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ABSTRACT
To help enforce data-protection regulations such as GDPR and
detect unauthorized uses of personal data, we develop a new model
auditing technique that helps users check if their data was used
to train a machine learning model. We focus on auditing deep-
learning models that generate natural-language text, including
word prediction and dialog generation. These models are at the
core of popular online services and are often trained on personal
data such as users’ messages, searches, chats, and comments.

We design and evaluate a black-box auditing method that can
detect, with very few queries to a model, if a particular user’s texts
were used to train it (among thousands of other users). We empiri-
cally show that our method can successfully audit well-generalized
models that are not overfitted to the training data. We also analyze
how text-generation models memorize word sequences and explain
why this memorization makes them amenable to auditing.
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1 INTRODUCTION
Data-protection policies and regulations such as the European
Union’s General Data Protection Regulation (GDPR) [9] give users
the right to know how their data is processed. As machine learning
(ML) becomes a core component of data processing in many offline
and online services, and incidents such as DeepMind’s unautho-
rized use of NHS patients’ data to train ML models [3] illustrate
the resulting privacy risks, it is essential to be able to audit the
provenance of personal data used for model training.

In this paper, we design and evaluate a technology that can help
users audit ML models to determine if their data was used
to train these models. We focus specifically on auditing models
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that generate natural-language text. Text-generation models for
tasks such as next-word prediction (the basis of query autocom-
pletion and predictive virtual keyboards) and dialog generation
(the basis of chatbots and automated customer service) are exten-
sively trained on personal data, including users’ messages, docu-
ments, chats, comments, and search queries. Our technology can
help users audit a publicly available text-generation model and
see if their words were used, perhaps without their permission,
to create this model. Furthermore, our work sheds new light on
how deep learning-based, text-generationmodelsmemorize
their training data—a topic that has important implications for
both data privacy and natural language processing.

The problem of auditing is closely related to the problem of
membership inference (see Section 7), but auditing text-generation
models requires new technical machinery vs. membership inference
in image-classification and categorical models.

First, we assume a very restrictive auditing scenario, which we
believe matches how an individual user may audit a deployed ML-
based service in practice. The auditor has only black-box access to
the model and can query it only on a limited number of inputs. We
assume that the model’s output does not include numeric proba-
bilities or confidence values (deployed models rarely release these
values). Furthermore, we consider scenarios where the model’s out-
put is restricted to a relatively small list of words or even a single
word. This precludes the application of most previously proposed
membership inference methods.

Second, we work with text-generation models that are trained on
the data of hundreds or thousands of users and are well-generalized,
i.e., their accuracy on test inputs is not substantially different from
their accuracy on training inputs. This precludes the application of
membership inference methods that exploit the test-train accuracy
gap exhibited by overfitted models.

Third, state-of-the-art text-generation models are based on re-
current neural networks (RNNs). We investigate how these models
overfit to their training data, what signal this overfitting creates
in their outputs, and how to exploit this signal for effective audit-
ing. We show that overfitting in text-generation models appears
to manifest primarily via shifted probability distributions over the
models’ output space. Specifically, we show that these models tend
to assign significantly higher rank to relatively rare words when
they appear in a familiar context (e.g., in a sentence seen during
training). This does not affect the top-ranked, likeliest word gen-
erated by the model and therefore—in contrast to “conventional”
overfitting—does not manifest in reduced test accuracy.

Fourth, we show how to use auxiliary public datasets and cross-
domain training when the auditor does not know the distribution
from which the training data for the target model was drawn.

Fifth, we focus on user-level auditing (vs. inferring member-
ship of individual inputs in the training dataset) and measure
how many queries are needed to determine if the user’s data was
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used—possibly in combination with the data from thousands of
other users—to train the model. We quantitatively show that se-
quences that include relatively rare words are more effective for
auditing than word sequences randomly selected from the user’s
data. We also measure the robustness of our auditing methodol-
ogy to noise and errors in the test inputs used for auditing. This
is important because the user may not know exactly which of his
chats or online comments were used, or when the model creator
may have started training on the user’s data.

Our black-box auditing methodology is very effective. In our ex-
periments on the Reddit, SATED, and Dialogs tasks for, respectively,
word prediction, translation, and dialog generation, it performs per-
fectly (i.e., its AUC score is 1) when the models are trained on the
data of hundreds of users and the models’ outputs cover the entire
vocabulary. Furthermore, it requires surprisingly few queries. If the
auditor selects query sequences that include relatively rare words,
a single query achieves AUC between 0.8 and 0.9 depending on the
task, and 8 queries achieve almost perfect AUC.

If the word-prediction and dialog-generation models are re-
stricted to generate and rank only the 500 likeliest words, AUC
score of our auditor remains above 0.9. If the translation model
generates a single word (as opposed to a ranked list of words), the
auditor can still infer with a much-better-than-random probability
if the model was trained on the word sequences of a particular user.
For the Reddit word-prediction model, the auditor’s AUC score
remains close to 0.9 even if the model was trained on the data
of over 4,000 users. Furthermore, we empirically show that our
auditing is robust to a significant amount of noise and errors in
the audit queries. These results demonstrate that auditing modern
text-generation models is feasible in realistic scenarios.

Finally, to explain why auditing works, we provide new insights
into memorization in different types of text-generation models. For
example, we demonstrate that deep learning-based translation mod-
els are more prone than the word-prediction models to memorize
training sequences in their inner units.

2 BACKGROUND
2.1 Deep learning
A deep learning model is a function fθ : X 7→ Y parameterized by
θ , whereX is the input space andY is the output space. Supervised
training of a model fθ aims to find the best set of parameters θ using
a labeled training dataset D = {(xi ,yi )}ni=1 and a loss function L.

For ML tasks where the input space is discrete and sparse (e.g.,
text or location data), the standard approach is to transform discrete
inputs into a lower-dimensional continuous vector representation.
For a text corpus with vocabulary V , an embedding is a function
E : V 7→ Rdemb where demb, the dimension of the embedding, is a
hyper-parameter. In many NLP tasks, the input is a variable-length
sequence of tokens x = [x1, . . . ,x l ] in the embedding space. The
output y can be either a class label (e.g., for sentiment analysis),
or a token (e.g., for next-word prediction), or a sequence of tokens
(e.g., for machine translation).
Recurrent neural networks (RNNs) are a common architecture
for text-generation tasks such as next-word prediction. An RNN
maps the input sequence to a sequence of hidden representations

a = [a1, . . . ,al ], where the computation of aj is recursively depen-
dent on the previous hidden representation aj−1 and the current
input token x j , and feeds these hidden representations to a classifier.
Sequence-to-sequencemodels are a common architecture for text-
generation tasks where both the input x = [x1, . . . ,x l ] and the
outputy = [y1, . . . ,yt ] are sequences of tokens. A typical sequence-
to-sequence model consists of an encoder RNN and a decoder RNN.
The encoder learns the representation for the input texts, then
passes this representation as the initial state for the decoder, which
makes word predictions one at a time. Translation models are simi-
lar: the decoder predicts words in the target language by feeding
its hidden representations to a classifier.

2.2 Text-generation models
Next-word prediction is used in many natural-language applica-
tions, including predictive virtual keyboards and query autocom-
pletion. Given an input sequence x = [x1, . . . ,x l ], the task is to
predict the next token x j from the context [x1, . . . ,x j−1]. RNNs are
commonly used for this task. RNN feeds the last hidden representa-
tion aj−1 in the context sequence to a |V |-way classifier to predict
the next token, where V is the vocabulary.
Neuralmachine translation (NMT)models based on RNNs reach
near-human performance on many language pairs [34]. The input
to these models is a sequence of tokens from the source language,
the output is a sequence of tokens from the target language. NMT
models use the sequence-to-sequence framework. The input text is
encoded as a hidden representation, and the decoder RNN predicts
translated tokens based on this representation.
Dialog generation aims to generate replies in a conversation. It is
a common component of chatbots and question-answering services.
The input is a sentence, the output is the next sentence in the
same conversation. Dialog-generation models can also employ a
sequence-to-sequence architecture [18, 33]. Similar to NMT, the
model encodes the input sentence to a hidden representation, then
generates the reply by passing this representation to the decoder.
Loss functions. For the next-word prediction task, given an input
sequence x = [x1, . . . ,x l ], the RNN models the conditional proba-
bility Pr(x j |x1, . . . ,x j−1) = f (x1, . . . ,x j−1) and aims to maximize
the probability for the sequence Pr(x) =

∏l
j=1 Pr(x

j |x1, . . . ,x j−1).
The loss function used when training the model is thus the neg-
ative log likelihood: L(f (x),x) = −

∑l
j=1 log f (x

1, . . . ,x j−1). For
the machine translation and dialog-generation tasks where the
input is x and the target is y = [y1, . . . ,yt ], the sequence-to-
sequence model computes the probability Pr(y j |y1, . . . ,y j−1;x) as
f (y1, . . . ,y j−1;x). Similar to the next-word prediction task, the loss
function is the negative log probability on the target sequence.

3 AUDITING TEXT-GENERATION MODELS
Consider a training dataset Dtrain where each row is associated
with an individual user, and let Utrain be the set of all users in
Dtrain. The target model f is trained on Dtrain using a training
protocol Ttarget, which includes the learning algorithm and the
hyper-parameters that govern the training regime. As described in
Section 2.2, a text-generation model f takes as input a sequence
of tokens x and outputs a prediction f (x) for a single token (if the



Figure 1: Overview of the auditing process. In the Train phase, the auditor trains an audit model; in theAudit phase, he applies
the audit model to infer if the user’s data is part of the target’s training dataset.

task is next-word prediction) or a sequence of tokens (if the task is
machine translation or dialog generation). The prediction f (x) is
a probability distribution or a sequence of distributions over the
training vocabulary V or a subset of V . We assume that the tokens
in the model’s output space are ranked (i.e., the output distribution
imposes an order on all possible tokens) but do not assume that
the numeric probabilities from which the ranks are computed are
available as part of the model’s output.

The goal of auditing is to infer user-level membership against
the target model f , i.e., to decide whether a user u ∈ Utrain or not.

We assume that the auditor has black-box access to f : given an
input query x , the auditor can observe f (x). In realistic deployments
of text-generation models, the auditor may not be able to observe
the entire vector of ranked words f (x) but only several top-ranked
predictions. In our experiments in Section 4.3, we vary the size of
the model’s output and show how it affects the accuracy of auditing.

We assume that the auditor knows the learning algorithm used to
create f but hemay ormay not know the training hyper-parameters
(see Section 4.3). The auditor also needs an auxiliary dataset Dref
to train shadow models that perform the same task as f .

Fig 1 outlines the auditing process. Similar to standard member-
ship inference [28], the auditor’s goal is to learn to distinguish the
outputs produced by the target model on sequences that it trained
on and its outputs on sequences that it did not see during training.
For this purpose, the auditor builds a binary user-level membership
classifier faudit that takes as input a (processed) list of predictions
obtained by querying f with a subset of the user’s dataset Du and
outputs a decision on u ∈ Utrain. In Section 4.3, we show that a
small subset of Du is sufficient for this purpose.
Training shadow models. To collect the data for training faudit,
the auditor first trains k shadowmodels f ′1 . . . f

′
k (that “simulate” f )

using the same protocolTtarget as f with the same hyper-parameters
(if known) or varying the hyper-parameters as in Section 4.3.

The training data for each shadow is a random user subset
Utrain

ref ∈ Uref of the auxiliary dataset Dref. Our shadow train-
ing technique is inspired by [28], but one essential distinction is
that in our case the shadow-training data does not need to be drawn
from the same distribution as the training data of the target model
In Section 4.3, we show that public sources can be used for Dref
and the loss in audit accuracy is negligible when Dtrain and Dref
are drawn from different domains. This is important for real-world
auditing because in practice the auditor may not know the entire
distribution of the target model’s training data, and API limits may
prevent the auditor from querying the target model repeatedly to
extract sufficient data for training shadow models as in [28].

The auditor then queries the shadow models with Dref,u for
each u in Uref and labels the resulting outputs as “member” if u
was part of the shadow’s training data, “non-member” otherwise.
The next step is to use these labeled predictions to train a binary
membership classifier.
Training the audit model. Record-level membership inference
typically uses the output probability distribution directly as the
feature to distinguish between members and non-members. User-
level membership inference in text-generation models calls for a
different approach. Each user is associated with multiple sequences,
each of which has multiple words. Therefore, the auditor can obtain
a collection of output predictions. On the negative side, the actual
probabilities associated with each prediction may not be available.

As mentioned before, the output prediction f (x) for a input x is a
probability distribution across the entire training vocabularyV , i.e.,
a |V |-dimensional probability vector. |V | is generally large and the
probability values are noisy. Instead of the raw probability values,
we use the ranks of the target words in the output distributions as
signals for inferring user-level membership. As we will show in
Section 5, even for a well-generalized model (i.e., whose test-train
accuracy gap is small), there is a substantial gap in the predicted
rank of the same word when it appears in a training text and a
test text. Specifically, the model ranks relatively rare words much



higher when it sees them during testing in the same context as it
saw them during training.

Given a user u’s data Dref,u , the auditor queries the shadow
model on each data point (x ,y) ∈ Dref,u and collects the ranks of
y in f (x) into a rank set Ru . Taking English-to-French machine
translation task as an example where (x ,y) = (I love you, Je t’aime),
f (x) = [f (x)1, f (x)2] is a sequence of two probability vectors for
tokens “Je” and “t’aime.” The auditor collects the rank of the prob-
ability of “Je” in f (x)1 (e.g., 2) and the rank of the probability of
“t’aime” in f (x)2 (e.g., 213), and adds {2, 213} to the rank set Ru .
Rank 2 means that the word is the second likeliest prediction in the
entire vocabulary. After collecting the ranks for all (x ,y) ∈ Dref,u ,
the auditor builds a histogram for Ru with a fixed number of bins
d . The final feature vector hu is a d-way count vector where each
entry is the count of the ranks in that bin.

The auditor extracts featureshu and labels them as 1 ifu ∈ Utrain
ref

and 0 otherwise. The auditor repeats this procedure for each user
in each shadow model and obtains a collection of labeled feature
vectors Daudit. Finally, the auditor trains a binary membership
classifier faudit on Daudit. We refer to faudit as the audit model.
Auditing membership in the training data. At inference (i.e.,
audit) time, the auditor queries the target model f with the user’s
data Du . If the number of queries to f is limited, only a sample
from Du is used. It can be random, but we show in Section 4.3
that it is more effective to select test inputs that have the smallest
frequency counts in their labels y, i.e., sequences with relatively
rare words are more useful for auditing.

After querying f , the auditor processes the corresponding out-
puts and obtains a feature vector hu that describes the distribution
of the predicted ranks for each word in Du . Finally, the auditor
feeds hu to faudit, which decides whether u ∈ Utrain or not.

4 EXPERIMENTS
4.1 Datasets
The Reddit comments dataset (Reddit) is a randomly chosen
month (November 2017) from the public Reddit dataset.1 We filtered
it to retain only the users with at least 150 but no more than 500
posts, for a total of 83,293 users with 247 posts each on average. We
use the resulting dataset for the next-word prediction task.

The speaker annotated TED talks dataset (SATED) consists
of transcripts from TED talks,2 totaling 2,324 talks with roughly
271K sentences in each language [24]. The dataset contains English-
French (en-fr), English-German (en-de) and English-Spanish (en-es)
language pairs and speaker annotation. We use the data from the
en-fr pair for the machine translation task.

The Cornell movie dialogs corpus (Dialogs) is a collection of
fictional conversations extracted from movie scripts [7]. There are
a total of 220,579 exchanges between pairs of characters engaging
in at least 5 exchanges, involving 9,035 characters from 617 movies.
We use this dataset for the dialogue-generation task.
Cross-domain reference datasets. The auditor may not know the
distribution on which the target model was trained and thus needs
a reference dataset to train its shadow models. In our experiments,

11https://bigquery.cloud.google.com/dataset/fh-bigquery:redditcomments
2https://www.ted.com/talks

Table 1: Performance of target models. Acc is word predic-
tion accuracy, perp is perplexity.

Dataset Model Train Acc Test Acc Train Perp Test Perp
Reddit 1-layer LSTM [12] 0.184 0.206 102.22 113.14
SATED Seq2Seq w/ attn [24] 0.587 0.535 6.36 10.28
Dialogs Seq2Seq w/o attn 0.283 0.264 45.57 61.11

we use public datasets for this purpose. As the cross-domain refer-
ence dataset for word prediction, we use the Wikitext-103 corpus3
obtained by a Wikipedia crawl. For translation, we use the English-
French pair in the Europarl dataset [15], a parallel language corpus
extracted from the proceedings of the European Parliament. For
dialog generation, we use the Ubuntu dialogs dataset [20], which
contains two-person technical support chat logs.

These datasets are not labeled with individual users, thus we split
them into random nu subsets, each corresponding to an artificial
“user.” Our experiments show that we can produce effective audit
models even with this artificial separation into users and even
though the topics of the reference datasets are very different from
the target models’ training datasets (e.g., technical support chats
vs. conversations between movie characters).

4.2 Performance of target models
We use standard architectures and hyper-parameters to train target
models (see Section B.1) and evaluate their performance using
word prediction accuracy = 1

M
∑n
i=1

∑li
j=1 I(argmax f (xi )j = y

j
i )

and perplexity = 2−
1
M

∑n
i=1

∑li
j=1 log f (xi )

j [y ji ], where n is the number
of data points, M =

∑
i li the sum of the number of tokens in all

labels, I is the indicator function that outputs 1 if the predicted
token argmax f (xi )j equals the label tokeny

j
i and 0 otherwise, and

f (xi )
j [y

j
i ] is the probability of predicting y ji in f (xi )

j . Perplexity is
measured as 2 to the power of the entropy of the label predictions.
The lower the perplexity, the better the model fits the data.

Table 1 shows the results for models trained on 300 users, with
the test data sampled from 300 disjoint users from the training
set. These results match the literature. On Reddit, test accuracy of
word prediction is 20%, similar to [23]. On SATED, test perplexity
is 10, close to [21]. Low test perplexity shows that the models
are learning a meaningful language-generation process. Test-train
accuracy gaps are below 5%, indicating that the models are not
overfitted. Perplexity gaps are within 15, which is relatively small.

4.3 Performance of auditing
To train shadow models, we sample a set of “shadow users” disjoint
from both the training and test users. The number of shadow users is
twice the number of training users. We use one half of the shadow
users to train shadow models and the other half to collect the
shadow models’ outputs on the non-members of their training
datasets (see Section 3). We train 10 shadow models for all tasks
and use a linear SVM as the audit classifier.

Our metrics are precision (the percentage of users classified by
the audit model as “members” who are indeed members), recall (the

3https://einstein.ai/research/blog/the%2Dwikitext%2Dlong%2Dterm%
2Ddependency%2Dlanguage%2Dmodeling%2Ddataset

1https://bigquery.cloud.google.com/dataset/fh-bigquery:reddit comments 
https://www.ted.com/talks
https://einstein.ai/research/blog/the%2Dwikitext%2Dlong%2Dterm%2Ddependency%2Dlanguage%2Dmodeling%2Ddataset
https://einstein.ai/research/blog/the%2Dwikitext%2Dlong%2Dterm%2Ddependency%2Dlanguage%2Dmodeling%2Ddataset


Table 2: Effect of training shadow models with different
hyper-parameters than the target model.

Dataset Accuracy AUC Precision Recall
Reddit 0.990 0.993 0.983 0.996
SATED 0.965 0.981 0.937 0.996
Dialogs 0.978 0.998 0.958 1.000

100 2,000 4,000 10,000
0.6

0.7

0.8

0.9

1

Number of users
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or
e

Reddit

Precision Recall
AUC Accuracy

Figure 2: Effect of the number of Reddit users used to train
a word-prediction model.

percentage of members who are classified as “members”), accuracy
(the percentage of all users who are classified correctly), and AUC,
the area under the ROC curve that shows the gap between the
scores (i.e., distances to the decision hyperplane of SVM) given
by the audit model to members and non-members. We use 300
members and non-members. Therefore, the baseline for all metrics
is 0.5, corresponding to random guessing.

Our audit model achieves the perfect score (i.e., 1) on all
metrics for all datasets and models when there is no restriction on
the output size of the target models (i.e., they produce predictions
over the entire vocabulary) and the auditor can query the target
models any number of times.
Effect of different hyper-parameters. To demonstrate that knowl-
edge of the target model’s hyper-parameters is not essential for
successful auditing, we train 10 shadow models for each task with
different training configurations (detailed in Appendix B.2). Table 2
shows the results. Auditing scores are still above 0.95 on nearly all
metrics for all tasks and models.
Effect of the number of users. To evaluate how the number of
users in the training dataset affects the auditor’s ability to infer the
presence of a single user, we train word-prediction models on 100,
500, 1,000, 2000, 4,000, and 10,000 users from the Reddit dataset.
Test users and shadow users are disjoint samples of the same size.

Fig. 2 shows the results. When the number of users is under
1,000, all metrics are at least 0.95. With 4,000 users, precision drops
below 0.8 while AUC is still around 0.9. Audit performance drops
more significantly when the number of users is 10,000.
Effect of the number and selection of audit queries. To mea-
sure the performance of auditing when the auditor is restricted to
only a few queries, we vary the number of audit queries between 1,
2, 4, 8, 16, and 32 word sequences.

Fig 3 shows the results. With 32 queries, audit performance ex-
ceeds 0.9 on all metrics for all datasets. If query selection is random,
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Figure 3: Effect of the number of queries and sampling strat-
egy. Plots on the left show the results when the auditor sam-
ples the user’s data for queries in the ascending order of fre-
quency counts of tokens in the label; plots on the right show
the results with randomly sampled data.

audit performance is low with fewer than 8 queries. If the auditor
queries the target with the user’s word sequences whose summary
word-frequency counts are the lowest, even with a single query,
the auditor can accurately determine if the user’s data was
used to train the model on the Reddit or Dialogs dataset. This
remarkable result demonstrates the extent to which text-generation
models memorize word sequences they were trained on, especially
those that contain relatively rare words.
Effect of the size of themodel’s output. In a realistic deployment
of a text-generation model, its output may be limited to a few
top-ranked words rather than the entire ranked vocabulary. We
constrain themodel’s output to the top-ranked 1, 5, 50, 500, and 1000
words, while the other hyper-parameters remain as in Section B.1.
When building the histogram feature vector for training the audit
model (see Section 3), we add an additional feature that counts
how many times the ground-truth words are not among the top
predictions output by the model.

Table 3 shows the results. On Reddit and Dialogs, the auditor’s
performance is close to random guessing when the model’s outputs
are limited to the top 50 or fewer words, increasing to above 0.9



Table 3: Effect of themodel’s output size. | f (x)| is the number
of words ranked by f .

Reddit Same domain Cross domain
|f (x ) | Acc AUC Pre Rec Acc AUC Pre Rec

1 0.545 0.549 0.574 0.350 0.505 0.589 0.667 0.020
5 0.550 0.572 0.553 0.520 0.490 0.525 0.495 0.920
10 0.580 0.602 0.582 0.570 0.500 0.552 0.500 0.950
50 0.605 0.648 0.606 0.600 0.505 0.659 0.503 0.980
100 0.725 0.788 0.765 0.650 0.585 0.714 0.549 0.950
500 0.970 0.998 0.970 0.970 0.905 0.992 0.988 0.820
1000 0.985 0.999 0.971 1.000 0.910 0.999 1.000 0.820

SATED
|f (x ) | Acc AUC Pre Rec Acc AUC Pre Rec

1 0.723 0.785 0.770 0.637 0.723 0.785 0.712 0.750
5 0.748 0.838 0.767 0.713 0.767 0.834 0.755 0.790
10 0.800 0.880 0.783 0.830 0.805 0.878 0.814 0.790
50 0.928 0.973 0.908 0.953 0.925 0.979 0.947 0.900
100 0.948 0.981 0.944 0.953 0.942 0.978 0.965 0.917
500 0.972 0.988 0.958 0.987 0.970 0.988 0.983 0.957
1000 0.960 0.984 0.939 0.983 0.967 0.985 0.973 0.960

Dialogs
|f (x ) | Acc AUC Pre Rec Acc AUC Pre Rec

1 0.577 0.618 0.582 0.547 0.538 0.618 0.520 0.977
5 0.575 0.642 0.582 0.530 0.552 0.643 0.528 0.970
10 0.583 0.645 0.591 0.543 0.543 0.638 0.523 0.977
50 0.605 0.660 0.611 0.580 0.537 0.610 0.520 0.963
100 0.647 0.714 0.643 0.660 0.570 0.669 0.541 0.920
500 0.935 0.975 0.917 0.957 0.925 0.969 0.895 0.963
1000 0.972 0.995 0.955 0.990 0.962 0.992 0.948 0.977
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Figure 4: Effect of noise and errors.

when the output size is the top 500 words (only 10% of the entire
vocabulary)—regardless of whether the shadow models are trained
on the same domain as the target model or a different domain.

For the translation task, audit performance is much higher
than random guessing even if the model outputs just one
top-ranked word and exceeds 0.9 when the model outputs 50 top-
ranked words (1% of the vocabulary). These results demonstrate the
remarkable extent to which translation models memorize specific
word sequences encountered in training.
Effect of noise and errors in the queries. Du may be noisy or
partially erroneous (e.g., if not all ofDu was used to train the target
model f ). To evaluate how this affects auditing, for each training
user, we use part of his data to train f and hold out the remaining
fraction to represent noise during auditing. We vary this fraction
between 0.1, 0.2, . . . , 0.5.

Table 4: Examples of texts obfuscated using Google transla-
tion API and Yandex translation API.

No obfuscation: i see so many adults that could benefit from this going around
having themselves a big fat sugar snack or soda pop as a treat it ’s so sad

Google: i saw so many adults who can benefit from cherishing big fat sugar snacks
and soda pop and going around, it is very sad

Yandex: i think a lot of adults have benefited over your big fat candy and and
handling of grief

Table 5: Audit performance on obfuscatedReddit comments.

Dataset Accuracy AUC Precision Recall
Baseline 1.000 1.000 1.000 1.000
Google 0.580 0.858 0.944 0.170
Yandex 0.500 0.782 0.500 0.010

Fig. 4 shows the results. For SATED and Dialogs, recall drops
significantly, close to 0 for SATED when the fraction of noise is
0.5. Increasing the amount of noise biases the audit model towards
misclassifying most training users as “non-members.” Precision and
AUC remain high when noise increases. This may indicate that
the scores of the membership classifier at the heart of the audit
model still have a distinguishable gap between members and non-
members, which is however not learned from the outputs of the
shadow models queried with clean data (see Section 3).
Auditing obfuscated data. Finally, we evaluate the effect of ob-
fuscation on the success of auditing. This is the first step towards
determining whether text-generation models memorize specific
word sequences (which would not be preserved by obfuscation)
rather than higher-level linguistic features (which might be).

We use an obfuscation technique, previously considered for evad-
ing author attribution [4], that machine-translates the text to a
different language and back. We obfuscate the training and test
users’ Reddit comments using Google4 and Yandex5 translation
APIs to translate English to Japanese and back to English. Table 4
shows examples of obfuscated text.

Table 5 reports the results of auditing on obfuscated texts. For
both Google- and Yandex-based obfuscation, audit accuracy drops
to near random and recall is very low. AUC scores are still around
0.8, which is much higher than random guessing. This indicates
there is some useful signal in the model’s outputs on obfuscated
texts, but the auditor’s membership classifier—which was trained
on non-obfuscated texts—fails to capture this signal.

This is a remarkable result given the poor quality of translation.
Even if the user’s text has been garbled almost to the point of
incomprehensibility, in some cases there is still enough information
left to detect its presence in the training data.

5 MEMORIZATION IN TEXT-GENERATION
MODELS

In this section, we analyze why auditing works so well for text-
generation models that are not overfitted as measured by their
test-train accuracy gap (see Section 4.2).
4https://cloud.google.com/translate/
5https://tech.yandex.com/translate/

https://cloud.google.com/translate/
https://tech.yandex.com/translate/


−10 −5 0

Reddit (top)

−15 −10 −5

SATED (top)

−15 −10 −5 0

Dialogs (top)

−20 −10 0
Log probability

Reddit (tail)

−30 −20 −10
Log probability

SATED (tail)

Train Unseen

−20 −10
Log probability

Dialogs (tail)

Figure 5: Histograms of log probabilities of words gener-
ated by our text-generation models. The top row are the his-
tograms for the top 20% most frequent words, the bottom
row are the histograms for the rest.

Word frequency and probability. The loss function for the text-
generation models is the sum of the negative log probabilities of
the words in the input sequence (see Section 2.2). By its very con-
struction, this loss function “encourages” the model to memorize
sequences that occur in the training data.

Fig. 5 shows the histograms of the log probabilities of the more
and less frequent words in the training (“train”) and test (“unseen”)
sequences. For the more frequent words, the histograms for the
training and test sequences are almost identical. For the less fre-
quent words, the model fits worse for both the training and test
sequences as modes focus on smaller log probability values. Most
importantly, there is a gap between the less frequent words in the
training sequences and those in the test sequences. This gap indi-
cates that the model assigns higher probabilities to words in the
training sequences, producing a strong signal that can be used for
membership inference and consequently auditing.

These histograms also demonstrate that our text-generation
models are not overfitted to their training datasets in terms of the
loss value. The 20% most frequent words account for 86.9% of the
training data and 88.1% of the test data in Reddit, 89.5% and 90.4%
in SATED, and 93.1% and 94.1% in Dialogs. Consequently, these
words dominate the training and test loss value. Not surprisingly,
text-generation models typically generate words from the top 20%
of the word-frequency distribution. As long as the log probabilities
remain similar for the top 20% words in both the training and test
datasets, the training and test losses of the model will be similar.
Word frequency and predicted rank. Memorization of training
sequences produces a much stronger signal in the relative rank
assigned by the model to the candidate words in the model’s output
vocabulary. Fig. 6 shows the relationship between a word’s rank
in the frequency table of the training corpus and its rank in the

model’s predictions. A smaller rank number indicates that the word
is ranked higher in the vocabulary, i.e., more frequent in the corpus
or more likely to be predicted by the model. On all datasets, less fre-
quent words exhibit a much bigger gap between the rank predicted
by the model when the word appears in a training sequence and
when it appears in a test sequence. This explains why our auditing
algorithm is more successful when it queries the target model with
sequences consisting of the less-frequent words (see Section 4.3).
Ablation analysis. We have shown that probabilities and ranks
produced by text-generation models exhibit a gap between the
training and test sequences for the less-frequent words but not for
the most-frequent words. We hypothesize that these models learn
generalizable patterns for the most-frequent words while hard-
memorizing the sequences consisting of the less-frequent words.

To gather evidence for this hypothesis, we carried out an ex-
periment based on ablation analysis that was recently proposed to
detect memorization in deep-learning models [25]. As more hidden
units are ablated, accuracy on the training data degrades quicker
for models that are hard-memorizing the training data.

We train target models without dropout (since dropout ablates
the hidden units during training) on Reddit and SATED, keeping the
other hyper-parameters the same as in Section B.1. We randomly
set a fraction of the model’s hidden representations to zero and
evaluate the accuracy of word prediction on the training data. We
vary the fraction from 0.1 to 0.5 on Reddit and 0.1 to 0.9 on SATED
and report the accuracy score separately for the 10% most frequent
words and the remaining 90% in Fig. 7.

When no hidden units are ablated, accuracy is similar for the
most-frequent words and the rest. As the fraction of ablated units
increases, accuracy on the less-frequent words drops more signif-
icantly than on the most-frequent words. This indicates that pre-
dicting less-frequent words is more dependent on specific hidden
units in the model and thus involves more memorization.

6 LIMITATIONS OF AUDITING
Models trained on a very large number of users. In some indus-
trial implementation of text-generation models [22, 23], the number
of users is on the scale of millions. Performance of our auditor starts
to drop when the number of users reaches 10,000 (Section 4.3). We
expect that our black-box algorithm will not be able to audit models
trained on a very large number (dozens or hundreds of thousands)
of users. That said, (a) many state-of-the-art models are trained
on fewer than 10,000 users [17, 24, 37], and (b) white-box auditing
techniques may be effective even against models trained on dozens
of thousands of users. This is a topic for future work.
Deeper models. In our experiments, both the target and shadow
models are one-layer LSTMs or GRUs. We have not experimented
with auditing deeper and more sophisticated models. We expect
that such models are even more susceptible to memorization, but
this is another topic for future research.
Differentially private models. In theory, user-level differential
privacy (DP) is a direct countermeasure to user-level membership
inference. We used federated learning with differential privacy [23]
to train a next-word prediction model on the Reddit dataset, setting
the number of users to 5,000, user sampling rate to 0.04 per round,
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L2 bound on a single user’s contribution to 10.0, and the other hyper-
parameters as in [23]. After 300 rounds of training, this produced an
(ϵ,δ )-DP model with ϵ = 4.129 and δ = 1e − 4 which achieves 15%
word prediction accuracy, similar to [23]. By contrast, the accuracy
of our non-DP model is 20% when trained on only 100 users, i.e., the
DP model is significantly less accurate than the non-DP one. Our
auditing algorithm fails against the DP model, with performance
scores near 0.5 (equivalent to random guessing).

To further investigate the predictive power of the DP model,
Fig. 8 plots the ranks of words in the vocabulary (based on their
frequencies) and in the model’s predictions. The predicted rank is
larger than the frequency rank for the 50% most frequent words
and remains around 3,000 for the other 50%. The predicted rank is
very similar for the words in the training and test sequences, which
explains why auditing fails.

The plot also suggests that the differentially private model will
almost always predict common words and hardly ever predict rela-
tively rare words. While it does not appear that the model memo-
rizes its training data, it is not clear to what extent it generalizes.

7 RELATEDWORK
Membership inference. Membership inference attacks involve
observing the output of some computations over a hidden dataset
D and determining whether a specific data point is a member of
D. Membership inference attacks against aggregate statistics have
been demonstrated in the context of genomic studies [13], location
time-series [26], and noisy statistics in general [8].

Shokri et al. [28] develop black-box membership inference tech-
niques against ML models which perform best when the target
model is overfitted to the training data. Truex et al. [32] extend
and generalize this work to white-box and federated-learning set-
tings. Rahman et al. [27] use membership inference to evaluate the
tradeoff between test accuracy and membership privacy in differ-
entially private ML models. Hayes et al. [11] study membership
inference against generative models. Long et al. [19] show that
well-generalized models can leak membership information, but the
adversary must first identify a handful of vulnerable records in
the training dataset. Yeom et al. [35] formalize membership infer-
ence and theoretically show that overfitting is sufficient but not
necessary.
Memorization in ML models. Zhang et al. [36] show that deep
learning models can achieve perfect accuracy even on randomly
labeled training data. Song et al. [29] present algorithms that in-
tentionally encode the training data in the model. By contrast, we
demonstrate that popular text-generation models unintentionally
memorize their training data.

Carlini et al. [5] show that a black-box adversary can extract
specific numbers that occur in the training data of a generative
model, given some prior knowledge about the format (e.g., a credit
card number). For a text-generation model, numbers are essentially
random data, thus this is another illustration that models memorize
random data. By contrast, we show that text-generation models
memorize evenwords and sentences that are directly related to their
primary task and leverage this into an effective auditing method.
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User-level differential privacy. User-level differential privacy
(DP) bounds the influence of any single user on the model. McMa-
han et al. propose a DP federated learning algorithm for language
models [23]. With the current state of the art, a massive number of
users (at least 10,000) is needed to create DP models that achieve
reasonable accuracy. How to build accurate DP models with fewer
users remains an open question.
Auditing ML models. Much recent work aims to understand the
behavior of ML models with black-box access [2, 16]. These ap-
proaches improve the interpretability of the model by showing how
features or training data points influence the model’s predictions.
Other model-auditing research focuses on detecting bias and dis-
crimination [30, 31]. We are not aware of any prior work that aims
to audit the use of specific data sources to train a model.

8 CONCLUSION
Deep learning-based, text-generation models for word prediction,
translation, and dialog generation are core components of many
popular online services. We demonstrated that these models mem-
orize their training data. This memorization does not appear to
manifest in reduced test accuracy, which is a symptom of “conven-
tional” overfitting, but is reflected instead in how they rank the
candidate words they generate.

We developed a black-box auditing method that enables users
to check if their chats, messages, or comments have been used
to train someone else’s model. Our auditing method, based on a
new flavor of membership inference that exploits memorization in
text-generation models, is very effective. More powerful auditing
algorithms may be possible if the auditor has access to the model’s
parameters and can observe its internal representations rather than
just output predictions. This is a topic for future work.

We view the results of this paper as essentially positive, demon-
strating how memorization in ML models can help detect unautho-
rized uses of sensitive personal data and ensure compliance with
GDPR and other data-protection policies and regulations.
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Reproducibility Information
In this appendix, we provide the pseudo-code of the auditing

algorithm and describe all model architectures, configurations, and
hyper-parameters needed to reproduce the results.

A PSEUDO-CODE FOR AUDITING
Algorithm 1 is the pseudo-code for the auditing process. Func-
tion AuditMembership is used to audit if the user’s data Du was
included in the training data of the target model f . The auditor
first trains an audit model using function TrainAuditModel. He
then extracts histogram features hu on (possibly sampled) user’s
data using function HistogramFeature. Finally, the audit model
predicts if the user’s data was used to train f given the extracted
features hu .

Function TrainAuditModel is the procedure for training the au-
dit model. The auditor first trains k shadowmodels with a randomly
sampled set of users, collects their outputs, extracts feature vectors
for the training and test users, and labels these feature vectors ac-
cordingly. The auditor then trains a binary classifier based on the
labeled feature vectors.

Function HistogramFeatureextracts features from the predicted
ranks, as described in Section 3. The feature vector is ad-dimensional
vector representing the histogram of predicted ranks. The ith entry
of the vector is the count of ranks in the range [(i − 1) · b, i · b],
where b is the histogram bin size.

When the number of queries to the target model is limited tom,
the auditor uses function SampleQueries to sample a subset of the
user’s data. The auditor can choose eitherm texts at random, orm
texts with the smallest word frequencies.

B EXPERIMENT SETUP
B.1 Target models
Next-word prediction. We use a one-layer long short-term mem-
ory (LSTM) [12] as the target model. LSTM is a more complicated
RNN that can capture the long-term dependency in the sequence.
The input sequence of tokens is first mapped to a sequence of em-
beddings. The embedding is then fed to the LSTM that learns a
hidden representation for the context for predicting the next word.
Neural machine translation. We use a sequence-to-sequence
target model with the attention module as described in [24]. Both
the encoder and the decoder are one-layer LSTMs that operate on
the embedding of source tokens and target tokens. The attention
module adds an additional layer that operates on all hidden repre-
sentations in the encoder LSTM and helps the decoder determine
where to pay attention in the source texts when predicting a token
in the target language.
Dialog generation. We use a sequence-to-sequence model with-
out the attentionmodule. The encoder and the decoder are one-layer
LSTMs.

B.2 Hyper-parameters
Target models. We train the word-prediction model on the com-
ments of 300 randomly selected users from the Reddit dataset. We

Algorithm 1: Auditing text-generation models

Hyper-parameters: auditor’s reference datasetDref, number of
shadow models k , user’s data Du , target model f , target model-
training protocol Ttarget, audit model-training protocol Taudit,
maximum number of queriesm, number of bins in histogram d

function AuditMembership()
faudit ←TrainAuditModel()
Dsample,u ←SampleQueries(m,Du )
hu ←HistogramFeature(f ,Dsample,u )
return prediction of membership faudit(hu )

function SampleQueries(m,D)
if random sample then

return randomly selectedm rows in D
else ▷ sample based on frequency

C ←{Σ (frequency ofw forw in y) |∀(x ,y) ∈ D}
I ← indices ofm smallest values in C
returnm rows in D indexed by I

end if

function TrainAuditModel()
Daudit ← ∅ ▷ dataset for building the audit model
Uref ← users in Dref
for i = 1 to k do ▷ train k shadow models
Utrain

ref ,U
test
ref ← random splitUref

Dtrain
ref ← ∪u ∈Utrain

ref
{Dref,u }

Train a shadow model f ′i ← Ttarget(D
train
ref ).

for every u in users ofUref do
Dref,u ← data in Dref associated with u
h′u ←HistogramFeature(f ′i ,Dref,u )
z′u ← 1 if u inUref-train else 0
Daudit ∪ {(h

′
u , z
′
u )}

end for
end for
Train the audit model faudit ← Taudit(Daudit)
return faudit

function HistogramFeature(f , D)
R ← {rank(y) in f (x)|∀(x ,y) ∈ D}
Initialize feature vector h with d entries.
b ← |V |/d ▷ histogram bin size
for i = 1 to d do ▷ count of ranks in each bin

hi = |{(i − 1) · b ≤ r < i · b |r ∈ R}|
end for
return feature vector h

set both the embedding dimension and LSTMhidden-representation
size to 128. For training the LSTM, we use the Adam optimizer [14]
with the learning rate set to 1e-3, batch size to 35, and the number
of training epochs to 30.



We train the translation and dialog-generation models on 300
randomly selected users from SATED and Dialogs, respectively. We
set both the embedding dimension and LSTMhidden-representation
size in the encoder and decoder to 128. We use the Adam optimizer
with the learning rate set to 1e-3, batch size to 20, and the number
of training epochs to 30.

For all datasets, we fix the vocabulary to the most frequent
5,000 tokens in the training texts. Tokens not in the vocabulary are
replaced with a special <UNK> token. To prevent overfitting, we
add dropout with 0.5 rate to all hidden layers of all models.
Shadow models. For the experiments in Section 4.3, we construct
shadow models using different hyper-parameters than the target
models. On all tasks, we used Gated Recurrent Units (GRU) [6]
instead of LSTM. The size of hidden units and embedding is set to

64, 96, 128, 160, . . . , 352 for the shadow models. We optimize the
shadow models using momentum SGD with the learning rate set
to 0.01, momentum set to 0.9, and number of training epochs to 50.

B.3 Implementation
Target and shadow models. All target and shadow models were
implemented with Keras6 using TensorFlow [1] backend.
Audit model. We use linear SVM implemented in LIBLINEAR [10]
to train the audit model with the default hyper-parameters.7

Hardware. All models were trained on a machine with 3 NVIDIA
Titan X GPUs, 8-core Intel(R) Core(TM) i7-5960X CPU @ 3.00GHz
and 94 GBs of RAM.
6https://keras.io/
7http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html

https://keras.io/
http://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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