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Abstract

Phase-field models have recently had great success in describing the dynamic
morphologies and motility of eukaryotic cells. In this work we investigate the
minimal phase-field model introduced in [6]. Rigorous analysis of its sharp
interface limit dynamics was completed in [17, 18], where it was observed
that persistent cell motion was not stable. In this work we numerically study
the pre-limiting phase-field model near the sharp interface limit, to better
understand this lack of persistent motion. We find that immobile, persistent,
and rotating states are all exhibited in this minimal model, and investigate
the loss of persistent motion in the sharp interface limit.
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1. Introduction

Eukaryotic cell motility underlies numerous biological processes includ-
ing the immune response and cancer metastasis. Cell motion is initiated
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and maintained by an evolving cytoskeleton comprised of actin and myosin
proteins capable of driving a wide range of motility modes. In recent years
a variety of modeling techniques have been highly successful in replicating,
explaining, and predicting cell morphologies observed in experimental set-
tings, see, e.g., [1, 3, 8, 9, 19, 21, 22, 24, 26]. In this work we focus on the
bridge between two specific modeling paradigms: free boundary problems and
phase-field models. Free boundary problems track the cell boundary via a
curve (2D) or surface (3D) whose evolution is governed a geometric evolution
equation, often dictated by boundary data of a differential equation solved
on the interior. Phase-field models, on the other hand, use an evolving order
parameter whose finite width transition layer between phases tracks the cell
boundary. Phase-field models avoid difficulties of explicitly discretizing and
tracking the moving interface, making them ideal for numerical simulation.

We are motivated by the 2D phase-field model for keratocyte fragments
(e.g., lacking a nucleus) studied in [6]. It is a minimal version of a more gen-
eral model introduced by Ziebert, et al. in [32]. The original model in [32] has
been extended to include spatial adhesion dynamics [31], non-homogeneous
substrate effects [13, 16, 25], and interacting dynamics of multiple cells [14].
These extended models exhibit a wide variety of dynamical modes and can
be used to understand the complex morphologies of dynamics cells. On the
other hand, the minimal model of [6] allows for rigorous mathematical anal-
yses of the model. For example, in 1D, necessary conditions for the existence
and stability of persistent motion were proven [7].

However, a numerical exploration of the simplified phase-field model re-
mains unexplored in 2D. Thus, our primary goal of this work is to numeri-
cally study the minimal 2D phase-field model introduced in [6] over a range of
parameters. We find that this simplified version is surprisingly capable of ex-
hibiting a range of motions in qualitative agreement with more sophisticated
models, including stationary, persistently traveling, and rotating modes.

The minimal model admits a non-trivial sharp interface limit: an asymp-
totic reduction of the phase-field model in the limit that the width of the
diffuse interface (the location of the cell boundary) tends to zero, transform-
ing the model into a free boundary problem. Rigorous analysis of the sharp
interface limit was completed in both 1D [7] and in 2D [17, 18], where suffi-
cient conditions for existence of traveling wave solutions were proved. These
analyses were thus able to provide insight into the minimal biophysical mech-
anisms that are necessary to drive these motility modes, and which modes
require more complex mechanisms.



However, previous numerical simulations of the 2D sharp interface limit
showed that persistent motion was unstable, and more crucially, does not
exist when certain symmetry is present (see Section 4 for details). Therefore,
a secondary goal of our work is to explore persistent motion in the phase-field
equation, and understand its existence as we approach the sharp interface
limit.

2. Model

2.1. Biological background

Keratocytes are prototypical for the experimental and mathematical study
of cell motion. Their characteristic cell length/width is two orders of magni-
tude larger than the height while motile, hence they are well described by 2D
models (for recent advances in 3D models see, e.g., [10, 27, 30]). Keratocytes
are additionally able to exhibit persistent motion over many times the cell
length with approximately constant cell shape, making them ideal starting
points for the study of motion [21, 28].

We recall the following key factors contributing to cell motion, and re-
fer the reader to [19] for a more detailed review. A crawling cell maintains
self-propagating motion via internal forces generated by actin polymeriza-
tion. Actin monomers bind together to form filaments which create a dense
network at the leading edge of the cell, known as the lamellipod. The cell’s
leading edge protrudes via growth of actin laments at the cell membrane and
degradation of the filaments towards the interior of the cell, a process known
as actin treadmilling. Intercellular adhesion complexes form ligand bonds to
the substrate in order to transform this propulsion force into traction forces.
Myosin motors interact with actin filaments to generate contractile forces.
Acto-myosin interactions contract of the rear part of the cell, pulling the rear
of the cell, and allowing for persistent motion. In idealized mathematical set-
tings, such persistent motion is described by traveling wave solutions. Such
motility remains a rich area of study: persistent motion been observed in
both myosin-inhibited [11], and actin-inhibited [12, 23] cells. It has addition-
ally been observed that random fluctuations are sufficient to spontaneously
switch a cell from a symmetric, non-motile state to motile states [2, 10].

Moreover, by varying biophysical parameters (such as actin polymer-
ization strength, substrate adhesion/elasticity properties, or myosin motor
strength), cells additionally exhibit a wide range of motility modes beyond
persistent motion, such as stick-slip (oscillations in translational velocities)
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and bipedal (left and right sides alternating forward motion) motions [4, 5].
As such, there is a deep need to understand the interactions of various bio-
physical pathways leading to such a variety of behaviors.

Finally, of particular interest are “rotating” cells, experimentally observed
in [15], where cells remained essentially stationary but experienced lateral
waves of protrusions of the membrane. This was caused by the expression of
a particular kinase (MLCK) leading to an increase of myosin activity in the
cell’s lamellipod. The increased myosin activity was hypothesized to enhance
actin depolymerization (or alternatively, to sweep the actin network toward
the center of the cell), thus resulting in shorter edge protrusion lifetimes.
Shorter edge lifetimes cannot sufficiently polarize the cell to generate motion
in a single direction, resulting in lateral waves of actin protrusion at the cell
boundary.

2.2. Phase-field model

The following 2D phase-field model for cell motility was originally in-
troduced in [32]; we study a slightly simplified form which is amenable to
rigorous analysis (see below):

dip = DyAp — 17 F(p) — a(Vp) - P
0P = DpAP — TQ_IP — BVp.

Here
F(p) =1 —=p)(d(p) —p)p (2.3)
1

p) = 3+ [ [ 0lev.1) = ple.0) dady| (2.4)

Then, the phase-field variable p = p(z,y,t) takes value p ~ 1 in the interior
of the cell and p ~ 0 outside the cell, and the enclosed area

A(t) —/Qp(x,y,t)dxdy (2.5)

is approximately preserved due to penalization from 9.

Parameters D, and 7 represent cell diffusion and reaction rate. In phys-
ical terms D, represents the ratio of surface tension of the cell membrane
to friction with the substrate [32, 26]. Together D, and the reaction rate
71 dictate the rate of curvature driven motion and the size of the diffuse
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interface. In particular the size of the diffuse interface scales with \/D,7;.
Active transport of p occurs along the vector field P = P(x,y,t) which rep-
resents the actin network from a macroscopic point of view. At each (z,y)
the vector field points in the average local orientation of actin filaments, and
the magnitude of the vector represents the degree of orientation (e.g., many
well-aligned actin filaments result in a larger magnitude vector) [32].

Dynamics of actin filaments P are regularized by diffusion and experience
global decay due to depolymerization. As actin polymerization is localized
to the boundary of the cell, the source term for P is given by —35Vp, where
[ is the rate of actin polymerization.

Physically, advection requires formation of substrate adhesions to gen-
erate traction forces. To that end, a transmembrane complex of proteins
form ligand bonds to the substrate and connect to the actin network. In [31]
adhesion dynamics are explicitly modeled via a PDE for an auxiliary scalar
field A = A(z,y,t) whose dynamics additionally encode substrate deforma-
tions (as a visco-elastic medium), and transport requires adhesion formation
so that 0;p ~ AP - Vp. For simplicity, we assume that adhesion is formed
instantaneously and uniformly with the vector field P.

Competition between advection by P and curvature motion flow from
the Allen-Cahn contribution constitute the main dynamics of interest: one
expects that if |P| is sufficiently small then the cell remains immobile and
if |P| is sufficiently large then the cell has sufficiently many active internal
forces to generate motion.

In [25], numerical simulations of the more general phase-field model, in-
cluding additional non-linear effects from heterogeneous myosin contraction,
non-linear dynamics of adhesion complex formation, and substrate viscoelas-
ticity. In that more complex setting, they observe several motility modes
including several types of rotating lamellipod solutions.

2.8. Non-dimensional model

In order to study the sharp interface limit, one first must non-dimensionalize
and choose appropriate scaling to give rise to non-trivial limit. To that end
introduce parameters

VDo afn
g = R2 s 60 = 52—1)/)7 (26)



where R is the characteristic size of the cell (say the radius). Then (2.1)-(2.2)
can be written in non-dimensional form [6]:

Lo

Op=Ap— gW (p)—P-Vp+ A (2.7)
1

0P = AP — -P — 4 Vp,. (2.8)

Here, for simplicity of analysis, area preservation is enforced via the Lagrange

multiplier
1 1

|Q| q €

so that W is the standard Allen-Cahn double-well potential W (z) = $22(1 —
z)2. We additionally note that A\ = A(t) passively encodes myosm motor
effects, by virtue of enhancing contraction of the cell membrane (e.g., when
A < 0). Of course, this is vastly simplified as it is assumed to be constant
in space and varying only in time. Then, the order parameter p has an O(e)
thick transition layer and the sharp interface limit can be analyzed as ¢ — 0.
Note that 3, is the ratio of adhesion and polymerization rates to €2, the
diffuse interface width. Analysis in the sharp interface limit assumes [ is
constant and shows the qualitative changes of behavior as one varies fy. Of
course, for By to remain constant requires also that the product a8 — 0.

A(t) = —W'(p)+P - Vpdz, (2.9)

2.4. Sharp interface limit

We recall that one reason we study the system (2.7)-(2.8), rather than the
more general model, e.g. in [25], is that the system (2.7)-(2.8) is amenable
to rigorous mathematical analysis: it is possible to derive dynamics in the
limit ¢ — 0 recovering the so-called sharp interface limit. In [7], both the
pre-limiting and sharp interface limit dynamics in 1D are rigorously studied.
In particular necessary conditions for the existence and stability of traveling
wave solutions are established, corresponding to persistently traveling cells.
Additionally, they establish the 2D sharp interface limiting equation, recov-
ering a geometric evolution equation for planar curves, I'(s,t) representing
the boundary of the cell. They show that the normal velocity V' of the curves
at each moment evolve by

V =K+ BV |/ K+ BBV (2.10)



.*‘ &‘Iillll %,
t=4.8 %....a':} 1

t=5.0

0

5

Figure 1: Sample snapshots of the three long time behaviors arising from (2.7)-(2.8)
at two nearby times: (left) stationary (¢ = .02, 8 = 80), (center) rotating (¢ = .035,
B = 110), and (right) persistent motion (¢ = .05, § = 130). Color indicates value of p and
arrows represent the vector field P.

where k = k(s,t) represents the curvature at location s and time ¢, and
®: R — R is a fixed non-linear function whose form is explicit and depends
on the double-well potential W. The integral term, as before, enforces volume
preservation. Analysis and numerical simulation of (2.10) was completed in
[17, 18]; we briefly review the relevant results.

Due to the importance of persistently moving cells, the authors considered
traveling wave solutions of (2.10). These are solutions of the form

[(s,t) =To(s) + vt,

where v is a fixed vector representing the velocity of the cell and I'g(s) is
the unknown cell shape. As expected by physical considerations, we require
sufficiently large g in order for traveling wave solutions to exist, as [ captures
the actin polymerization. Surprisingly, it was also shown that if ® was an
even function then traveling waves could not exist, regardless of the value
of #. In particular, the standard Allen-Cahn potential, as considered in the
current work, results in even .

It is thus natural to suspect that the simplified phase-field model (2.7)-
(2.8) cannot support persistent motion, perhaps because we have eliminated
symmetry breaking effects of myosin motors. However, as we will find below,
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the minimal phase-field model is capable of exhibiting a wide range of motions
for various parameter regimes, thanks to the finite width transition layer
allowing for non-trivial dynamics of the vector field P.

3. Numerical simulation of the phase-field model near the sharp
interface

To understand dynamics near the sharp interface limit, we investigate the
long-time dynamics of the phase-field model for various values of 8 and for
small values of . Simulations of (2.7)-(2.8) are done using an explicit finite
difference method with centered space steps (h = .04). The domain was the
square € = [0, 5]* with periodic boundary conditions. Time steps (dt = 8e-5)
are taken sufficiently small to ensure convergence of the simulations: taking
smaller time steps did not qualitatively affect any results. Additionally the
cell area is small compared to the domain size to ensure that there were
no boundary effects caused by the periodic boundary conditions. Again,
taking larger domain size does not qualitatively change dynamics. The non-
local term is approximated by Riemann sums (left or right hand choice was
irrelevant due to simulations being on a torus). We numerically tracked total
enclosed area, f f p(x,y)dzdy, to ensure that it was conserved over time.
The total time of integration is 7' = 5.

Initial conditions for the phase-field are a circular cell. We consider both
polarized and non-polarized initial conditions for the actin field: for polar-
ized initial conditions we assume that the actin field on the interior of the
cell is constant and pointing to the right, with a small random perturbation
to ensure robustness of the results. For non-polarized initial conditions we
take random initial conditions for the actin field with |P| < 1. Moreover,
we assume sufficiently long time integration to ignore transient effects. We
find that, regardless of initial conditions, the long time behavior was qualita-
tively the same. Thus, we report only on the results of the polarized initial
conditions.

After integrating past a transient time for the cell to reach stable behavior,
we record the resultant dynamics. The resultant data is summarized in
Figure 2. We note that taking smaller values of ¢ became computationally
expensive, due to the singular nature of the evolution of (2.7)-(2.8).

For all solutions which had non-trivial motion, we track the center of
mass of the cell in order to study its trajectory. We then calculate the av-
erage radius of curvature of this trajectory in order to distinguish between



persistently moving cells (straight line trajectory) and rotating cells (circular
trajectory). There is an arbitrary distinction between rotating and persis-
tently moving cell, as a persistently moving cell may have a slight turn due
to numerical artifact or non-symmetric initial conditions. Thus, to distin-
guish the two cases we set a threshold radius of curvature to be 10\/@ :
any trajectories with larger radii of curvature are defined to be persistently
traveling.

m
m
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- V.....'. *Rotating
~ - — O 000 00O
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Figure 2: Long time behavior of center of mass for a range of parameters. We observe
persistent motion (cells moving with constant shape in a straight line), stationary states
(cells relaxing to a circular shape without any motion), and rotating motion (asymmetric
cells whose center of mass traces a circular path). (left) Trajectories of the center of mass
after a transient period and (right) classification of type of motion.

Over the parameter range considered, we observe three modes of mo-
tion: immobile, persistent, and rotating solutions. Figure 1 presents
a snapshot and parameter values giving rise to each type of motion.

Immobile. We find that for any fixed e, there is a critical f..(¢) > 0,
so that for any < .. no motion is possible. This agrees qualitatively with
the theory developed in the sharp interface limit, as discussed in Section 2.4.
Heuristically, stationary states are expected for sufficiently small 3, since
taking 8 = 0, the model simplifies to the volume preserving Allen-Cahn
equation (as P = 0) which asymptotically relaxes to circular steady states.
Then, small values of § constitute a regular perturbation and so stationary
states are expected to persist for sufficiently small 5.

Persistent motion. Persistent motion represents a cell traveling with
constant shape. Since we use a symmetric double-well potential W, it is
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perhaps surprising, given the theory developed in the sharp interface limit,
that any persistent motion is possible. We do observe that for sufficiently
small values of € these persistent motions no longer exist in our model, thus
agreeing qualitatively with the results of [18]. We conclude that stabilization
of persistent motion in the sharp interface limit requires additional myosin
motor effects [29].

Rotating states. Rotating states indicate that the effective actin poly-
merization strength is not sufficiently strong to overcome surface tension,
creating a lateral wave of actin propagation along the cell boundary and
resulting in a rotating wave of protrusion in the cell, which results in a rotat-
ing solution. Traveling actin waves leading to such rotating states have been
investigated in the more complex version of the phase-field model in [25]. In-
deed, in [25], the formation of such waves was explained via shockwaves from
a Burger-like equation, whose non-linear shocks are driven by the quadratic
term 3|V p|?.

Recall that rotating cells in experiments were explained via a shortening
of edge protrusion lifetime [15]. In numerical simulations, since protrusions
are generated exclusively from the vector field P, we assume that the edge
protrusion lifetime is related to the time-scale of non-trivial dynamics of P.
To that end, note that on the interface |Vp| = O(1/¢), so ¢|Vp| = O(1).
Thus freezing Vp for simplicity and writing 0,P = %(52AP — P — (eVp),
we see that the time-scale of P relaxing to equilibrium is O(eg). Thus small
values of € correspond to short edge protrusion lifetimes and vice versa. This
shows qualitative agreement between experiments and our numerical results
where smaller values of € correspond to existence of rotating states, and larger
values of € allow for persistent motion. Importantly, we see that £ dictates
both time scale of dynamics of P as well as the width of the interface layer.
As aforementioned, the multiple appearances of € in the model are required
for comparison to the sharp interface limit. To better understand and explain
the onset of rotational motion in the phase-field model, one should relax these
coefficient restrictions to decouple these two effects. This is beyond the scope
of the present work (whose focus is the relationship to the sharp interface
limit), though this is an important question for future work.

We remark that we did not observe more complicated morphologies such
as ameobid or two wave solutions with both actin waves traveling in the same
direction, as observed in [25]. This suggests that such dynamics are driven
by more complicated biophysical mechanisms, including hetereogeneities in
the myosin motor density or in the adhesion complex formation. However, it
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is surprising that rotating states exist in our simplified model. Our work thus
suggests that even with severely weakened myosin contraction, such motility
may be possible in cells.

3.1. Monotone dependence of trajectory curvature in the sharp interface limit

While we have already established that persistent motion does not seem
possible for any fixed § as ¢ — 0, we further analyze the trajectory data of
simulation results as ¢ — 0.

To that end, for cells classified as rotating we calculate the radius of
curvature of the center of mass’s trajectory. Our data reveals that decreasing
either € or (8 results in a decrease in the radius of the curvature of the
trajectory, see Figure 3. This suggests that as ¢ — 0, the cell has a stationary
center of mass. While certainly this does not preclude the existence of other
motile cells with stationary center of mass, we did not observe any such
modes in our simulations.

These data in particular provide evidence for why the sharp interface limit
(2.10) may not exhibit persistent traveling waves: for small € we see that the
only stable states which seem to survive are stationary states and rotating
states. As € — 0, even rotating states have center of mass trajectories
with smaller and smaller radii. So, in the limit ¢ — 0 one expects that
only stationary states to remain stable. Thus, to exhibit stable persistent
traveling wave solutions in the sharp interface limit, one must include other
biophysical mechanisms into the analysis of the sharp interface limit.

3.2. Non-monotone dependence of distance traveled on parameters

We investigate the dependence of cell speed on model parameters. To
that end, we integrate (2.7)-(2.8) to the end time 7" = 5 and omit the first
75% of data (to disregard transient effects). Then calculate the distance
traveled by the center of mass’s trajectory, p(t):

d= 3" [p(ter) — p(1)].

see Figure 3. We observe that the relationship between distance traveled
and parameters is dependent on the motility mode: over parameter ranges
where the cell is traveling persistently, if one fixes § and increases € then the
distance travel increases monotonically. This can be heuristically explained
that a larger value of € provides a wider region where actin polymerization
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Figure 3: (left) Average radius of circular trajectory for rotating solutions. The data
show that, for fixed (3, decreasing e results in a smaller radius of curvature. That is,
rotating cells trace smaller circles. This suggests that for fixed 3, as ¢ — 0, the cell
becomes stationary. (right) Distance traveled for both rotating and traveling states show
non-monotone behavior as € is varied: at e = .035 we observe (for sufficiently large j)
that distance traveled is maximized. On the other hand, for fixed ¢ dependence on S is
monotone.

is possible allowing for the generation of more protrusion forces. Indeed, at
the conclusion of each simulation, we compute

1P|, = / P (e, y)|drdy.

This quantity is a measure of global amount of actin. We indeed found that
for fixed [, an increase in ¢ resulted in an increase in ||P|[;, see Figure 4.

However, over parameter ranges where the cell is rotating there is non-
monotone dependence on the distance traveled. In that case, the distance
traveled is maximized when ¢ = .035, provided S is large enough. This sug-
gests that the ratio of the cell volume to the diffuse interface is an optimizable
quantity for cell speed. This observation is in qualitative agreement with [20]
where it was observed that an optimal density of actin filaments maximizes
velocity of the cell. Since our numerics suggest that the optimal ¢ is constant
for large enough [, we conjecture that this optimal density is independent
from the strength of actin polymerization. To our knowledge, this has not
been explored experimentally, and thus merits study.
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Figure 4: The L1 norm of P at steady state (after transient effects) shows that as
increases, the total amount of actin increases. We interpret this as larger lamellipod size
resulting in a larger region of actin polymerization and thus stronger protrusion forces.

4. Conclusion

In this work we numerically investigate the phase-field system (2.7)-(2.8),
with particular interest in the dynamics near the sharp interface limit € — 0.
The sharp interface limit dynamics (2.10) has been studied numerically and
analytically in previous works [17, 18]. Previous simulation of the sharp inter-
face limit itself required a so-called “intermediate” system which is between
the full phase-field model and the sharp interface limit (see [18]). The inter-
mediate system evolves a discretized planar curve, whose evolution requires
solving a singularly perturbed parabolic PDE at each discretization point.
The system contains a parameter § > 0 (originally &, but we change notation
here for clarity), whose limit as 6 — 0 formally results in the sharp interface
limit equation; in that context we note that the value 6 > 0 is not the width
of the transition layer, but was introduced to resolve non-uniqueness of solu-
tions in the sharp interface limit equation. Simulations of the intermediate
model showed that if § < .. then all dynamics relaxed to circular states.
For g > f., if traveling wave solutions existed they were unstable. Instead,
all dynamics resulted in one of two long term dynamics. For larger values of
J, simulations gave rise to cells moving in a bipedal fashion [5]. For smaller
values of 4, the intermediate system gave rise to rotating cells. Moreover the
rotating cells became more circular as 6 — 0. Importantly, all non-trivial
motions arose only when considering asymmetric double-well potentials.

Our numerics agree qualitatively with previous results of the intermediate
system in many ways. We find that for sufficiently small 3 all cells converge to
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circular stationary states. We also observe rotating cells which become closer
to circular near the sharp interface limit, providing further evidence that the
sharp interface limit cannot support non-trivial motion. On the other hand
there are some significant differences in the observed dynamics: the current
phase-field model does not present bipedal cells, but we do observe persis-
tently traveling cells which are not possible in the intermediate system. Most
importantly, traveling waves are possible in the phase-field model with sym-
metric double-well potential W. Analysis of (2.10)shows that symmetric
potential W (as in (2.7)) cannot give rise to traveling wave solutions in the
sharp interface limit, and they did not appear in the intermediate system at
all. Moreover, as this system is a minimal version of the work in [32] there
was no evidence that it could support persistently traveling solutions. Thus
their existence in the current model is particularly surprising. A more care-
ful quantitative comparison of the intermediate system with the phase-field
model would be of particular interest. However, current numerical methods
to solve the intermediate system require weeks to run for a single parameter
set, and as such direct comparisons remain unfeasible.

Rotating cells were also previously observed in the more sophisticated
model of [25], but it is perhaps surprising to be able to capture them in the
current model without heterogeneity of myosin motors or adhesion dynam-
ics. We note however that more complex rotating modes, such as two-wave
rotating states, were exhibited in [25]. By carefully taking symmetric ini-
tial conditions, we were able to observe such two-wave rotating states, see
Figure 5. However, they are unstable, as a perturbation of initial conditions
resulted in single-wave rotating states. This suggests that heterogeneity of
myosin/adhesion is required to stabilize such complex states.

Finally, our analysis showed that distance traveled (and thus cell velocity)
is maximized for a fixed value of €, over a range of values of 5. This suggests
that the ratio of cell size to actin filament density plays a more dominant
role to cell velocity than actin polymerization strength alone. We conjecture
that by reincorporating heterogeneous myosin motor effects we can stabilize
persistent motion over a wider range of parameter ranges so as to also obtain
an optimal velocity occuring during persistent motion.

In order to relate simulations to the sharp interface limit equation, we
were restricted to specific coefficients related to €. In particular, we note
that currently ¢ dictates both the lamellipod width as well as the time scale
of dynamics of actin. In future work it would be interesting to consider more
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Figure 5: By taking non-random initial conditions (p circular and P = (1, 0) on the interior
of the cell), the model exhibits a two-wave state: at ¢ = 3.8 two waves of protrusion begin
moving around the interface from the right hand side in opposite directions. At ¢ = 4.0
they collide on the left hand side of the cell, and at ¢t = 4.4 two waves similarly travel from
left to right. Here we take ¢ = .03 and S = 130. Color indicates value of p and arrows
represent the vector field P.

general physical parameters in this simple model. Relaxing these restrictions
would no longer relate the model to the sharp interface limit, though it would
certainly allow for more quantitative biological comparisons.

Finally, more rigorous bifurcation analysis between motility modes would
be desirable: we anticipate existence of a Hopf bifurcation occuring from
immobile to rotating states, and saddle-node bifurcations occuring between
immobile and traveling wave states.

All simulations were completed in MATLAB and run on The College
of New Jersey’s high performance cluster, ELSA (Electronic Laboratory for
Science and Analysis). Codes used to generate data can be provided upon
reasonable request to the authors.
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Appendix A. Non-dimensionalization

Starting from

0ip = DpAp — 1 W' (p) — a(Vp) - P (A1)
0P = DpAP — 7, 'P — 3Vp, (A.2)

let t =Tt., and x = Xz, with t., z. to be determined. Then

t. _ te
Orp = Dp—5Axp —teTy W (p) — a—(Vxp)-P (A.3)

c

te _ le
8TP = DPEAXP — Ty 1tcP — /8$—vXp, (A4)

c

where Vx and Ay are derivatives with respect to the scaled variable X. We
drop X notation for clarity.

For diffusive scaling we take t, = LA

Dy
Orp = A —x—gwm—%v P (A.5)
Dp x? x
P="AP -7, 'Z5P — 325V, A.
Or D, p D, 5 Dpr (A.6)

Take x. = R where R is a characteristic length scale of the cell, say the
cell radius, and let € be the dimensionless parameter

VD

7 =




Let P — 22P. Then

2

Orp=Ap — Do W'(p) = Vp- P (A.7)
OrP = %:AP - DB;; :—:P - aﬁg—;Vp, (A.8)
and
Orp=Dp— 5 W'(p) ~Vp- P (A9)
OrP = %]:AP - 6—12:—;*9 - O‘g-f%w. (A.10)

To obtain the scaling of Berlyand, et al. one requires the assumptions

|Dp| ~€|D,|, ||~ e|ml, (A.11)
and to define 5
apT
= ) A12
o= 57 (A12)

The scalings that Dp < D, and 71 < 7o are consistent with experimental
values reported by Aranson. This leads us to

1 /
Orp=2A2p— 5Wp) = Vp- P (A.13)

1
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