v)(∂ D j2v)(∂ D3v)
)
.

Invoking Theorem 3.13, it is easy to see that the last three terms are controlled by
P0+P

∫ t
0 P , while the pointwise term at t is treated similar to (3.3.2)–(3.3.2), after
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distributing correct amount of Rκ -weights to each term. We omit the detail here.
But it is worth noting that there are more than enoughRκ -weights for the pointwise
term since there is one time derivative less.

Next, integrating by part in time in L3, we find

−
∫ t

0

∫

�

(Rκ )2�qεαλτ ∂1D3vλ∂3ητ ∂2D3∂tvα
L= −

∫

�

(Rκ )2�qεαλτ ∂1D3vλ∂3ητ ∂2D3vα

∫ t

0

∫

�

(Rκ )2�qεαλτ ∂1D3∂tvλ∂3ητ ∂2D3vα.

Adding L1, we get

L1 + L3
L=

∫ t

0

∫

�

(Rκ)2�qεαλτ ∂2D3vλ∂3ητ ∂1D3∂tvα

+
∫ t

0

∫

�

(Rκ)2�qεαλτ ∂1D3∂tvλ∂3ητ ∂2D3vα

−
∫

�

(Rκ)2�qεαλτ ∂1D3vλ∂3ητ ∂2D3vα|t0

= −
∫

�

(Rκ)2�qεαλτ ∂1D3vλ∂3ητ ∂2D3vα|t0 = L13,

since first and the second term cancels with each other by the antisymmetry of εαλτ .
Similarly, we have

L4 + L6
L= L46 =

∫

�

(Rκ)2�qεαλτ ∂1ηλ∂2D3vτ ∂3D3vα|t0,

L2 + L5
L= L25 =

∫

�

(Rκ)2�qεαλτ ∂1D3vλ∂2ητ ∂3D3vα|t0.

Bounds for L13, L46 and L25 Since L13 is pointwise in t , it suffices to consider
∫

�

(Rκ)2�qεαλτ ∂1D3vλ∂3ητ ∂2D3vα|t

only, since the other part is controlled directly by P0. In addition, since D3 cor-

responds to ∂3t , ∂∂2t , ∂
2∂t and ∂3, associated with weights (Rκ)2, (Rκ)

3
2 , Rκ and

Rκ , respectively, we have:
∫

�

(Rκ)4qεαλτ ∂1∂
3
t vλ∂3ητ ∂2∂

3
t vα|t

≤
∫

�

(Rκ)qεαλτ ((Rκ)
3
2 ∂1∂

3
t vλ)∂3ητ ((Rκ)

3
2 ∂2∂

3
t vα)|t

≤ ||R||2||η||3||(Rκ)
3
2 vt t t ||21 ≤ εP(N ) + P0 + P

∫ t

0
P,

where we have used ||Rκq||2 � ||R′q||2 = ||R||2. Similarly, we have
∫

�

(Rκ)3qεαλτ ∂1∂∂2t vλ∂3ητ ∂2∂∂2t vα|t +
∫

�

(Rκ)2qεαλτ ∂1∂
2∂tvλ∂3ητ ∂2∂

2∂tvα|t



862 M. M. Disconzi & C. Luo

+
∫

�

(Rκ)2qεαλτ ∂1∂
3vλ∂3ητ ∂2∂

3vα|t ≤ εP(N ) + P0 + P
∫ t

0
P.

Moreover, this method can be adapted to control L46 and L25, and we omit the
details. Therefore,

(L1 + L3) + (L4 + L6) + (L2 + L5) ≤ εP(N ) + P0 + P
∫ t

0
P.

Now, we complete the treatment of I2 by estimating the rest of the terms, that
is, I2 − T, for Rκ -weighted forth order derivatives. Expressing

I2 − T =
∫

�

(Rκ)2�(D3∂t∂μvα)
(

D3∂t (Aμαq) − Aμα D3∂t q − (D3∂t Aμα)q
)
,

and similarly, to the non-Rκ -weighted case, we consider
∫ t
0 I2 − T and integrate

by part in time to get
∫ t

0
I2 − T

L=
∫

�

(Rκ)2�(D3∂μvα)
(

D3∂t (Aμαq) − Aμα D3∂t q − (D3∂t Aμα)q
)∣
∣
∣
t

0

−
∫ t

0

∫

�

(Rκ)2�(D3∂μvα)∂t

(
D3∂t (Aμαq) − Aμα D3∂t q − (D3∂t Aμα)q

)
.

First, it is easy to check that
∫ t

0

∫

�

(Rκ)2�(D3∂μvα)∂t

(
D3∂t (Aμαq) − Aμα D3∂t q − (D3∂t Aμα)q

)
≤

∫ t

0
P,

Second, for the pointwise terms at t , it suffices to consider the case when D3 = ∂3t
and � = 2, since the bounds for the other (easier) cases follow from the same
method. There are three terms, that is,

∫

�

(Rκ )4(∂3t ∂μvα)(∂3t A)∂t q,

∫

�

(Rκ )4(∂3t ∂μvα)(∂2t A)∂2t q,

∫

�

(Rκ )4(∂3t ∂μvα)(∂t A)∂3t q.

(3.15)

These terms are treated as
∫

�

(Rκ)4(∂3t ∂μvα)(∂3t A)∂t q

≈
∫

�

(Rκ)4(∂3t ∂μvα)
(
(∂vt t )(∂η) + (∂vt )(∂v)

)
∂t q

� ||(Rκ)
3
2 vt t t ||1||(Rκ)

3
2 vt t ||

1
2
1 ||(Rκ)

3
2 vt t ||

1
2
2 ||η||3||Rκqt ||

1
2
0 ||Rκqt ||

1
2
1

+ ||(Rκ)
3
2 vt t t ||1||Rκvt ||

1
2
1 ||Rκvt ||

1
2
2 ||(Rκ)

1
2 v||3||Rκqt ||

1
2
0 ||Rκqt ||

1
2
1

� εP(N ) + P0 + P
∫ t

0
P,

and
∫

�

(Rκ )4(∂3t ∂μvα)(∂2t A)∂2t q =
∫

�

(Rκ )4(∂3t ∂μvα)
(
(∂v)2 + (∂vt )(∂η)

)
∂2t q
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� ||(Rκ )
3
2 vt t t ||1

(
||v||2||Rκv||3 + ||Rκvt ||

1
2
1 ||Rκvt ||

1
2
2 ||η||3

)
||(Rκ )

3
2 qtt ||

1
2
0 ||(Rκ )

3
2 qtt ||

1
2
1

� εP(N ) + P0 + P
∫ t

0
P.

Finally, we have
∫

�

(Rκ)4(∂3t ∂μvα)(∂t A)∂3t q =
∫

�

(Rκ)4(∂3t ∂μvα)(∂v)(∂η)∂3t q

� ||(Rκ)
3
2 vt t t ||1||v||

1
2
1 ||v||

1
2
2 ||η||3||(Rκ)

5
2 qttt ||

1
2
0 ||(Rκ)

5
2 qttt ||

1
2
1

� εP(N ) + P0 + P
∫ t

0
P. (3.16)

3.3.3. Control of
∫ t
0 I3

For non-Rκ -weighted Dr : Expressing these derivatives as Dr where r ≤ 3, we

have

I3 =
∑

j1+ j2=r
j1≥1

∫

�

(D j1 Aμα)(∂μD j2vα)(Dr q)

≤
∑

j1+ j2=r
j1≥1

||(D j1 Aμα)(∂μ D j2vα)||0||Dr q||0,

and so
∫ t
0 I3 ≤ P0 + P

∫ t
0 P in light of Theorem 3.13.

ForRκ -weightedDr : It suffices to consider only the case when r = 4, that is, the
derivatives are of the form (Rκ)� D3∂t , for � = 1, 3

2 , 2. Now,

I3 =
∫

�

(Rκ)2�(∂t Aμα)(D3∂μvα)(D3∂t q)

+
∫

�

(Rκ)2�(D Aμα)(D2∂t∂μvα)(D3∂t q)

+
∫

�

(Rκ)2�(∂t D3Aμα)(∂μvα)(D3∂t q) + error terms,

where the main term is equal to
∫

�

(∂t Aμα)
(
(Rκ)�−

1
2 D3∂μvα

)(
(Rκ)�+

1
2 D3∂t q

)

+
∫

�

(∂ Aμα)
(
(Rκ)� D2∂t∂μvα

)(
(Rκ)� D3∂t q

)

+
∫

�

(∂μvα)
(
(Rκ)�−

1
2 ∂t D3Aμα

)(
(Rκ)�+

1
2 D3∂t q

)
= I3,1 + I3,2 + I3,3,

where I3,2 does not appear when D4 = R2
κ∂4t .∫ t

0 I3,1 +I3,3 can be controlled directly by P0 +P
∫ t
0 P . For I3,2, one requires

the wave energy (2.6) to control ||(Rκ)� D3∂t q||0 when D3 contains at least one ∂t ,
and (2.3) to control this term when D3 = ∂3 (that is, Rκ∂3∂t q ∼ ∂3∂t R), and so∫ t
0 I3,2 can be controlled appropriately by P0 + P

∫ t
0 P .7 Furthermore, the (time

7 This is explained in the remark after Theorem 2.6.
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integrated) error terms are of the form

∑
j1+ j2+ j3=3

j1+ j2≥1

∫ t

0

∫

�

(Rκ)2�(∂ D j1η)(∂ D j2v)(∂ D j3v)(D4q)

=
∑

j1+ j2+ j3=3
j1+ j2≥1

∫ t

0

∫

�

(
(Rκ)�−

1
2 (∂ D j1η)(∂ D j2v)(∂ D j3v)

)(
(Rκ)�+

1
2 D4q

)

≤ P0 + P
∫ t

0
P.

3.3.4. Control of
∫ t
0 I4 I4 is the easiest one to control among the other I terms.

This is due to the assumption (1.3), which implies that there are “sufficient” Rκ -
weights that can be distributed for all terms. In addition to this, we can also use the
fact DR = R′ Dq to get an extra Rκ -weights if necessary.
For non-Rκ -weighted Dr : By (1.3) and since r ≤ 3, invoking Theorem 3.13, we
have
∫ t

0
I4 L=

∑
j1+ j2=r

j1≥1

∫ t

0

∫

�

Rκ

(
D j1(ρ0R−2)

)
(D j2∂t q)(Dr q) ≤ P0 + P

∫ t

0
P.

For Rκ -weighted Dr : For � = 1
2 , 1,

3
2 , 2, we have

∫ t

0
I4 L=

∑

j1+ j2=r
j1≥1

∫ t

0

∫

�

(Rκ)2�+1
(

D j1(ρ0R−2)
)
(D j2∂t q)(Dr q)

=
∑

j1+ j2=r
j1≥1

∫ t

0

∫

�

(
(Rκ)�+

1
2

(
D j1(ρ0R−2)

)
(D j2∂t q)

)(
(Rκ)�+

1
2 Dr q

)

≤ P0 + P
∫ t

0
P,

where the fact DR = R′ Dq is used if j1 = 1.

3.4. Control of
∫ t
0 B for non-Rκ -weighted Dr

This section is devoted to control the boundary terms

B1 = σ

∫

�

(Drvα)
([Dr ,

√
ggi j�α

μ]∂2i jη
μ
)
dS,

B2 = −σ

∫

�

∂ i (
√

ggi j�α
μ)(∂tD

rηα)(∂ jD
rημ) dS,

B3 = 1

2
σ

∫

�

∂t (
√

ggi j�α
μ)(∂ iDrηα)(∂ jDrημ) dS,

which appears in the energy estimate when Dr is non-Rκ -weighted. The Rκ -
weighted cases are treated in section 3.5.
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We recall that ifDr is non-Rκ -weighted, then r ≤ 3, that is, the corresponding
term is of lower order. Because of this, it would be suffice to consider the case when
Dr = ∂2∂t . Now, since �α

μ = n̂μn̂α , we have

B1 = σ
∑

j1+ j2=3
j1≥1

∫

�

(∂2∂tvα)D j1(
√

ggi j n̂μn̂α)(D j2∂2i jη
μ) dS,

B2 = σ

∫

�

∂ i (
√

ggi j�α
μ)(∂t∂

2vα)(∂ j∂
2vμ) dS,

B3 = 1

2
σ

∫

�

∂t (
√

ggi j�α
μ)(∂ i∂

2vα)(∂ j∂
2vμ) dS

Invoking Lemma 2.2, we get

∂t (
√

ggi j n̂μn̂α) = Q(∂η)∂v, ∂(
√

ggi j n̂μn̂α) = Q(∂η)∂2η,

where Q is a rational function, and hence

∂∂t (
√

ggi j n̂μn̂α) = Q(∂η, ∂v)∂2η + Q(∂η, ∂v)∂2v,

∂2(
√

ggi j n̂μn̂α) = Q(∂η, ∂2η)∂3η,

∂2∂t (
√

ggi j n̂μn̂α) = Q(∂η, ∂v, ∂2η, ∂2v)(∂3η + ∂3v).

In light of these, we have
∫ t

0
B2 = σ

∫ t

0

∫

�

Q(∂η)∂2η(∂2∂tv)(∂3v) dS ≤ P0 + P
∫ t

0
P,

via (H− 1
2 , H

1
2 ) duality. Moreover,

∫ t
0 B3 is treated similarly. On the other hand,

B1
L= σ

∫

�

(∂2∂tv)Q(∂η)(∂v)(∂4η) + σ

∫

�

(∂2∂tv)Q(∂η, ∂v, ∂2η, ∂2v)(∂3η + ∂3v)(∂2η)

+ σ

∫

�

(∂2∂tv)Q(∂η, ∂2η)(∂3η)(∂2v) + σ

∫

�

(∂2∂tv)Q(∂η, ∂v)(∂2v + ∂2η)(∂3η).

The last three terms can be controlled in a routine fashion.
However,σ

∫
�
(∂2∂tv)Q(∂η)(∂v)(∂4η) cannot be controlleddirectly since (H− 1

2 ,

H
1
2 ) duality requires the control ||vt ||3 which is not part of P , and so we consider

σ

∫ t

0

∫

�

(∂2∂tv)Q(∂η)(∂v)(∂4η),

and then integrate by parts in t . This yields

σ

∫ t

0

∫

�

(∂2∂tv)Q(∂η)(∂v)(∂4η) = σ

∫

�

(∂2v)Q(∂η)(∂v)(∂4η)|t01

− σ

∫ t

0

∫

�

(∂2v)Q(∂η, ∂v)(∂4η) − σ

∫ t

0

∫

�

(∂2v)Q(∂η)(∂vt )(∂
4η)

− σ

∫ t

0

∫

�

(∂2v)Q(∂η)(∂v)(∂4v).
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The last three term on the right hand side can be controlled directly byP0+P
∫ t
0 P

via (H− 1
2 , H

1
2 ) duality. Moreover, the pointwise term is bounded by

P0 + σ Q(||η||4)||(∂2v)(∂v)||1
� P0 + σ Q(||η||4)(||v||

1
2
3 ||v||

1
2
4 ||v||

1
2
1 ||v||

1
2
2 + ||v||2||v||3)

� εN + P0 + P
∫ t

0
P.

3.5. Control of B for Rκ -weighted Dr

Here we show how to control B whenD2 = √
Rκ∂2t ,D

3 = √
Rκ(∂∂2t ), D3 =

Rκ∂3t , D
4 = Rκ(∂3∂t ),D4 = Rκ(∂2∂2t ), D4 = (Rκ)

3
2 (∂∂3t ) and D4 = (Rκ)2∂4t .

3.5.1. Case D4 = (Rκ)2∂4t The ensuing calculations produce a series of terms.
In what follows we focus on the most delicate ones, in particular those leading to
special cancellations. The remaining terms will either be of lower order or can be
controlled by arguments similar to the ones presented for the aforementioned main
terms. Therefore, all such remainders are collected and estimated at the very end
in section 3.5.1.4. We note that certain cancellations are only visible after a series
of manipulations have been made, requiring us to keep track of the explicit form
of most terms in our calculations.

The following remarkwill be used throughout below. In view of identity Lemma
2.2–6, we have n̂α∂m∂k

t vα = n̂τ�
τα∂m∂k

t vα , so that an estimate for n̂ · ∂m∂k
t v can

controlled by �∂m∂k
t v.

We shall also need the following identity

∂tv
α∂lηα = − J

ρ0
∂ lq, on �, (3.17)

which is obtained upon contracting the first equation in (1.1) with ∂lηα , using the
definition of a, and (1.1).

3.5.1.1 Estimate for
∫ t
0 B3 with D4 = (Rκ)2∂4t

Using D4 = R2
κ∂4t in B3 gives

B3 = 1

2
σ

∫

�

∂t (
√

ggi j�α
μ)∂ i (R

2
κ∂3t vα)∂ j (R

2
κ∂3t vμ) dS

= 1

2
σ

∫

�

∂t (
√

ggi j )R4
κ�α

μ∂ i∂
3
t vα∂ j∂

3
t vμ dS

+ σ

∫

�

√
ggi jR4

κ∂t�
α
λ�λ

μ∂ i∂
3
t vα∂ j∂

3
t vμ dS

= B31 + B32,
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where we used Lemma 2.2–5. We can immediately estimate

||B31|| ≤ P||�R2
κ∂∂3t v||0,�.

For B32, use Lemma 2.2–4 to find

B32 = σ

∫

�

√
ggi jR4

κ∂t n̂
α n̂λ�

λ
μ∂ i∂

3
t vα∂ j∂

3
t vμ dS

+ σ

∫

�

√
ggi jR4

κ n̂α∂t n̂λ�
λ
μ∂ i∂

3
t vα∂ j∂

3
t vμ dS

= B321 + B322.

We have

||B322|| ≤ P||�R2
κ∂∂3t v||0,�.

Using Lemma 2.2–8 we can write

B321 = −σ

∫

�

R4
κ

√
ggi j gkl n̂λn̂τ ∂kv

τ ∂lη
α�λ

μ∂ i∂
3
t vα∂ j∂

3
t vμ dS.

From (3.5.1) we have

∂ lη
α∂ i∂

3
t vα = − J

ρ0
∂ i∂l∂

2
t q + [∂ i∂

2
t ,− J

ρ0
∂ l ]q − [∂ i∂

2
t , ∂ lηα∂t ]vα.

Thus,

B321 = σ

∫

�

J

ρ0
R4

κ

√
ggi j gkl n̂λn̂τ ∂kv

τ ∂ i∂ l∂
2
t q�λ

μ∂ j∂
3
t vμ dS

− σ

∫

�

1

ρ0
R4

κ

√
ggi j gkl n̂λn̂τ ∂kv

τ ([∂ i∂
2
t ,− J

ρ0
∂ l ]q)�λ

μ∂ j∂
3
t vμ dS

+ σ

∫

�

1

ρ0
R4

κ

√
ggi j gkl n̂λn̂τ ∂kv

τ ([∂ i∂
2
t , ∂ lηα∂t ]vα)�λ

μ∂ j∂
3
t vμ dS

= B3211 + B3212 + B3213.

Integrating ∂ i by parts in B3211,

B3211 = −σ

∫

�

J

ρ0
R4

κ

√
ggi j gkl n̂λn̂τ ∂kv

τ ∂l∂
2
t q�λ

μ∂ i∂ j∂
3
t vμ dS

− σ

∫

�

∂ i (
J

ρ0
R4

κ

√
ggi j gkl n̂λn̂τ ∂kv

τ ∂ l∂
2
t q�λ

μ)∂ j∂
3
t vμ dS.

From section 2.1, item 3, we have

∂l∂
2
t q = −σgmnn̂β∂m∂n∂l∂tv

β − [∂l∂
2
t , σgmnn̂β∂m∂n]ηβ,

so that

B3211 = σ 2
∫

�

J

ρ0
R4

κ

√
ggi j gkl n̂λn̂τ ∂kv

τ gmnn̂β∂m∂n∂l∂tv
β�λ

μ∂ i∂ j∂
3
t vμ
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+ σ

∫

�

J

ρ0
R4

κ

√
ggi j gkl n̂λn̂τ ∂kv

τ [∂ l∂
2
t , σgmnn̂β∂m∂n]ηβ�λ

μ∂ i∂ j∂
3
t vμ dS

− σ

∫

�

∂ i (
J

ρ0
R4

κ

√
ggi j gkl n̂λn̂τ ∂kv

τ ∂l∂
2
t q�λ

μ)∂ j∂
3
t vμ dS

= B32111 + B32112 + B32113.

In B32111, we use Lemma 2.2–6 and factor a ∂t from ∂3t to obtain

B32111 = σ 2∂t

∫

�

J

ρ0
R4

κ

√
ggi j gkl n̂τ ∂kv

τ gmnn̂β∂m∂n∂ l∂tv
β n̂μ∂ i∂ j∂

2
t vμ

− σ 2
∫

�

J

ρ0
R4

κ

√
ggi j gkl n̂τ ∂kv

τ gmnn̂β∂m∂n∂l∂
2
t vβ n̂μ∂ i∂ j∂

2
t vμ

− σ 2
∫

�

∂t (
J

ρ0
R4

κ

√
ggi j gkl n̂τ ∂kv

τ gmnn̂β n̂μ)∂m∂n∂ l∂tv
β∂ i∂ j∂

2
t vμ

= B321111 + B321112 + B321113.

For the first term, that is, B321111, we have
∫ t

0
B321111 ≤ P0 + R

1
2
κ P(Rκ ||�Rκ∂3∂tv||0,�)(||�R

3
2
κ ∂2∂2t v||0,�).

Using Young’s inequality and the fact thatRκ can be made very small for large κ ,
we can bound the right-hand side by P0 + εP(N ) + εN .

For B321112, write

gmnn̂β∂m∂n∂ l∂
2
t vβ n̂μgi j∂ i∂ j∂

2
t vμ

= ∂ l(g
mnn̂β∂m∂n∂2t vβ)n̂μgi j∂ i∂ j∂

2
t vμ

− [∂l , gmnn̂β∂m∂n∂
2
t ]vβ n̂μgi j∂ i∂ j∂

2
t vμ

= 1

2
∂l(n̂μgi j∂ i∂ j∂

2
t vμ)2

− [∂l , gmnn̂β∂m∂n∂
2
t ]vβ n̂μgi j∂ i∂ j∂

2
t vμ,

so that

B321112 = −1

2
σ 2

∫

�

J

ρ0
R4

κ

√
ggkl n̂τ ∂kv

τ ∂ l(n̂μgi j∂ i∂ j∂
2
t vμ)2

+ σ 2
∫

�

J

ρ0
R4

κ

√
ggkl n̂τ ∂kv

τ [∂l , gmnn̂β∂m∂n∂
2
t ]vβ n̂μgi j∂ i∂ j∂

2
t vμ.

Integarting ∂ l by parts in the first integral,

B321112 = 1

2
σ 2

∫

�

∂l(
J

ρ0
R4

κ

√
ggkl n̂τ ∂kv

τ )(n̂μgi j∂ i∂ j∂
2
t vμ)2

+ σ 2
∫

�

J

ρ0
R4

κ

√
ggkl n̂τ ∂kv

τ [∂l , gmnn̂β∂m∂n∂2t ]vβ n̂μgi j∂ i∂ j∂
2
t vμ

= B3211121 + B3211122.
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Writing

B3211121 = Rκ

1

2
σ 2

∫

�

∂ l

(
J

ρ0

√
ggkl n̂τ ∂kv

τ

) (

n̂μgi jR
3
2
κ ∂ i∂ j∂

2
t vμ

)2

,

we have

B3211121 ≤ εP(N ).

This concludes the estimate for the most delicate terms in
∫ t
0 B3. The remaining

terms in B3, that is, B3211122, B321113, B32113, B32112, B3212, and B3213, are treated
in section 3.5.1.4 below.
3.5.1.2 Estimate for

∫ t
0 B2 with D4 = (Rκ)2∂4t We now move to estimate B2:

B2 = −σ

∫

�

∂ i (
√

ggi j�α
μ)(R2

κ∂4t vα)(R2
κ∂ j∂

3
t vμ) dS

= −σ

∫

�

∂ i (
√

ggi j )�α
μR

2
κ∂4t vαR

2
κ∂ j∂

3
t vμ dS

− σ

∫

�

√
ggi j∂ i�

α
μR

2
κ∂4t vαR

2
κ∂ j∂

3
t vμ dS

= B21 + B22. (3.18)

We show below that B21 exactly cancels with a term coming from B1. Here we
move to estimate B22. Using Lemma 2.2–4,

B22 = −σ

∫

�

R4
κ

√
ggi j∂ i n̂μn̂α∂4t vα∂ j∂

3
t vμ dS

− σ

∫

�

R4
κ

√
ggi j n̂μ∂ i n̂

α∂4t vα∂ j∂
3
t vμ dS

= B221 + B222.

We use Lemma 2.2–9 to write

B221 = σ

∫

�

R4
κ

√
ggi j gkl∂ i∂kη

τ n̂τ ∂ lημn̂α∂4t vα∂ j∂
3
t vμ dS.

From (3.5.1) we have

∂ lημ∂ j∂
3
t vμ = − J

ρ0
∂ j∂l∂

2
t q + [∂ j∂

2
t ,− J

ρ0
∂l ]q − [∂ j∂

2
t , ∂ lημ∂t ]vμ,

whence

B221 = −σ

∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂4t vα∂ j∂ l∂
2
t q dS

+ σ

∫

�

R4
κ

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂4t vα[∂ j∂
2
t ,− J

ρ0
∂ l ]q dS

− σ

∫

�

R4
κ

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂4t vα[∂ j∂
2
t , ∂ lημ∂t ]vμ dS
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= B2211 + B2212 + B2213.

In B2211, we factor a ∂t in ∂4t vα to obtain

B2211 = −σ∂t

∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂3t vα∂ j∂ l∂
2
t q dS

+ σ

∫

�

R4
κ∂t (

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂ j∂ l∂
2
t q)∂3t vα dS

= B22111 + B22112.

For B22111, we integrate ∂ j by parts to produce

∫ t

0
B22111 ≤ P(||R2

κ�∂∂3t v||0,�)(||R2
κ∂∂2t q||0,�) +

∫ t

0
P,

where

||R2
κ�∂∂3t v||0,�||R2

κ∂∂2t q||0,� � ε̃||R2
κ�∂∂3t v||0,� + R

1
2
κ ε̃−1||R

3
2
κ ∂∂2t q||1

� ε(||R2
κ�∂∂3t v||0,� + ||R

3
2
κ ∂∂2t q||1) � εP(N ),

after choosing Rκ sufficiently small and replacing q by R.
For B22112, write

B22112 = σ

∫

�

R4
κ∂t (

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α)∂ j∂ l∂
2
t q∂3t vα dS

+ σ

∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂ j∂ l∂
3
t q∂3t vα dS

= B221121 + B221122.

The term B221121 can be handled with integration by parts with respect to ∂ j (it
yields a term in ||�R2

κ∂∂3t v||0,�). For B221122, we use section 2.1, item 3, to write

B221122 = −σ 2
∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂ j∂l(g
mnn̂β∂m∂n∂2t vβ)∂3t vα dS

− σ 2
∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α(∂ j∂l [∂3t , gmnn̂β∂m∂n]ηβ)∂3t vα

= B2211221 + B2211222.

Integrating by parts ∂ l in B2211221,

B2211221 = σ 2
∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂ j (g
mnn̂β∂m∂n∂2t vβ)∂ l∂

3
t vα dS

+ σ 2
∫

�

∂ l(R
4
κ

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α)∂ j (g
mnn̂β∂m∂n∂2t vβ)∂3t vα dS

= σ 2
∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂ j (g
mnn̂β∂m∂n∂2t vβ)∂ l∂

3
t vα dS
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+ σ 2
∫

�

R4
κ

J

ρ0

√
ggi j gkl∂l∂ i∂kη

τ n̂τ n̂α∂ j (g
mnn̂β∂m∂n∂2t vβ)∂3t vα dS

+ σ 2
∫

�

∂ l(R
4
κ

J

ρ0

√
ggi j gkl n̂τ n̂α)∂ i∂kη

τ ∂ j (g
mnn̂β∂m∂n∂2t vβ)∂3t vα dS,

and then integrating by parts ∂ i on the second integral,

B2211221 = σ 2
∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ i∂kη

τ n̂τ n̂α∂ j (g
mnn̂β∂m∂n∂2t vβ)∂ l∂

3
t vα dS

− σ 2
∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ l∂kη

τ n̂τ n̂α∂ i∂ j (g
mnn̂β∂m∂n∂2t vβ)∂3t vα dS

− σ 2
∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ l∂kη

τ n̂τ n̂α∂ j (g
mnn̂β∂m∂n∂2t vβ)∂ i∂

3
t vα dS

− σ 2
∫

�

∂ i (R
4
κ

J

ρ0

√
ggi j gkl n̂τ n̂α)∂ l∂kη

τ ∂ j (g
mnn̂β∂m∂n∂2t vβ)∂3t vα dS

+ σ 2
∫

�

∂l(R
4
κ

J

ρ0

√
ggi j gkl n̂τ n̂α)∂ i∂kη

τ ∂ j (g
mnn̂β∂m∂n∂2t vβ)∂3t vα dS

= B22112211 + B22112212 + B22112213 + B22112214 + B22112215. (3.19)

Note that the first and third terms, that is,B22112211 andB22112213, cancel each other
in view of the following identity, which can be verified by inspection,

2∑

i,k,l=1

(gi j gkl − gik gl j ) = 0.

For the second term, B22112212, integrate ∂ j∂ j by parts:

B22112212 = −σ 2
∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ l∂kη

τ n̂τ gmnn̂β∂m∂n∂
2
t vβ n̂α∂ i∂ j∂

3
t vα dS

− σ 2
∫

�

∂ j (R
4
κ

J

ρ0

√
ggi j gkl∂l∂kη

τ n̂τ )g
mnn̂β∂m∂n∂2t vβ n̂α∂ i∂

3
t vα dS

− σ 2
∫

�

∂ i (R
4
κ

J

ρ0

√
ggi j gkl∂ l∂kη

τ n̂τ n̂α)∂ j (g
mnn̂β∂m∂n∂2t vβ)∂3t vα dS

= B221122121 + B221122122 + B221122123.

Factoring a ∂t from ∂ i∂ j∂
3
t vα in B221122121, we find

B221122121 = −1

2
σ 2

∫

�

R4
κ

J

ρ0

√
ggi j gkl∂ l∂kη

τ n̂τ gmnn̂β∂m∂n∂2t vβ n̂α∂ i∂ j∂
2
t vα dS

+ 1

2
σ 2

∫

�

∂t (R
4
κ

J

ρ0

√
ggi j gkl∂ l∂kη

τ n̂τ gmnn̂β n̂α)∂m∂n∂2t vβ∂ i∂ j∂
2
t vα dS

= B2211221211 + B2211221212.

The first term, B2211221211, can be estimated by εP(N ). Here, the small number ε

comes form estimating ∂ l∂kη
τ in L∞ and using that η(0) is the identity diffeomor-

phism.
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Now we move to B222. Factoring a ∂t from ∂4t vα , we find

B222 = −σ

∫

�

R4
κ

√
ggi j n̂μ∂ i n̂

α∂4t vα∂ j∂
3
t vμ dS

= −σ∂t

∫

�

R4
κ

√
ggi j n̂μ∂ i n̂

α∂3t vα∂ j∂
3
t vμ dS

+ σ

∫

�

R4
κ

√
ggi j n̂μ∂ i n̂

α∂3t vα∂ j∂
4
t vμ dS

+ σ

∫

�

∂t (R
4
κ

√
ggi j n̂μ∂ i n̂

α)∂3t vα∂ j∂
3
t vμ dS.

Integrating ∂ j by parts in the second integral,

B222 = −σ∂t

∫

�

R4
κ

√
ggi j n̂μ∂ i n̂

α∂3t vα∂ j∂
3
t vμ dS

− σ

∫

�

R4
κ

√
ggi j n̂μ∂ i n̂

α∂ j∂
3
t vα∂4t vμ dS

+ σ

∫

�

∂t (R
4
κ

√
ggi j n̂μ∂ i n̂

α)∂3t vα∂ j∂
3
t vμ dS.

− σ

∫

�

∂ j (R
4
κ

√
ggi j n̂μ∂ i n̂

α)∂3t vα∂4t vμ dS

= B2221 + B2222 + B2223 + B2224.

Note that B2222 = B221, so this term is estimated as above. The term B2221 can,
after time integration, be estimated using Young’s inequality and interpolation.

With exception of B21, which, as said, involves a special cancellation showed
below, this concludes the estimate of the most delicate terms in

∫ t
0 B2. The re-

maining terms B2212, B2213, B2211222, B22112214, B22112215, B221122122, B221122123,
B2211221212, B2223, and B2224, are treated in section 3.5.1.4 below.

3.5.1.3 Estimate for
∫ t
0 B1 We now move to estimate D4 = (Rκ)2∂4t

We now move to estimate B1:

B1 = σ

∫

�

(R2
κ∂4t vα)

([R2
κ∂4t ,

√
ggi j�α

μ]∂2i jη
μ
)
dS

= 4σ
∫

�

R4
κ∂t (

√
ggi j�α

μ)∂ i∂ j∂
3
t ημ∂4t vα

+ 6σ
∫

�

R4
κ∂2t (

√
ggi j�α

μ)∂ i∂ j∂
2
t ημ∂4t vα

+ 4σ
∫

�

R4
κ∂3t (

√
ggi j�α

μ)∂ i∂ j∂tη
μ∂4t vα

+ σ

∫

�

R4
κ∂4t (

√
ggi j�α

μ)∂ i∂ jη
μ∂4t vα

= B11 + B12 + B13 + B14.
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We have

B14 = σ

∫

�

R4
κ

√
ggi j∂4t �α

μ∂ i∂ jη
μ∂4t vα

+ 4σ
∫

�

R4
κ∂t (

√
ggi j )∂3t �α

μ∂ i∂ jη
μ∂4t vα

+ 6σ
∫

�

R4
κ∂2t (

√
ggi j )∂2t �α

μ∂ i∂ jη
μ∂4t vα

+ 4σ
∫

�

R4
κ∂3t (

√
ggi j )∂t�

α
μ∂ i∂ jη

μ∂4t vα

+ σ

∫

�

R4
κ∂4t (

√
ggi j )�α

μ∂ i∂ jη
μ∂4t vα

= B141 + B142 + B143 + B144 + B145.

Using Lemma 2.2–4, we have

B141 = σ

∫

�

R4
κ

√
ggi j n̂α∂4t n̂μ∂ i∂ jη

μ∂4t vα

+ 4σ
∫

�

R4
κ

√
ggi j∂t n̂

α∂3t n̂μ∂ i∂ jη
μ∂4t vα

+ 6σ
∫

�

R4
κ

√
ggi j∂2t n̂α∂2t n̂μ∂ i∂ jη

μ∂4t vα

+ 4σ
∫

�

R4
κ

√
ggi j∂3t n̂α∂t n̂μ∂ i∂ jη

μ∂4t vα

+ σ

∫

�

R4
κ

√
ggi j∂4t n̂α n̂μ∂ i∂ jη

μ∂4t vα

= B1411 + B1412 + B1413 + B1414 + B1415.

From Lemma 2.2–8 we have

∂4t n̂μ = −gkl∂k∂
3
t vτ n̂τ ∂lημ − [∂3t , gkl n̂τ ∂ lημ∂k]vτ ,

and thus

B1411 = −σ

∫

�

R4
κ

√
ggi j n̂αgkl∂k∂

3
t vτ n̂τ ∂lημ∂ i∂ jη

μ∂4t vα

− σ

∫

�

R4
κ

√
ggi j n̂α[∂3t , gkl n̂τ ∂lημ∂k]vτ ∂ i∂ jη

μ∂4t vα

= B14111 + B14112.

We now invoke Lemma 2.2–10, to replace
√

ggi j gkl∂ i∂ jη
μ∂lημ in B14111 by

−∂ i (
√

ggik), obtaining

B14111 = σ

∫

�

R4
κ∂i (

√
ggik)∂k∂

3
t vτ n̂τ n̂α∂4t vα. (3.20)
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We see that this term exactly cancels B21, as mentioned earlier. The other terms in
the estimate of

∫ t
0 B1 are treated in section 3.5.1.4.

3.5.1.4 Remainders in
∫ t
0 B with D4 = R2

κ∂4t
Above we have showed how to control the most delicate terms in the estimate

for
∫ t
0 B when D4 = R2

κ∂4t . In particular, we have showed how some top order
terms, which seemingly cannot be individually bounded, cancel out when taken
together. Now we consider the remaining terms, which we list here for the reader’s
convenience. They are, for B3,

B3211122, B321113, B32113, B32112, B3212, and B3213

from section 3.5.1.3; for B2

B2212, B2213, B2211222, B22112214, B22112215,

B221122122, B221122123, B2211221212, B2223, and B2224

from section 3.5.1.2; for B1

B11, B12, B13, B142, B143, B144, B145, B1412, B1413, B1414, B1415, and B14112

(3.21)

from section 3.5.1.3. Not all these terms are immediately of lower order, but they
can be estimated using the same kind of ideas that have already been employed.
Therefore, it suffices to briefly indicate how this is done.

The terms B3212, B3213, B32112, B321113, and B3211122 can be bounded directly.
The termB32113 is bounded upon replacingq by R and estimating in routine fashion.

The terms B2212 and B2213 can be estimated with integration by parts in time.
The terms B2211222, B22112214, B22112215, B221122122, B2211221212 B2223, and B2224
can be estimated directly. The termB221122123 requires integration by parts in space
and then using arguments similar to above, with one extra step: after integrating
∂ j by parts, we obtain a term with four derivatives of η. This term, however, has
the form n̂τ gi j∂2∂ i∂ jη

τ , which allows us to use section 2.1, item 3, to eliminate
two derivatives of η. (Alternatively, we can use elliptic estimates for equations with
Sobolev coefficients, as, for example, Theorem 4 and Remark 2 in [51]).

The terms listed in (3.5.1.4) are again handled by a repetition of ideas used
above (without requiring special cancellations). In particular, Lemma 2.2–8 is used
heavily and Lemma 2.2–11 is employed to estimate B145.

Combining these observations with the estimates of section 3.5.1.1, 3.5.1.2, and
3.5.1.1, we finally obtain

∫ t

0
(B1 + B2 + B3) ≤ P0 + εN + εP(N ) + P

∫ t

0
P, when D4 = R2

κ∂4t .

3.5.2. Estimate of the Remaining Weighed Boundary Terms It remains to
carry out control of

∫ t
0 (B1 + B2 + B3) when D2 = √

Rκ∂2t , D
3 = √

Rκ(∂∂2t ),

D3 = Rκ∂3t , D
4 = Rκ(∂3∂t ), D4 = Rκ(∂2∂2t ), and D4 = (Rκ)

3
2 (∂∂3t ). These

cases are treated in an almost identical fashion as the case D4 = (Rκ)2∂4t from
section 3.5.1. In this regard, we note that a crucial requirement to carry these
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estimates is that D contains at least one time derivative, which is the case for all
the Rκ -weighted derivatives we need to consider.8 We therefore conclude

∫ t

0
(B1 + B2 + B3) ≤ P0 + εN + εP(N ) + P

∫ t

0
P,

for D2 = √
Rκ∂2t , D

3 = √
Rκ(∂∂2t ), D3 = Rκ∂3t , D

4 = Rκ(∂3∂t ), D4 =
Rκ(∂2∂2t ), D4 = (Rκ)

3
2 (∂∂3t ), and D4 = (Rκ)2∂4t .

4. Closing the Estimate

In this section, we prove:

Theorem 4.1. Let N (t) and P(t) be defined as Notation 3.1, then for sufficiently
large κ (that is, Rκ � 1), we have:

N (t) ≤ C(M)

(

εP(N (t)) + P0 + P
∫ t

0
P

)

, t ∈ [0, T ],

where T > 0 is chosen sufficiently small, provided that:

||∂η||L∞ + ||∂2η||L∞ ≤ M, (4.1)

||gi j ||L∞ + ||�k
i j ||L∞ ≤ M, (4.2)

hold a priori for some large constant M.
Since the energy estimate for E is established in the previous section (that is,

Theorem 3.2), we only need to show

||v||24 + ||Rκvt ||23 + ||Rκvt t ||22 + ||(Rκ)
3
2 vt t t ||21

+ ||R||24 + ||Rt ||23 + ||√Rκ Rtt ||22 + ||Rκ Rttt ||21
+ ||vt ||22 + ||√Rκvt t ||21 + ||Rκvt t t ||20 + ||Rtt ||1 + ||√Rκ Rttt ||0

≤ C(M)

(

εP(N (t)) + P0 + P
∫ t

0
P

)

. (4.3)

This is proved via an iterated argument using div-curl estimate (A.1). It suffices to
consider the first line in (4.1), since the second line consists lower order terms and
can be treated by the same method. Taking X = v and s = 4, (A.1) yields

||v||24 � ||div v||23 + ||curl v||23 + ||v3||23.5,∂ + ||v||20. (4.4)

On the other hand, taking X = Rκ∂tv and s = 3, we have:

||Rκvt ||23 � ||Rκdiv vt ||22 + ||Rκcurl vt ||22 + ||Rκv3t ||22.5,� + ||Rκvt ||20.

8 Incidentally, this is why an estimate for the normal component of v with no time deriva-
tives has to be obtained in a different way, see section 4.1.
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Similarly, by taking X = R′vt t , s = 2 and X = (R′) 3
2 vt t t , s = 1, we get

||Rκvt t ||22 � ||Rκdiv vt t ||21 + ||Rκcurl vt t ||21 + ||Rκv3t t ||21.5,� + ||Rκvt t ||20,
(4.5)

||(Rκ)
3
2 vt t t ||21 � ||(Rκ)

3
2 div vt t t ||20 + ||(Rκ)

3
2 curl vt t t ||20

+ ||(Rκ)
3
2 v3t t t ||20.5,� + ||(Rκ)

3
2 vt t t ||20, (4.6)

respectively. In light of (4.1)–(4.1), in order to estimate v and its time derivative,
we need to bound div ∂k

t v, curl ∂k
t v and ∂k

t v3, for k = 0, 1, 2, 3, respectively.

4.1. Bounds for the Curl and the Boundary Term of v

In this section we prove:

Theorem 4.2.

||curl v||23 + ||Rκcurl vt ||22 + ||Rκcurl vt t ||21 + ||(Rκ)
3
2 curl vt t t ||20

� εP(N ) + P0 + P
∫ t

0
P. (4.7)

Proof. The proof is almost identical to section 4 of [21], and so we omit the details.

The only modification is that the weights Rκ or (Rκ)
3
2 are used to compensate

q ′(R) ∼ R−1
κ , which allows us to get an uniform control. ��

On the other hand, we have:

Theorem 4.3.

||v3||23.5,� � εP(N ) + P0 + P
∫ t

0
P, (4.8)

and

||Rκv3t ||22.5,� � εN + ||Rκ�∂3vt ||20,� + P0 + P
∫ t

0
P, (4.9)

||Rκv3t t ||21.5,� � εN + ||Rκ�∂2vt t ||20,� + P0 + P
∫ t

0
P, (4.10)

||(Rκ)
3
2 v3t t t ||20.5,� � εN + ||(Rκ)

3
2 �∂3vt t t ||20,� + P0 + P

∫ t

0
P. (4.11)

Proof. For any vector field X , the following identity allows one to compare (�∂ X)3

and ∂ X3:

(�∂ X)3 = �3
λ∂ Xλ = ∂ X3 − gkl∂kη

3∂lηλ∂ Xλ. (4.12)

Invoking (4.3), let X = R
3
2
κ ∂3t v and then taking H−0.5(�) norm yields

||R
3
2
κ ∂∂3t v3||2−0.5,� � ||R

3
2
κ �∂∂3t v||20,� + ||gkl∂kη

3∂lηλ||21.5,�||R
3
2
κ ∂3t vλ||20.5,�.
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We add ||R
3
2
κ ∂2t v3||2−0.5,� to both sides, use the fact that ||R

3
2
κ ∂2t v3||2−0.5,�

+ ||R
3
2
κ ∂∂3t v3||2−0.5,� is equivalent to ||R

3
2
κ ∂2t v3||20.5,� , invoke ∂kη

3 = ∫ t
0 ∂kv

3

(which is true since η3(0) = 1), to conclude (4.3), where the term ||R
3
2
κ ∂2t v3||2−0.5,�

on the right hand side is estimated using interpolation, Young’s inequality, and the
fundamental theorem of calculus.

Similarly, using (4.3) with X = Rκ∂∂2t v and X = Rκ∂2∂tv, estimating in
H−0.5(�) yields (4.3) and (4.3), respectively. Now, we need to control ||v3||3.5,� .
This cannot be controlled using the above method since ||�∂4v||20,� is not part of
the energy E . Nevertheless, we recall the boundary condition

√
g
gη

α = √
ggi j∂2i jη

α − √
ggi j�k

i j∂kη
α = −σ−1Aμα Nμq, on � (4.13)

where �k
i j = gkl∂lη

μ∂2i jημ. Time differentiating (4.3) with α = 3 gives:

√
ggi j∂2i jv

3 − √
ggi j�k

i j∂kv
3 = −∂t (

√
ggi j )∂2i jη

3 − ∂t (
√

ggi j�k
i j )∂kη

3

− σ−1∂t Aμ3Nμq − σ−1Aμ3Nμ∂t q (4.14)

holds on �. Because gi j ∈ H2.5(�) and �k
i j ∈ H1.5(�), invoking the elliptic

estimate for rough coefficients (see, e.g, Theorem 4 and Remark 2 in Milani [51]),
we obtain:

||v3||23.5,� �M ||∂t (
√

ggi j )∂2i jη
3||21.5,� + ||∂t (

√
ggi j�k

i j )∂kη
3||21.5,�

+ ||∂t Aμ3Nμq||21.5,� + ||Aμ3Nμ∂t q||21.5,�,

which can be controlled appropriately by the right hand side of (4.3), where the last
two terms can be controlled by with the help of Theorem 3.13. ��

4.2. Bounds for v, R and Their Time Derivatives

Let k = 1, 2, 3, commuting ∂k
t to the second equation of (1.1), we get

∂α∂k
t vα =(δμα − aμα)∂μ∂k

t vα −
∑

j1+ j2=k
j1≥1

R−1∂
j1

t (Raμα)(∂μ∂
j2

t vα)

− R−1∂k+1
t R. (4.15)

In addition, the first equation of (1.1) can be re-written as

R′ R∂tv
α + aμα∂μ R = 0.

Commuting ∂k
t to this equation and invoking (1.3), we get

∂α∂k
t R = (δμα − aμα)∂μ∂k

t R − R′ R∂k+1
t vα

−
∑

j1+ j2=k
j1≥1

[(∂ j1
t aνα)(∂μ∂

j2
t R) + (

∂
j1

t (R′ R)
)
(∂

j2+1
t vα)]. (4.16)
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When k = 3, multiplying (R′) 3
2 and then taking L2 norm on both sides of (4.2),

we get

||(R′)
3
2 ∂α∂3t vα||0 ≤ ε||(R′)

3
2 ∂3t vα||1

+ C
∑

j1+ j2=3
j1≥1

||(R′)
3
2 ∂

j1
t (Raμα)(∂μ∂

j2
t vα)||0 + C ||(R′)

3
2 Rtttt ||0,

where we have used Lemma 2.1(9)(10). The term
∑

j1+ j2=3
j1≥1

||(R′)
3
2 ∂

j1
t (Raμα)(∂μ∂

j2
t vα)||0

is of lower order and can be controlled appropriately. Squaring and using Theo-
rem 3.2, we have

||(Rκ)
3
2 div vt t t ||20 � ||(R′)

3
2 div vt t t ||20 � εP(N ) + P0 + P

∫ t

0
P.

Now, in view of (4.1), invoking (4.2), (4.3) and Theorem 3.2 gives

||(Rκ)
3
2 vt t t ||21 � εP(N ) + P0 + P

∫ t

0
P. (4.17)

We now move to estimate ||Rκ Rttt ||1. Invoking (4.2) for k = 3, multiplying
R′ on both sides and taking L2 norm, we have

||R′ Rttt ||1 � ε||R′ Rttt ||1 + ||(R′)2vt t t t ||0 + εN + P0 + P
∫ t

0
P.

Here, εN appears when controlling the error term of (4.2). 9 Squaring this provides

||Rκ Rttt ||21 � ||R′ Rttt ||21 � εP(N ) + P0 + P
∫ t

0
P, (4.18)

where Theorem 3.2 is also used.
Next, we estimate ||Rκdiv vt t ||1. Invoking (4.2) with k = 2, multiplying R′ and

then applying H1 norm on both sides, we get

||R′∂α∂2t vα||1 ≤ε||R′vt t ||2 + C
∑

j1+ j2=2
j1≥1

||R′∂ j1
t (Raμα)(∂μ∂

j2
t vα)||1

+ C ||R′ Rttt ||1.
Using (4.2), squaring the above estimate leads to

||Rκdiv vt t ||21 � ||R′div vt t ||21 � εP(N ) + P0 + P
∫ t

0
P.

9 Specifically, εN is required to control ||R′(∂3t aνα)(∂ν R)||0. This
term involves ||R′(∂vt t )(∂ R)||0 at the top order, which is bounded by

||Rκ∂vt t ||
1
2
1 ||Rκ∂vt t ||

1
2
0 ||∂ R||

1
2
1 ||∂ R||

1
2
0 ≤ ε(

√N + N ) + P0 + P ∫ t
0 P .
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In light of (4.1), the above bound for ||Rκdiv vt t ||21, together with (4.2), (4.3) and
Theorem 3.2, gives

||Rκvt t ||22 � εP(N ) + P0 + P
∫ t

0
P. (4.19)

Furthermore, invoking (4.2) for k = 2, multiplying
√

R′ and taking H1 norm
and squaring, we get:

||√R′ Rtt ||22 � ε||√R′ Rtt ||22 + ||(R′)
3
2 vt t t ||21 + εN + P0 + P

∫ t

0
P,

which implies, after invoking (4.2), that

||√Rκ Rtt ||22 � εP(N ) + P0 + P
∫ t

0
P. (4.20)

In addition, this allow us to continue this procedure to get an estimate for
R′div vt ; let X = R′∂tv and s = 3 in (4.2), we gets

||R′div vt ||2 � ε||R′vt ||3 + ||R′ Rtt ||2 + P0 + P
∫ t

0
P,

squaring, and invoking (4.2), (4.3) and (4.2) gives

||Rκvt ||23 � εP(N ) + P0 + P
∫ t

0
P. (4.21)

Now, invoking (4.2) for k = 1, squaring and taking H2 norm yields

||Rt ||23 � ε||Rt ||23 + ||R′vt t ||2 + εN + P0 + P
∫ t

0
P � εP(N ) + P0 + P

∫ t

0
P,

(4.22)

as a consequence of (4.2).
Finally, the above procedure yields

||div v||3 � ε||v||4 + ||Rt ||3,
and hence

||v||24 � εP(N ) + P0 + P
∫ t

0
P,

via (4.2), (4.3) and (4.2). Moreover, we have:

||R||24 � ε||R||24 + ||R′vt ||3 + P0 + P
∫ t

0
P � εP(N ) + P0 + P

∫ t

0
P,

via (4.2).
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4.3. The Continuity Argument, Proof of Theorem 1.2

Recovering the a priori assumptions: We need to control the left hand side of
(4.1)–(4.1) by εP(N )+P0 +P

∫ t
0 P . The control for (4.1) is a direct consequence

of the Sobolev embedding , that is,

||∂η||L∞ + ||∂2η||L∞ � ||η||4 ≤ P0 + P
∫ t

0
P.

This also controls the left hand side of (4.1) by the definition of gi j and �k
i j .

Estimates at t = 0:
As we have seen that P involves quantities involving time derivatives, and so

one needs to show that these quantities can be controlled by P0. More precisely,
we show

||Rκvt (0)||3 + ||Rκvt t (0)||2 + ||(Rκ)
3
2 vt t t (0)||1

+ ||Rt (0)||3 + ||√Rκ Rtt (0)||2 + ||Rκ Rttt (0)||1
||vt (0)||2 + ||√Rκvt t (0)||2 + ||Rκvt t t (0)||0

+ ||Rtt (0)||1 + ||√Rκ Rttt (0)||0 ≤ P0.

This estimate is straightforward, that is, we use (1.1) to obtain ||Rκvt (0)||3 ≤
||ρ−1

0 ∂q(0)||3 � P0. Moreover, we use (4.2) with k = 0 at t = 0 to obtain
||Rt (0)||3 ≤ ||ρ−1

0 div v(0)||3 ≤ P0. The other quantities in (4.3) can be controlled
similarly. In addition, we also need

||Rκvt (0)||3,� + ||Rκvt t (0)||2,� + ||(Rκ)
3
2 vt t t (0)||1,� ≤ P0.

To control ||Rκvt (0)||3,� , we use (4.2) to obtain R′vi
t (0) = −δi j∂ j R(0), which

implies ||Rκvi
t (0)||3,� ≤ ||R(0)||4,� ≤ P0. On the other hand, we control the

normal component v3t (0) using the elliptic estimate. Time differentiating (4.3) and
then restricting at t = 0 yield


v3t (0) = −σ−1qtt (0) + F,

where F satisfies ||Rκ F ||1,� ≤ P0. From the elliptic theory, the control of ||Rκv3t
(0)||3,� requires the control of ||Rκqtt (0)||1,� and hence ||R′qtt (0)||1,� . Invoking
the wave equation (2.3), this is bounded by ||
q(0)||1,� + ||F1||1,� . There is no
problem to control ||F1||1,� by P0 in light of (2.3). Furthermore, invoking the
compatibility condition in section 5, that is, q0 = σ
η30, one controls ||
q0||1,�
by ||η30||5.5.

The estimates for ||Rκvt t (0)||2,�, ||(Rκ)
3
2 vt t t (0)||1,� are treated in a similar

way, upon time differentiating more times and proceeding as above. We omit the
details, but explain the estimates up to the highest order in an expository way. First,
to control the tangential component, we use (4.2) and (4.2) to get

R′vi
t t (0) ∼ δi j∂ j Rt (0) ∼ δi j∂ j∂αvα(0),
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(R′)
3
2 vi

t t t (0) ∼ √
R′δi j∂ j Rtt (0) ∼ √

R′δi j∂ j
q0 ∼ √
R′δi j∂ j

η30,

where ∼ means up to controllable terms. This yields that

||Rκvi
t t (0)||2,�, ||(Rκ)

3
2 vi

t t t (0)||1,�

are controlled by ||div v0||3,� and ||η30||6.5, respectively. Second, to control the nor-
mal component, time-differentiating (4.3) two times and restricting at t = 0 yields

v3t t (0) ∼ qttt (0). Therefore, from the elliptic theory, the control of ||Rκv3t t (0)||2,�
requires that of ||Rκqttt (0)||0,� and hence ||
qt (0)||0,� , in light of the wave equa-
tion. Invoking the compatibility condition qt (0) ∼ 
v30, ||
qt (0)||0,� is controlled
by ||

v30 ||0,� . On the other hand, time-differentiating (4.3) three times and re-
stricting at t = 0 yields 
v3t t t (0) ∼ qtttt (0). Therefore, from the elliptic theory,

the control of ||(Rκ)
3
2 v3t t t (0)||1,� requires that of ||(Rκ)

3
2 qtttt (0)||−1,� and hence

||√Rκ
qtt (0)||−1,� . Invoking the compatibility conditions qtt (0) ∼ 
∂3q(0) and
q(0) ∼ 
η30, we have that ||

√
R′
qtt (0)||−1,� is bounded by ||η30||6.5.

Hence, Theorem 4.1 implies

N (t) � εP(N (t)) + P(N (0)) + P(N (t))
∫ t

0
P(N (s)) dS.

Invoking the continuity-boostrap argument in [58], this implies that there exists
M > 0 such that

N (t) ≤ M, whenever t ∈ [0, T ], (4.23)

for some T > 0.

4.4. Passing to the Incompressible Limit, Proof of Theorem 1.3

Proof for statement 1:
This is standard since we have an uniform a priori estimate.

Proof for statement 2:
The bound (4.3) implies that ||vκ ||4 + ||Rκ ||4 ≤ √

M uniformly as κ → ∞.
Therefore, by the Sobolev embedding, we have:

∑

�≤2

(
||∂�vκ ||L∞(�) + ||∂� Rκ ||L∞(�)

)
≤ √

M.

This yields that for each fixed t ∈ [0, T ], vκ and Rκ are uniformly bounded and
equicontinuous in C2(�), which implies the convergence of vκ and Rκ in C2(�).
Moreover, vκ → v since aμα∂μ(vκ)α → 0 in L∞(�), which is a consequence of
||∂t qκ ||2 being bounded independent of κ and R′

κ → 0 as κ → ∞.
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5. The Initial Data

5.1. The Compatibility Conditions

The compatibility conditions for the initial data are necessary for construction
of solutions, as well as for passing the solution to the incompressible limit. We
recall that since

q = σgi j n̂μ∂2i jη
μ, on �,

we have

q|t=0 =
(
σgi j n̂μ∂2i jη

μ
)∣
∣
∣
t=0

:= H0, on �,

which is the zero-th order compatibility condition. In addition, for each j ≥ 1, the
j-th order compatibility reads as

∂
j

t q|t=0 = ∂
j

t

(
σgi j n̂μ∂2i jη

μ
)∣
∣
∣
t=0

:= Hj , on �. (5.1)

Our goal is to construct (v0,q0) that verifies the compatibility condition (5.1) for
j = 0, 1, 2, 3. We shall focus on the case when � = T

2 × (0, 1) , whose boundary
� is flat. Our method can easily be generalized to more general domains.

5.2. Formal Construction

We shall describe our method formally which serves as a good guideline for
readers. Since

q ∼ 
η3, on �,

we get

qt ∼ 
v3, qtt ∼ 
v3t , qttt ∼ 
v3t t , on �,

after taking time derivatives. Moreover, since the Euler equations imply

vt ∼ ∂q, qt ∼ κdiv v,

we have

qtt ∼ 
∂3q, qttt ∼ 
∂3qt ∼ κ
∂3div v, on �.

For each � = 0, 1, 2, 3, we obtain the �-th order compatibility condition after
restricting the above expression at t = 0, that is,

q|t=0 ∼ 
η30, on �,

qt |t=0 ∼ 
v30, on �,

qtt |t=0 ∼ 
∂3q0, on �,

qttt |t=0 ∼ κ
∂3div v, on �.
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On the other hand, since

qt ∼ κdiv v, qtt ∼ κdiv vt ∼ κ
q, qttt ∼ κ
qt ∼ κ2
div v,

then

q0 ∼ 
η30, on �, (5.2)

div v0 ∼ κ−1
v30, on �, (5.3)


q0 ∼ κ−1
∂3q0, on �, (5.4)


div v0 ∼ κ−1
∂3div v0, on �. (5.5)

In other words, the first order compatibility condition (that is, (5.1) when j = 1),
is expressed in v0, and the second order compatibility condition is expressed in q0,
and finally the third order compatibility condition is expressed in v0 again.

To construct initial data that satisfies the compatibility conditions up to order 3,
our first step is to obtain (u0,p0) that satisfies the (5.2). This is easy, since we can
simply let u0 to be velocity for the incompressible case, that is, u0 = u0, and p0

−
p0 = (∂μuν
0)(∂νu

μ
0 ), in �,

p0 = 
η30, on �. (5.6)

Our next step is to construct a velocity vector fieldw0 = (w1
0,w

2
0,w

3
0) that satisfies

(5.2). To achieve this, we setw1
0 = u10 andw

2
0 = u20, while we definew

3
0 via solving


2w3
0 = 
2u30, in �,

w3
0 = u30, ∂3w3

0 ∼ κ−1
u30 − ∂1u10 − ∂2u20, on �. (5.7)

We now construct q0 that satisfies (5.2). We define q0 by the solution of


3q0 = 0, in �,

q0 = p0, ∂3q0 = ∂3p0, 
q0 ∼ κ−1
∂3p0, on �. (5.8)

Finally, we need to construct v0 using (5.2). To achieve this, we set v10 = u10,
v20 = u20, and we define v30 by solving


4v30 = 
4w3
0, in �,

v30 = w3
0, ∂3v30 ∼ κ−1
w3

0 − ∂1w1
0 − ∂2w2

0, on �,

∂23v
3
0 ∼ κ−1∂3
w3

0 − ∂3∂1w1
0 − ∂3∂2w2

0, on �,


∂3v30 ∼ κ−1
∂3divw0 − 
∂1w1
0 − 
∂2w2

0, on �. (5.9)

Remark. In fact, 
η30 = 0 on the boundary of the reference domain T
2 × (0, 1).

But that we do not use this condition exactly because we want to keep the regularity
of each argument as it should hold for the general domain.
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Theorem 5.1. Let u0 ∈ H6.5(�) be a divergence free vector field in � and p0 be
the associated pressure. Then there exists initial data (v0, q0) = (vκ

0 , q
κ
0) satisfying

the compatibility conditions up to order 3, that is, (5.2)–(5.2), such that vκ
0 → u0

in C2(�) and div vκ
0 → 0 in C1(�) as κ → ∞, and P0 is uniformly bounded for

all κ .

Proof. (v0,q0) verifies (5.2)–(5.2) follows automatically from our construction.
Since p0 satisfies the elliptic equation (5.2), for s ≥ 4, we have

||p0||s � ||
p0||s−2 + ||p0||s−0.5,�, (5.10)

which requires ||u0||s−1 and ||η0||s+2 to control. Moreover, by the poly-harmonic
estimate applied to (5.2) we have

||q0||s � ||
q0||s−2.5,� + ||∂3q0||s−1.5,� + ||q0||s−0.5,�

� κ−1||
∂3p0||s−2 + ||∂3p0||s−1 + ||p0||s .
Invoking (5.1), this requires ||u0||s and ||η0||s+3 to control. On the other hand,
invoking (5.2) and the poly-harmonic estimate, we get

||w3
0||s � ||
2u30||s−4 + ||∂3w3

0||s−1.5,� + ||w3
0||s−0.5,�

� ||
2u30||s−4 + κ−1||
u30||s−1 + ||∂1w1
0||s−1 + ||∂2w2

0||s−1 + ||u30||s,
which needs ||u30||s+1 to control. In addition, since wi

0 = ui
0, one controls ||w0||s

via ||u0||s+1. Moreover, invoking (5.2) and the poly-harmonic estimate, we get

||v30||s � ||
4u30||s−8 + ||
∂3v30||s−3.5,� + ||∂23v30||s−2.5,� + ||∂3v30||s−1.5,� + ||v30||s−0.5,�

� ||
4u30||s−8 + κ−1||
∂3divw0||s−3 + ||
∂1w1
0||s−3 + ||
∂2w2

0||s−3

+ κ−1||∂3
w3
0||s−2 + ||∂3∂1w1

0||s−2 + ||∂3∂2w2
0||s−2

+ κ−1||
w3
0||s−1 + ||∂1w1

0||s−1 + ||∂2w2
0||s−1 + ||w3

0||s ,

which requires ||w3
0||s+1 and hence ||u30||s+2 to control. Once again, since vi

0 = ui
0,

one controls ||v0||s through ||u0||s+2.
Next, since (5.2) implies


2(w3
0 − u30) = 0, in �,

w3
0 − u30 = 0, ∂3(w3

0 − u30) ∼ κ−1
u30, on �,

we have that ||w3
0 − u30||s → 0 as κ → ∞, and hence w0 → u0 in Hs(�) as

κ → ∞. Similarly, (5.2) implies v0 → w0 in Hs(�) as κ → ∞, and so we
conclude that v0 → u0 in Hs(�) as κ → ∞. Furthermore, because s ≥ 4 and v0 is
uniformly bounded in Hs , we have that v0 → u0 in C2(�) thanks to Arzelà-Ascoli
and div v0 → div u0 = 0 in C1(�).

Finally, we recall that P0 consists of

||v0||4, ||v0||4,�, ||q0||4, ||q0||4,�, ||div v0|�||3,�, ||
v0|�||2,�),

which can all be controlled by ||u0||s+2 = ||u0||s+2 and ||η0||s+3 with s = 4.5. ��
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Remark. The initial data constructed in Theorem 5.1 is given in terms of the initial
pressure q0 instead of the initial density R0. This is because the boundary condition
is more easily stated in terms of q and we need to make sure that the quantities
||q0||4 and ||q0||4,� are bounded uniformly in κ , but we can compute R0 through
the equation of states R = R(q), that is, R0 = [(cγ κ)−1q0 + β]1/γ .

The rest of this section is devoted to provide detailed construction, and for the
sake of simple expositions, we assume the equation of state is taken to be

q(R) = κ(R − 1).

This allows us to exchange q and R in an explicit way. Also, throughout the rest of
this section, we shall use Q to denote a rational function.

5.3. Construction for (u0, p0,�) that Satisfies (5.1) While j = 0

Let u0 = v0, where v0 is the data for the incompressible Euler equations. Since
H0 = σ
η30, we define p0 by solving

{
−
p0 = (∂μuν

0)(∂νu
μ
0 ), in �,

p0 = H0, on �.

5.4. Construction for w0 that Satisfies (5.1) While j = 1

We next consider the first order compatibility condition, that is, ∂t q|t=0 = H1.
Since

∂t

(
σgi j n̂μ∂2i jη

μ
)

= σgi j n̂μ∂2i jv
μ + σ Q(n̂, ∂η, ∂v)∂2η, (5.11)

we have that

H1 = σ
v30 + σ Q(∂η0, ∂v0)∂
2η0.

On the other hand, since ∂t q = −Rκaμα∂μvα , (5.1) with j = 1 becomes

div v0 = κ−1(κ−1q0 + 1)H1, on �,

and so

∂3v
3
0 = κ−1(κ−1q0 + 1)H1 − ∂1v

1
0 − ∂2v

2
0, on �.

Furthermore, this suggests that w0 should be constructed as follows: let w0 =
(u10,u

2
0,w

3
0), where w

3
0 solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


2w3
0 = 
2u30, in �,

w3
0 = u30, on �,

∂3w3
0 = κ−1σ(κ−1p0 + 1)
u30 − κ−1σ(κ−1p0 + 1)Q(∂η0, ∂u0)∂2η0

−∂1u10 − ∂2u20, on �.
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5.5. Construction for q0 that Satisfies (5.1) While j = 2

The second order compatibility condition reads ∂2t q|t=0 = H2, and we need
to express this in terms of η0, v0 and q0, which yields a system satisfied by p0.
Invoking (5.4), we have

∂2t

(
σgi j n̂μ∂2i jη

μ
)

=σgi j n̂μ∂2i jv
μ
t + σ Q(n̂, ∂η, ∂v)∂2v

+ σ Q(n̂, ∂η, ∂v)∂2η(∂vt + 1). (5.12)

In addition, since Rv
μ
t + aνμ∂νq = 0, we get for s = 1, 2 that

∂s(v
μ
t ) = −R−1aνμ∂s∂νq −

∑

1≤k≤s

∂k(R−1aνμ)∂s−k∂νq.

This, together with (5.5) and the equation of state R = κ−1q + 1 imply

H2 = H2(η0, p0, v0) = −σ(κ−1q0 + 1)−1
∂3q0 + σ Q(∂η0, ∂v0)∂
2v0

− σ Q
(
(κ−1q0 + 1)−1, κ−1∂q0, ∂η0, ∂∂η0

)
∂∂q0

− σ Q
(
(κ−1q0 + 1)−1, ∂η0, κ

−1∂q0, κ
−1∂2q0

)
∂q0

+ σ Q
(
(κ−1q0 + 1)−1, ∂η0, ∂∂η0, ∂v0, ∂q0

)
(∂∂q0 + ∂2η0). (5.13)

On the other hand, the continuity equation implies Raμα∂μvα = −κ−1∂t q, and
hence

− κ−1∂2t q = ∂t (Raμα)∂μvα + Raμα∂μ∂tvα

= ∂t (Raμα)∂μvα − Raμα∂μ(R−1aν
α∂νq)

= −aμαaν
α∂μ∂νq − Raμα∂μ(R−1aν

α)∂νq + ∂t (Raμα)∂μvα. (5.14)

Restricting the above identity to the boundary � and then taking t = 0, we get

κ−1∂2t q|t=0 = 
q0 − Q
(
(κ−1q0 + 1)−1, ∂η0, ∂

2η0, ∂v0, κ
−1∂q0

)
∂q0

+ Q(κ−1q0, ∂η0, ∂v0)∂v0. (5.15)

Invoking (5.5) and (5.5), we are able to rewrite (5.1) when j = 2 as


q0 = Q
(
(κ−1q0 + 1)−1, ∂η0, ∂

2η0, ∂v0, κ
−1∂q0

)
∂q0

− Q(κ−1q0, ∂η0, ∂v0)∂v0 + κ−1H2(η0, p0, v0). (5.16)

This yields that q0 should solve
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩


3q0 = 0, in �,

q0 = p0, on �,
∂q0
∂ N = ∂3q0 = ∂3p0 = ∂p0

∂ N , on �,


q0 = ϕ, on �.
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Here,

ϕ = Q
(
(κ−1p0 + 1)−1, ∂η0, ∂

2η0, ∂w0, κ
−1∂p0

)
∂p0

− Q(κ−1p0, ∂η0, ∂w0)∂w0 + κ−1H2(η0,p0,w0),

which is obtained from (5.5).

5.6. Construction for v0 that Satisfies (5.1) While j = 3

Our last step is to construct v0 that satisfies third order compatibility condition,
that is, ∂3t q|t=0 = H3 on �. Similar to what has been done for the previous cases
when j = 0, 1, 2, we shall first compute the compatibility condition explicitly.
Invoking (5.5), as well as v

μ
t = −R−1aνμ∂μq and ∂t q = −κ Raμα∂μvα , we have

∂3t

(
σ(gi j n̂μ∂2i jη

μ
)

= −∂t

(
σ(gi j n̂μ∂2i j (R−1aνμ∂νq)

)

+ σ Q(n̂, ∂η, ∂v)∂2vt + σ Q(g, n̂, ∂η, ∂v, ∂vt )∂
2v

+ σ Q(n̂, ∂η, ∂v, ∂vt )(∂vt t + ∂2η)

= −σgi j n̂μ∂2i j∂t (R−1aνμ∂νq) + σ Q(n̂, ∂η, ∂v)∂2i j (R−1aνμ∂νq)

+ σ Q(n̂, R−1, ∂ R−1, ∂2R−1, ∂v, ∂η, ∂∂η, ∂2∂η, ∂q, ∂∂q)∂2∂q

+ σ Q(n̂, R−1, ∂ R−1, ∂v, ∂η, a, ∂∂η, ∂q, ∂∂q)∂2v

+ σκ Q(n̂, R−1, ∂ R−1, ∂v, ∂2v, ∂η, ∂∂η, ∂q, ∂∂q)(aμα∂μ∂∂vα + ∂2η),

(5.17)

where

σgi j n̂μ∂2i j∂t (R−1aνμ∂νq) = σgi j n̂μ R−1aνμ∂ν∂
2
i j qt

+ σ Q(n̂, R, ∂ R, ∂2R, ∂v, ∂η, ∂∂η, ∂2∂η, ∂q, ∂∂q, ∂2∂q)(∂qt + ∂∂qt )

= −κσgi j n̂μaνμ∂ν∂
2
i j (a

αβ∂αvβ)

+ κσ
∑

k=1,2,3
Q(n̂, ∂k R)

(
∂3−k(aαβ∂αvβ)

)

+ κσ Q(n̂, R, ∂ R, ∂2R, ∂v, ∂2v, ∂3v, ∂η, ∂∂η, ∂2∂η, ∂q, ∂∂q, ∂2∂q)
(

aαβ∂α

(∂∂vβ + ∂vβ)
)
. (5.18)

Restricting (5.6) and (5.6) at t = 0, we get

H3 = H3(η0, q0, v0) = −κσ∂3
div v0 − σ
∑

�=1,2,3

(∂�q0)(∂
3−�div v0)

+ κσ Q
(
(κ−1q0+1)−1, ∂v0, ∂

2v0, ∂
3v0, ∂η0, ∂

2η0, ∂
3η0, ∂q0, ∂

2q0, ∂
2∂q0

)

∑

�=1,2

∂�div v0. (5.19)
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Next, invoking (5.5), we obtain

κ−1qttt = ∂t

(
aμαaν

α∂μ∂νq + Raμα∂μ(R−1aν
α)∂νq − ∂t (Raμα)∂μvα

)

= aμαaν
α∂μ∂νqt + Raμα∂μ(R−1aν

α)∂νqt

+ Q(R, R−1, ∂ R−1, ∂η, ∂∂η, v, ∂v)∂2q

= −Rκaμαaν
α∂μ∂ν(a

βγ ∂βvγ )

− 2κaμαaν
α(∂μ R)∂ν(a

βγ ∂βvγ )

− κaμαaν
α(∂μ∂ν R)(aβγ ∂βvγ )

+ Q(R, R−1, ∂ R−1, ∂η, ∂∂η)∂(aβγ ∂βvγ )

+ Q(R, ∂ R, R−1, ∂ R−1, ∂η, ∂∂η)aβγ ∂βvγ

+ Q(R, R−1, ∂ R−1, ∂η, ∂∂η, v, ∂v)∂2q. (5.20)

Restricting (5.6) to the boundary � and then taking t = 0, we have

κ−1qttt |t=0 = −κ R0
div v0 −
∑

�=1,2
2(∂�q0)(∂

2−�div v0)

+ Q
(
(κ−1q0 + 1)−1, κ−1q0, ∂v0, ∂η0, ∂

2η0

)∑

�=0,1
∂�div v0

+ Q
(
(κ−1q0 + 1)−1, κ−1q0, v0, ∂v0, ∂η0, ∂

2η0

)
∂2q0.

Invoking (5.6), the compatibility condition qttt |t=0 = H3 can then be re-expressed
as


div v0 = ψ(η0, q0, v0)

where

ψ(η0, q0, v0) = −κ−1(κ−1q0 + 1)
∑

�=1,2
2(∂�q0)(∂

2−�div v0)

+ κ−1Q
(
(κ−1q0 + 1)−1, κ−1q0, ∂v0, ∂η0, ∂

2η0

)∑

�=0,1
∂�div v0

+ κ−1Q
(
(κ−1q0 + 1)−1, κ−1q0, v0, ∂v0, ∂η0, ∂

2η0

)
∂2q0

− κ−2(κ−1q0 + 1)−1H3(η0, q0, v0).

This implies that v0 = (v10, v
2
0, v

3
0) should be constructed such that v10 = u10 and

v20 = u20, whereas v
3
0 solves

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


4v30 = 
4w3
0, in �,

v30 = w3
0, on �,

∂3v30 = κ−1σ(κ−1q0 + 1)
w3
0 − κ−1σ(κ−1q0 + 1)Q(∂η0, ∂w0)∂

2η0

−∂1w1
0 − ∂2w2

0, on �,

∂23v
3
0 = ∂3

(
κ−1σ(κ−1q0 + 1)
w3

0 − κ−1σ(κ−1q0 + 1)Q(∂η0, ∂w0)∂
2η0

−∂1w1
0 − ∂2w2

0

)
, on �,


∂3v30 = ψ(η0,q0,u0) − 
∂1w1
0 − 
∂2w2

0, on �.
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Appendix

A Basic Estimates

Theorem A.1. (Standard div-curl estimates) Let X be a vector field on � with
sufficiently regular boundary �. Define div X = ∂ j X j and (curl X)i j = ∂i X j −
∂ j Xi , then for 1 ≤ s ≤ 4, we have

||X ||s � ||div X ||s−1 + ||curl X ||s−1 + ||X · N ||s−0.5,� + ||X ||0, (A.1)

||X ||s � ||div X ||s−1 + ||curl X ||s−1 + ||X · T ||s−0.5,� + ||X ||0, (A.2)

where N is the outward unit normal to �, whereas T is the unit vector which is
tangent to �.

Proof. We refer [47] for the detailed proof. ��

B The Energy Identity for the Wave Equations of Order 3

We recall that for r = 1, 2, 3, the wave equation reads as

J R′∂r+1
t q − aνα Aμ

α∂ν∂μ∂r−1
t q = Gr + Sr ,

where

Gr = −
∑

j1+ j2=r
j1≥1

(
∂

j1
t (J R′)

)
(∂

j2+1
t q) + aνα(∂νρ0)∂

r
t vα

+
∑

j1+ j2=r−1
j1≥1

aνα∂ν(∂
j1

t Aμ
α · ∂μ∂

j2
t q)

− ρ0
∑

j1+ j2=r−1
(∂

j1+1
t aνα)(∂

j2
t ∂νvα).

and

Sr = aνα(∂ν Aμ
α)∂μ∂r−1

t q.
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Theorem B.1. For r = 1, 2, 3, let

W 2
r = 1

2

∫

�

ρ−1
0 (J R′∂r

t q)2 dy + 1

2

∫

�

ρ−1
0 R′(Aνα∂ν∂

r−1
t q)(Aμ

α∂μ∂r−1
t q) dy

+ σ

2

∫

�

Rκ
√

ggi j�α
μ(∂ i∂

r
t ημ)(∂ j∂

r
t ηα) dS.

Then,

∑

r≤3
W 2

r ≤ εP(N ) + ε(||q||22 + ||qt ||22) + P0 + P
∫ t

0
P, t ∈ [0, T ],

where T > 0 is sufficiently small.

Proof of Theorem B.1. It suffices to consider the case when r = 3. Invoking (1.1)
and (1.3), we have

d

dt

1

2

∫

�

ρ−1
0 (J R′∂3t q)2 dy

=
∫

�

ρ−1
0 (J R′∂3t q)(aνα Aμ

α∂ν∂μ∂2t q) dy

+
∫

�

ρ−1
0 (J R′∂3t q)(G3 + S3) dy + R (B.1)

whereR consists of error terms that are generated when ∂t falls on either J or R′,
which we have no problem to control. In addition,

∫

�

ρ−1
0 (J R′∂3t q)(aνα Aμ

α∂ν∂μ∂2t q) dy

=
∫

�

ρ−1
0 (R′∂3t q)(Aνα∂ν)(Aμ

α∂μ∂2t q) dy −
∫

�

ρ−1
0 (J R′∂3t q)S3. (B.2)

The last term in (B.1) cancels with the corresponding term in (B.1), which is es-
sential since ||S3||0 cannot be controlled uniformly when R′ → 0. Moreover, the
first term on the right hand side of (B.1) is treated as

∫

�

ρ−1
0 (R′∂3t q)(Aνα∂ν)(Aμ

α∂μ∂2t q) dy

= −
∫

�

ρ−1
0 R′(Aνα∂ν∂

3
t q)(Aμ

α∂μ∂2t q) dy

+
∫

�

ρ−1
0 R′(Aνα Nν∂

3
t q)(Aμ

α∂μ∂2t q) dS + R. (B.3)

The first term on the right hand side of (B.1) is equal to

− d

dt

1

2

∫

�

ρ−1
0 R′(Aνα∂ν∂

2
t q)(Aμ

α∂μ∂2t q) dy + R,

and hence moved to the left. In addition,
∫

�

ρ−1
0 R′(Aνα Nν∂

3
t q)(Aμ

α∂μ∂2t q) dS
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=
∫

�

ρ−1
0 R′∂3t (Aνα Nνq)∂2t (Aμ

α∂μq) dS

−
∫

�

ρ−1
0 R′∂3t (Aνα Nνq)(∂t Aμ

α)(∂μ∂t q)

︸ ︷︷ ︸
WB1

−
∑

j1+ j2=3
j1≥1

∫

�

ρ−1
0 R′∂2t (Aμ

α∂μq)(∂
j1

t Aνα)(Nν∂
j2

t q)

︸ ︷︷ ︸
WB2

+
∑

j1+ j2=3
j1≥1

∫

�

ρ−1
0 R′(∂t Aμ

α)(∂μ∂t q)(∂
j1

t Aνα)(Nν∂
j2

t q)

︸ ︷︷ ︸
WB3

,

which is due to

Aνα Nν∂
3
t q = ∂3t (Aνα Nνq) −

∑
j1+ j2=3

j1≥1
(∂

j1
t Aνα)Nν∂

j2
t q,

Aμ
α∂μ∂2t q = ∂2t (Aμ

α∂μq) − (∂t Aμ
α)∂μ∂t q.

Next, invoking (1.1), (1.3) and (2.1), the main boundary term is equal to

σ

∫

�

Rκ
√

ggi j�α
μ(∂3t ∂2i jη

μ)(∂4t ηα)

+ σ
∑

j1+ j2=3
j1≥1

∫

�

Rκ(∂
j1

t
√

ggi j�α
μ)(∂2i j∂

j2
t ημ)(∂3t vα)

︸ ︷︷ ︸
WB4

= −σ

∫

�

Rκ
√

ggi j�α
μ(∂3t ∂ iη

μ)(∂ j∂
4
t ηα) + WB4

− σ

∫

�

Rκ∂ j (
√

ggi j�α
μ)(∂3t ∂ iη

μ)(∂3t vα)

︸ ︷︷ ︸
WB5

.

The first term on the last line is equal to

− d

dt

σ

2

∫

�

Rκ
√

ggi j�α
μ(∂3t ∂ iη

μ)(∂ j∂
3
t ηα)

+ σ

2

∫

�

Rκ∂t (
√

ggi j�α
μ)(∂3t ∂ iη

μ)(∂ j∂
3
t ηα)

︸ ︷︷ ︸
WB6

,

where the main term is moved to the left, and this completes the construction for
(2.5).
The proof of Theorem B.1 requires the bound for

∫ t
0 ||G3||0 and ∑

1≤ j≤6

∫ t
0 WB j .

There is no problem to control
∫ t
0 ||G3||0. In addition, using the duality, we have

WB1 � P(||v||3, ||η||3)||R′∂3t (A3αq)||0||∂t q||2,
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and

WB2 � P(||v||3, ||η||3)
(
||(√R′∂2t (Aμ

α∂μq)||0(
√

R′∂∂2t v)||0||q||2
+ ||(√R′∂2t (Aμ

α∂μq)||0(
√

R′∂∂tv)||1||∂t q||2
+ ||√R′∂2t (Aμ

α∂μq)||0||
√

R′qtt ||1
)
.

Therefore,
∫ t
0 WB1 +WB2 can be controlled appropriately. Moreover,

∫ t
0 WB3 +

WB6 is controlled in a routine fashion. On the other hand,
∫ t
0 WB4 + WB5 is

treated in [21], where theRκ -weights are incorporated so that the estimates in [21]
can go through. ��

C The Energy Identity for Rκ -weighted Wave Equations

We recall that the Rκ -weighted wave equation reads:

R�
κ R′ J D3∂2t q − R�

κaνα Aμ
α∂ν∂μD3q = G̃4 + S̃4,

where

G̃4 = −R�
κ [D3∂t , J R′]∂t q + R�

κ [D3, ρ0]∂t (R−1R′∂t q) + R�
κaνα(∂νρ0)D3∂tvα

+ R�
κaνα∂ν

([D3, Aμ
α]∂μq

) + R�
κaνα∂ν

([D3, ρ0]∂tvα

)

− R�
κρ0[D3∂t , aνα]∂νvα,

and

S̃4 = R�
κaνα(∂ν Aμ

α)∂μD3q.

Here, � = 1 when D3 = ∂3t , � = 1
2 when D3 = ∂2t ∂ and � = 0 when D3 = ∂t∂

2.

Theorem C.1. Let

W 2
4 = 1

2

∫

�

ρ−1
0 R2�

κ (J R′ D3∂t q)2 dy

+ 1

2

∫

�

ρ−1
0 R2�

κ R′(Aνα∂ν D3q)(Aμ
α∂μD3q) dy

+ σ

2

∫

�

R2�+1
κ

√
ggi j�α

μ(∂ i D3∂tη
μ)(∂ j D3∂tηα) dS.

Then,

W 2
4 ≤ εP(N ) + P0 + P

∫ t

0
P, t ∈ [0, T ],

where T > 0 is sufficiently small.
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Proof of Theorem C.1. Invoking (1.1) and (1.3), we have

d

dt

1

2

∫

�

ρ−1
0 R2�

κ (J R′ D3∂t q)2 dy

=
∫

�

ρ−1
0 R2�

κ (J R′ D3∂t q)(aνα Aμ
α∂ν∂μD3q) dy

+
∫

�

ρ−1
0 R2�

κ (J R′ D3∂t q)(G̃4 + S̃4) dy + R, (C.1)

where R consists error terms that are generated when ∂t falls on either J or R′,
which we have no problem to control. In addition,

∫

�

ρ−1
0 R2�

κ (J R′ D3∂t q)(aνα Aμ
α∂ν∂μ D3q) dy

=
∫

�

ρ−1
0 R2�

κ (R′ D3∂t q)(Aνα∂ν)(Aμ
α∂μ D3q) dy

−
∫

�

ρ−1
0 R2�

κ (J R′ D3∂t q)S̃4. (C.2)

The last term in (C.1) cancels with the corresponding term in (C.1), which is es-
sential since ||S̃3||0 cannot be controlled uniformly when R′ → 0. Moreover, the
first term on the right hand side of (C.1) is treated as

∫

�

ρ−1
0 R2�

κ (R′ D3∂t q)(Aνα∂ν)(Aμ
α∂μ D3q) dy

= −
∫

�

ρ−1
0 R2�

κ R′(Aνα∂ν D3∂t q)(Aμ
α∂μD3q) dy

+
∫

�

ρ−1
0 R2�

κ R′(Aνα Nν D3∂t q)(Aμ
α∂μ D3q) dS + R. (C.3)

The first term on the right hand side of (C.1) is equal to

− d

dt

1

2

∫

�

ρ−1
0 R2�

κ R′(Aνα∂ν D3q)(Aμ
α∂μ D3q) dy + R,

and hence moved to the left. In addition,
∫

�

ρ−1
0 R2�

κ R′(Aνα Nν D3∂t q)(Aμ
α∂μD3q) dS

=
∫

�

ρ−1
0 R2�

κ R′ D3∂t (Aνα Nνq)D3(Aμ
α∂μq) dS

−
∫

�

ρ−1
0 R2�

κ R′ D3∂t (Aνα Nνq)
([D3, Aμ

α]∂μq
)

︸ ︷︷ ︸
˜WB1

−
∫

�

ρ−1
0 R′R2�

κ D3(Aμ
α∂μq)

([D3∂t , Aνα]Nνq
)

︸ ︷︷ ︸
˜WB2
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+
∫

�

ρ−1
0 R′R2�

κ

([D3∂t , Aνα]Nνq
)([D3, Aμ

α]∂μq
)

︸ ︷︷ ︸
˜WB3

,

which is due to

Aνα Nν D3∂t q = D3∂t (Aνα Nνq) − [D3∂t , Aνα]Nνq,

Aμ
α∂μD3q = D3(Aμ

α∂μq) − [D3, Aμ
α]∂μq.

Next, invoking (1.1), (1.3) and (2.1), the main boundary term is equal to

σ

∫

�

R2�+1
κ

√
ggi j�α

μ(D3∂t∂
2
i jη

μ)(D3∂2t ηα)

+
∫

�

R2�+1
κ [D3∂t ,

√
ggi j�α

μ](∂2i jη
μ)(D3∂tvα)

︸ ︷︷ ︸
˜WB4

+R

= −σ

∫

�

R2�+1
κ

√
ggi j�α

μ(D3∂t∂ iη
μ)(∂ j D3∂2t ηα) + W̃B4

− σ

∫

�

R2�+1
κ ∂ j (

√
ggi j�α

μ)(D3∂t∂ iη
μ)(D3∂tvα)

︸ ︷︷ ︸
˜WB5

+R.

The first term on the last line is equal to

− d

dt

σ

2

∫

�

R2�+1
κ

√
ggi j�α

μ(D3∂t∂ iη
μ)(∂ j D3∂tηα)

+ σ

2

∫

�

R2�+1
κ ∂t (

√
ggi j�α

μ)(D3∂t∂ iη
μ)(∂ j D3∂tηα)

︸ ︷︷ ︸
˜WB6

,

where the main term is moved to the left, and this completes the construction for
(2.5).
The proof of Theorem C.1 requires the bound for

∫ t
0 ||G̃4||0 and ∑

1≤ j≤6

∫ t
0 W̃B j .

First,
∫ t
0 W̃B1 +W̃B2 can be controlled similar to

∫ t
0 WB1 +WB2 in the previous

section, after distributing correctRκ -weights. Second, the control of
∫ t
0 ||G̃4||0 and∫ t

0 W̃B3 can be done in a routine fashion. Finally,
∫ t
0 W̃B4+W̃B5+W̃B6 is treated

similar to
∫ t
0 B in section 3.4. ��
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