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a b s t r a c t

In this paper, we present a strategy for the active manipulation of Helmholtz fields using

an array (swarm) of coupling sources with prescribed fixed positions. More specifically,

we consider the problem of using an array of active surface sources to approximate

prescribed fields in several given exterior regions of space including possibly the far field

region. In this regard, we extend the results presented in our previous works for the case

of a single source to allow for multiple active sources considering the first-order mutual

coupling between them. We prove the existence of boundary inputs on the sources

(pressure or normal velocity), so that the desired control effect is obtained. We also

devise a stable numerical scheme to compute these boundary inputs by using local basis

functions defined on the source boundaries in a method of moments approach together

with a Morozov discrepancy principle-based Tikhonov regularization. Several numerical

simulations were presented to demonstrate the accuracy of the proposed scheme.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction and related works

Helmholtz fields and the development of schemes to actively manipulate them have been the subject of numerous
studies due to its wide range of possible applications. Common applications include active noise cancellation [1–5],
sound synthesis and reproduction [6–11], and active control of acoustic scattered fields with application to cloaking and
shielding [12–19]. A more comprehensive discussion and analysis of some of the methods employed in these applications
are also given in [20] for scattered field control and in [21] and [22] for sound field synthesis.

Various approaches for the active control of acoustic fields have been proposed. For instance in [23] and [13], the
design of active controls for acoustic cloaking was done using the Green representation Theorem for the Helmholtz
equation. In [24] and [25], generalized Calderon potentials and boundary projection operators with quadratic functional
optimization were used to construct the active acoustic controls. Multizone sound field synthesis and reproduction were
studied using wave-domain methods (such as in [26,27]) or modal-domain approaches (see [28,29]). In a recent work [9],
the authors studied and proposed an algorithm to mitigate the effect of bright zone scatterers on the overall multizone
sound field synthesis effect. Boundary integral operators are used in [18] to produce a stable unified control strategy
in the case of a single active surface source proving the active control of scalar fields in prescribed exterior region of
space. These theoretical results were later applied for the 2D and 3D numerical study in [11,30,31]. Control problems
for high frequency regimes that result in numerically unstable linear systems have been investigated using time-domain
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reformulations [32]. Other techniques that are used in the context of sound field control are discussed and analyzed in
works such as [21,33,34] and [35].

Practical implementation of such strategies may involve the necessity of accurate field measurements or require the
use of non-monopolar sources only. In this regard and in the context of scattered field active control, the authors in [24]
and [36] proposed methods which are only based on measurements of the total field around the sources, while in a more
general context, recently in [37], the authors proposed a method to overcome the difficult task of using monopolar sources
in the control schemes proposed in the literature.

In our previous works, we studied the active manipulation of Helmholtz fields in two and three dimensions with the
use of a single spherical source [11,18,30,31]. In these works, we considered well-separated control regions in space and
using a single active compact source domain, approximated different a priori prescribed fields on each of these regions.
This was done by finding the required inputs, either a normal velocity or the surface pressure on the boundary of the
source necessary to produce a good approximation to the prescribed fields in each of the regions of control. The proposed
scheme was based on a method of moments approach where a global basis representation for the required solutions
was used (i.e., spherical harmonics) together with a Morozov discrepancy principle-based Tikhonov regularization. The
method was shown to be accurate and robust against measurement noise and variations in the physical parameters of
the problem geometry.

In this paper, we extend these results for the case of multiple compact source domains considering also the first
order coupling effects. This can lead to applications such as the design of controllable arrays for multizone sound field
synthesis, active noise cancellation, acoustic cloaking and shielding and acoustic contrast control design (see [38–40]
and [41] for similar applications using loudspeaker arrays). Another novelty of the present work is the use of local instead
of global basis functions (such as spherical harmonics) in the representation of the solution. This allowed for an easier
representation of the solution on each array element and provided a greater flexibility for the shape of the sources.

The paper is organized as follows. In Section 2 we formally state the problem and develop the functional framework
that will take into account the interaction between the sources. This section contains the main bulk of the paper’s
theoretical results. In Section 3, we present a theoretical stability result for our strategy which extends the results
discussed in [30]. Then in Section 4, we present several numerical simulations validating our analysis. More explicitly, we
present simulations using linear, planar and nonplanar array of sources with either two or three control regions which
are bounded or have a bounded complement (i.e., unbounded far field region R

3 \ BR(0), where BR(0) is the open ball
centered at the origin of radius R). Lastly, Section 5 presents our conclusions and future research directions.

2. Statement of the problem and functional framework

Let μ � 1 be a small positive parameter and let {R1, R2, . . . , Rm} be a collection of m mutually disjoint smooth domains
in R

3 where Rm may possibly be the far field region R
3\BR(0). We consider the problem of generating a prescribed acoustic

field in Rl, l = 1,m using a collection of active sources {D1,D2, . . . ,Dn} modeled as mutually disjoint compact regions in
R

3 with Lipschitz continuous boundaries. Mathematically, the problem is to find boundary inputs on these sources, either
a Neumann input data vj ∈ C(∂Dj) or a Dirichlet data pj ∈ C(∂Dj) such that for any desired field f = (f1, f2, . . . , fm) on the
control regions, the solution u of the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Δu + k2u = 0 in R
3\
⎛
⎝ n⋃

j=1

Dj

⎞
⎠ ,

∇u · nj = vj, ( or u = pj) on ∂Dj, j = 1, n〈
x̂, ∇u(x)

〉−iku(x)=o

(
1

|x|
)

, as |x| → ∞ uniformly for all x̂,

(1)

satisfies

‖u − fl‖C2(Rl)
≤ μ for l = 1,m (2)

where C2(M) denotes the space of functions defined on M with continuous partial derivatives up to the second order and
here and throughout the rest of the paper nj is the outward unit normal to ∂D′

j and x̂ = x
|x| denotes the unit vector along

the direction x. As a convention, the e−iωt of the fields is implicitly assumed. It is well known that (see for example [42])

for every set of given Dirichlet or Neumann boundary inputs on

n⋃
j=1

∂Dj problem (1) has a unique radiating solution

u ∈ C2

⎛
⎝R

3 \
n⋃

j=1

Dj

⎞
⎠ ∩ C

⎛
⎝R

3 \
n⋃

j=1

Dj

⎞
⎠ (with the additional condition that the normal derivative exists in the sense

of uniform convergence for the Neumann problem). This suggests that one way towards a possible solution is to consider
a representation for the unique solution of the above exterior problem as a function of the inputs and study the possibility
to characterize those boundary data which lead to a solution satisfying (2).
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In [18], we considered a different approach and by using as an ansatz a layer potential representation for radiating
exterior fields in the case of a single complex source, we showed that one can determine a class of densities for the
layer potentials defined on the boundary of the source such that they approximate the field fl on each control region Rl.
This then led to a complete characterization of the required boundary inputs on the source (pressure or normal velocity)
with the property that the field generated by them will satisfy (2) on the control regions. In fact if k is not a resonance
(see [43] and [18,31]), the boundary input (normal velocity v or pressure p) on the single source D1 can be characterized
by a density w such that

v(x) = −i

ρck

∂

∂n1

∫
∂D′

1

w(y)
∂φ(x, y)

∂n1

dS and (3)

p(x) =
∫

∂D′
1

w(y)
∂φ(x, y)

∂n1

dS, (4)

where D′
1 is a fictitious source that is compactly embedded in D1. Although the expressions in (3) and (4) make use of the

double layer potential operator, it was shown in [31] (see also [11]) that equally valid representations for the required
boundary inputs could be obtained by using the single layer potential representation or more general, a representation
given by a linear combination of single and double layer potentials.

In what follows we will present the extension of these results to the case of an array of sources factoring in the coupling
among them. Let A ⊂⊂ B denote the fact that A is compactly embedded in B. Consider fictitious sources D′

j ⊂⊂ Dj, j = 1, n,

each of which is a smooth domain and let Wl for l = 1,m be mutually disjoint open control regions with Rl ⊂⊂ Wl, for
any l (where we additionally assume that if Rm = R

3 \ BR(0) then Wm has a open connected complement). Further, we
assume that the fictitious sources and the larger control regions are well separated, i.e.,

Wl ∩ Dj = ∅, for l = 1,m and j = 1, n. (5)

We define three product Hilbert spaces necessary for our analysis. First, we let

X =
n∏

j=1

L2(∂D′
j), (6)

be the Hilbert space of n-tuples of L2 functions on the surface of the fictitious sources endowed with the usual inner
product

〈v, w〉X =
n∑

j=1

〈vj, wj〉L2(∂D′
j
) (7)

for all v = (v1, v2, . . . , vn), w = (w1, w2, . . . , wn) ∈ X . Then we define the product space

Y =
m∏
l=1

L2(∂Wl) (8)

of m-tuples of L2 functions on the surface of the slightly larger compact control regions with the inner product

〈ϕ, ψ〉Y =
m∑
l=1

〈ϕl, ψl〉L2(∂Wl)
(9)

for all ϕ = (ϕ1, ϕ2, . . . , ϕm) and ψ = (ψ1, ψ2, . . . , ψm) ∈ Y . In order to account for the coupling between the sources, we
need to consider each physical source as an evaluation region of the field generated by the other sources. Hence, for each
j = 1, n, we define a third product Hilbert space

Zj =
n∏

p=1
p�=j

L2(∂Dp) (10)

of n − 1-tuples of L2 functions on the surface of the physical sources different from ∂Dj with the usual inner product

〈f , g〉Zj =
n∑

p=1
p�=j

〈fp, gp〉L2(∂Dp)
(11)

for all f = (f1, . . . , fj−1, fj+1, . . . , fn) and g = (g1, . . . , gj−1, gj+1, . . . , gn) ∈ Zj. All other Hilbert spaces defined in the rest
of this paper as a product of these spaces will assume the usual induced inner product analogous to the ones above.

Now following the framework laid down in [18], we can now define the propagator of each fictitious source (the field
operator corresponding to each source). But aside from the control regions, we shall also design this operator to calculate
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the generated field on the surface of each other physical source. Let φ be the fundamental solution of the Helmholtz

equation in three dimensions:

φ(x, y) = eik|x−y|

4π |x − y| . (12)

and η1, η2 ∈ R be the non-negative weights assigned to the double and single layer potential terms, respectively. Then

for each j = 1, n we define the operator

Kj : L2(∂D′
j) → Y × Zj (13)

such that for every density wj ∈ L2(∂D′
j), and tuples of evaluation points y = (y1, . . . , ym) ∈

m∏
l=1

∂Wl and z =

(z1, . . . , zj−1, zj+1, . . . , zn) ∈
n∏

p=1
p�=j

∂Dp we have

Kjwj(y, z)

=(Pj1wj(y1), . . . ,Pjmwj(ym),Kj1wj(z1), . . . ,Kj,j−1wj(zj−1),Kj,j+1wj(zj+1), . . . ,Kjnwj(zn)
)
, (14)

where for each l = 1,m and s ∈ ∂Wl

Pjlwj(s) = η1

∫
∂D′

j

wj(x)
∂φ(x, s)

∂nj

dS + iη2

∫
∂D′

j

wj(x)φ(x, s)dS, (15)

and for every p = 1, n with p �= j and t ∈ ∂Dp

Kjpwj(t) = η1

∫
∂D′

j

wj(x)
∂φ(x, t)

∂nj

dS + iη2

∫
∂D′

j

wj(x)φ(x, t)dS. (16)

Note that the operators in Eqs. (15) and (16) are defined exactly in the same way but with different codomains. They both

calculate the field propagated by source Dj due to the density wj ∈ L2(∂D′
j). The operator Pjl evaluates this field at a point

on the surface of the control region Wl while Kjp with p �= j computes the field at points on the surface of a physical

source Dp.

From classical potential theory, both Pjl and Kjp as well as their respective adjoints P∗
jl and K∗

jp are all compact. It
follows that Kj and its adjoint K∗

j are also compact.

The adjoint operator

K∗
j : Y × Zj → L2(∂D′

j) (17)

is defined such that for all w ∈ L2(∂D′
j) and u = (ψ, ϕ) ∈ Y × Zj with ψ = (ψ1, . . . , ψm) ∈ Y and ϕ =

(ϕ1, . . . , ϕj−1, ϕj+1, . . . , ϕn) ∈ Zj the following holds:

〈w,K∗
j u〉L2(∂D′

j
) = 〈Kjw, u〉Y×Zj (18)

=
m∑
l=1

〈Pjlw, ψl〉L2(∂Wl)
+

n∑
p=1
p�=j

〈Kjpw, ϕp〉L2(∂Dp)
(19)

=
m∑
l=1

〈w,P∗
jlψl〉L2(∂D′

j
) +

n∑
p=1
p�=j

〈w,K∗
jpϕp〉L2(∂D′

j
) (20)

=
〈
w,

m∑
l=1

P∗
jlψl

〉
L2(∂D′

j
)

+
〈
w,

n∑
p=1
p�=j

K∗
jpϕp

〉
L2(∂D′

j
)

. (21)

Thus, for every such u = (ψ, ϕ) ∈ Y × Zj,

K∗
j u =

m∑
l=1

P∗
jlψl +

n∑
p=1
p�=j

K∗
jpϕp. (22)

From [18], we have the following important property of K∗
j which by using classical linear operator theory directly implies

that Kj has a dense range.
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Fig. 1. Illustration of the first order coupling among sources.

Theorem 2.1 ([18]). The operator K∗
j defined above has a trivial kernel, i.e, K∗

j u = K∗
j (ψ, ϕ) = 0 if and only if ψl = 0 for all

l = 1,m and ϕp = 0 for all p = 1, n, p �= j.

2.1. The coupling operator

The formulations above are extensions of the ones in [18] for the case of multiple sources and multiple control regions.
The novelty of this work is the incorporation of the coupling among the sources into the model. In simple terms, coupling is
the interaction between the sources in an array where the field radiated by one source is scattered by another source. Thus,
the field generated by a source experiences some contributions from the other radiators in the array. These contributions
are inversely proportional to the spacing between the sources in the array. Moreover, the contributions from higher
order coupling, i.e., the contributions from the propagated field of a source onto another that bounces off one or more
intermediate sources are assumed small.

Next, we shall only quantify the effects of first order coupling. Consider the geometric setting in Fig. 1, where we
illustrate the first order coupling among sources. It shows the physical sources Dj and Dp with the respective embedded
fictitious sources D′

j and D′
p and a control region Wl. These sources propagates the fields uj and up, respectively not only

onto the control region but also onto each other. In particular, as up hits the boundary ∂Dj it is scattered as a secondary
field ujp. Thus, the total field from ∂Dj propagated onto the control region is uj + ujp. Similarly. the total field from ∂Dp

experienced by Wl is up + upj. This analysis can be extended to the case of more sources and more controls.
In order to characterize the contributions from the coupling among sources, we shall define the operators

Sjp : L2(∂D′
p) → L2(∂D′

j) (23)

for j, p = 1, n, j �= p that will calculate the density wjp on ∂D′
j that will generate an approximation of the scattered field

ujp. Assuming that all sources have sound-soft boundaries, then ujp satisfies⎧⎪⎪⎨
⎪⎪⎩

Δujp + k2ujp = 0, in R
3 \ Dj

〈x̂, ∇ujp(x)〉 − ikujp(x) = o

(
1

|x|
)

, as |x| → ∞ uniformly for all x̂

ujp(x) = −eikdjpup(x), for all x ∈ ∂Dj.

(24)

where djp is the Euclidean distance between the centers of the fictitious spherical sources D′
j and D′

p and eikdjp is the
associated delay factor. Note that the boundary condition of (24) is imposed on the surface of the actual physical source.
Next, we define for every j = 1, n, the operator

K̃j : L2(∂D′
j) → L2(∂Dj) (25)

such that for every point x ∈ ∂Dj and density wj ∈ L2(∂D′
j)

K̃jwj(x) = η1

∫
∂D′

j

wj(s)
∂φ(s, x)

∂nj

dS + iη2

∫
∂D′

j

wj(s)φ(s, x)dS. (26)
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This operator is defined in exactly the same way as Pjl and Kjp but with a different codomain. It evaluates the field on
the surface of the physical source due to the fictitious source. This operator and its adjoint are both compact.

From [18], there exists an infinite family of densities wjp ∈ C(∂D′
j) such that

K̃jwjp ≈ ujp = −eikdjpup = −eikdjpKpjwp (27)

where ujp is the solution of (24) and in the last equality above we used the definition of up introduced above and the
operators Kpj introduced at (16) which imply up = Kpjwp. The density wjp can be taken to be the Tikhonov solution of
(27) given by

wjp = −eikdjp (αjpI + K̃∗
j K̃j)

−1K̃∗
j Kpjwp (28)

for some optimal choice of positive constant αjp � 1 and where I is the identity operator. Now we define Sjp : L2(∂D′
p) →

L2(∂D′
j) as the composite operator

Sjp = −eikdjp (αjpI + K̃∗
j K̃j)

−1K̃∗
j Kpj. (29)

We note that Sjp is compact, being a scalar multiple of the composition of the bounded operator (αjpI + K̃∗
j K̃j)

−1 and

compact operators K̃∗
j and Kp. Consequently, its adjoint S∗

jp : L2(∂D′
j) → L2(∂D′

p) given by

S∗
jp = −e−ikdjpK∗

pjK̃j(αjpI + K̃∗
j K̃j)

−1 (30)

is also compact. In conclusion, (15) and the above discussion imply that PjlSjpwp(x) is a very good approximation of the
propagated field at a point x ∈ ∂Wl due to the scattering of up off the surface of Dj.

2.2. The propagator operator and its range

With the framework developed above, we can now define the propagator operator D that calculates the total field
propagated on each control region as a superposition of the fields due to the n sources and the first order coupling among
them. Define the operator D : X → Y such that for every n-tuple of densities w = (w1, w2, . . . , wn) ∈ X and m-tuple of

evaluation points y = (y1, y2, . . . , ym) ∈
m∏
l=1

∂Wl,

Dw(y) = (D1w(y1),D2w(y2), . . . ,Dmw(ym)
)
, (31)

where for each s ∈ ∂Wl

Dlw(s) =
n∑

j=1

⎡
⎢⎣Pjlwj(s) +

n∑
p=1
p�=j

PjlSjpwp(s)

⎤
⎥⎦ (32)

The first term inside the outer summation in (32) represents the field propagated directly by the fictitious source D′
j due

solely to its density wj where Pjl was defined in (15). Meanwhile, the second term is a very good approximation of the
totality of the fields that scatter off the surface of Dj due to first order coupling with the other sources Dp as discussed in
Section 2.1. Hence, D is the operator that gives the total field on each control region due to the sources and the first-order
coupling among them.

It is easy to see that each Dl, l = 1,m is compact. This immediately implies that D∗
l , D and D∗ are also compact

operators. The following theorem establishes that D has a dense range, that is, for every f ∈ Y and accuracy threshold
μ > 0, there is a density w ∈ X such that

‖Dw − f ‖Y ≤ μ. (33)

Theorem 2.2. The compact operator D defined in (32) has a dense range.

Proof. Since D is linear and compact, it suffices to show that D∗ has a trivial kernel. Note that D∗ : Y → X is the operator
that, for every w ∈ X and ψ = (ψ1, ψ2, . . . , ψm) ∈ Y , satisfies:

〈w,D∗ψ〉X = 〈Dw, ψ〉Y (34)

=
m∑
l=1

〈Dlw, ψl〉L2(∂Wl)
(35)

=
m∑
l=1

〈
n∑

j=1

⎡
⎢⎣Pjlwj +

n∑
p=1
p�=j

PjlSjpwp

⎤
⎥⎦ , ψl

〉
L2(∂Wl)

(36)
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=
m∑
l=1

⎡
⎢⎢⎣
〈

n∑
j=1

Pjlwj, ψl

〉
L2(∂Wl)

+
〈

n∑
j=1

n∑
p=1
p�=j

PjlSjpwp, ψl

〉
L2(∂Wl)

⎤
⎥⎥⎦ . (37)

Note that
m∑
l=1

〈
n∑

j=1

Pjlwj, ψl

〉
L2(∂Wl)

=
n∑

j=1

m∑
l=1

〈
wj,P∗

jlψl

〉
L2(∂D′

j
)

(38)

=
n∑

j=1

〈
wj,

m∑
l=1

P∗
jlψl

〉
L2(∂D′

j
)

(39)

and if ajp =
{
1, j �= p

0, j = p
,

m∑
l=1

〈
n∑

j=1

n∑
p=1
p�=j

PjlSjpwp, ψl

〉
L2(∂Wl)

=
m∑
l=1

n∑
j=1

n∑
p=1
p�=j

〈
PjlSjpwp, ψl

〉
L2(∂Wl)

(40)

=
m∑
l=1

n∑
j=1

n∑
p=1
p�=j

〈
wp, S∗

jpP∗
jlψl

〉
L2(∂D′

p)
(41)

=
n∑

j=1

n∑
p=1
p�=j

〈
wp,

m∑
l=1

S∗
jpP∗

jlψl

〉
L2(∂D′

p)

(42)

=
n∑

j=1

n∑
p=1

〈
wp, ajp

m∑
l=1

S∗
jpP∗

jlψl

〉
L2(∂D′

p)

(43)

=
n∑

p=1

〈
wp,

n∑
j=1

m∑
l=1

ajpS∗
jpP∗

jlψl

〉
L2(∂D′

p)

(44)

=
n∑

j=1

〈
wj,

n∑
p=1

m∑
l=1

apjS∗
pjP∗

plψl

〉
L2(∂D′

j
)

(45)

=
n∑

j=1

〈
wj,

n∑
p=1
p�=j

m∑
l=1

S∗
pjP∗

plψl

〉
L2(∂D′

j
)

. (46)

Thus, using (39) and (46) in (37) gives

〈w,D∗ψ〉X =
n∑

j=1

〈
wj,

m∑
l=1

P∗
jlψl +

n∑
p=1
p�=j

m∑
l=1

S∗
pjP∗

plψl

〉
L2(∂D′

j
)

, (47)

that is, D∗ψ = (D∗
1ψ, . . .D∗

nψ) where for every j = 1, n,

D∗
j ψ =

m∑
l=1

P∗
jlψl +

n∑
p=1
p�=j

m∑
l=1

S∗
pjP∗

plψl (48)

=
m∑
l=1

P∗
jlψl +

n∑
p=1
p�=j

m∑
l=1

(−e−ikdpjK∗
jpK̃p(αpjI + K̃∗

pK̃p)
−1
)
P∗

plψl (49)

=
m∑
l=1

P∗
jlψl +

n∑
p=1
p�=j

K∗
jp

[
m∑
l=1

(−e−ikdpj K̃p(αpjI + K̃∗
pK̃p)

−1
)
P∗

plψl

]
(50)

= K∗
j (ψ, ϕ) (51)
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where we used (22) with ϕ = (ϕ1, . . . , ϕj−1, ϕj+1, . . . , ϕn) with ϕp =
m∑
l=1

(−e−ikdpj K̃p(αpjI + K̃∗
pK̃p)

−1
)
P∗

plψl. Then from

Theorem 2.1, ψ ∈ kerD∗ if and only if ψl = 0 for all l = 1,m. This and the compactness of D∗ imply that D has a dense
range. �

This theorem ensures the existence of a density w = (w1, w2, . . . , wn) ∈ X such that Dw ≈ f . Moreover, each
component wj of w characterizes the required boundary input on the physical source Dj via the relations in (3) and
(4) or their extensions.

3. Stability results

In this section, we discuss some regularization results that will lead to a stable solution of (1)–(2). Theorem 2.2
guarantees that for any f ∈ Y there is a continuous function w ∈ X such that Dw ≈ f . However, we will be interested in
regularized solutions, such as the minimum norm solution. Recall that for a bounded linear operator T : A → B and f ∈ B
the element v0 ∈ A is a minimum norm solution of Tv = f with discrepancy μ if

‖Tv0 − f ‖B ≤ μ

and

‖v0‖A = inf
‖Tv−f ‖B≤μ

‖v‖A.

Theorem 2.2 and classical arguments (such as those in Chapter 16.4, [44]) imply the following result.

Corollary 3.1. Let D be the operator defined in (32). Then for any f ∈ Y , the equation

Dw = f (52)

has a minimum norm solution in X.

Thus, for any f = (f1, f2, . . . , fm) ∈ Y we can choose the density wα ∈ X to be the Tikhonov solution, that is the
minimizer of the discrepancy functional

F (w, α) =
m∑
l=1

βl‖Dlw − fl‖2

L2(∂Wl)
+ α‖w‖2

X (53)

where

βl =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

‖fl‖2

L2(∂Wl)

, if fl �= 0

1, if fl = 0, and Wl is bounded
1

4πR2
, if fl = 0 and Wl = R

3 \ BR(0),

(54)

and the regularization parameter α is computed following the Morozov discrepancy principle, i.e., as the solution of

F (w, α) = δ2, (55)

for some prescribed accuracy threshold δ � 1. With this choice of wα , we obtain the following stability results analogous
to the ones established in [30].

Lemma 3.1. Let 0 < δ <
1√
2

and wα be the Tikhonov solution of (52) with respect to the discrepancy functional F defined

in (53) . If F (wα) ≤ δ2 then for each l = 1,m,

‖fl‖L2(∂Wl)
≤ 4‖(Dl)

∗‖O‖wα‖X , (56)

where ‖ · ‖O denotes the operatorial norm.

Proof. If fl = 0, then (56) is trivial. Assume that fl �= 0. Since F (wα) ≤ δ2,

δ2‖fl‖2

L2(∂Wl)
≥ ‖Dlw

α − fl‖2

L2(∂Wl)
(57)

= ‖Dlw
α‖2

L2(∂Wl)
− 2 Re〈Dlw

α, fl〉L2(∂Wl)
+ ‖fl‖2

L2(∂Wl)
. (58)

Then it follows that

(1 − δ2)‖fl‖2

L2(∂Wl)
≤ 2 Re〈Dlw

α, fl〉L2(∂Wl)
(59)
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= 2 Re〈wα, (Dl)
∗fl〉X (60)

≤ 2‖wα‖X‖(Dl)
∗fl‖X (61)

and so

(1 − δ2)‖fl‖L2(∂Wl)
≤ 2‖wα‖X

‖(Dl)
∗fl‖X

‖fl‖L2(∂Wl)

≤ 2‖wα‖X‖(Dl)
∗‖O (62)

�⇒ ‖wα‖X ≥ (1 − δ2)‖fl‖L2(∂Wl)

2‖(Dl)∗‖O

≥ ‖fl‖L2(∂Wl)

4‖(Dl)∗‖O

. (63)

Therefore, ‖fl‖L2(∂Wl)
≤ 4‖(Dl)

∗‖O‖wα‖X . �

This lemma provides a key inequality needed for our stability result. Without loss of generality, we assume that

f = (f1, f2, . . . , fm∗ , . . . , fm) with fl �= 0 for all l ≤ m∗ and fl = 0 for l = m∗ + 1,m. We consider a perturbation f ε of

f with magnitude ε > 0 and

f ε = f + εs = (f1 + εs1, f2 + εs2, . . . , fm∗ + εsm∗ , fm∗+1, . . . , fm), (64)

where s ∈ Y is a random perturbation with

‖sl‖L2(∂Wl)
≤ C‖fl‖L2(∂Wl)

(65)

for some constant C and all l = 1,m∗. Further, we let wα0 be the Tikhonov solution of the unperturbed equation (52) and

wαε be the Tikhonov solution of

Dw = f ε . (66)

Moreover, we denote the corresponding discrepancy functional for the perturbed system by

G(α, ε) =
m∑
l=1

βε
l ‖Dlw

αε − f ε
l ‖2

L2(∂Wl)
+ α‖wαε ‖2

X (67)

where βε
l is defined as in (54) with fl replaced by f ε

l . We want to show that the relative difference between the solutions

wα0 and wαε is at most a multiple of the magnitude ε. The next proposition provides an upper bound for this relative

difference.

Proposition 3.1. Let 0 < δ <
1√
2

and f ε be as defined in (64). For every ε > 0, let wαε be the Tikhonov solution of Dw = f ε

such that G(α, ε) = δ2. Then

‖wαε − wα0‖X

‖wαε ‖X

≤
Cε

α0λ

(
1+ δ√

α0

)
+
∣∣∣∣αε

α0

− 1

∣∣∣∣+
√(

Cε

α0λ

(
1+ δ√

α0

)
+
∣∣∣∣1 − αε

α0

∣∣∣∣
)2

+ 4εC
δ + ε

α0λ2

2
(68)

where C and λ are generic positive constants independent of ε, δ and α0.

Proof. Note that the solutions wαε and wα0 satisfy{
α0w

α0 + D̃∗D̃wα0 = D̃∗ f̃
αεw

αε + D̃∗
ε D̃εw

αε = D̃∗
ε

˜̃
f ε

�⇒ α0w
α0 − αεw

αε + D̃∗
ε D̃ε(w

α0 − wαε ) = D̃∗(f̃ − f̃ ε) + D̃∗(f̃ ε − ˜̃
f ε) (69)

+ (D̃∗ − D̃∗
ε )

˜̃
f ε + (D̃∗

ε D̃ε − D̃∗D̃)wα0

with

˜̃
f ε = (

√
βε
1 f

ε
1 ,
√

βε
2 f

ε
2 , . . . ,

√
βε
mf

ε
m)

f̃ = (
√

β1f1,
√

β2f2, . . . ,
√

βmfm), f̃
ε = (

√
β1f

ε
1 ,
√

β2f
ε
2 , . . . ,

√
βmf

ε
m)

D̃w = (√β1D1w,
√

β2D2w, . . . ,
√

βmDmw
)
for w ∈ X

D̃∗ψ = (√β1D∗
1ψ,

√
β2D2ψ, . . . ,

√
βmDmψ

)
for ψ ∈ Y (70)



10 N.J.A. Egarguin, S. Zeng, D. Onofrei et al. / Wave Motion 94 (2020) 102523

Fig. 2. Illustration of the simulation geometry.

and D1,D2, . . . ,Dm as introduced in (31). Integrating both sides of (69) against wα0 − wαε yields

α0‖wα0 − wαε ‖2
X + (α0 − αε) 〈wαε , wα0 − wαε 〉X + ‖D̃ε(w

α0 − wαε )‖2
Y

≤
〈
f̃ − f̃ ε, D̃(wα0 − wαε )

〉
Y

+ Cε

(
1 + δ√

α0

)
‖(wα0 − wαε )‖X (71)

where for the last term on the right hand side of (71) we have used elementary algebraic manipulations, the definition

of the operators D̃, D̃∗, D̃ε, D̃∗
ε and their boundedness independent of ε, the fact that ‖wα0

‖X ≤ δ√
α0

(immediate

consequence of (55)), and the immediate estimate |βε
l − βl| ≤ Cε for some generic positive constant C independent

of ε, δ and α0. Inequality (71) further implies

α0‖wα0 − wαε ‖2
X ≤

〈
f̃ − f̃ ε, D̃(wα0 − wαε )

〉
Y

+ Cε

(
1+ δ√

α0

)
‖wα0 − wαε ‖X −(α0 − αε) 〈wαε , wα0 − wαε 〉X

=
m∑
l=1

βl

〈
fl − f ε

l ,Dl(w
α0 − wαε )

〉
L2(∂Wl)

+Cε

(
1+ δ√

α0

)
‖wα0 − wαε ‖X −(α0 − αε)〈wαε, wα0 −wαε〉X .

Recall that it was assumed that fl �= 0 for all l ≤ m∗ and fl = 0 for l = m∗ + 1,m. Also note that if fl = 0 then f ε
l = 0. So,

α0‖wα0 − wαε ‖2
X ≤

m∗∑
l=1

βl

〈
fl − f ε

l ,Dl(w
α0 − wαε )

〉
L2(∂Wl)

+ Cε

(
1+ δ√

α0

)
‖wα0 − wαε ‖X − (α0 − αε) 〈wαε , wα0 − wαε 〉X

≤
m∗∑
l=1

βl‖fl − f ε
l ‖L2(∂Wl)

‖Dl(w
α0 − wαε )‖L2(∂Wl)

+ Cε

(
1+ δ√

α0

)
‖wα0 − wαε ‖X − (α0 − αε) 〈wαε , wα0 − wαε 〉X . (72)

Note that from (65), ‖fl − f ε
l ‖L2(∂Wl)

= ‖εsl‖L2(∂Wl)
≤ εC‖fl‖L2(∂Wl)

. Using this and (57) from the proof of Lemma 3.1, we

have

‖Dl(w
α0 − wαε )‖L2(∂Wl)

= ‖Dlw
α0 − fl − Dlw

αε + f ε
l + fl − f ε

l ‖L2(∂Wl)

≤ ‖Dlw
α0 − fl‖L2(∂Wl)

+ ‖Dlw
αε − f ε

l ‖L2(∂Wl)
+ ‖fl − f ε

l ‖L2(∂Wl)

≤ (2δ + εC)‖fl‖L2(∂Wl)
. (73)



N.J.A. Egarguin, S. Zeng, D. Onofrei et al. / Wave Motion 94 (2020) 102523 11

Fig. 3. Results of the pattern synthesis on W1.

Thus, (72) becomes

α0‖wα0 − wαε ‖2
X ≤

m∗∑
l=1

βl

[
εC‖fl‖L2(∂Wl)

(2δ + εC)‖fl‖L2(∂Wl)

]

+ Cε

(
1+ δ√

α0

)
‖wα0 − wαε ‖X − (α0 − αε) 〈wαε , wα0 − wαε 〉X

≤ εC
(δ + ε)

λ2
‖wαε ‖2

X +
(
Cε

λ

(
1+ δ√

α0

)
+ |α0 − αε |

)
‖wαε ‖X‖wα0 − wαε ‖X (74)

where we made use of (54) in the second inequality above and employed Lemma 3.1 for wαε and the boundedness of D̃∗
ε

with respect to ε to obtain the existence of a λ > 0 independent of ε such that ‖wαε ‖X ≥ max
l

‖f ε
l ‖L2(∂Wl)

4‖(Dε
l )

∗‖O

≥ λ. Defining,

A = ‖wαε − wα0‖X

‖wαε ‖X

, (74) implies

α0A
2 ≤

(
Cε

λ

(
1+ δ√

α0

)
+ |α0 − αε |

)
A + εC

(δ + ε)

λ2

�⇒ A2 −
(

Cε

α0λ

(
1+ δ√

α0

)
+ |1 − αε

α0

|
)
A − εC

(δ + ε)

α0λ2
≤ 0. (75)
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Fig. 4. Results of the pattern synthesis on W2.

Fig. 5. Real part of the generated field on W3.

Finally from (75) we obtain the desired inequality

A ≤
Cε

α0λ

(
1+ δ√

α0

)
+
∣∣∣∣αε

α0

− 1

∣∣∣∣+
√(

Cε

α0λ

(
1+ δ√

α0

)
+
∣∣∣∣1 − αε

α0

∣∣∣∣
)2

+ 4εC
δ + ε

α0λ2

2
. � (76)
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Fig. 6. Pointwise magnitude of the density w.

Fig. 7. Illustration of the simulation geometry.

Remark 3.1. Note that by using the continuity of α(ε) = αε as a function of ε as ε � 1 (consequence of implicit function

theorem, see also [30]), Proposition 3.1 implies that for fixed accuracy level δ the Tikhonov solution proposed in our

scheme is stable with respect to the noise level ε.

4. Numerical implementation

In this section we propose a numerical implementation of the solution scheme for (1)–(2) developed in the previous

sections. We begin by discussing the discretization scheme leading to the formulation of the corresponding linear system.

Then we show some results of the numerical simulations under various geometric configurations.
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Fig. 8. Results of the pattern synthesis on W1.

4.1. Discretization

In [31] and [11], numerical solutions to (1)–(2) were presented in the case of a single source. Moreover, the density w

characterizing the necessary boundary data was approximated by the truncated series

wα(x) =
L∑

l=0

l∑
p=−l

cplY
p

l (x̂), for x ∈ ∂D′
1 (77)

of spherical harmonics Y
p

l (see [42,45]). Thus, the problem of finding the density w ∈ L2(∂D′
1) was reduced to finding

a discrete set of coefficients cpl. The expansion in (77), the orthogonality of the spherical harmonics and the addition

theorem for spherical harmonics provided an analytic way of computing Dwα without performing any integration. This

resulted into a fast and accurate way of discretizing Dw = f . This expansion relies on the spherical coordinates with

respect to the center of the fictitious spherical source D′
1. Thus, if one wishes to use this approach for the case of multiple

sources, the expansion for each wα
j should be computed with respect to a center common to all sources by employing

addition theorems (see for instance [46] for a related work for electromagnetic waves). In this paper, we use local basis

functions to reduce the integral equation Dw = f to a linear system Ac = b. This will not only avoid the use of addition

theorems to find the appropriate spherical harmonic decomposition of the densities on each fictitious source but will, in

general, also allow the sources to assume arbitrary shapes. In the numerical simulations below, we use nodal local basis

functions defined on triangular elements. A detailed discussion of local basis functions applied to finite element methods

in acoustics and electromagnetics can be found in [47]. We first discretize the surface of each fictitious source D′
j into a

set {T 1
j , T 2

j , . . . , TN
j } of triangular elements such that each vertex of the triangle lies on the surface of the fictitious source.

Then for each vertex vi of qth triangle T
q

j , we associate a linear interpolating function Ni such that Ni(vi) = 1 and zero on
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Fig. 9. Results of the pattern synthesis on W2.

the other two vertices. Thus, for every x ∈ T
q

j , the unknown density function wα
j can be expressed by the linear interpolant

wα
j,q(x) =

3∑
i=1

ciNi(x), (78)

where the coefficient ci is the value of wα
j on vertex vi. Thus, the problem of finding the unknown function wα =

(wα
1 , wα

2 , . . . , wα
n ) ∈ X is reduced to solving for the coefficients ci’s.

With a mesh of triangular elements approximating each of the fictitious sources, expressing wα as the continuous

piecewise function defined by the pieces in (78) and discretizing every control region, the operatorial equation Dw = f

considered first on a set of collocation test points, can then be approximated by the linear system Ac = b. Suppose that

there are a total of m discretization points on the control regions and a total of n points on the surface of the fictitious

sources. Then the matrices A, c and b are of dimensions m×n, n×1 and m×1, respectively. Each entry of the matrix A is

an integral approximated using the standard seven-point Gaussian quadrature rule. Then the unknown vector c of basis

coefficients is computed as the Tikhonov solution

c = (αI + A∗A)−1A∗b (79)

with the regularization parameter α chosen using the Morozov discrepancy principle.

In the succeeding sections, we present several implementations of the scheme discussed above under different

geometric configurations. In all cases, the wave number is k = 10. Unless stated otherwise, 419 basis functions were

used on each spherical fictitious source modeling the actual physical source. In all simulations, we gauge the accuracy of

the obtained solutions by looking at the generated fields at prescribed sets of evaluation points on the control regions.

As a computational stability check, these evaluation points are chosen to be the midpoint between consecutive points in

the original mesh of collocation points used together with the local basis discretization to obtain the solution (79) to the

associated linear system. We present visual comparisons of the prescribed field fl and generated field ul, the pointwise
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Fig. 10. Real part of the generated field on W3.

Fig. 11. Pointwise magnitude of the density w.

relative error
|fl(x) − ul(x)|

|fl(x)| for each evaluation point x and the overall L2 relative error computed as

‖fl − ul‖L2(∂Wl)

‖fl‖L2(∂Wl)

(80)

for each control Wl whenever fl �= 0. Whenever creating a null field on Wl, we observe the L2 norm of the field, the
supremum magnitude of the field on the control and the relative contrast Cll′ of the norm of fl against the generated field
fl′ �= 0 on another control Wl′ calculated as

Cll′ =
1

|Wl| ‖fl‖L2(∂Wl)

1

|Wl′ | ‖fl′ ‖L2(∂Wl′ )

, (81)

which we want to be as close to zero as possible.

4.2. Linear array of sources

In this simulation, we consider three sources represented by three spherical fictitious sources arranged in a line. All
fictitious sources have radius 0.01 m and are centered on the points (0, 0, 0), (0, −0.03, 0) and (0, 0.03, 0). Also, we use
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Fig. 12. Illustration of the simulation geometry.

three rectangular slabs of dimensions 0.01 × 0.06 × 0.01 with centers at (−0.0375, 0, 0), (0.0375, 0, 0) and (0, 0, 0.1) as
the control regions W1,W2 and W3 respectively. This geometric configuration is shown in Fig. 2.

Each source is sampled by 419 points, each serving as a vertex of some triangular elements. Each control region
is discretized into 16000 points. In W1 we prescribe the plane wave f1(x) = eix·(−10ê1) and in W2, the plane wave

f2(x) = eix·(10d̂) where here and throughout the paper ê1 = 〈1, 0, 0〉 and d̂ =
〈√

2
2

,
√
2
2

, 0

〉
. On W3, we try to maintain

a null field.
Fig. 3 shows the results on W1. The plots on the top row provide a visual comparison between the real parts of the

prescribed and generated patterns. Meanwhile, the good visual match is confirmed by the plot of the pointwise relative
error. It shows that the maximum relative error on W1 is about 2.86%. The overall L2-relative error on W1 is around
0.004951.

Similar good results where obtained in W2. Fig. 4(a-b) shows the prescribed and generated fields side by side. The
pointwise relative error is shown in Fig. 4(c), where it can be observed that the maximum relative error is about 2.29%.
Overall, the desired pattern is approximated well, with only about 0.004768 L2-relative error.

On the far control W3, the generated field has an L2 norm of only about 1.06 × 10−4. Fig. 5 shows the real part of the
generated field. Note that the maximum absolute value of this field is of order 10−3. The relative contrast of this field
with respect to f1 and f2 are C31 ≈ 1.91394 × 10−3 and C32 ≈ 1.91397 × 10−3, respectively.

The pointwise magnitude of the density on each fictitious source is depicted in Fig. 6. It can be observed that density
required to produce the prescribed fields above have values of order 1010 on some points in the source centered at the
origin.

4.3. Planar array of sources

In the following experiment, we assume nine sources arranged in a 3 × 3 array in the xz-plane. Again, these sources
will be modeled by spherical fictitious sources with centers at the origin, (0, −0.03, −0.03), (0, 0, −0.03), (0, 0.03, −0.03),
(0, −0.03, 0), (0, 0.03, 0), (0, −0.03, 0.03) and (0, 0, 0.03), (0, 0.03, 0.03), each of radius 0.01 m. On each spherical source,
we use 662 local basis functions instead of the standard 419. W1 is a rectangular prism of dimensions 0.01× 0.06× 0.06
centered at (−0.04, 0, 0) while W2 is a cube of side length 0.02 m centered at (0.04, 0.02, 0). These near controls
are discretized into 9000 points each. The far control W3 is a sphere of radius 0.03 m centered at (0, 0, 0.15). It is
discretized into 5000 points. As before, we prescribe the left traveling plane wave f1(x) = eix·(−10ê1) on W1, the plane

wave f2(x) = eix·(10d̂) on W2 and a null field on W3. A picture of the problem geometry is shown in Fig. 7.
The results of the simulation on W1 is shown in Fig. 8. The top two plots suggest a successful synthesis of the prescribed

pattern. This is confirmed by Fig. 8-(c) where it can be seen that the pointwise relative error on W1 is at most 2.83%. The
L2-relative error on this control region is only about 5.069899 × 10−3.
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Fig. 13. Results of the pattern synthesis on W1.

Fig. 9 shows how well the prescribed pattern is matched on the second near control W2. Again, a visual comparison of
the plots in Fig. 9(a)–(b) suggests a good match between the prescribed and generated fields. The third plot indicates that
the pointwise relative errors are all within desirable levels with a maximum of only about 1.24%. The overall L2-relative
error is 6.012841 × 10−3.

The real part of the generated field on the far control W3 is shown in Fig. 10. It can be observed that the values of the
field on the region are of order 10−3, except for some patch where the magnitude reaches 0.0106. The L2-norm of this
field is around 7.286668 × 10−4. The relative contrasts of this field with respect to f1 and f2 are C31 ≈ 5.876184 × 10−3

and C32 ≈ 5.877013 × 10−3, respectively.
The magnitude of the density on the fictitious sources are shown in Fig. 11. It shows that the density takes on values

of order 109.

4.4. Nonplanar array of sources

In the following set of experiments, we consider six sources in a nonplanar arrangement and various configurations for
the control regions. We use spherical fictitious sources all of radius 0.01 m with centers at points (0.03, 0, 0), (0, 0.03, 0),
(−0.03, 0, 0), (0, −0.03, 0), (0, 0, −0.03) and (0, 0, −0.03). On each fictitious source, 419 points are chosen to be the
vertices of the triangular elements.

4.4.1. Three control regions
For this simulation we consider two cubes W1 and W2 as near control regions, both of side length 0.03 m and

discretized into 9000 points each. Their respective centers are at (−0.07, 0, 0) and (0.07, 0.02, 0). On W1 we prescribe

f1(x) = eix·(−10ê1) while on W2, we synthesize f2(x) = eix·(10d̂). On W3 = B0.03(0, 0, 0.15) we approximate a null field. The
problem geometry is sketched in Fig. 12.

The plots on the top row of Fig. 13 show the prescribed and generated fields on W1 while the bottom plot shows the
pointwise relative error. A visual comparison of the fields indicates a very good match. The pointwise relative error in the
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Fig. 14. Results of the pattern synthesis on W2.

region is of order 10−3, except on some isolated spots where it is at most 1.39%. The L2-relative error is very low at only
3.44145 × 10−3.

Fig. 14 shows the results of the field synthesis on W2. The plots of the prescribed and generated fields indicate a good
match. The pointwise relative error is at most 2.67%, with the higher values occurring near the frontal edge of the cube.
But overall, the generated field matches the prescribed one as the L2-relative error is just around 3.41195 × 10−3.

A low signature was produced in the far control W3. Fig. 15 shows that the field has absolute value of order 10−3 all
throughout the region. The L2 norm of the field is just around 8.9860×10−4. The relative contrasts of this field with respect
to f1 and f2 are also within desired levels, with values of just about C31 ≈ 7.21724 × 10−3 and C32 ≈ 7.21715 × 10−3,
respectively.

The computed density on each fictitious source is plotted in Fig. 16. It shows that the there are isolated patches where
the density has magnitude of around 1010.

4.4.2. A near control inside the array’s convex hull and an unbounded far control
In this experiment we still consider six spherical fictitious sources of radius 0.01 m in the same layout and discretization

as in Section 4.4.1 but this time with a bigger separation to allow a spherical near control to fit inside the array’s convex
hull. The sources’ centers are at (0.05, 0, 0), (0, 0.05, 0), (−0.05, 0, 0), (0, −0.05, 0), (0, 0, −0.05) and (0, 0, 0.05). The near
control W1 is a sphere of radius 0.02 m centered at the origin sampled into 3200 points. The far control W2 is another
sphere centered at the origin with radius 0.15 m approximated by a mesh of 3200 points. This sphere mimics the boundary
of the unbounded region R

3 \ B0.15(0). The problem geometry is pictured in Fig. 17. On W1 we produce the plane wave
f1(x) = eix·(10ê1) and on W2 we approximate a null field.

In Fig. 18 one can observe that the desired plane wave is approximated well with a maximum pointwise relative error
of only about 0.20%. The overall L2-relative error over W1 is 6.458617 × 10−4.

The real part of the field on the far control is shown in Fig. 19. The values of the field are of order 10−3 with a maximum
of about 1.716494 × 10−3 and L2 norm of around 3.696723 × 10−4. The contrast between the generated fields f1 and f2
is C21 ≈ 5.834148 × 10−4.



20 N.J.A. Egarguin, S. Zeng, D. Onofrei et al. / Wave Motion 94 (2020) 102523

Fig. 15. Real part of the generated field on W3.

Fig. 16. Pointwise magnitude of the density w.

Fig. 17. Illustration of the simulation geometry.
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Fig. 18. Results of the pattern synthesis on W1.

Fig. 19. Real part of the generated field on W2.

The magnitude of the computed density on each fictitious source is plotted in Fig. 20. The maximum value of the

density is less than 105, about 5 orders lower than the one in the previous simulation involving three control regions.

4.4.3. A near control inside the array’s convex hull and a bounded far control

In this simulation, we use a similar configuration as above except that the far control W2 is a bounded region: an

annular sector
{
(r, φ, θ ) : r ∈ [0.15, 0.2], θ ∈ [− π

4
, π

4

]
, φ ∈ [ π

4
, 3π

4

]}
. W2 is discretized into 9600 points. The near control
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Fig. 20. Pointwise magnitude of the density w.

Fig. 21. Illustration of the simulation geometry.

W1 is still the sphere B0.02(0) discretized into 3200 points. The problem geometry is sketched in Fig. 21. On W1 we produce
the plane wave f1(x) = eix·(10ê1) and on W2 we approximate a null field.

In Fig. 22, it can be noticed that the generated field approximates the prescribed field accurately. The pointwise relative
error is at most 7.25 × 10−4 and the L2-relative error is just about 1.904183 × 10−4.

Fig. 23 shows a very low field signature in the far control. The field values are of order 10−4 all throughout the region
and the field’s norm is just about 1.018425 × 10−3. The relative contrast between the fields on the two controls is also
well within our desired values, C21 ≈ 6.344206 × 10−5.

The magnitude of the computed density on each fictitious source is plotted on Fig. 24. It can be noted that the density
is of order 104, the same order as in the case of an unbounded far control. However, there are more patches where high
fluctuations occur and oscillations are more rampant.

4.5. A sensitivity test

In this subsection, we present a simple sensitivity test for the proposed scheme supporting the stability results in
Section 3. In particular, we shall illustrate a specific case where the nonzero prescribed field is perturbed by Gaussian
noise. This scenario is particularly interesting for applications such as scattering cancellation where the incoming field
is measured with possible errors. Section 3 states that the relative L2-difference between the solution obtained from the
perturbed and unperturbed data will be small given that the noise level ε is also small.

The simulation below adopts the geometric set-up in Section 4.4.3 illustrated in Fig. 21. We still prescribed the null
field on W2 but now we impose a perturbed plane wave f ε

1 (x) = eix·(10ê1) + εs1(x) on W1. Here, we fix ε = 0.01 and take
s1 to be the standard Gaussian noise.
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Fig. 22. Results of the pattern synthesis on W1.

Fig. 23. Real part of the generated field on W2.

The real part of the prescribed and generated fields, together with the pointwise relative errors are shown in Fig. 25.

Again, as a further numerical stability check, the field values are plotted in a mesh of points different from the ones

used in the collocation scheme. A visual comparison of the two fields shows an almost exact match. This is confirmed by

the pointwise relative errors which are just at most 0.819%. Likewise, the prescribed field on W2 is well-matched as the

supremum norm of the generated field is just around 6.9×10−4. Fig. 26 shows the real part of the generated field on W2.
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Fig. 24. Pointwise magnitude of the density w.

Fig. 25. Results of the pattern synthesis on W1.

The accuracy of the field synthesis on both control regions are comparable to the ones obtained using the unperturbed

prescribed field.

The computed density for the current simulation is shown in Fig. 27. The magnitude of the computed field is of the

same order as that of the one for the unperturbed prescribed field shown in Fig. 24. There are also some similarities in the

pattern oscillations in the density on regions across the six sources. To further verify that the numerical scheme is stable



N.J.A. Egarguin, S. Zeng, D. Onofrei et al. / Wave Motion 94 (2020) 102523 25

Fig. 26. Real part of the generated field on W2.

Fig. 27. Pointwise magnitude of the computed density for the perturbed prescribed field.

for this specific set-up, we compare the computed densities wα0 and wαε for the unperturbed and perturbed prescribed

fields, respectively. The L2-relative difference between these densities is given by

‖wαε − wα0‖X

‖wαε ‖X

≈ 0.054338,

which is of the same order as ε. This is consistent with the results of Proposition 3.1 and is a good indication of the

stability of the proposed numerical scheme against noise in the data.

5. Conclusions

In this paper we developed a functional framework and a stable numerical scheme for the active manipulation of

Helmholtz fields using an array of sources. Each element in the array is a compact domain which could in practice be

approximated by an array of loudspeakers thus transforming our array into an array of subarrays of loudspeakers. The

propagator operator is designed to take into account the first order mutual coupling between the sources. We prove that

the propagator operator has a dense range, that is, any square integrable function can be approximated by an image of

a continuous function under this operator. Moreover, by extending the approach used in [30], we established that the

proposed numerical scheme is stable with respect to measurement noise.

Several simulations were provided as numerical support to our theoretical results. We illustrated the possibility of

finding the necessary boundary input on the sources that will accurately approximate some prescribed fields on the

control regions. Though the fictitious sources used in the simulations were spheres, the use of the local basis functions

in the representation of the solution allows the fictitious as well as the actual sources to assume any arbitrary shape,
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as long as all the geometrical separation conditions discussed in Section 2 are satisfied (see (5) and discussion above
it). The stability results were supported by a simple sensitivity test, showing that a small perturbation of the prescribed
field results to a density that is relatively close to the density for unperturbed data. A detailed sensitivity analysis of this
numerical scheme, to include numerical tests against measurement noise and variations in the physical parameters of the
problem geometry will be included in forthcoming reports. Possible future extensions of this work include determining
the optimal position of the sources with respect to some physical criterion such as the overall power required by the
solution or considering the same main question but in heterogeneous environments (e.g. layered media).
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