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Abstract

In this paper we establish the incompressible limit for the compressible free-
boundary Euler equations with surface tension in the case of a liquid. Compared
to the case without surface tension treated recently in Lindblad and Luo (Commun
Pure Appl Math 71:1273-1333, 2018) and Luo (Ann PDE 4(2):1-71, 2018), the
presence of surface tension introduces severe new technical challenges, in that
several boundary terms that automatically vanish when surface tension is absent
now contribute at top order. Combined with the necessity of producing estimates
uniform in the sound speed in order to pass to the limit, such difficulties imply that
neither the techniques employed for the case without surface tension, nor estimates
previously derived for a liquid with surface tension and fixed sound speed, are
applicable here. In order to obtain our result, we devise a suitable sound-speed-
weighted energy that takes into account the coupling of the fluid motion with the
boundary geometry. Estimates are closed by exploiting the full non-linear structure
of the Euler equations and invoking several geometric properties of the boundary in
order to produce some remarkable cancellations. We stress that we do not assume
the fluid to be irrotational.
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1. Introduction

We consider the motion of a compressible liquid with free surface boundary in
IR3. We use the notation D; to represent the bounded domain occupied by the fluid
at each time 7, whose boundary is advected by the fluid. The motion of the fluid is
described by the compressible Euler equations

p(0u + Vyu) =—Vp, in D,
00+ Vyp+ pdivu =0, in D, (L.1)
p=rpp), in D.
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Here, D = Up</<7{t} X Ds, u = u(t, x) is the velocity of the fluid, whereas
p = p(t,x)and p = p(¢, x) are the pressure and density, respectively. The density
is bounded from below away from zero, that is, p > constant > 0. This condition
on the density is what characterizes the fluid as a liquid. The initial and boundary
conditions are

. (1.2)
u=ug,p=p in{0} x Dy, |plyp =0H,

i{x 1(0,x) € D} = Dy, @ + Vu)lsp € T(OD),
where H is the mean curvature of 0D;, 0 > 0 is a constant, and 7 (3D) is the
tangent bundle of 9D (the condition (d; + V,,)|3p € T (3D) expresses the fact that
the boundary moves with speed equal to the normal component of the velocity).
Finally, the equation of state is assumed to be a strictly increasing function of the
density, that is,

p=pp). p'(p)=>0.

We shall consider the specific equation of state given by (1.3) in this manuscript.
The unknowns in (1)—(1) are u, p and Dy, and hence, H and p are function of the
unknowns, and therefore, are not known a priori.

Problem (1)—(1) behaves significantly different depending on whether o = 0 or
o > 0. The former is known as the case without surface tension whereas the latter is
the case with surface tension, which is the situation treated in this manuscript. Our
goal is to show that, for o > 0, the motion of a free-boundary incompressible fluid
with surface tension (corresponding to the idealized situation of a constant density
fluid) is well-approximated by (1)—(1) when an appropriate notion of compressibil-
ity is very small. It is well-known that solutions to the incompressible equations,
written in section 1.2 below, cannot be obtained by simply setting p to a constant
in (1)—(1) (see, for example, [46]). The correct way of setting the incompressible
limit is via the fluid’s sound speed introduced in section 1.3.

The study of the incompressible limit has a long history in fluid dynamics; see
section 1.2. For the case of a motion with free-boundary, the only results we are
aware are the recent works [46,48] by Lindblad and the second author, both treating
the case o = 0. In particular, to the best of our knowledge this is the first proof of
the incompressible limit for the free-boundary compressible Euler equations with
surface tension, that is, ¢ > 0. Despite many new difficulties introduced by the
presence of surface tension, which are discussed in section 1.6, it is important to
consider the case o > 0 because real fluids have surface tension. Thus, this feature
has to be incorporated in the construction of more realistic models. We remark that
we do not assume that the fluid is irrotational.

1.1. Lagrangian Coordinate and the Reference Domain

We introduce Lagrangian coordinates, under which the moving domain be-
comes fixed. Let Q be a bounded domain in R3. Denoting coordinates on € by



832 M. M. Disconzi & C. Luo

y = (y1, ¥2, y3), we define n : [0, T] x 2 — D to be the flow of the velocity u,
that is,

on(t,y) = u(t,n(,y)),
n0,y) =y.

We introduce the Lagrangian velocity, density and pressure, respectively, by v(, y)
=ult,n(t, ), R(t, y) := p(t, (. y)) and q(z, y) := p(t,n(t, y)). Therefore,

on = v.

For the sake of simplicity and clean notation, here we consider the model case when
Do = =T2 x (0, 1). We set

Fo:=T>xf{x3=0}, I:=Tx{x3=1)

sothat I := 92 = I'g U I'y. Using a partition of unity, as in, for example, [9,40],
a general domain can be treated with the same tools we shall present. Choosing
2 as above, however, allows us to focus on the real issues of the problem without
being distracted by the cumbersomeness of the partition of the unity. We also note
that one might want to consider a situation more akin the finite-depth water waves
problem, where the bottom boundary, I'g, remains fixed. This case requires only
minor modifications from our presentation but, again, we believe that this would
be a distraction from the main problem.

Let 9 be the spatial derivative with respect to the spatial variable y. We introduce
the matrix @ = (dn)~!. This is well-defined since 7(z, -) is almost id (that is, the
identity diffeomorphism on €2) whenever ¢ is sufficiently small. Define the cofactor
matrix

A=Ja,
where J = det(dn). Then, A satisfies the Piola identity
9 AMY =0.

Here, the summation convention is used for repeated upper and lower indices, and
in above and throughout, we adopt the convention that the Greek indices range over
1, 2, 3, while the Latin indices range over 1 and 2.

In terms of v, R, ¢ and a, the system (1)—(1) becomes

R +ar¥9,q =0, in [0, T] x Q
R + Ra"*d, vy =0, in [0, T] x Q
q =q(R), in[0,T]xQ  (1.3)
APEN,q + 0 JgAgn® =0, on [0,T] x T,

n(0,-) =id, R(0,) = Ro(= po), v(0,-) = vo,

where N is the unit outward normal to I', and A, is the Laplacian of the metric g;;
induced on I'(#) = n(¢, I') by the embedding 7, that is,

1

d; Y9;()),
7 (V88" 9;())

8ij = 3i77“3jmu Ag(’) =
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where g = det g. Since 1(0, -) = id, the initial Eulerian and Lagrangian velocities
(that is, uo and vg) agree. In addition, we also have a(0, -) = I, where I is the
identity matrix. Finally, J = det(dn) satisfies

oJ = Ja""d,v,, [0,T]x Q. (1.4)
This, together with the second equation of (1.1), implies
RJ =po, [0,T] x €, (1.5)
and hence the first equation in (1.1) is equivalent to

podv® + A*¥9,q =0, in [0, T] x Q. (1.6)

1.2. Background

The study of the motion of a fluid has a long history in mathematics. In particular,
the study of free-boundary fluid problems has blossomed over the past decade or
so. However, much of this activity has focused on the study of the incompressible
free-boundary Euler equations, that is,

po¥ 4+ a*?9,q =0, in [0,T] x Q
dive =0, in [0, T] x (1.7)
ARYN g + 0 /gAgn* =0, on [0,T] x T,

where f is a positive constant corresponding to the fluid’s constant density, v and
q are the incompressible Lagrangian velocity and pressure, a = (37)~!, % =
det(d7)a, where 7 is the Lagrangian map associated with v.

Itis well-known that for the incompressible equations, q is not determined by an
equation of state. Rather, it is a Lagrange multiplier enforcing the constraint div v =
0. The local well-posedness for the incompressible free-boundary Euler equations
has been studied by many authors, see [7,8,11,12,16,17,19,31,41,42,45,47,52,
54-57,65,66,69] and references therein. It is worth mentioning here that when
Dy is unbounded (with finite or infinite depth) and the velocity vg is irrotational
(that is, curl vy = 0, a condition that is preserved by the evolution), this problems
is called the water-waves problem, which has received a great deal of attention
[4-6,15,24-30,32-35,59,61-63,67,68].

However, the theory of the free-boundary compressible Euler equations is far
less developed. It is known that for suitable initial data, the system (1) modeling a
liquid admits a local (in time) solution, for example, [9,20,21,43,44,60], and for the
gas model, the existence of a local solution was obtained in [10,13,14,36,37,49].

In this paper we study how the solutions to (1.1) and (1.2) are related. Intuitively,
one expects that the solution of (1.1) should converge to that of (1.2) when the
“compressibility vanishes”. The proper way to define this problem is via the fluid’s
sound speed (see (1.3) below), which corresponds to the speed of propagation of
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sound waves inside the fluid and captures the fluid’s compressibility in that stiffer
fluids have larger sound speed.!

The incompressible limit problem consists in proving that if a sequence (v,
Ro ) of well-prepared initial data for (1.1) converges to (vg, ), where vy is the
initial data for the incompressible problem (1.2), and the sound speed at time zero
diverges to infinity, then the respective solution (v, R) of (1) converges to (v, ),
where v solves (1.2). Here, well-prepared initial data means that, in addition to
satisfying the compatibility conditions, the initial data has to be tailored to the
above limit (see Theorem 1.4).

The incompressible limit for the compressible Euler equations in a fixed do-
main (that is, D; = Dy or the whole space) was established by several authors under
different assumptions; see [2,3,18,22,23,38,39,50,53] and references therein. In
addition, the incompressible limit for the compressible free-boundary Euler equa-
tions was solved by Lindblad and the second author in [46] with o = 0 in a bounded
domain, and by the second author [48] in the same case but with unbounded do-
main. To our best knowledge, the aforementioned works [46,48] are the only known
results in the study of the incompressible limit for equations (1.1). In particular,
no result is available for the case with ¢ > 0. We will establish a priori estimates
for (1.1) that are uniform in the sound speed (see sections 3, 4). In addition, we
will construct a sequence of well-prepared data for (1.1) which converges to that of
(1.2) when the sound speed tends to infinity (see section 5). As a consequence, we
conclude the convergence of the compressible solution to the incompressible one
by an Arzela-Ascoil-type theorem.

1.3. The Sound Speed

Physically, the sound speed is defined as ¢ = /¢’ o R. To set up the incom-
pressible limit, it is conveninet to view the sound speed as a paramenter. As in
[18,23], we consider a family {g, (R)} parametrized by k € [0, 0co), where

K= qL(R)|R=p- (1.8)
Here,’ = diR, and
G (R) = cyk(RY —BY), ¢, =y 1>0,>0, y>1 (1.9)

We slightly abuse terminology and call « the sound speed. In order to consider
the incompressible limit, we view the density as a function of the pressure, that is,
Re = Re(q) = [(cylc)_lq + B71'7, and we see that R..(q) satisfies

1
—NRe < R(q) < coRe (1.10)
co

1
for some fixed constant ¢9 > 0, where R, = (¢, k) 7. Also, for 0 < k < 4, we
have that

IR (@) < co, IR (@) < colRL(@)IF < colRL(q)],

I This is an experimental fact, see, for example, [64].
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4O (R)| < colql(R)| (1.11)

hold uniformly in «.

1.4. The Main Results

Notations. All notations will be defined as they are introduced. In addition, a
list of symbols is given at the end of this section for a quick reference.

Definition 1.1. The L2-based Sobolev spaces are denoted by H*(£2), with the cor-
responding norm denoted by || - [|s; note that [[ - [[o = || - ||z2(q)- We denote by
H?(I") the Sobolev space of functions defined on I', with norm || - || r.

Theorem 1.2. Ler Q@ = T2 x (0, 1) and vo,« be a smooth vector ﬁeld.2 Let po i
be a smooth function satisfying po . > ¢ > 0 and qo , be the associated pressure
given by (1.3). Suppose that for some m € R such that

[lvo,ell4, 1voiclla,r, llgoxlla, l1goxllar <m, forall k >0 (1.12)

holds. Then there exist a T > 0 and a constant 9 such that any smooth solution
(v, Ri) to (1.1) defined on the time interval [0, T] satisfies

N(@) <,

where

3
N = el + 1198 v 13 + 11902013 + 1982 9 ve |13

+RNE + 13 Re 3 + IV R R\ 3 + 1887 Re I

+ 118:vell3 + VR vl 1T + 117 Re |17 + E. (1.13)

where E is defined as Definition 3.6.
The next theorem is a direct consequence of Theorem 1.2 together with the
Arzela-Ascoli theorem.

Theorem 1.3. Let vy € H>(Q) be a divergence free vector field and let v be the
solution to the incompressible free-boundary Euler equations (1.2) with data v
defined on a small time interval [0, T]. Let (vo, Rox) € H*(Q) x HY(Q) be a
sequence of initial data for the compressible free-boundary Euler equations (1.1)
satisfying the compatibility conditions up to order 3 (see section 5.1 for a statement
of the compatibility conditions). Furthermore, assume that (vg ., Ro ) — (09, B)
in C3(Q) as k — oo and that (1.1) holds. Let (v, R,) be the solution for (1.1)
with the equation of state (1.3). Then:

1. For «k sufficiently large, (v, Ry) is defined on [0, T].

2 By “smooth” we mean “as smooth as necessary for the qualitative arguments (such as
integration by parts) to go through.” However, all of our quantitative estimates depend only
on the Sobolev norms mentioned in Theorem 1.2.
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2. (U, R¢) — (v,B) in Cco([0, T1, C%3(Q)) after possibly passing to a subse-
quence.

Remark. vy € H%(Q)isrequired so that the initial norms are uniformly bounded.
We refer the proof of Theorem 5.1 for details.

Finally, we need the following theorem to show that the data required in Theo-
rem 1.2 and Theorem 1.3 exists:

Theorem 1.4. Let vy € H(Q) be a divergence free vector field in Q. Then there
exists initial data (v, Ro ) € H*(Q) x H*(Q) satisfying the compatibility con-
ditions up to order 3 (see section 5.1 for a statement of the compatibility conditions)
such that (v, Rox) — (00, B) in C2(Q) as k — o0, and (1.1) holds.

Notation 1.5. For the sake of clean notations, we will drop the k-indices on v, R,
gk, that is, we will denote (v, Ry, q) = (v, R, q) when no confusion can arise.

1.5. On Existence of Solutions

In Theorems 1.2 and 1.3 we have assumed that a solution is given in the stated
function spaces, whereas in Theorem 1.4 we showed how to construct initial data for
solutions in the corresponding spaces without, however, establishing the existence
of solutions. In this section we show that existence of solutions in the spaces we
use follow from the existence result of [9], although such an existence result and
its corresponding estimates do not suffice to obtain the incompressibe limit, as we
also discuss further below.

We begin noticing that given a solution with regularity as in [9], for each fixed
K, the norms appearing in N are well-defined, where N is given in equation (1.1).
The issue is that the time of existence of the solutions obtained in [9], as well as the
a priori bounds in [9], depend on «, whereas one needs bounds and a time interval
that is uniform on « in order to pass to the limit x — oo.

The crucial point is that while our estimates hold on a small time interval [0, T],
the smallness of T does not depend on « provided that « is sufficiently large. In a
nutshell, the logic to obtain solutions in the spaces where we take the incompressible
limit is the following: (i) [9] is used to obtain, for each «, a solution defined on a
time interval [0, 7} ); (ii) We apply our estimates to show that the solution from [9]
can be controlled on a time interval [0, T') that is uniform on the sound speed « . This
uniform control follows from the use of our weighted-in-« estimates (that is, the
estimates with R, -weights) and, in fact, cannot be obtained from the energy used
in [9], as we also show below; (iii) A more or less standard continuation argument
is then used to obtain that 7,, > T for all « sufficiently large. In this way we obtain
a family of solutions parametrized by « and defined on a common time interval.
(iv) Our estimates show that on this common time interval the family of solutions
converges (up to a subsequence) to the incompressible solution.

Remark. We stress that the uniformity of 7' on the sound speed x comes from the
fact that we can close our estimate for A (defined in equation (1.13)) uniformly
on k (for large «). This can only be done because of the use of Ji,-weights in our
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energy which is, furthermore, tailored to the incompressible limit.> After we have
obtained such a uniform-in-« estimate, we can derive further estimates which can
in principle depend on k. In fact, estimates of this type are used below. They are
harmless because they are used in arguments that only require finiteness of some
quantities. However we again insist that the entire argument given below relies on
the fact that we are able to derive estimates independent of « (or, more precisely,
independent of « for all « sufficiently large).

We will now elaborate on the argument summarized in above. We will present
its logic step-by-step, but for the sake of brevity will not write down explicitly many
of the estimates involved. After that, we will show that this uniform control of T’
that we obtained does not follow from the result in [9].

In what follows, denote by E€/5 the energy used in [9], that is, equation (1.9)
of [9].

Claim I. Continuation criteria. We begin with the following statement: let (v, R)
be a solution defined on a time interval [0, 7) and with regularity given by the
norms in ECHS 4 Set M := SUP</ -7, ECHS(1). We claim that if M < oo, then
the solution (v, R) can be continued pass Ty.

Suppose that M < oo. Because |9, v||3 is controlled by E€#S | the fundamental
theorem of calculus combined with M < oo shows that v € C%([0, T},), H?). Let
{te}72, be a sequence of times such that #; — T. Using again the fundamental
theorem of calculus and the triangle inequality, we have

lv(tesj) —v()lls = Mltegj — tel,

showing that v(#,) is a Cauchy sequence in H? so it converges. Since this is true
for any sequence t; — T, we have that there exists a v, € CO([O, T., H 3) that
extends v € C°([0, Ty,), H?). Moreover, since v(zy) converges to vy (7T) in H 3 and
is bounded in H* (because the H 4_norm is controlled by E CHS) we obtain that in
fact v, (T,) € H*. Using the equations of motion, which give 3, R ~ dv, and the
fact that ||v]|4 is controlled by E CHS we similarly obtain an extension of R to the
closed interval. The same argument also gives that the flow 7, of v,, whose H>
norm is controlled by E CHS op [0, Ty), satisfies n.(Ty) € H 3 Repeating exactly
the same argument for the boundary norms in E CHS (that is, the last sum of (1.9)
in [9] and the next-to-the-last term of (1.9) in [9]), we finally conclude that v and R
extend to functions on the closed interval [0, T, ] and that E CHS (Tyx) < oo. We can
now apply Theorem 1.6 of [9], which says that if E€¥S(T,) < oo, then a solution
exists on [Ty, Ty + ¢€) for some ¢ > 0.

3In particular, as we discuss in this section and in section 1.6, our energy is related to that
used in [9], but it also differs from it in important aspects.

4 To avoid confusion, we stress that by “regularity given by the norms” we mean that
the maps belong to the function spaces of the corresponding norms, but we do not mean
finiteness of the corresponding energy over the time interval. For example, if we say that v
has regularity given by the norms ||v||s + ||9;v||s—1, we mean that v € H® and 9;v € HS L,
but we do not assert that the supremum in ¢ of ||v||s + ||0;v||g—1 is finite.
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Claim IIL. Control of ECHS from A for fixed «. Let (v, R) be a solution defined
on a time interval [0, 7') with the regularity given by the norms in E€#5 . We will
show that if sup, ., .7 N(t) < oo, then sup,, .7 ECH5(t) < 0o, where \ is the
quantity introduced in (1.1). -

We begin noticing that the solution (v, R) has enough regularity so that A is
well-defined. Assume that Ny := supy, 7 N (t) < oo. This immediately gives
that supg., .7 |I8tk V||l4a—x, k =0, ..., 4,1is bounded in terms of Ay. We remark that
this bound, and the ones that follow in this part of the argument, may depend on
k. However, here this is not a problem since we only want to show the finiteness
of supy, .7 E CHS (1) for fixed k. Thus, we obtain that all terms in the first sum of
(1.9) in [9] are controlled by N, except for the case a = 0, that is, ||7]]s.

We next bound ||5]|5 by controlling its curl, divergence, and normal component.
For the curl, we use the compressible Cauchy invariance, equation (2.7). We note
that this requires having curl v|,_, € H*, which is true in the assumptions of the
existence result of [9] (see equation (4.7) in [9] and the discussion surrounding it).
We therefore obtain a bound of || curl n||4 in terms of Ny and E€H5(0). For the
divergence, we apply estimate (34) of [21], except that instead of the H>*% norm
on the LHS, we use the H* norm (it is not difficult to see that the same argument
as in [21] goes through with the H* norm on the LHS). This gives control of
|| div n||4 in terms of A/ and div n,_,, where the latter is smooth in view of the
initial condition 7(0) = id. Thus, we conclude that || div n||4 can be controlled in
terms of \y. Finally, we need to control 1 - N on I. For this, we use the boundary
condition in (1.3) and apply elliptic estimates. We remark that the coefficients do
not have enough regularity for an application of the “standard” elliptic estimates,
but we can apply estimates with coefficients in Sobolev spaces (see Theorem 4 and
Remark 2 in [51]). Invoking div-curl estimates, we conclude that we can control
[1n]l5 in terms of Ay and EC€H5(0).

Remark. The presence of E€75(0) above comes from the fact that the energy
ECHS requires an extra derivative for 5, which we do not include in N In fact,
we cannot include this term in N, otherwise we would not be able to close our
estimates uniformly in «, as we discuss in more detail in section 1.6. However,
above we showed that if a solution with such extra differentiability is given, then
we can update our estimates to control such extra derivative in terms of A/, with
bounds possibly depending on «. A similar remark applies to the boundary terms
in the last sum of E€#S controlled below, which are more regular in the energy
ECHS than in our NV.

The term v, -n € H' (') appearing in E€/5, where n is the unit outer normal
to the moving boundary, is directly controlled by the boundary term in our energy
E which enters in the definition of A/ (see Definition 3.6; see also Lemma 2.2 for
identities relating n with the projection IT appearing in E) with DY = (57{,()28t4
(again, with a bound depending on «).

Finally, we need to bound the terms in the last sum of E CHS (equation (1.9) of
[9]). For this, we time differentiate the boundary condition in (1.3) up to three times,
and apply elliptic estimates for operators with coefficients in Sobolev spaces (see
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above). > We also need control of up to three time derivatives of ¢ restricted to I" in
terms of /. Such bounds are immediately available (with constants depending on
k) from the bounds for R and its time derivatives provided by \V. We thus conclude
that the last sum in E€7S can be controlled in terms of Aj.

From the foregoing, we conclude that supy, 7 E€#5(t) < oo if supy_,_7 N
(1) < 00, as desired. - -

Claim III. Uniformity of the interval where the a priori estimates hold. This
is just a restatement of Theorem 1.2, but we include it here for clarity of the pre-
sentation. The time interval [0, 7] in Theorem 1.2 is uniform on « in the following
sense: T has to be chosen sufficiently small, but the smallness of 7 depends only
on a fixed large «k¢. In other words, Theorem 1.2 says that there exists a ko and a
T = T (xo), such that if « > x and (v, R) is a solution defined on [0, T') and with
the regularity given by the norms in A, then N' < 9, where the constant 901 in
Theorem 1.2 (which is a constant depending on norms of the initial data).

Claim IV. Existence of solutions in the spaces where one takes the incompress-
ible limit. The results of [9], in particular Theorem 1.6, say that given data such that
ECHS(0) < o0, there exists a solution (v, R,) defined on a short time interval with
regularity given by the norms in E€#S_ Let [0, T) be the maximal interval where
the solution (v,, R,) exists and has the regularity given by the norms in E€HS,
We use the subscript , to indicate that the solution as well as the time interval in
principle depend on the sound speed «. Let T be given by Claim III (that is, by
Theorem 1.1) and «q be as in Claim III. We will show that 7, > T for all k > «y.

Suppose that 7,, < T. We remark that the solutions (v, R,) have enough
regularity so that the estimates of our Theorem 1.1 can be applied, that is, all
quantities entering in the definition of N (equation (1.1)) are well defined for the
solutions (v, Ry). Since T, < T, Claim III implies that SUPg<;<T; N () < oo,
where we write \V, to emphasize that this corresponds to the quantity N for the
solution (v, , R). By Claim II we then obtain supy, .7 EEHS(Z) < 00, where we
write ECHS to emphasize that this corresponds to the energy E€'S for the solution
(ve, Ry) (as in Claim II, the resulting bound on supy—, 7 EKCHS(I) depends on «,
but only the finiteness of this quantity matters here). By Claim I, the solution
(v, Ri) can be extended pass T, which contradicts the maximality of 7.

Thus, we obtained a family of solutions parametrized by «, k > k¢ and defined
on [0, T'); shrinking 7 a bit if necessary we can consider the close interval [0, T'].
Moreover, the estimate of Theorem 1.1, A'(t) < 97, holds on [0, T'] for each
solution in this family, with 9T independent of « in view of Theorem 1.2.

Existence of initial data compatible with the regularity of ECHS. The constant
I in Theorem 1.2 depends on norms of the initial data. It will be uniform on
k, for all « sufficiently large, if the corresponding norms of the initial data are
uniform on «, as assumed in Theorem 1.2. To show that this assumption is not

5 Using the boundary condition gives control over v - N, whereas the corresponding terms
in ECHS are v - n. But it is not difficult to see that control of the latter follows from control
of the former; see the proof of Theorem 4.3.
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empty, in Theorem 1.4, we constructed initial data satisfying such uniformity on
k. However, for the existence of solutions given above, we actually need data
such that ECH5(0) < oo. Since E€H5(0) requires more regularity than (vo, qo) €
(H*(2) N HY(I")) x (H*($) N H*(I")), which is what we stated in Theorem 1.4,
we need to explain how data satisfying E€#5(0) < oo and that is uniform on the
sound speed can be obtained. This, however, follows from the proof of Theorem 1.4.
Indeed, the data constructed in Theorem 1.4 is regular enough so that E CHS(())
is well-defined for it. However, only the (H 4(€) N H*(")) norms of this data
are needed to be controlled uniformly on « for Theorem 1.2, so the statement of
Theorem 1.4 is restricted to this situation.

ECHS cannot be controlled uniformly on «. The foundation of our result on the
incompressible limit is the fact that we can derive estimates that are uniform in « (for
large «). On the other hand, in order to obtain solutions to the equations of motion
with the desired regularity, we relied on [9]. This raises the natural question of
whether the incompressible limit could not be obtained directly from the estimates
derived in [9]. Here we show that this is not the case, that is, that the energy E CHS
cannot be closed uniformly in k solely within the framework of [9].

The relevant fact is that the energy estimates in [9] are non-uniform in « and
diverge when k — oo. In particular, the interval of existence obtained in [9] could
in principle shrink to zero when k — oo (that this is not the case is what we showed
above using our uniform-in-« estimates).

Let us now provide details. We will show that Proposition 4.1 in [9] is not
uniform in «. To see this, we take ¢ = x(R> — ) and so ¢/(R) = 2« R. Plugging
the identity R = po/J to the Euler’s equations we obtain

Povs + K A9, (p3 T %) =0,
R; + Ra"*d,vy = 0. (1.14)

Testing four time-derivatives of (1.5) against 314 v in the L? and then integrating by
parts yields the energy

sup (v OIG + sup Ve TOIG+ sup [[vgr -nOIF . (1.15)
t€l0,T] t€[0,T] t€[0,T]

However, to control this energy, we need to control
f k3 (07 )13, " 19,v0).
Q

In [9] this term is part of the error term ‘R and it can be controlled directly by the
energy by Holder’s inequality. But there is a mismatch of « !/? between this term
and (1.5). In fact, this term is associated with our term Z3 (see section 3.3.3), which
requires our R, -weighted energy to be controlled.

1.6. Strategy, Organization of the Paper, and Discussion of the Difficulties

In this section we overview the main arguments of the paper, summarize the
main difficulties, and explain how they are confronted.



On the Incompressible Limit for the Compressible Free-Boundary Euler 841

1.6.1. Special Cancellations As mentioned, having ¢ > 0 leads to several new
difficulties not present when o = 0. This can be immediately seen from the bound-
ary terms appearing in the energy estimates (see sections 3.4 and 3.5), since all
these terms are proportional to o and, therefore, automatically vanish when o = 0.
(Incidentally, we do not set o to 1 as it is customary but keep it explicit in order to
highlight all the terms that would be absent had o been zero.) Not only are these
terms present but, as we discuss below, they are some of the most difficult terms to
handle. As a consequence, the methods used in the second author’s previous papers
to study the problem with o = 0 [46,48] cannot be applied when o > 0.

At first sight one might think that the surface tension should help with closing a
priori estimates since it has a regularizing effect on the boundary. This regulariza-
tion, however, it is not enough to produce control of the velocity on the boundary.
After differentiating the equations with respect to DX, where DX is a k™ order
derivative, possibly mixing space and time derivatives, contracting with D¥v and
integrating by parts, one is left with a boundary term that reads, schematically,

f D*vDkq ds.
r

It is not difficult to see that we can only hope to control this term by employing the
boundary condition so that (again, schematically)

/DkakquN/Dkak(Agn)dS. (1.16)
r r

The presence of the boundary Laplacian and the fact that v = 9;n suggest that
we should integrate by parts in space and factor a d;. Although this is the strategy,
we end up with a commutator term that is not of lower order. This is because the
coefficients of A involve one derivative of g¢ which, in turn, involves one derivative
of 1 (so that the coefficients depend on as many derivatives of 1 as the order of the
equation). Thus, commuting D and A ¢ still leaves a top order term that cannot be
written as a perfect derivative (in time or space) to be integrated away. Moreover,
this top order term does not seem to have any good structure. In fact, one should not
expect such term to have a good structure, since differentiating the coefficients of
Ag corresponds to differentiate gij , and, thus, to take derivatives of some non-linear
combinations of the components g;; and its determinant.

The above difficulties are overcome by observing some remarkable cancella-
tions among the bad top order terms in (1.6.1). Such cancellations are not visible
in any way in the expressions that appear by simply manipulating (1.6.1). Rather,
they are identified after some judicious and lengthy analysis that relies heavily on
some geometric properties, expressed in the form of several geometric identities, of
the boundary. The first cancellation appears in (3.5.1.2). The reader can check that
the terms that cancel out are top order and that there does not seem to be possible
to bound them individually. The second cancellation happens between a term in
(3.5.1.2) and (3.5.1.3). This second cancellation is even more remarkable because
the terms involved come from completely different parts of D¥ A ¢N: one from when
all derivatives fall on the coefficient /g, g of A ¢» the other from when we integrate
one derivative in A, by parts.
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We also need a special cancellation for interior terms. This comes from when
we take D¥ of the first equation in (1.1) and all derivatives fall on a. Since the
matrix a already involves one derivative of n, we find terms in DF*1y, which have
one too many derivatives of the Lagrangian map. Exploiting the explicit structure
of a, however, we are able to show that, when appropriately grouped, these bad
terms cancel each other after some careful integration by parts (see (3.3.2) and what
follows).

As this point one may ask if all such cancellations are indeed necessary since a
priori estimates for (1.1) have been derived in the literature. The relevant work in
this regard is [9]. There, the authors construct initial data where 7 is everywhere one
degree more differentiable than v, and then prove that this extra regularity is prop-
agated by the evolution. They rely on such extra regularity to close the estimates.
However, this does not seem possible here because such an extra differentiability
is not compatible with the R,-weights we need to introduce in order to obtain
estimates uniform in the sound speed (see section 1.6.2).

A crucial aspect of all the cancellations mentioned above is that they require the
derivatives D* to contain at least one time derivative. As a consequence, only the
Sobolev norms of time-derivatives of v on the boundary are controlled from the en-
ergy estimates (we remark that the energy does involve time derivatives of the vari-
ables; it does not seem possible to close the estimates without time-differentiating
the equations). To obtain control of non-time differentiated v on the boundary, we
rely directly on the boundary condition which, after a time derivative, produces
an equation of the form A,v = ... which is amenable to elliptic estimates. (One
might wonder why we do not take further time derivatives of the boundary condi-
tion to obtain estimates for afv on the boundary. The reason is that, as mentioned
above, Ay does not commute well with derivatives due to the dependence of the
coefficients on two derivatives of 7, so that we obtain an equation of worsening
structure with each derivative.® However, for only one time derivative, the resulting
equation still has some good structure that can be used to derive estimates.)

1.6.2. R, -weighted Estimates Another difficulty to establish the incompressible
limit is that one has to derive estimates that are uniform in the sound speed, since
the goal is to take the sound speed to infinity. This is substantially different than es-
timates for (1.1) (with o > 0) currently available [9,21]. Establishing the required
uniform-in-x a priori estimate does not seem to be possible solely by the methods
used to derive the currently available estimates. In particular, a crucial element to
derive such uniform estimates is the use of a non-linear wave equation satisfied
by the density, whereas non-uniform-in-« estimates have been proven without this
wave equation. In fact, the known a priori energy bounds rely heavily on the fact
that when R, is bounded from below (as « is bounded from above), dg ~ d R and

6 Taking several time derivatives of the boundary condition, in particular, would lead
to a source term that can only be bounded with «-dependent bounds, preventing us from
closing the argument uniformly on «. See section 1.6.2 below for more on the need for
uniform bounds. Compare also with the use of the boundary condition to derive estimates
for boundary terms in Claim II of section 1.5, where the resulting bounds depend on «.
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llg]lr =~ || R]||, which is a direct consequence of the equation of state. In particular,
the energy used in [21] controls | |8tkq ||3—x for free as a lower order term. However,
this fact no longer holds when R, — 0. Indeed, since dR = R’dq, ||R||, is merely
equivalent to ||R,¢q||; in other words, we have to take extra effort to control the full
Sobolev norms of 8tkq. In [46] and [48], where o = 0, these norms are controlled
by elliptic estimate. This relies on the fact that one is able to control ||g; || by the
r-th order energy E, since

3 q; ~ 8" q; + 0" 2q; + lower order terms,

where d denotes derivatives tangent to the boundary. The first term, 3" ¢;, vanishes
due to ¢|r = 0. However, this method does not work when o > 0, which is simply
due to the fact that g ~ Agn on I, and so 3"g; ~ 8" 7%v on the boundary which
has two derivatives too many.

To resolve the above difficulties, our energy is defined using the R, -weighted
derivatives ®" (1 < r < 4), where

D=20,0; D>=0%00, VR % D =020, VR 007, R0
D4 = R (330, Re (3202), (R) 2 (307), (Re)207

The energy E = E(t) is defined by employing these R, -weighted derivatives,
which is of the form:

_ 4 2 ¢ 2
E= Z]S@S4||© v||L2(Q) + Zligs4m||© f]||L2(Q)
¥ Yo 14 2
+0) 0 IAD ATy + W,

where IT is the projection onto the normal to the moving boundary (see Lemma 2.2)
and W stands for the energy of the wave equation satisfied by ¢, which is defined
in sections 2.3, 2.4.

The energy estimate for E cannot be closed by itself; in fact, the energy estimate
requires control of

3
[Vll4, R vell3, R veel 12, HER) 2 Vg1, (1.17)
and
[IR14, 1R 3, |1V R Reel |2, 1R Reeel]1- (1.18)

These quantities are not part of the energy since ©* for £ = 1, 2, 3, 4 do not involve
non-tangential derivatives, nor the full tangential spatial derivative 9*. Such missing
derivatives, however, cannot be included in the energy because they would lead to
the presence of non-tangential derivatives on the boundary. As a consequence, we
need to estimate E together with the quantities above in order to close the a priori
estimate. This is done with the help of elliptic estimates.

We now schematically show how to get the correct R, -weights for our energy,
since they are crucial for the desired uniform-in-« estimates. We differentiate the
equations

Rd vy + ¢q'(R)a"*3,R =0 (1.19)
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and
R+ Ra"“d,v, =0 (1.20)
with respect to time. Since R’ = R'(g) = ﬁ, equation (1.6.2) implies
305 R ~ R'8F 1y, (1.21)

in other words, we can trade one (full) spatial derivative on R by one time derivative
of v multiplied by R’. On the other hand, in view of the standard div-curl estimate
(that is, (A.1) in Appendix), B,kv is estimated via div Btkv, curl Blkv and Btkv - N.
While in the reference domain 2 = T2 x 0, 1), 8tkv -N = :I:Btk v3, which is almost
na,kv, where IT denotes the projection to the normal direction, and hence this can
be controlled by E. In addition, curl Blk v is estimated via Cauchy invariance which
can be treated by adapting the method introduced in [21]. Finally, the equation
(1.6.2) yields

na k. akt+lp.
a”® 9,0 vy ~ 9/ R;

in other words, we can estimate div B,kv using 8,k+] R. Hence,

ot W 3R, L0 Rig292y W prgadr L0 (R29%y,
where (R’)zafv is part of E. In addition, we have
R0 2% Ra202R L2 (R20030 & (R)29*R.
This algorithm also provides
R'920%0 &% R9a3R 102 (R)29%0,

(RY?99%0 L% (R)YI94R

Here, (R’ )2 84R can be controlled directly by E since it is equal to (R’ )2 8, q upto
lower order terms. On the other hand, applying this algorithm starting from 9*R,
we get

(1.6.2) (162)

R L0 po3a.0 & R 292R

3R L2 Ra2520 M R'93R L (R)20%,

VR982R L2 (R 9930 & (R)3oR,
(162)

—5 (R)?997v = (R)*0'R,

3p 4
R'99;R — (R’ )? o, v
The detailed analysis can be found in section 4. But the above algorithm provides
good guideline for the choice of R, -weights in (1.6.2) and (1.6.2) using (1.3), as
well as in ©".
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Remark. The condition (1.3) allows us to define the weighted Sobolev norms
(for example, (1.1)) with constant R, -weights. It is convenient to have constant
weights for the boundary estimates in section 3.4 to avoid derivatives falling on
R’. In addition, the condition (1.3) allows us to distribute R, -weights in order to
obtain an uniform control in k.

The definition of the R, -weighted derivative ®" allows us to control the highest
order (that is, 4th order) mixed norms of ¢ directly by the energy. However, in order
to pass to the incompressible limit, we have to control ||v]||4 directly without R, -
weights, and this requires the control of ||g;||2. In section 3.2, we control ||g;||>
by the elliptic estimate, which requires the control of ||g;||; first. This is indeed of
lower order but we need to take extra effort to prove that they can be controlled
uniformly as R, — 0. In addition, we remark here that in [21], the authors were
able to close the a priori energy estimate in H>. However, in our case, the bound
for ||g;||1 require the control of ||v||4 and ||n||4. This is because control of ||d¢;| |(2)
requires integration by parts, which yields ||52n||1_5,1~ and ||§2v||1_5,1~ at the top
order, and these quantities require H* control of v, 7.

1.6.3. The Initial Data As with the estimates themselves, the initial data has to
be constructed uniform in the sound speed in order to allow the passage to the limit
k — 0. This was done for ¢ = 0 in [46], but that method relied heavily on the
fact that ¢ vanishes on the boundary when surface tension is absent. Instead, we
employ the method used in [9]: For each 1 < k < 3, the data that satisfies the k-th
order compatibility condition is obtained via solving an elliptic equation of order
2k, which is acquired by time differentiating the boundary condition ¢ = o’H for
k times and then restrict at t = 0, where the previous 0, . . ., k — 1-th compatibility
conditions are served as the boundary conditions. This construction process allows
one to show that the initial data is uniformly bounded for all sound speed «, so that
one can take the limit k — oo.

1.7. List of Notations

V: Eulerian spatial derivative.

d: Lagrangian spatial derivative.

9: Tangential spatial derivative. In particular, 9 = (31, 8) in © and we will
emphasize that these derivatives are tangential by denoting (91, d2) = (51 , 52).
D: Either 9 or 9,.

© and I': The reference domain (0, 1) x T2 in Lagrangian coordinate, whose
boundary 02 =T.

The matrices a and A: a = (877)_1, and A = Ja, where J = det(an).

k: The sound speed.

Re: Re ® R, — 0ask — o0.

[l 1ls = Il lms and [| - [ls.,0 = [ - ||z @)

P(): A smooth function expression in its arguments.

L. Equality modulo lower order terms that can be controlled appropriately.
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2. Preliminary Results

In this section, we give some auxiliary results providing the bounds on the
flow map 1 and the matrix a. In addition, we record several facts, expressions and
inequalities that will come in handy in the later sections. These results will be
employed in the proof of Theorem 1.2.

Lemma 2.1. Assume ﬂ’ldt ||U| |L°C([0,T],H4(Q)) —+ ||R| |L°C([0,T],H4(Q)) S M. Let P S
[1, 00), then there exists a sufficiently large constant C > 0, such that if T €
[0, #] and (v, q) is defined on [0, T, the following statements hold:

L lInlls = C.

2. ||allz = C.

3. laellLr @) < CllOv]|Lr (), and ||a:|ls < C||0v]ls, 0 =<s <3.

4. [10garllLr(@) < ClIv||Lri||[0gallLr: + Cl|80v||Lr, where % = % + %.

5. awells < Cllov][s||ov][Le + C|[0vf][s, 0 <s <2.

6. llarls < ClIove|lsI[v]|Le + Cl[dvglls, 0=<s <1

7. 119tallLr) < ClOVIILe|10V][3 w0 +Cl1ve | Lr |10V ]| Loo+C10vee || Lr |10V] | oo
+C||3Um||LP

8. J > 3

9.Ifeis suﬁiciently small and for t € [0, CM2] we have |[a®f — §%P||3 < e,
B

and ||a““ai — 80“3||3 < €. In particular, the form a**a’;, is elliptic, that is,

a*alygtp = CTVEP
10.c'<R<C.

Proof. We refer [21] and [31] for the detailed proof. We point out that the proof
follows directly from the equations, interpolation, and the fundamental theorem of
calculus. 0O

We record here the explicit form of the matrix ¢ which will be needed:

821728377 — 330?020 33n'92n> — 3an'd3n® Bon'ozn? — d3nloan?
a=J""| #3028 - dinPdsn’ 3177133?7 —3377131773 ain'ain? —3177133?7
An?oan® — dn?arn® dan'dind —din'aan® 81n'82n? — 92n'd1n?

2.1

Moreover, since A = Ja, and in view of (2.1), we can write
Al = TG 03, A% = —€ T 3., AN = €T 0., (2.2)

Here, €%*7 is the fully antisymmetric symbol with €!>3 = 1. This representation
will be used to create a special cancellation scheme that leads to control of the
energy when all derivatives fall on the cofactor matrix (recall the discussion in
section 1.6.1).

We also need some geometric identities to treat the boundary terms in the energy
estimate. We record these identities in the next lemma.
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Lemma 2.2. Let n be the outward unit normal to n(I"). Let T be the tangent bundle
of n(2) and v be the normal bundle of n(T"), the canonical projection is given by

MG = 85 — g0 dimg.
and on T it holds that
L. —=Agn* =Honn%on.

a’ N
laTN|*

3.Jla"N| = /3.

Above, a” is the transpose of a. Furthermore, setting i = n o n, the following
identities hold on T":

2.n017:

4. % = fllgﬁa.

g = NI

- JE8Agn® = ﬁg‘j H;‘iggjn“.

. 8;?1# = —g"lﬁkvfﬁrﬁmﬂ.

L0y, = —gklﬁizkn’ﬁfgmu.

10. 9;(/28™) = —/8¢" ¢*0;0 ;0" 011,

11. 9,(\/88") = /2(" g — 281 g™) 3100

Proof. These identities are well-known. The interested reader can consult, for ex-
ample, [21] for their proof. O

The equation of state ¢ = g (R) allows us to control R’q and R interchangeably.

Lemma 2.3. Suppose R’ := R'(q) satisfies (1.3), and let 3 be either 8; or dy, then
foreach 1 <r <4, we have:

IR'9"q) S10"RI+ D it jomr 07 R -+ |97 R]. (2.3)

2<k=<r

Proof. A direct computation yields

,,,,,

2<k<r

and invoking (1.3) and the fact R'dg = 9 R, (2.3) then follows. O

2.1. The Boundary Condition
The identities of Lemma 2.2 imply that the boundary condition
AN, g +0./gAgn* =0, onT, (2.4)

can be expressed in the following equivalent ways:

1. ﬁg:j 070 — /28" U0k 97 my = — £ A Nyq, where g¥9;n" 97y,
=TI%.
)
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2. /BTG " = — L AF*N,q.

3.q = —0(A3“ﬁa)_lﬂgijﬁu5?jn“ = —Ugijﬁuglzjn“, since (A3°‘ﬁa)_1\/§
simplifies to 1.

These identities follow directly from the definition. Interested readers can consult
[21] for their proof. The above expressions will be frequently used to deal with the
boundary estimates.

2.2. The Interpolation Inequality

Besides standard interpolation, we will also use the following interpolation
inequality throughout this paper:

Theorem 2.4. Letu : Q@ — Rbea H! function. Then,

I
el oy < Nullg Hullf -

Proof. See Theorem 5.8 in[1]. O

2.3. The Wave Equations of Order 3 or Less

The second equation in (1.1) can be re-expressed as

R/atq
R K

at 9, v, = — 2.5)

where R' = R/ (g) ~ R via assumption (1.3). Identity (2.3) and (1.1) yield, after
commuting 8,’7] for 1 <r < 3 and then a"*9,, that

JRO g —a" AL 8,0,0 g = F, (2.6)
where

Fr= =Y i in=r (0 T RD) @ ) + @™ (0000)9] ve

=1

+ 2 +_fz:1r—1a”°‘3v(3/ LAY, 0,0q)
1=

—e0) @@ e +a @ A% )0 g @)

The wave equation (2.3) yields an energy identity which is essential when estimating
llg|l2 and ||g¢||2 in section 3.2.

Theorem 2.5. For 1 <r <3, let

1 _ 1 _ _ _
W3=E/onluR/a{q)zdwE/onlR’(A““aua,’ 'q)(A%,9,0] " q) dy

O" . — —_—
+ 7 /1“ Re/88" ng(aia{nﬂ)(aja,’na)ds. (2.8)
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Then,
t

S W= PO+ el + llad) + Po+ P [ P rero.T)
1<r<3 0
(2.9)
where T > 0 is sufficiently small.

Proof. See Appendix B. O

2.4. The R, -weighted Wave Equations

We consider the following R, -weighted derivatives:
R0, VM 070, 8,0°

Writing these derivatives as %ﬁ D3¢ =1, % 0), and the identity (2.3) and (1.1)
yield, after commuting R¢ D3 and then a"®9,, that

RER' I D?32q — REa"™ AX,8,0,D3q = F,
where
F = —RUD%,, TR 18,9 + RLD?, pold,(R™"R'd,q)
+ MEa" (3,00) D ve +REa" 8, (ID?, A%,18,9)+REa"d, (1D, pold;va)
— R po[ D38, a" 10,04 + REa"(8,41)8,Dq.

We need these R,-weighted wave equations since their energies yield a better
control of certain R, -weighted energy terms.

Theorem 2.6. Let

1 [ _
Wi = E/_on 'R2(JR' D?3,9)% dy

1 _
+s /Q Py ' RER (A7, D3q) (A% 3, D*q) dy

o .. — —
+5 /F R /g8 1% (3; D3, (3 D8y dS. (2.10)
Then,
t
Wi seP(N>+Po+7>f P, t€l0,T],
0
where T > 0 is sufficiently small.
Proof. See Appendix C. O
Remark. The energy (2.6) yields a better control of g with 1/2 less R, -weights,
3
for example, when D = 9;, W4 controls ||§R,% 3z44||0 and ||R7? 88,3q||0. The corre-
5

sponding terms in E control merely |93, 8t4 qllo and | |ER,2( 88;’ q|lo- This observation
3

is crucial to control 73 in section 3.3 when D% = R2 99} or M, 9%0?2.
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2.5. The Cauchy Invariance

We conclude this section with a compressible version of the Cauchy invariance,
which was introduced in [21].

Theorem 2.7. Let (v, R) be a smooth solution to (1.1). Then
d s R
PV pvid,n, = o +/ eaﬁyakuﬁkqﬁynﬂ% (2.11)
0

fort € [0, T). Here, ¢*P? is the totally antisymmetric symbol with €'* = 1 and
wo us the vorticity at t = 0.

3. Energy Estimates

In this section we provide estimates for (v, ¢) and their time derivatives. We
shall make frequent use of the assumptions (1.3)—(1.3) and of the two preliminary
lemmas (that is, Lemma 2.1 and Lemma 2.2) in section 2 throughout this section
without mentioning them every time.

Notation 3.1. Let E be defined as in Definition 3.6, and let

3
P=P(|[vll4, 1Reve 3, 10112, 1Revie 120 1V Recvie 11 1R 2 viae 115 1R vire o
R4, [1R: 1135 11V PR Rel 2, 1Rt |1, 119 Rere |11, 11/ Rerellos
— — 3 — —
1R T19 vy |0, [| R T2 05t 0.1 || (Re) 2 TTd v o1, [1T182 0 0,1

v/ R T [l0,1)

and Py = P(lInoll7s. llvolla, llvolla,r, [lgolla, llgolla,r. lldivvolr|ls,r, [|Avelr
[l2.1), where we abbreviate

||Hw||(2)’r=/ 5 wH T w,.
r

Here (and throughout this paper), we use P(-) to denote a smooth function in its
arguments. In addition, we define N to be

3
N@) = 1015 + [1Beve 13+ 1Revnl 3 + 11 OR) 2vge 13+ 1RIG + 1R13
+ VR Rt 113 + 1R Rese |13 + 10113 + VR v |IT + [ Reell1 + E.
The rest of this section is devoted to proving:

Theorem 3.2. (Energy estimate for E) For sufficiently large k > 0, we have
t
E() < PN (1) + Po +7>/ P, 3.0)
0

where t € [0, T] for some T > 0 chosen sufficiently small, provided that the a
priori assumption

l10mllLoe + 1192012 + 118" ]ILx < M (3.2)
holds.
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Notation 3.3. Here and thereafter, we use € to denote a small positive constant
which may very from expression to expression. Typically € comes from choosing
the time sufficiently small (for example, Lemma 2.1 (9)) and the Young’s inequality
with €. When all estimates are obtained, we can fix € sufficiently small in order to
close the estimates.

3.1. The Energy Identity for the Euler Equations

Notation 3.4. (Weighted tangential mixed derivatives) We let ®",r = 1,2,3,4 to
be the mixed tangential differential operator defined as

@ - 5, 8,,
D2 =9%, 30, VRO,
D3 =320, VR, (907), Re D},
— — 3 —
D =R (3%8)), Re (0202), (Re)2(037), (Re)?;.

Notation 3.5. Here and in sequel, we use R to denote lower order terms whose
time integral fot R can be controlled by the right hand side of (3.1).

Definition 3.6. For each fixed | <r <4,let E =) _|,34(E, + W?2), where

1 1
E =2 / Po (0@ V) dy + / JRR (@ q) dy
2 Ja 2 Ja

o P — —
+5 /F Vg T @, ") (9" na) dS.

Here, Wr2 (1 <r <4)isdefined as (2.5) and (2.6), and IT is the normal projection
operator defined in Lemma 2.2.

Remark. We use throughout that ||2Rﬁ 9™ a,l n| |(2)‘F is comparable with the coer-

cive term coming from the boundary part of the energy. We use that g’/ is almost the
Euclidean metric to make this comparison. For example, in the boundary estimates
(section 3.4) we control ||ER,2( l'[88t3v||(2) r by E.

The energy defined above is derived by differentiating % /; g R® vy)(D"v*) dy
in time, invoking (1.1), (1.1), (1.1), (1.1), (1.3), (2.3) and the Piola identity

9 AM* =9,,(Ja"¥) =0,
which follows from a direct computation using (2.1), so we have

dl1

r roo r r ota q
azpro(iv ) (@' )dy=—fQJR(® ve) (D" (@ =5)) dy

_ r r o r r aan
_ _/Q(@ va)<i) (AM auq)) dy+/9(© v@([@ RJ](a" T)) dy

T
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_ /Q(z)raﬂua)(symﬂ“q)) dy — /F(’D’va)(NM’D’(A“"‘q)) dy +7

BD

= [ @80 g dy + [ @80 (107, 4%1q) ay+8D + 1o
Q Q

I
3.3)

The term [, (D" 8,,v,) (A**D"g) dy is equal to

/i)r(A”"‘&Mva)@rqdy—i—/ (19", A*18,v4)D g dy,
Q Q

I3

where, after invoking (2.3), we obtain
/@’(A”“E)Mva)ZD gdy = /’D’ )’D’

—/ JRR' (3,2 ¢)D'q dy+/ (9, JR'R™18,q)D"qdy. (3.4)
Q Q

1y
The first term in the second line of (3.1) is equal to
dl1
——~ | JRRT'®@"¢)*dy + R,
dIZ/Q ®'g) dy +

where the main term is moved to the left hand side of (3.1).
On the other hand, invoking the boundary condition A**N,,q = —o /g Agn®,
as well as the seventh identity in Lemma 2.2, BD is equal to

BD = —/ D"y D" (AN q) dy
r
=<7/ @rva’i)r(\/g?Agn“)dyza/ @rvaDr(fg’/Ha ") dS
r r

:a/r@gifng(zrva)(griiljn“)ds+o/r©’va([©’,\/ggif'nf;]ﬁ%jn“)ds.

B
(3.5

Integrating by parts the first term in the very last line of (3.1), we have
/ VBT (D ve) (D3}, dS = —o /F V&g T3, (30,9 ne) (@D ") dS

—0'/r5[(\/§g”Hfj)(az@’na)@ji)’n“)dS. (3.6)

By
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The first term on the right hand side of (3.1) is equal to
— 49 [ V883D 1) (3D 1) dS

+io /r (V28" %) (3, 1) (3,01 d,

B3

where the main term is moved to the left hand side of (2.5). Summing things up,

we have shown that
dE,

= = lejﬁgj + 2121’2’3153 +R.

Thus, Theorem 3.2 follows if the terms 77 5 3.4 and By 2 3 can be controlled by the

right hand side of (3.2), which shall be treated in sections 3.3, 3.4 below. However,

before doing this, we need to control ||g||> and ||g/]|>.

3.2. Bounds for ||q||2» and ||q:||2

Since ©” symbolizes both R, -weighted and non-R, -weighted derivatives, we
need to bound ||g||2 and ||g;||2 in order to control Z3. Also, the bound for ||g;||>
is required to control ||v||4 in section 4. Taking X = dq and X = dq;, s = 1, the
standard div-curl estimate (A.1) yields that we need to control the lower order terms
[10g]|lo and ||9g;||o. We remark here that in the case when o = 0 (for example, [46]),
these terms are controlled via ||Aq||o and ||Ag;||o, respectively, after integrating
by parts and applying the Poincaré’s inequality. However, we need to work a bit
harder in order to control these quantities when o > 0.

Notation 3.7. We write X < Y tomean X < CY, where C > 0 is a large constant.

Notation 3.8. We are going to identify P" = P (n > 1) by a slight abuse of
notations. Also, when 0 < t < 1, (fé Py < 1 fot Pt < tfot P, via Jensen’s
inequality.

Lemma 3.9. Let F, be defined as (2.3). Assuming the a priori assumption (3.2)
holds, then for sufficiently large k > 0 (that is, R, <K 1), we have

t
||f1||oseN+7>o+7>/ P.
0

Proof. First, invoking (1.1) and the assumption (1.3), we have

t
13: (TR @r)llo < Po + P/O P.

Second, invoking Lemma 2.1(1-4), since 9,9 = R(a_l)mg&tv/3 and 9,09 <
R 10vqo] < €|dyqo| for sufficiently small R, we get

1) (@yva)llo + lla"™ (3vp0)d;vallo + [la* (3, A%, )duqllo

t
55N+7>o+7>/ P.
0
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Lemma 3.10. Let F, be defined as (2.3), Assuming the a priori assumption (3.2)
holds, then for sufficiently large k > 0 (that is, R, << 1), we have

t
||7:2||0§€||Qz||2+6(W+N)+Po+P/ P.
0

Proof. First, there is no problem to control Y j 4 j,=2|| atf "(JR' )(Blj oo appro-
g

hz
priately when j; = 1 using (1.1) and the assumption (1.3). Moreover, when j; = 2,

one writes J = poR~! and then [|32(poR~™'R")q:|lo = |lpoR'd?(R~")g:|lo mod-
ulo controllable terms, where

1 1 1 1
oo R' (R Dgrllo S NOZR™OIZNIFR ISR IIRAG

t
ge(W+N)+P0+P/ P.
0

Here, we have applied the interpolation inequality (that is, Theorem 2.4) and the
fact R'd;q = 9;R. Second, invoking Lemma 2.1(1-6) we get

. . t
3 a0 G A o S N+ Po 4P [,
Jitj2=1 0

and since 9,A%, = O(¢) for small time and 3, < Reldvgo| < €]dyqol for
sufficiently small R, we have

t
1@ (3,00)07 vallo + 1@ 3y A%) 0,0 q1l0 S €llall2 + e/ N + Po + 7’/ P.
0

Third, since 3, = R(a~"),p9,vP, [|a"*d,(d;a’y - 3,9)lo can be controlled ap-
propriately by interpolation. 0O
Lemma 3.11. We have
118G (1, NG + 119g: (2, I < €llgi(t, )15 + e PN) + W5 +Po + Pft P
’ 3.7
fort € [0, T where T > 0 is chosen sufficiently small.

Proof. 1t suffices to consider ||d¢;||o only. Integrating by parts yield

||3Qt||(2) Z/(Bu%)(au%) = —f q:Aq; +/(N”3u61t)51t,
Q Q r

and so we need to bound [, g; Ag; and [i.(N"8,.q;)q;, respectively.
Bound for fQ q:Ag;: Since t € [0, T] and T > 0 is small, as well as

Agr = (8*" —a*¥a")0,0,q; + a"*a",0,0vq:

Lemma 2.1 implies that

/QCIt(ACIt) =< 6||61t||§ _,_/Qq[(auaavaauavqt).
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Now, invoking the wave equation (2.3) and Lemma 3.9, we have
/Slz%(a'uaa‘iyauavqr)
= qiqrtt — q:F2)J " S laello qret1l0 2110
/R’ /(f)11<|| Ho(IR quiello + 11F2110)
Q Q

1
< lgllo(Ws + ellall + (VN +A) + Py +P [ 7).

On the other hand, since

[gello < ||361t||o+/ q:
Q
by Poincaré’s inequality, if we let Y = (0, 0, y3), then
lgello < ||8¢]t||0+/ 3. Y"q = 19g:1lo —/ Y*9,4, +/ N, YHq
Q Q r
=< Cvwiall9g:llo +/ Y. (3.8)
r

To control the last integral fr y3¢;, time differentiating the boundary condition

g = —og"jﬁl‘gizjnﬂ, onT
gives
g = —0g /"0 v, + Ry, onT (3.9)

where R, consists of terms of the form either
Ggij gkl (5k vrﬁrgl rl,u)gjzj " or o (5l Uv)(gj n”)fl;j%,' nt.
Now, invoking Lemma 2.1, Lemma 2.2, and the a priori assumption (3.2), we have
t
/ Vv2q < eN +Po+ 7?/ P. (3.10)
r 0
Wrapping these up, we get
t
/ a:Aq; S €llgill3 + €lldg: | + ePN) + W3 + Py +77/ P.
Q 0
Bound for [.(N"9,q;)q;: We have

f(N”anaqt < lIgello,r1183g:1lo.r < €€ DllgrlI§.r + €l13g: 115, -
I

Here, we bound €||9¢;| |(2)’F by €llg| |% using the trace lemma, which is part of the
right hand side of (3.10). On the other hand, invoking (3.10), we have

t
||Qt||%,r§6(/\/2+/\/)+730+73/ P.
0
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To see this, note that in ||g;| |(2) r» the top order term is @gifﬁltﬁfj vy,. Using the

trace inequality, it suffices to bound || /g gk 851.2]. Uy | |%. We control this top order

term by the Young’s inequality, which leads to the appearance of e N2, In addition,
the lower order terms are controlled by e N + Py + P fé ‘P using the interpolation.
Hence,

t
/(N“auq,>q, < ellar B+ N>+ A) + 7 +P/0 P.
I
Therefore,

||aq,||%=—/ quq,+/q,<N“8uqt)
Q I

t
Sellgl3 +eWN +N?) + W32+7?o+7>f P.
0

In addition, we are able to control ||8q||g appropriately by integrating ||d¢;| |(2) in
time, which, together with the estimate for ||d¢g;| |(2), conclude the proof of (3.10).
O

In fact, the above proof implies the control for the lowest order norms ||g||o
and |[lg:|lo-

Corollary 3.12. We have
2 2 2 2 !
||qz||o+||qzt||0§||aq||0+||aqt||0+eN+7>o+7>/O P, @I
Proof. LetY = (0,0, y3), the Poincaré’s inequality implies
llgllo + llgllo < 119gllo + 119g:llo +/ 0. Y"q +/ . Y"q.
Q Q
Now, we proceed as in (3.10)—(3.10) and get
t
f 8MY“q+/ Y q < 1ogllo + ||8q,||o+e~/N+7>o+P/ P,
Q Q 0

and hence (3.11) follows after squaring the above estimate. O

Theorem 3.13. We have
t
gt B + llar . B S ePV) +Po +7>/O P, (3.12)

fort € [0, T] where T > 0 is chosen sufficiently small.
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Proof It suffices to control ||g;| |2 by the rlght hand side of (3 12) since the control of
llg| |2 follows from time integrating ||g; | |2 To control ||g;| |2, it suffices to consider
[10g:| |1 only thanks to Lemma 3.11 and Corollary 3.12. Now, invoking the div-curl
estimate (A.1) with X = dq; and s = 1, we have

19117 < 11Ag: 11§ + 1191155, + 11941115

Bound for ||Aq,||%:lnvoking Lemma 2.1, since ¢t € [0, T] and T is sufficiently
small, we have

1Ag[5 < lla"*a,d,0,q:15 + 118" — a"*a*,)d,0,q:15
< |la"*a",8,9,q4115 + €l18°g1 lo.
Furthermore, the wave equation (2.3) and Lemma 3.10 yield
lla"®a", 30041115 < IR que |15 + 11720 115
t
< Wi+eWN +ND) + Py +79/ P+ ellgl3.
0
Bound for ||9¢; | |65,1“5 Invoking (3.10) and taking one more tangential derivative,
we have
g, = agijﬁ“%lgjv# Ug”gkl(akv nramu)aﬁ -t +'R

where ’qur consists products of 3¥n and 3*v, k = 1, 2. To be more speciﬁc, qut
consists terms of the forms

Y g @V A )", o8 g (koA 01,7 v,
o (0" @ n) g @xdnAcm) 050", o (@0 n") @ n) g (0N A drm,) 070"

Given these, we have
19g:15.5.0 S €N +N) +Po +Pf P,
by interpolation and the Young’s inequality. Here, e /> appears since
1v/88 i 08> vullf < ellvlly + I1v/g8"ll3 < 6N2+7’o+77/0t7’,

and we remark here that the interpolation cannot be applied since 39> v is of the top
order. Wrapping these up and invoking Lemma 3.11 and Corollary 3.12, we get

t
||qt||%5W§+7>o+7>fO Pt ellgrl3 + eV + A,

which proves the estimate for ||g;| |§ by invoking (2.5) and then absorbing €||g;| |§
to the left hand side. O

Remark. We are unable to control ||dg;/||1 when surface tension is present. This
is due to that the div-curl estimate yields the boundary term ||§q,,||0.5,r, where
5%: ~ 33v, on T, and hence ||§q,, [lo.5.r yields a loss of derivative. Therefore, one
has to define the energy using the R, -weighted derivatives and so the corresponding
term can then be controlled by the energy.
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3.3. Bounds for fot Ti234

This section is devoted to control fot 71.2.3.4. We recall
ad
71 = [ @) (10" RN@ D). 7= [ @ 8,00 (197 4 g).
Q Q

I3 :/ ([, A*]9,04)D g, I4=/ ([BDF,JR’R‘l]M)Q’q-
Q Q

Notation 3.14. In what follows, we use D to denote either 3 or ;. This allows us
to represent ®" as (R ) D", where r = %, 1, %, 2.

3.3.1. Control of f(; 71 For non-R,-weighted ©": We recall that there are four

mixed derivatives which are not R, -weighted, Whic_h are 9, 92 ,00; and 32 J;. Hence,
it suffices to consider only the case when ©” = 924;. Invoking (1.1) and Theo-
rem 3.13, We have

. . 3
I, = Zj1+j2=2/ (523,1)“)(3]1 po)(ajzal(auaﬂ)).
e Y R

Since, to the highest order, the last term on the right hand side is R’la“"‘gaqt,
which can be controlled by invoking Theorem 3.13. Therefore,

t t
/1157)0—1-73/ P.
0 0

The € P(N) term introduced in Theorem 3.13 does not figure here since Z; is
estimated under the time integral.

For R, -weighted D" : It suffices to consider derivatives of the form (R, )* D" ~294;,
where ¢ = %, 1, % and r < 4, since otherwise Z; would be O due to (1.1).

_ — ; ouq
_ 20 yr—2 J1 2 no UK
L=y /Q () (D" 209,va) @D po) (D20 (@ ).
We henceforth adopt

Notation 3.15. We use = to denote equality modulo lower order terms that can be

controlled, that is, A L B mean A = B + error terms, where the “error terms”
can be controlled by the bound of B plus Py + P f(; P.
Invoking (1.3) and (1.3) att = 0 lead to

t t fa
L 2 yr-27 =it g (gt 4
/0 nity o, /0 /Q R (D 2T 0) (DT po) (D23, (@ 1L
t

! = 0+1 r—27m 0+d N 0uq
=/ /(an‘po)(mK)ﬂDf aa,va)((fm)*zDﬁa,(aW—>)5730+7>/ P.
0 Jo R 0

Remark. The above expression yields a slightly better bound for D" 233, v, since
P requires only ||(R)¢D"~%39,v||o.
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3.3.2. Control of f(; I, Foreachr, f(; 7, contains a term which is of the order
r + 1, that is,

t
/ ‘I:/(@rauva)(QFA““)q.
0 Q

There is no problem to control ¥ when r < 2, and when r = 3, we need to put
extra effort to control T when ©° = 929, since there are terms which cannot
be controlled directly without R, -weights, and one needs to integrate by parts in
(tangential) spatial derivative and time derivative, respectively. On the other hand,
when r = 4, this term is of above the top order, but it can be controlled using one
of the special cancellations referred to in section 1.6.1, as we now show.

For non-i3,-weighted ©": As mentioned above, we consider only the case when
r=3and 3 = 528,. In this case,

zzf(?aualua)(ﬁza,AW)q.
Q

Although this term is of the correct order, 523# d;v cannot be controlled without
R, -weights. Hence, we integrate by parts with respect to the tangential derivative
and get

T = —( / (90,8,v) (28, A**)q + / (58M31va)(528,A’w‘)5q)
Q Q
< 11381101133 Allollg ||z + 11890, 110188, All 12119 4.

Here, one adapts Theorem 3.13 to control ||g||,. Integrating with respect to time,

we obtain
t t
/35730+73f P.
0 0

We next consider Z, — T. All terms involved in Z, —_T can be controlled
straightforwardly after integrating by part with respect to 0 thanks to Theorem
3.13, except for

/ (928,09, ve) (3, AP*)(3%q).
Q

This is due to that integrating by part in 9 yields 3°¢ which cannot be controlled
without R, -weights. To deal with this issue, we consider

t
/ / (9208, ve) (9, A**) (3%q).
0 JQ

Integrating by part in time, we get
t
/ (9%8,,00) (8, A**) (@) |ty — f / (929, v0) (92 AM) (3%q)
Q 0 Q

t
- / / (9%9,,v0) (3 AP (328, ).
0 Q
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The last two terms are bounded by Py + P fot P thanks to Theorem 3.13, while the
pointwise term at ¢t = 0 by Py. The pointwise term at ¢ is bounded by

_ _ 1 _ 1 1 1 t
Inll3118%q 1101132 v]17 [13%v]13 oI} |v]13 §€P(N)+7)0+73/0 P,

which is controlled by the right hand side of (3.2).
For ‘R, -weighted ©": 7, contains a term above the top order, that is,

T = / (D"8,,v.) (D" A*)q.
Q
This term is controlled using the aforementioned special cancellation (see sec-
tion 1.6.1). For R, -weighted derivatives, it suffices to consider only the case when

r = 4, that is, the derivatives are of the form (ERK)KD38,, fort =1, % 2. Then the
“tricky” term to be bounded is

t t
ﬁ:/ SZ/ /(%K)M(D38,8,Lva)(D38,A“°‘)q. (3.13)
0 0 JQ

In view of (2.1), expanding the index w in (3.3.2), we have

t t
L= /0 /Q R)2 e 7T, D3 vy 03731 D30y v + /0 /Q B2 e Ty, 83 D30 31 D30y ve

Ly Ly

t _ _ t _ _
- f / R)2 e TG, D3 vy 03105 D30y v — / / R)2 e 75,1y, 03 D30, 55 D30 v
0 JQ 0 JQ

L3 Ly

t _ _ t _ _
/0 fg R)2 e 7T, D3 v, Tyne 03 D30 v + fo /Q )2 g€ 03 52 D033 D33y v +Ligus,

Ls Lg

(3.14)

where L;,,, are lower order terms, which are all of the form

t
> s /0 fg Re)*q(dD'v)(3D%2n) (3 D8,v)

J1, 252

= Z.nﬂz:s(fg(%)”q(am v)(dD2n)(3Dv)

J1,252
t

— / / (R q:(D71v) (3 D72n) (3 Dv)
0 JQ

t
—~ / / (Re)*q(dD7 v,)(dD72) (3 Dv)
0 JQ

t
//(sm)”q(al)flu)(anzu)(aD%)).
0 JQ

Invoking Theorem 3.13, it is easy to see that the last three terms are controlled by
Po+P f(; P, while the pointwise term at ¢ is treated similar to (3.3.2)—(3.3.2), after
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distributing correct amount of R, -weights to each term. We omit the detail here.
But it is worth noting that there are more than enough ‘R, -weights for the pointwise
term since there is one time derivative less.

Next, integrating by part in time in L3, we find

t
- / / (R0 qe**731 D30, 037,92 D* v, = — f (R)* qe** 731 D0, 031 92D vy
0 Q Q
t
f / (R)* e 731 D 8,083 0, D vg.
0 Q
Adding Ly, we get
t
L — —
Li+Ls= / / (Re)* g™ 9, D303 91 D B0,
0 JQ
t
+ / / (Re)* g€ 731 D00, 037, 32D v
0 JQ
_[(mK)2lq€aAT§1D3UA.83T’T§2D3U(X|6
Q
__ / (R g€ 75, D0, 057,92 D vally = Lis,
Q

since first and the second term cancels with each other by the antisymmetry of €**7

Similarly, we have
Ly+LeZ Lyg = /Q(9‘{;()266160‘M51m52D3v133D3va|6,
Lo+ LsL Lys= /Q(i)‘ik)zeqéahglD3v15277r33D3va|6-
Bounds for L3, L4s and L5 Since L3 is pointwise in ¢, it suffices to consider
fg (R)* €781 D* 0383792 D7 vals
only, since the other part is controlled directly by Py. In addition, since D? cor-

responds to 3>, 997, 829, and 97, associated with weights (9R,)?, (SRK)%, R, and
R, respectively, we have:

/(%K)4q6°‘“518fvx83nr5283valz
Q
aht 3403 37 03
< [ Oge (@0 T8 0 (R0 157
Q
3 2 d
< IRI20Inl311R) 2 vl |f < €ePN)+Po+P | P,
0
where we have used ||Rcq|2 < [|R'qll2 = ||R||2. Similarly, we have

/ (Re) g€ 7910020031 02002 v s + / (Re)>qe™ 7 10°0,v,.0317020° 0, Vg s
Q Q
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t
+ / (Re)2qe¥T010°v,0307020°Valr < €P(N) + Py + P / P.
Q 0

Moreover, this method can be adapted to control L4 and Ljs, and we omit the
details. Therefore,

t
(L1+L3)+(L4+L6)+(L2+L5)SEP(N)—i—Po—i—P/ P.
0

Now, we complete the treatment of 7, by estimating the rest of the terms, that
is, Zp — %, for R, -weighted forth order derivatives. Expressing

LT = [ 000,00 (D040 — 4 DY0g - (D'5,47)q)
Q

and similarly, to the non-R,-weighted case, we consider fot 1> — % and integrate
by part in time to get

1 t
[ 25t [ 0,0 (0% g — 41 DY — DY arq)|
0 Q
t
- [ [ o @ (D0 - 4 DY - (0%40)q)
0 Jg
First, it is easy to check that
t t
/ f (Re)> (D30,v4)9; (D38,(A“°‘q) — A* D39, — (D3atAW)q) < / P,
0 JQ 0
Second, for the pointwise terms at ¢, it suffices to consider the case when D3 = 8t3

and £ = 2, since the bounds for the other (easier) cases follow from the same
method. There are three terms, that is,

/Q R (3,1 8,00) (3} A)dr g, fQ R (378,00) (874824, fQ ) (3, 8,v0) (3, 4)87 q.
(3.15)

These terms are treated as
/Q (R (3 0,v0) (3] A)drg
~ [ @0 @00 (Gun@m + Gu@w )ag
Q
3 3 1 3 1 1 1
SR 2 vrarl 1RO T v 1 11RO 2 v 13 11011311Re i 13 1R |17
3 1 1 1 1 1
+ 1RO T viarl 1 [1Revrl 17 1R evil 13 11RO 2 vl13l1Redi 1511 Regi 1}
t
5eP(N)+7>0+P/ P,
0
and

/Q R)* (8] 9uva) (07 A0 g = fQ B0 @790 (00 + @) 0m) )97
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3 1 1 3 1 3 1
S H(‘ﬁx)?vmlh(Ilvllzll‘J‘ixvlls+IIf"‘KUrIIfII%vallzz||77||3)II(%K)anIIéII(i)‘*K)anlh2
t
geP(/\/)+7>o+P/ P.
0

Finally, we have

/Q ) (870,008, 4)87q = /Q (Re)* (88,,00) (V) (01) 3} ¢

3 1 1 5 1 5 1
SN2l 1l 1131 RO 2 quael g TR 2 grae 1

t
geP(N)+Po+7>/ P. (3.16)
0

3.3.3. Control of | 3
For non-R, -weighted ©": Expressing these derivatives as D" where r < 3, we

have

Ty= jisjrmr /Q (D' A*) (8, D720y ) (D" q)
1>1

J1Z

< 31t pmr (D7 A3, D20 ol D gllo,
J1>1

and so [y 73 < Po + P [y P in light of Theorem 3.13.
For R, -weighted D" : It suffices to consider only the case when r = 4, that is, the

derivatives are of the form (RR,)¢D39,, for £ = 1, %, 2. Now,

I3 = / (R (3, A"*)(D?B,00)(D?0,q)
Q
2¢ o 2 3
+ fQ R (DA (D28,0,0) (D01
+ / ()24 (8, D3 A*)(8,,04) (D*3,q) + error terms,
Q
where the main term is equal to
_1 1
[ @ (@0 D%, ) (0307 Do)
Q
+ [ @ar (0" D?0,0,) (00 D01
Q
+ [ Gu (@0 b0 4 ) (80 DY0g) = To + Taa + Tas,
Q

where 75 > does not appear when D* = M2 9.

fot 3.1 + 13,3 can be controlled directly by Py + P fot ‘P. For I3 », one requires
the wave energy (2.6) to control | |(9‘{,<)‘5D3 Q,q |lo when D3_ contains  at least one 0y,
and (2.3) to control this term when D3 = 33 (that is, E)%K838tq ~ 3%3R), and so
fé 13 can be controlled appropriately by Py + P fé P.7 Furthermore, the (time

7 This is explained in the remark after Theorem 2.6.
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integrated) error terms are of the form

ZWW 3 / f R (@D (3D2v)(dD5v)(D*q)

Jiti2=1

le+]2+]3 3/ /Q((%K)Z_%(aDjlTl)(aDj2v)(aDj3v)>((m/c)“_%D‘lq)

Jit+i2=1

SP()-I-P/ P.
0

3.3.4. Control of fot T4 14 isthe easiest one to control among the other 7 terms.
This is due to the assumption (1.3), which implies that there are “sufficient” R, -
weights that can be distributed for all terms. In addition to this, we can also use the
fact DR = R’'Dgq to get an extra R, -weights if necessary.

For non-3,-weighted ©": By (1.3) and since r < 3, invoking Theorem 3.13, we
have

. . t
/ Lo Y jirpr / /Q % (D7 (p0R)) (D2019) (D g) < Py + P /O P,

J1=1

For R,-weighted D": For £ = 1,1, 3,2, we have

[nt 3 [ [oo (phme) ot

Jitj=r
J1>1

=2 s f / R (D1 (R ) (D2,g) ) (R0 H D g
Ji=1
=Po+ T)f P,
0
where the fact DR = R'Dgq is used if j; = 1.

3.4. Control offot B for non-R,-weighted D"

This section is devoted to control the boundary terms
B =0 /F (D"ve) (19", /2g" 11971 dS,
By = —o / 3:(/287 1) (3D 1) (3,0 n*) dS,
r
1 ij = )
By =30 /F 0 (/88" T1,) (9 D" a) (@, D" n") dS,

which appears in the energy estimate when ®” is non-R,-weighted. The R, -
weighted cases are treated in section 3.5.
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We recall that if ®” is non-R, -weighted, then r < 3, that is, the corresponding
term is of lower order. Because of this, it would be suffice to consider the case when
D" = 329,. Now, since ny, = n,n®, we have

Bi= oY ipes [ @D (Jas i) (DP T .
=

B=o /F 0; (/28" T1%) (3,0%va) (3,0°v") dS,
1 . __ —
B; = Ea/Fa,(\/gg'fH;';)(a,-a2voé)(a,~32v“)ds
Invoking Lemma 2.2, we get
9 (Jgg" i) = Q@nav, a(/gg"hn%) = Q@n)d*n,
where Q is a rational function, and hence
39, (Vgg" " hi®) = Q(@n, 3v)a*n + 0 (@n, Jv)d*v,
32 (Vg8 A = Q(@n, 3*n)d’n,
370, (/28" i) = Q(@n. v, 3*n, 3*v)(@°n + 3°v).

In light of these, we have
t t - t
/ B, = g[ / Q@n)a°n(8%9,v)(8%v) dS < Py +P/ P,
0 0o Jr 0
via (H _%, H %) duality. Moreover, fot B3 is treated similarly. On the other hand,
Bito / @%9,1) Q@) (V) (@*n) + o / (@%9,)Q (@1, Jv, 3%, 9%0) (@ n + 3 v)(3%n)
r r
+o/(528,v>Q<5n,52n)(53n)(52v>+a/(§28,v>Q<5n,5v)(52v+52n><53n>.
r r

The last three terms can be C(lntrolled in a routine fashion. 1
However, o fr (8%9,v) Q(3n)(3v)(3*n) cannot be controlled directly since (H™ 2,

1 . . L .
H 2) duality requires the control ||v||3 which is not part of P, and so we consider

t
o /0 /F (3%9,v) Q@) (Bv)(@*n),

and then integrate by parts in ¢. This yields
t
o /0 /F 33 0@ @E@*) = o /F 30) 0@ @) @)1
t t
_o /0 fr 30) 0@, 30) @) — o /0 /F (30) Q@) @o) (1)

-0 f t / (@) Q@1 (@v) (@*v).
0 JI
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The last three term on the right hand side can be controlled directly by Py + P fot P

via (H -3 ,H %) duality. Moreover, the pointwise term is bounded by

Po + o Q(Inl1)1(@*v) (@)1
1 1 1 1
< Po+ o QU Il 1l 1vI13 + [lvll2lv]]3)

1
§e/\/~|—770+73f P.
0

3.5. Control of B for Ry -weighted D"

Here we show how to control B when ©% = /R 8,2,9g VR (882) D3 =
B3, D% = M (3%0)), D = M (3202), D* = (Re)2(393) and D* = (R,) 297

3.5.1. Case D* = (R, )284 The ensuing calculations produce a series of terms.
In what follows we focus on the most delicate ones, in particular those leading to
special cancellations. The remaining terms will either be of lower order or can be
controlled by arguments similar to the ones presented for the aforementioned main
terms. Therefore, all such remainders are collected and estimated at the very end
in section 3.5.1.4. We note that certain cancellations are only visible after a series
of manipulations have been made, requiring us to keep track of the explicit form
of most terms in our calculations.

The following remark will be used throughout below. In view of identity Lemma
2.2-6, we have %3 3% vy, = A, 173" 8% v,, so that an estimate for 71 - 9" 9% v can
controlled by 18" 3% v.

We shall also need the following identity

_ J —
,v*0my = ——20d;q, onT, (3.17)
£0

which is obtained upon contracting the first equation in (1.1) with 3;7,, using the
definition of @, and (1.1).

3.5.1.1 Estimate for [, B3 with ©* = (%23}

Using ®* = M23; in B; gives

1 .. _ _
63 = EU/ 3,(«/§g” HZ)al(m?(a?va)aJ(mia?vﬂ) dS
r
L (VZEHREID,07 0,0 07 v dS
== 2 . t 88 K- tpl tva J tv

+o fr VYRS TIYTT 3;0; v, d ;9] v" dS

= B31 + B3,
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where we used Lemma 2.2—-5. We can immediately estimate
1Bs1]] < PIITIRZI; vllo,r-
For Bj3;, use Lemma 2.2—4 to find
632 =0 /; ﬁg”iﬁia,ﬁ“mHﬁﬁiafvagjafv“ ds
ijopd roq A Aa.a3,, 7.93..14
+ o/ V88 Rn 91 117,007 vo 9 07 ™ dS
r
= B321 + Bsn.
We have
1B322]| < PITIRZD, vllo,r-
Using Lemma 2.2-8 we can write
By = —o / R v/28" g i dxv 0 TT,3;9; ved 97 v™ dS.
r
From (3.5.1) we have
T aF. a3 Som o =02 I a2 7 a
0in"0i0; vy = ——10;0;9;q + [9;9;, ——0d1lqg — [9;0;", 0ima 0; Jv".
el P0
Thus,
J o _
B = of =R /28" g A 9070907 q T, 0] v dS
r Lo
1 = J_ _
—a/ — e /28" g A v ([9;07, ——0/1g) 11,39, v™ dS
r Po £0
1 s ij kia ~ 3  T7.q2 7 ONTTAT a3,
+0o po,‘}{,(\/gg g i 0k v" ([997, 31me 3 Jv*)IT), 997 v dS
r
= B311 + B32iz + B3ais.
Integrating d; by parts in B3o11,
J . _ __
By = —a/ — R /ggY ¢ hnA0xvT0,07qT17,0;0,07 v dS
r Po
— J .. _ _ _
—af i (—R¢/gg" ¢ AnA0xv7 9,07 qT1))3 0] v dS.
r L0
From section 2.1, item 3, we have
513,2q = _Ugmnﬁﬁgmgnglatvﬁ - [5132» Ggmnﬁﬂsmgn]nﬁa
so that

J o o __
B3 :azfr%iﬁiﬁg”g’dnknfBkvrgm"nﬁaman818,vﬁ1'll)18,~8j813v“
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J o R __
+0/ p—%i\/ggl]gklnknTBkvr[alatz,agm"n,gfim&n]nﬁl'[ﬁa,-ajafv“dS
r PO
_J .. _ _ _
—af 8,~(%%ﬁ\/?g”gklﬁkﬁr8kv7818,2qﬂz)8j8,31)"dS
r

= Bso111 + Bsai12 + B3oiis.

In B3111, we use Lemma 2.2—-6 and factor a 9, from 8,3 to obtain
By = 023:/F é%ﬁx/§gijgklﬁrgkvtg’""ﬁ,ﬁmgnﬁlBtvﬁﬁ,ﬁ,ﬁj8t2v“
— 02/1“ éiﬁi\/§gijgklﬁfgkvtgm”ﬁlggmgnglatzvﬁﬁﬂgigj8,211“
- 02/Fat(éiﬁi@gijgklﬁrgkv’gm"ﬁﬁﬁu)gmgnggatvﬂgi5]-8,211“
= Ba1111 + B32i12 + Bains.
For the first term, that is, 5331111, we have
/Ot Brait = Po+ B PORNIIRE3,vll0.0) (TR T2l ).

Using Young’s inequality and the fact that R, can be made very small for large «,
we can bound the right-hand side by Py + e P(N) + eN.

For B31112, write
g’””ﬁ,gﬁmﬁnﬁlafvﬁﬁ#gijﬁiﬁj 331)“’
=9 (gm”ﬁﬂgmgn Btzvﬂ)ﬁugijgigj 831}“
— [y, gm”ﬁﬁgmg,,af]vﬁﬁugijgigj8[21)“

1— S
— 5al(ﬁ,“g'fa,'a,a}v“)z

— [31, ™" g0, 0,07 10P 11,870,007,
so that
Btz = —%szr é%ﬁ«/Egklﬁrgkvrgl(ﬁugijgigjalzv”)z
+ 02/1" éiﬁi\/ggklﬁfﬁkvf[gl, gm”ﬁﬁgmgnaf]vﬁﬁugijgigjBtzv“.
Integarting d; by parts in the first integral,
B3z = %02/F51(émiﬁgklﬁjkvr)(flugijgigjatzv")z
+02/F %%ﬁﬁgklﬁfgkvt[gl, gm”ﬁﬁgmgnalz]vﬁﬁugijgigj8,211“

= B2t + Ba2iize.
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Writing

2
Baii121 = %K%UZ/FE <é\/§gklﬁr5kvr) (ﬁugij%25i5j830“> )
we have
Baaii121 < €P(N).
This concludes the estimate for the most delicate terms in fot B3. The remaining
terms in B3, that is, B3211122, B321113, B32113, B32112, B3212, and B33, are treated

in section 3.5.1.4 below.
3.5.1.2 Estimate for fé B> with ®* = (9{,()28;1 We now move to estimate B»:

By=—o / 0; (/88" TI%) (R0, o) (R70 ;07 v) dS
r
- _a/55(@gif)ngmiafua9%£5jaﬁvﬂdS
r
—ofr@gifﬁingmiafuamﬁﬁjafuﬂds

= Ba1 + Bo». (3.18)

We show below that B, exactly cancels with a term coming from B;. Here we
move to estimate 377. Using Lemma 2.2-4,

By = —0o / R /28" 0i7, 7% 8 v d ;0] v dS
r
. 4 ijan Q. aaqd 7 a3
J/SQK\/Eg 1,0;1% 9 v, ;0; v dS
r
= B + Baoo.
We use Lemma 2.2-9 to write
_ 4 ij kI 5 1A 7 Aaad A a3 1
By _o/m“/gg 8 0;0kn N dn,n%0, vy d;9; v dS.
r
From (3.5.1) we have
e N o e R N Py S "
0100, v" = 0;0;07q + 0,9/, drlg —[0;0;, 91my 0 Jv",
L0 £0
whence
J .. — —
Boy = —af R Jeg ¢Mo;01n A% g d9107q dS
r L0
.. _ _ J —
+o/ mﬁ@g'/g“aiakn’ﬁrﬁ“ag‘va[a,-az,—p—a,]q ds
r 0

—(7/ %ﬁﬁgijgklgigknrﬁ,ﬁ“8t4va[§j812,5lnuat]v“d5
r
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= Booi1 + Bz + Bais.
In B»311, we factor a 9; in 8t4 vy to obtain
J o _
B = —08,/ Q‘iﬁ%ﬁg'jgklaiBknfntnaﬂfvaajalﬁtzq ds
r

J .
+o/ mﬁat(%ﬁg’fgk’aiaknfn,n“ajalafq)afva ds
I
= Bai11 + Baiie.

For Byy111, we integrate F] j by parts to produce

/Ot B < P(I9R211802v]lo.r) (11]2892¢lo.r) + /Ot P,
where
[1R2T190>v|[o.r ||R2002g|lo.r < €|IR2TT90 vl lo.r + még*‘ ||m§53t2q||1
< e(IB2MB0vllor + IRET024111) S € POV,

after choosing R, sufficiently small and replacing ¢ by R.
For Byy112, write

J o
522112=0f9“?az(%@gljgklaiaknfnrna)ajalazzqa?vadS
r
J o
+afr9%;*%@glfgk’aiaknfnrn“a,a,afqafva ds
= Bnii21 + Baii.

The term B71121 can be handled with integration by parts with respect to E) j (Gt
yields a term in ||H9%,%53t3v| lo.r). For Baz1122, we use section 2.1, item 3, to write

T
B2 = —02/ %i%\/§g”gk13i3k77rnrna3j31(gm"nﬂamanatzvﬁﬁfva ds
r
oo o
—o? / 9%;‘%@g’fg"’aiaknfnrn“(a,az[a?,g"’"nﬂamanlnﬂ)a?va
r
= Bni1221 + Bazi1222.

Integrating by parts 9; in Bx11221,
J o R _
Bai1221 =02/ 9%;‘%@g”g’daiaknfnrn“aj(g'""nﬁama,,afvﬁ)ala?va ds
r
_ J o A
+a2/ 81(9%i%\/gg”gkl{?i8knrnrn“)8j(gm"nﬂamanatzv’g)B,Sva ds
r

J .. _ _ _
:(,—2/ 9%;‘%@glfgk’aiaknfﬁ,ﬁ“aj(gm"ﬁﬁama,,a,zvﬁ)a,afua ds
r
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+02/F%iéﬁgijgklglgigknfﬁ,ﬁaai(gm"Aﬂa 3,020°)83 v, dS
+02/F§l(9‘{i£\/§g”g Aei®)0; 00" 0 (8" A g0 0,07 0P )0 vy dS,
and then integrating by parts 9; on the second integral,
B2l = 02/;mﬁ%«/ggijgklgigknrﬁrﬁagj(gmnﬁﬁamanatzvﬁ)glagva ds

—02/Fmﬁé\/gg"fgk@,ﬁknfﬁ,ﬁ“ﬁ,ﬁ,(g’”"A,ga 3,020P)83 v, dS
azfr9%;‘%\/gg"fg“&éknfﬁ,ﬁ“ﬁj(g’""ﬁ,samanafvﬂ)ﬁia}ua ds

—oz/r5,»(9%;‘i\/gg"fg“ﬁtﬁ“)ﬁﬁknfﬁj(g’""ﬁﬁama,,afvﬂ)a?ua ds

+02/F5;(£R4 V88" g i®)8;9,m7 0 (8™ g0 0,07 vP) 3} vg S

= Bnii12211 + Bri2212 + Ba2112213 + Ba2112214 + Ba2112215- (3.19)

Note that the first and third terms, that is, B22112211 and B22112213, cancel each other
in view of the following identity, which can be verified by inspection,

2
Y Vg —gteh =0
ik, l=1

For the second term, Bx2112212, integrate 3,3 ; by parts:
J o . P
Bai12212 = —02/ mi%\/Egl'lgklalaknrnrgmnnﬁamanazvﬁ”aaiajafva ds
r
_ J o A o
—02/ aj(m;‘%ﬁg’fgk’a,aknfnr)gm”nﬂamanafvﬁn“aiafvads
r
_ J o .
—02/ 81(9%i%\/gg”gklalaknrntna)aj(g'"" 5Omdn 070883 vy dS
r
= Bni122121 + Bai122122 + Baz1122123-
Factoring a 3, from 9;9 ;9 ve in Ba1122121, we find
Bxoii2121 = —*G fm4 V88" g 818kn e g™ i3 8,07 vP 2780 07 vy AS
1 o L
+502/ a,(mﬁ%«/gg'/g“a,aknfﬁfgm”ﬁﬂﬁ“)ama,,a,zuﬁa,-a,»a,zva ds
r

= Bai1221211 + Bai1221212-

The first term, 77 1221211, €an be estimated by € P (N). Here, the small number ¢
comes form estimating ;91" in L and using that 1(0) is the identity diffeomor-
phism.
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Now we move to 377;. Factoring a 9; from 8,4 vy, we find
By = —0o /1‘ mix/ggifﬁuﬁ,-ﬁ“a;‘uaa,a?v“ ds
=—0cd / R /88" 7, 0:0%87 v, ;070" dS
r
+0 /F Rt /28 7,0:7%8] v 0 ;0 v dS
+ af O (RE /28" 7,0,7%) 0700 ;8] vH dS.
r
Integrating 5/ by parts in the second integral,
By = —0'd, / R /88" 7, 00707 v,0 070" dS
r
-0 / R /g8, 0;7%D 107 v, 0 " dS
L n0ilt= 0 j0; Vo O
+ o/ O (RE /28" 7,,0,7%)8] v 0 ;0] vH dS.
r

— o/5j(mﬁ¢§gffﬁuﬁiﬁ“)a§vaafuﬂ ds
r
= Booo1 + Boop + Bz + Baoos.

Note that By = Boyy, so this term is estimated as above. The term B> can,

after time integration, be estimated using Young’s inequality and interpolation.
With exception of B>, which, as said, involves a special cancellation showed

below, this concludes the estimate of the most delicate terms in f(; B,. The re-

maining terms B2212, B2213, B2211222, B22112214, B22112215, B221122122, B221122123,
Bao11221212, B2223, and Byyo4, are treated in section 3.5.1.4 below.

3.5.1.3 Estimate for fot B; We now move to estimate D% = (i)‘i,c)zi)t4
We now move to estimate 5;:

Bi=o /F (R0 va) (IR70) . /28" T1%197, ™) dS
=40 /r Ry 0; (/88" T1%)0;0,;0) 1 9, vy
+ 60 /F {07 (/88" T1%)3;3 070" 0} ve
+ 4o fr R0 (/88" T19)3;9 00" 0} v

N
r

= Bi1 + Bi2 + Biz + Bis.
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‘We have
614 =0 /Ii %ﬁﬂg”&fﬂfﬁﬁjn“aﬁa
+ 40[ R0, (/28" T1%9;9 10" 0} v
r
4.2 PNA2 TR A ad
+6o/ Red; (Vgg")o T, 99 0" 0 vy
r
+4o / K07 (V8g)d, 198,91 0} ve
r
+ 0/ R0 (/geHT D0 n" oty
r K-t norYj t Yo
= Bia1 + Biaz + B4z + Biasa + Bias.
Using Lemma 2.2-4, we have
3141 = 0/ %ﬁ\/ggijﬁaafﬁugigjn"afva
r
+ 4o /F RE /28 0,7% 871,019 0" 9} v,
+ 60 ]r R g 077*971,0,0 ;1" 8 v
+4o /r RE /28 071 8,7,,0:9 0" 9} vg
4 ijadran 7.7, [ad
+o [ RJgg o, n%n,0;0;n" 9, vy
r
= Bia11 + Biai2 + Bia1z + Biaia + Buais.
From Lemma 2.2—-8 we have
afﬁu = _gklgkagvrﬁrglnu - [8137 gklﬁrglnugk]vry
and thus
_ 4 ijrao kI a3 74 o 0.9 ... uaqd
Biain = _0/ m,(\/gg n“ gt or0; v n:09;n,0;0;1n"0; vy
r
- G/ mﬁ\/ggijﬁa[af’ gklﬁrglnu,gk]vrgigjnuafva
r

= Biai1 + Biaiiz.

873

We now invoke Lemma 2.2-10, to replace ./gg"/ ¢¥'9;8;1*d;n, in Biai11 by

—9; (\/§g”‘), obtaining

Bt =0/ R0 (V2g™ )k v A8t vg.
r

(3.20)
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We see that this term exactly cancels B>, as mentioned earlier. The other terms in
the estimate of f(; B are treated in section 3.5.1.4.
3.5.1.4 Remainders in [, B with ©* = %23}

Above we have showed how to control the most delicate terms in the estimate
for fot B when ©* = 9{% 8,4 . In particular, we have showed how some top order
terms, which seemingly cannot be individually bounded, cancel out when taken
together. Now we consider the remaining terms, which we list here for the reader’s
convenience. They are, for B3,

B311122, B321113, B32i13, Ba2ii2, B3ziz, and B3z

from section 3.5.1.3; for BB,

Bi2, Bz, Baoii1222, Baoii2214, Baoii2215,
Bo1122122, B221122123, Bo211221212, Bo223, and Baooa

from section 3.5.1.2; for B

Bi1, Bi2, Bi3, B4z, Bi4s, Biaa, Bias, Bia12, Biai3, Biais, Biais, and Bz
(3.21)

from section 3.5.1.3. Not all these terms are immediately of lower order, but they
can be estimated using the same kind of ideas that have already been employed.
Therefore, it suffices to briefly indicate how this is done.

The terms 83212, 63213, 8321 12, 3321 113, and 8321 1122 €can be bounded directly.
The term B32113 is bounded upon replacing ¢ by R and estimating in routine fashion.

The terms Byz12 and 5713 can be estimated with integration by parts in time.
The terms B2211222, B22112214, B22112215, B221122122, B2211221212 B2223, and Baooa
can be estimated directly. The term B>>1122123 requires integration by parts in space
and then using arguments similar to above, with one extra step: after integrating
F] j by parts, we obtain a term with four derivatives of 1. This term, however, has
the form 7. g/9%9;9 ;n, which allows us to use section 2.1, item 3, to eliminate
two derivatives of 1. (Alternatively, we can use elliptic estimates for equations with
Sobolev coefficients, as, for example, Theorem 4 and Remark 2 in [51]).

The terms listed in (3.5.1.4) are again handled by a repetition of ideas used
above (without requiring special cancellations). In particular, Lemma 2.2—-8 is used
heavily and Lemma 2.2-11 is employed to estimate B4s.

Combining these observations with the estimates of section 3.5.1.1,3.5.1.2, and
3.5.1.1, we finally obtain

1 t
/(Bl+32+33) §P0+6N+6P(/\/)+73/ P, when ©* = R2a%.
0 0

3.5.2. Estimate of the Remaining Weighed Boundary Terms It remains to
carry out control of fOZ(B1 + By + B3) when ©2 = «/mka,z, D3 = /R, (833),
D3 = R, D = R (3%9,), D = N, (829?), and D* = (%K)%(Eaf). These
cases are treated in an almost identical fashion as the case D% = (mk)za;‘ from
section 3.5.1. In this regard, we note that a crucial requirement to carry these
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estimates is that ® contains at least one time derivative, which is the case for all
the SR, -weighted derivatives we need to consider.® We therefore conclude

t t
/(31+62+B3)SPO+6N+€P(N)+P/ P,
0 0

for 2 = R, 92, D3 = VR (037, D3 = R, D = R (3%9,), D* =
R (3202), DF = (R)2(393), and D* = (R,)297.

4. Closing the Estimate

In this section, we prove:
Theorem 4.1. Let N'(¢) and P(t) be defined as Notation 3.1, then for sufficiently
large « (that is, R, K 1), we have:
t
N@) < C(M)(eP(N(t)) + Po +7?/ P), tel0,T],
0

where T > 0 is chosen sufficiently small, provided that:
9]l +118%7]| < M, 4.1
g 1o + 11T |11 < M, (4.2)

hold a priori for some large constant M.
Since the energy estimate for E is established in the previous section (that is,
Theorem 3.2), we only need to show

2 2 2 3 2
[z + 1Revrll3 + Revirl5 + R Zvielly
+RIG + [R5 4 VR Rt 113 4 1R Resd |3
+ 1vel13 4 1V Rever 12 4+ 1R e G + Rl 11 + 11V R Rerello

t
§C(M)<6P(J\/(t))+770+77/ 77>. (4.3)
0

This is proved via an iterated argument using div-curl estimate (A.1). It suffices to
consider the first line in (4.1), since the second line consists lower order terms and
can be treated by the same method. Taking X = v and s = 4, (A.1) yields

I3 S lidivoll3 + lleurl vl |5 + [V 155.5 + lIv]15. (4.4)
On the other hand, taking X = R, 0;v and s = 3, we have:

2 : 2 2 312 2
Revellz S NRedivvelly + [[Reccurl vz + [1Rev; 55,0 + [1Ricvel 5.

8 Incidentally, this is why an estimate for the normal component of v with no time deriva-
tives has to be obtained in a different way, see section 4.1.
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Similarly, by taking X = R'vyy, s =2 and X = (R’)%vm, s =1, we get

2 . 2 2 3012 2
[1Revielly S NReediv v |l] + [1Recurl vy |17 + 1R v |17 5,0 + 1[Ricvne g,
4.5

3 2 < 3 .. 2 3 2
R 2vee |17 S R 2div vee g + [|(Ree) 2 curl vy | [
3 3
+ 1RO 2051550 + 1R 2vee 115, (4.6)
respectively. In light of (4.1)—(4.1), in order to estimate v and its time derivative,
we need to bound div Blk v, curl B,kv and 8{‘v3,f0r k=0,1,2,3, respectively.
4.1. Bounds for the Curl and the Boundary Term of v
In this section we prove:
Theorem 4.2.

3
lleurl v][3 + [|Recurl v |13 4+ [|Recurl v 13+ 1R 2 curl vy |13

t
§6P(N)+770+77/ P. 4.7
0

Proof. The proof is almost identical to section 4 of [21], and so we omit the details.

The only modification is that the weights R, or (ERK)% are used to compensate
q'(R) ~ R, which allows us to get an uniform control. O

On the other hand, we have:

Theorem 4.3.
11155, 56P(N)+7)0+73/0t P, (4.8)
and
1R 1351 S €N + 1R TT9° v, 1[G - + Po + Pfol P, (4.9)
1R 1150 S €N + 1R vy [ 1 + Po + P/Ot P, (4.10)

t
3 3 —
||<9%K>fv?t,||é5,r5eN+||<9%K)fna3vm||%,r+7>o+7>/0 P. (411

Proof. Forany vector field X, the following identity allows one to compare (IT3 X)?
and 9 X°:

(Mox)? = 3ax* = 9x> — g9 o x>, (4.12)
3
Invoking (4.3), let X = R/? E)fv and then taking H~05 (I") norm yields

3 3 3
2993,32 21719493 2 kil 39 2 293, 4112
||9‘i,%33t v ||_0,5,r ,S ||,‘ﬁ,§ Haa, U||(),r + (18" dkn al’lk”],s,r”m/g 31 v ||o‘5,r-
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We add ||£R282v3||205r to both sides, use the fact that ||9‘{282v3||2

0.5,
+ ||9‘i,? 88,3v3||2_0'5,F is equivalent to ||9%,§ 812”3“0,5,1"’ invoke 9xn’ = f 03
3
(which is true since 773 (0) = 1), to conclude (4.3), where the term ||R 2 82v3 | |2 0.5.I

on the right hand side is estimated using interpolation, Young’s inequahty, and the
fundamental theorem of calculus.

Similarly, using (4.3) with X = M, 392v and X = 2R, 3%9,v, estimating in
H93() yields (4.3) and (4.3), respectively. Now, we need to control ||v3||3.5,r.
This cannot be controlled using the above method since ||H§4v||(2)’r is not part of
the energy E. Nevertheless, we recall the boundary condition

VEA® = /g8 0} n® — /8 T 0n® = —0 ' A¥Nyg, on T (4.13)
where F{‘j = gklgml‘gizj N, Time differentiating (4.3) with o = 3 gives:
V885wt — fgg i Th v = —0,(\/gg)o7m — 0,(gg U Ti)dwn’
— 079, AN, g — o AN Bq (4.14)

holds on T'. Because g/ € H?>>(I') and Ff‘j € H'3(I'), invoking the elliptic
estimate for rough coefficients (see, e.g, Theorem 4 and Remark 2 in Milani [51]),
we obtain:

11551 S 110,885 I 5 p + 110, (V8 TN’ |1 s
+ 110 A Nuqll s + 1A NLdigl 1] 5. s

which can be controlled appropriately by the right hand side of (4.3), where the last
two terms can be controlled by with the help of Theorem 3.13. O

4.2. Bounds for v, R and Their Time Derivatives
Letk =1, 2, 3, commuting Btk to the second equation of (1.1), we get

9% 0% vy =(8"% — a"*)d, 0% v, — Z,lm_kR 197" (Ra") (3,0, vy)

=1
— R'FIR. (4.15)
In addition, the first equation of (1.1) can be re-written as
R'Rv* +a"*9,R = 0.
Commuting Btk to this equation and invoking (1.3), we get
%R = (M — )3, 0k R — 'R 10
Z,l+,2_k[(3“ ") (3,0 R) + (8] (R'R)) (3" v)]. (4.16)

=1
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When k = 3, multiplying (R’ )% and then taking L? norm on both sides of (4.2),
we get

3 3
I(R)2 00 vallo < €ll(R)2 8 vally
5 . 5
+CY s sl (R0 (Ra™) (3,8{va) 10 + CII(R) 2 Rysello.
j1>1

1=

where we have used Lemma 2.1(9)(10). The term

3 .
D i+ n=3ll(R) 28] (Ra") (3,0 ve) 10

J1=1

is of lower order and can be controlled appropriately. Squaring and using Theo-
rem 3.2, we have

t
1) 2div vy 12 < IR)2div vy |12 < €PN + Po + P/ P.
0
Now, in view of (4.1), invoking (4.2), (4.3) and Theorem 3.2 gives
t
||<9%K)%vm||%56P<N>+7>0+7>/ P. @.17)
0

We now move to estimate ||R, R;+||1. Invoking (4.2) for k = 3, multiplying
R’ on both sides and taking L? norm, we have

13
IR Reelli S €llR Ruse 11 + 11(R) visaello + €N + Po + P/ P.
0
Here, e N appears when controlling the error term of (4.2). ® Squaring this provides

t
1R Reut |} SR Risell] S €PN+ Po +77/O P, (4.18)

where Theorem 3.2 is also used.
Next, we estimate ||9R, div vy||1. Invoking (4.2) with k = 2, multiplying R" and
then applying H' norm on both sides, we get

IR'9%07 valli <€lRvirlla + CY i1 jy=2lIR'0]" (Ra™) (0,0, va)I)
J1=1

+ CIIR Rizel -

Using (4.2), squaring the above estimate leads to

t
[|Rediv vy |7 S |IR'divu |13 < ePN) + Py +7>/ P.
0

9 Specifically, €N is required to control ||R’ (313 a’@)(dyR)||lo. This
term involves ||R’'(dvs)(@R)||g at the top order, which is bounded by
1 1 1 1

1R vee 112 1R dure |2 IDRIIZIORIE < e(WN +N) +Po+P fLP.
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In light of (4.1), the above bound for ||R, div vt,||%, together with (4.2), (4.3) and
Theorem 3.2, gives

t
1B vie |2 SGP(N)+P0+7>/ P. 4.19)
0

Furthermore, invoking (4.2) for k = 2, multiplying ~/R’ and taking H' norm
and squaring, we get:

t
3
IVR' R 113 < €lIVR Riull5 + 11(R) 2vie |7 + €N + Po + P/ P,
0

which implies, after invoking (4.2), that

t
||\/£R,(R,,||§,<VEP(J\/)+P0+P/ P. (4.20)
0

In addition, this allow us to continue this procedure to get an estimate for
R'divvs; let X = R'0;v and s = 3 in (4.2), we gets

t
||R’divv,||z5e||R’vf||3+||R’R,t||z+7>o+7>/ P,
0

squaring, and invoking (4.2), (4.3) and (4.2) gives
t
||%Kvt||%§eP(N)+Po+73/ P. 4.21)
0
Now, invoking (4.2) for k = 1, squaring and taking H> norm yields

t t

IR < €llR 113 + IR vl +eN+7>o+7>/ P < ePN) +Po+7>/ P,
0 0

(4.22)

as a consequence of (4.2).
Finally, the above procedure yields

|ldivolls < €llvlla + |[R:]l3,

and hence
ol S P+ Py P [ .
via (4.2), (4.3) and (4.2). Moreover, we have:
IRIIZ S €lIRIG + 1R vl + Po +7>/0[7> SePN) +Po +7>/Ot P,

via (4.2).



880 M. M. Disconzi & C. Luo

4.3. The Continuity Argument, Proof of Theorem 1.2

Recovering the a priori assumptions: We need to control the left hand side of
4. 1D)-@4.1)byePN)+Po+P fé ‘P. The control for (4.1) is a direct consequence
of the Sobolev embedding , that is,

t
10mllzs + 1020l S linlla < Po +7>/0 P.

This also controls the left hand side of (4.1) by the definition of g’/ and Flkj
Estimates at r = 0:
As we have seen that P involves quantities involving time derivatives, and so
one needs to show that these quantities can be controlled by Py. More precisely,
we show

190 O)]13 + 1Revir O)]12 + 1R vy (O]
+ IR O)][3 + [V Rit (0) |2 + [Be Rers (0)]]1
10012 + [1VRe v O] 12 + [Re e (0)] o
+ 1R O)]1 + [1VRe Rers (0)]]o < Po.

This estimate is straightforward, that is, we use (1.1) to obtain ||2R,v:(0)|]3 <

1oy laq (OIE § Po. Moreover, we use (4.2) with k = 0 at t+ = 0 to obtain

[IR: (0)[]3 < [lpy Ldiv v(0)]|3 < Po. The other quantities in (4.3) can be controlled
similarly. In addition, we also need

3
Recve (O)13,0 + [Rcvir (O)I2,0 + [1(Rie) 2 v (O)[]1,0 < Po.

To control ||R,v,(0)|]3,1, we use (4.2) to obtain R'vi(0) = —8"/9;R(0), which
implies ||R, vf O], r < ||IR()]la,r < Po. On the other hand, we control the
normal component v; 3(0) using the elliptic estimate. Time differentiating (4.3) and
then restricting at t = 0 yield

Av; (0) = —0 g (0) + F,

where F satisfies ||R F||1.,r < Po. From the elliptic theory, the control of ||’ vf’
(0)]|3.r requires the control of ||R,q;(0)||1.r and hence ||R'q;(0)||1.r. Invoking
the wave equation (2.3), this is bounded by [[Ag(0)||1,r + ||F1ll1.,r- There is no
problem to control || F1|[1,r by Po in light of (2.3). Furthermore, invoking the
compatlblhty condition in section 5, that is, gy = aAnO, one controls ||Aqol|1.r
by [|m3]ls.5

The estimates for ||R, v (0)||2.r, ||(9‘{,<)%vm (O)]]1,r are treated in a similar
way, upon time differentiating more times and proceeding as above. We omit the
details, but explain the estimates up to the highest order in an expository way. First,
to control the tangential component, we use (4.2) and (4.2) to get

v,t(O) ~ 879 jR:(0) ~ 819 0,07 (0),
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3 . P R L
(R)2v},,(0) ~ R'8Y9 R (0) ~ ~R'873;Ago ~ vV R'8" ajAAr]g,
where ~ means up to controllable terms. This yields that

, 3 .
[1Rev;, Ol2,rs  [1(Re)2 vy, O)]]1, 0

are controlled by ||div vo||3,r and ||n8 |l6.5, respectively. Second, to control the nor-
mal component, time-differentiating (4.3) two times and restricting at t = 0 yields
Kv?t (0) ~ ¢11¢(0). Therefore, from the elliptic theory, the control of ||R, vz3z O)ll2.,r
requires that of ||9R, g+ (0)||o.r and hence [[Ag;(0)]]o.r, in light of the wave equa-
tion. Invoking the compatibility condition ¢, (0) ~ KUS, [|Ag;(0)]o,r is controlled
by ||AK”8”0»F~ On the other hand, time-differentiating (4.3) three times and re-
stricting at t = 0 yields van(O) ~ ¢:11:(0). Therefore, from the elliptic theory,
the control of ||(B)? v3, (0)||1.r requires that of ||(Fe)? g (0)]|_1.r and hence
||v/9Re Agyr(0)]|—1.1. Invoking the compatibility conditions g, (0) ~ Ad3¢(0) and
q(0) ~ Ang, we have that ||v/R'Agy; (0)||—1,r is bounded by [|n]|l6.5.
Hence, Theorem 4.1 implies

t
N() S ePN @) + PN(0) + P(N(t))/ P(N(s))dS.
0

Invoking the continuity-boostrap argument in [58], this implies that there exists
M > 0 such that

N() <9, whenevert € [0, T], (4.23)

for some 7 > 0.

4.4. Passing to the Incompressible Limit, Proof of Theorem 1.3

Proof for statement 1:
This is standard since we have an uniform a priori estimate.

Proof for statement 2:
The bound (4.3) implies that [[v||4 + || R¢ll4 < /9T uniformly as k — o0.
Therefore, by the Sobolev embedding, we have:

> (10 el + 10" Relleey) < V0L

This yields that for each fixed ¢ € [0, T'], v, and R, are uniformly bounded and
equicontinuous in C2(£2), which implies the convergence of v, and R, in C2().
Moreover, v, — v since a”%9, (vc)e — 0in L°°(2), which is a consequence of
[10:q, |2 being bounded independent of ¥ and R, — 0 as k — 0.
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5. The Initial Data

5.1. The Compatibility Conditions

The compatibility conditions for the initial data are necessary for construction
of solutions, as well as for passing the solution to the incompressible limit. We
recall that since

N
q= og”nuf)ijn“, on T,
we have
qli=0 = (Ugl]ﬁuaijnu>‘l:0 :=Hp, onT,

which is the zero-th order compatibility condition. In addition, for each j > 1, the
Jj-th order compatibility reads as

3/ qli=0 = 3/ (Ugijﬁugﬁ,"?ﬂ>

= H;, I. 5.1
0 j» on (5.1

Our goal is to construct (vo, qq) that verifies the compatibility condition (5.1) for
Jj =0,1,2,3. We shall focus on the case when 2 = T x (0, 1) , whose boundary
I" is flat. Our method can easily be generalized to more general domains.

5.2. Formal Construction

We shall describe our method formally which serves as a good guideline for
readers. Since

we get
q: ~ Kv3, qir ~ va, qrir ~ vat, on I,
after taking time derivatives. Moreover, since the Euler equations imply
v ~dq, q;~ kdivv,
we have
g ~ ABq, qui ~ ABq, ~ kAdsdivv, onT.

For each ¢ = 0, 1,2, 3, we obtain the £-th order compatibility condition after
restricting the above expression at r = 0, that is,
qli=0 ~ Z’?S, on T,
qili=0 ~ KUS, on T,
qrelr=0 ~ K83q0, on I,

Gritli=0 ~ k Adzdivv, onT.
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On the other hand, since

qr ~ kdivy, gy ~ kdivo; ~ kAq, Qi ~ KAG: ~ > Adiv v,

then
go ~ And, onT, (5.2)
divvg ~ k" 'Av3, onT, (5.3)
Aqo ~ Kﬁlxagqo, on I, 5.4
Adivvg ~ k" 'Addivey, on T. (5.5)

In other words, the first order compatibility condition (that is, (5.1) when j = 1),
is expressed in vg, and the second order compatibility condition is expressed in g,
and finally the third order compatibility condition is expressed in vy again.

To construct initial data that satisfies the compatibility conditions up to order 3,
our first step is to obtain (up, pg) that satisfies the (5.2). This is easy, since we can
simply let ug to be velocity for the incompressible case, that is, ugp = ug, and p

—Apy = (3uu(v))(3ullff), in €,
po=Anj, onT. (5.6)

Our next step is to construct a velocity vector field wg = (w(l), W(z), wg) that satisfies

(5.2). To achieve this, we set W(l) = u(l) and w% = u(z), while we define wg via solving

Azwg = Azug, in 2,

wo =u), Bwp~ ik 'Au} — dju) —dul, onT. (5.7)
We now construct qq that satisfies (5.2). We define q by the solution of

A3q0 =0, in Q,
do =Py, 3399 = #3Pg, Aqy ~ k 'Adspy, onT. (5.8)

Finally, we need to construct vo using (5.2). To achieve this, we set V(l) = u(l),

V(Z) = ug, and we define Vg by solving

A4V(3) = A4W(3), in 2,
Vi =wy, 03V~ Kk "Aw — dywh — dowj, on T,
A3Vy ~ k13 AWy — 8391 wh — d30,w3, on T,

Ad3vy ~ k" Ad3divwg — Adywh — Adwi, on T. (5.9)
Remark. In fact, an = 0 on the boundary of the reference domain T2 x 0, 1).

But that we do not use this condition exactly because we want to keep the regularity
of each argument as it should hold for the general domain.
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Theorem 5.1. Let ug € H(Q) be a divergence free vector field in Q and Po be
the associated pressure. Then there exists initial data (vo, q¢) = (v, q;,) satisfying
the compatibility conditions up to order 3, that is, (5.2)—(5.2), such that vg — U
in C3(Q) and div vy — Oin CY(Q) as k — 00, and Py is uniformly bounded for
all k.

Proof. (vo, qq) verifies (5.2)—(5.2) follows automatically from our construction.
Since py, satisfies the elliptic equation (5.2), for s > 4, we have

IIpolls < 11APolls—2 + lIPolls—0.5,r (5.10)

which requires |[ug||s—1 and [|no]|s+2 to control. Moreover, by the poly-harmonic
estimate applied to (5.2) we have

Naolls S 1AQglls—2.5.r + 103qplls—1.5.r + |1qolls—0.5.r
<k [Adpglls—2 + 1183Polls—1 + [1Polls-

Invoking (5.1), this requires ||ug||s and ||ng||s+3 to control. On the other hand,
invoking (5.2) and the poly-harmonic estimate, we get

3 2.3 3 3
[wolls S 1Ayl ls—4 + 1103Wolls—1.5,0 + [[Wolls—0.5.1

23 13 1 2 3
S AWy ls—4 + 7 [ Awplls—1 + [[91Wolls—1 + [102Wglls—1 + [ug]ls,

which needs ||u(3)|| s+1 to control. In addition, since w6 = uf), one controls |[wo|ls
via ||ug||s41. Moreover, invoking (5.2) and the poly-harmonic estimate, we get

3 4.3 3 223 a3 3
volls S A wylls—8 + [[A3Vplls—3.5.r + [105Vglls—2.5.1 + 1183Vl ls—1.5,0 + [IVglls—0.5.1
4 e ol 2
S NA* =g + kT [ A3div wolls—3 + [|AB Wy ls—3 + [|Ad W3 ||s—3
1 w3 0 . 2
+ k7 103 AWg|[s—2 + 19301 Wgl[s—2 + [19302W|[s—2

1 w3 | 2 3
+ i 1AW lls—1 + [[01Wglls—1 + 1102Wglls—1 + [IWplls,

which requires ||W(3)| |s+1 and hence ||u(3)| |s+2 to control. Once again, since V6 = uf),
one controls ||vol||s through [[ug||s42.
Next, since (5.2) implies

A*(wg—u) =0, inQ,
W(3) — ug =0, 83(w8 — ug) ~ K_IZug, on I,
we have that ||w(3) — u(3)||s — 0 as k — o0, and hence wyp — ug in H*(Q2) as
k — oo. Similarly, (5.2) implies v9 — wq in H*(2) as k — 00, and so we
conclude that vog — ug in H*(2) as k. — o0. Furthermore, because s > 4 and vy is
uniformly bounded in H*, we have that vo — g in C2(£2) thanks to Arzela-Ascoli
and div vy — divag = 0in C'(Q).

Finally, we recall that Py consists of

[Ivolla, I1¥olla.r, lldoll4, [1Qoll4.r [1div volrl3,r, [[Avolrl2,r),

which can all be controlled by ||ug||s+2 = ||uo|ls+2 and ||ng||s+3 with s =4.5. O
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Remark. The initial data constructed in Theorem 5.1 is given in terms of the initial
pressure q instead of the initial density Ry. This is because the boundary condition
is more easily stated in terms of ¢ and we need to make sure that the quantities
[lqpll4 and ||qg||4,r are bounded uniformly in «, but we can compute Ry through
the equation of states R = R(q), thatis, Ry = [(c),/c)’lqo + g1\,

The rest of this section is devoted to provide detailed construction, and for the
sake of simple expositions, we assume the equation of state is taken to be

g(R) = k(R —1).

This allows us to exchange ¢ and R in an explicit way. Also, throughout the rest of
this section, we shall use Q to denote a rational function.

5.3. Construction for (uo, py, 2) that Satisfies (5.1) While j = 0

Letuy = vg, where vy is the data for the incompressible Euler equations. Since
Hy = aAnS, we define p, by solving

—Apy = (Bﬂug)(auug), in Q,
po = Hp, onT.
5.4. Construction for wo that Satisfies (5.1) While j = 1

We next consider the first order compatibility condition, that is, ;g |;—0 = H;.
Since

0; (agijﬁugfin”) = ogijﬁuglzjv” +00®, an, 9v)0°n, (5.11)
we have that
Hi = o Av3 + o Q (310, 9v0) 9> 0.
On the other hand, since d;g = —Rxa"“0,v,, (5.1) with j = 1 becomes
divyy = K_I(K_lqo + 1)H;, onT,
and so
83118 = K_l(K_lqo + 1)H| — 04 vé — Bzvg, onT.

Furthermore, this suggests that wo should be constructed as follows: let wy =
(u(l), u%, WS), where w(3) solves

Azwg = Azug, in €2,
wg = ug, on I,
Bwy =k lo(kpy + DAW — ko (k" py + 1) Q(no, dug)d*no

—81u(1) — 82u%, on .
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5.5. Construction for q that Satisfies (5.1) While j = 2

The second order compatibility condition reads 8t2q| =0 = H>, and we need
to express this in terms of 1o, vp and go, which yields a system satisfied by py.
Invoking (5.4), we have

9? (Ugijﬁugin”’) =og"h, 050 + 0 Q. In, 9v)a°v
+ 00, an, 3v)a°n@v, + 1). (5.12)
In addition, since vaL 4+ a""d,q = 0, we get for s = 1, 2 that

§S(v;1v) — _R—lal)pcgsauq _ Z 5]((R—1a11,u)5s—kavq.

1<k<s
This, together with (5.5) and the equation of state R = x ~ !¢ + 1 imply
Hy = Hy(no. po. vo) = —0 (k"' qo + 1)~ "Ad3q0 + 0 Q(@n0, 3v0)3>vo
— JQ((K_lqo + 17! K_lgqo, ano, 58770)58110
- UQ((K_l‘IO + 17", 9no, k"o, K_152QO)3610

+00(( g0+ )7 Bno. 390, Jvo, 990) B + 3%n0). (5.13)

On the other hand, the continuity equation implies Ra"*d,v, = —k " '3;q, and
hence

— 17192 = 8,(Ra")d, vy + Ra"®9,0,v,
= 3 (Ra"*)d, vy — Ra"*d,(R™a",d,q)
= —a"a",0,,0,q — Ra"*9,(R™'a",)d,q + 8 (Ra"*)d, vg. (5.14)

Restricting the above identity to the boundary I" and then taking r = 0, we get

’C_lazqur=o = Aqo — Q((K_ICIO + 11, 9n0, 810, D0, K_laCIO)aCIO
+ 00, 310, dv0)dv0. (5.15)

Invoking (5.5) and (5.5), we are able to rewrite (5.1) when j = 2 as

Ago = @ (g0 + 1", 8o, 9%no, Do, 100 ) 240
— Q(k ™" q0. 9n0. 3v0)dvo + k' Ha(10. po. v0). (5.16)
This yields that g, should solve
A3q0 =0, in L,

qo =P, onT,

a d

% = 83(10 = 83p0 = %, on F,
Aqp=¢, onT.
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Here,

0 = 0(("py + 17", a0, 9%no, Bwo, k= 9my ) Iy
— Q" po, a0, dWe)dwo + k' Ha(n0, Pg. Wo).

which is obtained from (5.5).

5.6. Construction for v that Satisfies (5.1) While j = 3

Our last step is to construct vy that satisfies third order compatibility condition,
that is, 8t3q l;=0 = H3 on I'. Similar to what has been done for the previous cases
when j = 0, 1, 2, we shall first compute the compatibility condition explicitly.
Invoking (5.5), as well as vt“ = —R_la"“aﬂq and d;q = —«x Ra"*9,,vy, we have

0 (o i) = ~01 (o (873,05 (R " 0,0))
+00(®, 0, 51))521), +00(g,n,dn, dv, Ev,)gzv
+0Q(A, 9y, dv, dv;)(Avy, +52n)
= —0g" 7,070, (R™'a"",q) + 0 Q (A, I, Jv)7; (R~ a""d,q)
+00Q@, R™, AR, 3°R™", Jv, an, 99n, 9%0n, dq, 00¢)9°0q
+0Q@, R~ AR, dv, a1, a, 997, dq, 00¢)0°v

+oxQ@, R™1AR™Y, 8, 8%v, an, 89n, g, 09q) (a8, 09vy + 0°7),
(5.17)

where
08" i, 070, (R™'a""d,q) = og" i, R~ a""9,3;,q;
+0Q@, R, R, 3°R, dv, dn, 90y, 9>0n, dq, 00q, 0°0q)(dq, + 30q;)
= —kog" a9, (" duvp)
Aok 33—k, ap
+roY 0G0 R)(a (a aav,g))
+ ko Q(A, R, dR, d*R, dv, 3%v, 3°v, an, ddn, 929n, dq, 399, 528q)(a“ﬂ8a
@dvg + 31)/3)). (5.18)
Restricting (5.6) and (5.6) at t = 0, we get

H3 = H3(0. go. v0) = —k0d3Adiveg —o ) (3°q0) (8~ "div vo)
(=1,2,3

+ ko Q((K71QO+ 1™, 8w, 8%vo, 3%vo, dn0, 820, 8> no, g0, 3%qo, 5236]0)

> 9tdiv . (5.19)

(=12
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Next, invoking (5.5), we obtain
i G = 8y (a““avaauavq + Ra" 3, (R™'a",)d,q — 8,(Ra“°‘)8uva>
= a"*a",8,,0,q, + Ra"*d,(R™"a",)d,q
+ QR, R, OR™", an, 3an, v, dv)d%q
= —Rka"*a",d,0,(a? dpv,)
— 2ka"*a”, (3, R)d, (aP dgv,)
— kata”, (8,8, R)(a? dgv,)
+ Q(R, R AR, 31, 89n)d(aP” dgv,)
+ O(R, 3R, R~ 0R™, 81, 39nm)aP” dpv,,
+ O(R, R~ OR™, 81, 90n, v, 0v)0°q. (5.20)
Restricting (5.6) to the boundary I" and then taking ¢+ = 0, we have

' quili=o = —kRoAdiveg = ) 2(0q0) (8> div vo)
+ Q((K_IQIO + 17"« g0, dvo, 3o, 32770)2

+ Q((K_ICIO + 17 ke qo, vo, dvo, dno, 32770)32610-

a*div vo
£=0,1

Invoking (5.6), the compatibility condition g+ |;=0 = H3 can then be re-expressed
as
Adivvg = ¥ (10, g0, v0)

where

IS e | ¢ 2L 3.
Ym0, o, v0) = k(T lgo + DY, 2(0°0) (07 div vo)

-1 -1 -1 -1 2 lq:
+ Qg0 + D7 kg0, duo, a0, 9%m0) Y-, 0" div g

+x7! Q((K_]CIO + 1) kg0, vo, duo, a0, 32770>32610

— k2 (g0 + ™' H3(no, g0, vo)-

This implies that vop = (V(l), V%, vg) should be constructed such that V(l) = u(l) and

2 _ .2 3
Vi = ug, whereas vy solves

A4V(3) = A4w(3), in €2,

VS = wg, on I,

83vg = ko (k" qo + AW — ko (k™ qo + 1) Q(@n0. dW)d2 110
—Blw(l) — azw%, on I,

02v3 = 33(K—1o(/<—1q0 + AW — Lo (= qo + 1) Q(@n0, Iwe)d210
—Blw(l) — 82w(2)), on I,

AV = ¥ (10, qo, W) — Adywl) — Ad,w3, onT.
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Appendix

A Basic Estimates

Theorem A.1. (Standard div-curl estimates) Letr X be a vector field on Q@ with
sufficiently regular boundary I". Define div X = 9; X/ and (curl X);; = 0; X —
0jX;, then for 1 < s < 4, we have

[1X[ls S Mdiv X|ls—1 + lleurl X||s—1 + [|1X - Nlls—05.r + [ Xlo. (A1)
XI5 S Mdiv X|ls—1 + lleurl X[ls—1 + [1X - Tlls—0.5,0 + |1 X]lo, (A2)

where N is the outward unit normal to T, whereas T is the unit vector which is
tangent to I.

Proof. We refer [47] for the detailed proof. O

B The Energy Identity for the Wave Equations of Order 3

We recall that for r = 1, 2, 3, the wave equation reads as

JR'O g —a" A" 8,8,0 g =G, + S,

where
Gr = _Zhﬂﬁ]:r(azj' (TR BT ) + a" (8,00)0] va
=
* Zj1+jjz>:lr—1a”"‘8u(8,j‘ AR 9,07q)
1=
a 'OOZ/& +jz:r71(afjlﬂam)(atjzauva).
and

S, = a"(d,A*)d,9 " 'q.
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Theorem B.1. Forr =1, 2, 3, let

w? = %/on"(JR’a{q)zdy + %/Qp(;]R’(A"“E)U&tr_lq)(A’gaﬂat’_lq)dy
+ 2 [ eI Gt @0 ) 85
Then,
Z,§3W2seP(N)+e(||q||§+||q,||%)+7>0+7>/0t7>, (e 0,71,

where T > 0 is sufficiently small.

Proof of Theorem B.1. It suffices to consider the case when » = 3. Invoking (1.1)
and (1.3), we have
d1
dr 2

= [ o RS @A 08,820) 4y

/ py ' (JR'9}q)* dy
Q

+/ Py (JR'8}q)(Gs +S3)dy + R (B.1)
Q

where R consists of error terms that are generated when 9; falls on either J or R/,
which we have no problem to control. In addition,

fQpo—‘(JR’a?q)(a”“AﬁglauaMafq)dy

= / Py (R'83q) (A" d,)(A%,8,07q) dy — / Py (JRZ9S;.  (B2)
Q Q

The last term in (B.1) cancels with the corresponding term in (B.1), which is es-
sential since ||S3||o cannot be controlled uniformly when R” — 0. Moreover, the
first term on the right hand side of (B.1) is treated as

/Q Py (R'0}q)(A™0,)(A%,0,07) dy
= _/QpglR/(A”“auafq)(A’é,Buatzq)dy
+/ Py R'(AYN,32q)(A",8,8%q) dS + R. (B.3)
r

The first term on the right hand side of (B.1) is equal to

d1 _
~43 /Q Py R'(AV9,82)(A%,8,07¢) dy + R,
and hence moved to the left. In addition,

/pglR/(A”“Nvafq)(A’ﬁauarzq)dS
r
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:/p(;‘R’af(A”“qu)a}(Al;auq)ds
r

- /F o5 'R} (A” Nogq) (3, A%)(3,8:q)

WhB;

S [ o7 RS0 @] A N.5Pg)
i1>1 r

J1Z

WB»

+ Z-/1+j2=3f po_lR/(atAl&)(auat‘I)(azjlAW)(NUE)tqu),
j1>1 r

J1=

WB3

which is due to
AN, B} g = 9 (A Nog) — > i1 jp=3(@ AN,
J1=1

AR 9,02q = 02 (A% 0,9) — (3, AM)d,8,q.

Next, invoking (1.1), (1.3) and (2.1), the main boundary term is equal to
o /F P y/280 T (352 1) (0 na)

+UZJ-1_+,-21:3 /F R (37" /28 T (070 n") (8] va)
J1=

Wy

= —0 [ ReVEETL @ T @010 + WEs
r

—o /F R (2 TIN50 (304

WBs
The first term on the last line is equal to
do

-7 /F R /28" T1% (870" ) (9] na)

o .. _ —
+3 /r R, (VEL T 3,1 (391,

WhBe

where the main term is moved to the left, and this completes the construction for
(2.5).
The proof of Theorem B.1 requires the bound for f; [|Gsllo and °, ;¢ fo WB;.

There is no problem to control fot [1G3llo- In addition, using the duality, we have

WBy < P, 1IR3 (A @ llol19:q ]2,
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and

WB2 S Pl 1nll) (11RO (A% ) lo (VR 9970 ol 412
+ IR A ) oV R 00,) 11 1arg 2
+ VRO (A3, 1ol IV R gl 1)

Therefore, fot WB1 + WB; can be controlled appropriately. Moreover, fot WBs +

WHBg is controlled in a routine fashion. On the other hand, fot WB4 + WhBs is
treated in [21], where the R, -weights are incorporated so that the estimates in [21]
can go through. O

C The Energy Identity for R, -weighted Wave Equations

We recall that the R, -weighted wave equation reads:
RR'ID?02q — RLa" A" 8,0,D°q = G4 + S,
where

Ga = —RLD8,, JR1,q + RE[D?, 001, (R~ R'8,q) + Rea"™ (3,00) D8, vq
+Rea"0, (D7, A%10,q) + Rea" 0, (1D, pold,ve)
— REpo[ D33y, a"* 19, v,

and
Sy = ®ba"(3,A )8, Dg.
Here, £ = 1 when D3 = 8?, l= % when D3 = 835 and ¢ = 0 when D3 = 9,02
Theorem C.1. Let
Wi = % fQ po 'R R D*0,q)* dy

+3 /Q Py "R R (A0, D3q) (A3, D*q) dy

+ %frﬁ%%u'l\/?gij 1% (3; D*3,n*)(3; D) dS.
Then,

t
w3 56P(N>+7>o+7)f P, tel0,T],
0

where T > 0 is sufficiently small.
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Proof of Theorem C.1. Invoking (1.1) and (1.3), we have

d1 _
3 /Q Py 'R (IR D0ig)* dy
2/ Py ' RZ(JR' D38,q)(a" A,3,8,D%q) dy
Q
+ /Q 05 'R R' D3 0,g) @i + Sy dy + R, (R

where R consists error terms that are generated when 9, falls on either J or R/,
which we have no problem to control. In addition,

/p()_ID‘i,ZCZ(JR/D38tq)(a”“A%8U8MD3q)dy
Q
_ —1m2l p/n3 va " 3
—/ Py R (R'D0:,q)(A™0,)(A',0,D q)dy
Q
— / py 'R2EJIR' D?3,9)S,s. (C.2)
Q

The last term iE (C.1) cancels with the corresponding term in (C.1), which is es-
sential since ||S3||o cannot be controlled uniformly when R” — 0. Moreover, the
first term on the right hand side of (C.1) is treated as

/ oy ' RZ(R'D33,9)(A™3,)(A",3, D q) dy
Q
= —/Qpo—lmﬁfR’(AV“aUD3atq)(AP;aMD3q)dy
+/ py 'R2ER'(AY N, D38,q) (A% 9, D3q) dS + R. (C.3)
r

The first term on the right hand side of (C.1) is equal to

dl1

_EE/ oy "RIR' (A8, D) (A%,8,D%q) dy + R,
Q

and hence moved to the left. In addition,
/po—‘mﬁ‘R’(A““NVD3a,q)(A*;aMD3q)ds
r
= / py 'R2ER' D39, (A" N,q) D (A%, 8,,9) dS
r

_/Fpo—lmﬁfR/D%,(A““Nuq)([zﬂ,Alg]auq)

WB)

- / Py RO D (Al duq) (ID°9:. A™]N,q)
r

WB;
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+ o5 R (D%, 4 INg) (D, A1),

WBs

which is due to
AY“N,D33,qg = D*3;(A"*Nyq) — [D30;,, A"*IN,q.
A9, D%q = D*(A%9,q) — [D?, A% 19,9,
Next, invoking (1.1), (1.3) and (2.1), the main boundary term is equal to

o / M2 Jggl n;‘;(D3a,5§jn“)(D3at2na)
r

+ /F RHD0;, 2V A0 ") (D drve) +R

WB;

- _0/ T 18 (D30T By DY)+ T
r

—o f R, (Vg ) (D*8,9;1™) (D33 ve) +R.
r

WBs

The first term on the last line is equal to

—== /F Rt /g % (D?0,0;") (3 D ;)
o

32

/r R0, (g8 %) (D?0,9;0") (3 ;D7)

Whs

where the main term is moved to the left, and this completes the construction for

@2.5).

The proof of Theorem C.1 requires the bound for fot 11G4llo and 2 1<j<6 fot /vaj.

First, fot WB; +WB, can be controlled similar to fot WBj 4+ W23 in the previous
section, after distributing correct R, -weights. Second, the control of fé [1G4llo and
fot W13 can be done in a routine fashion. Finally, fot WB4+WDBs+WDBg is treated

similar to f; B in section 3.4. O
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