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Abstract
Autonomous motivated spatial navigation in animals or robots requires the association between spatial location and value.
Hippocampal place cells are involved in goal-directed spatial navigation and the consolidation of spatial memories. Recently,
Gauthier and Tank (Neuron 99(1):179–193, 2018. https://doi.org/10.1016/j.neuron.2018.06.008) have identified a subpopu-
lation of hippocampal cells selectively activated in relation to rewarded goals. However, the relationship between these cells’
spiking activity and goal representation remains elusive. We analyzed data from experiments in which rats underwent five
consecutive tasks in which reward locations and spatial context were manipulated. We found CA1 populations with properties
continuously ranging from place cells to reward cells. Specifically, we found typical place cells insensitive to reward locations,
reward cells that only fired at correct rewarded feeders in each task regardless of context, and “hybrid cells” that responded
to spatial locations and change of reward locations. Reward cells responded mostly to the reward delivery rather than to
its expectation. In addition, we found a small group of neurons that transitioned between place and reward cells properties
within the 5-task session. We conclude that some pyramidal cells (if not all) integrate both spatial and reward inputs to
various degrees. These results provide insights into the integrative coding properties of CA1 pyramidal cells, focusing on
their abilities to carry both spatial and reward information in a mixed and plastic manner. This conjunctive coding property
prompts a re-thinking of current computational models of spatial navigation in which hippocampal spatial and subcortical
value representations are independent.
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1 Introduction

Be they animals or robots, autonomous agents in ever-
changing environments must make dynamic decisions as to
where to go next, given a set of goals and an understanding of
their surroundings. The ability for animals to explore space
in order to reach goals, for example, rewards such as food
or water, is essential for survival. Much work has been done
in the restricted cases where such an agent has a single task
(i.e., retrieve an injured individual). It was proposed early on
that animals and robots alike might build a map of their envi-
ronment in which specific locations are given specific values
(Lieblich and Arbib 1982; Guazzelli and Arbib 1997). The
neurophysiological nature of the pairing between space and
value has, however, remained elusive.

It has long been known that the hippocampus and anatom-
ically related brain areas provide a physiological basis for
both memory consolidation and spatial navigation in mam-
mals like rats and mice (Olafsdottir et al. 2018). O’Keefe and
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colleagues first established that some CA1 cells exhibited
spatially dependent firing rate maps (O’Keefe and Dostro-
vsky 1971; Smith and Mizumori 2006; Moser et al. 2015).
These hippocampal pyramidal cells with spatially sensitive
receptive fields (or “place fields”) were responsive to specific
locations in a given environment. Outside the hippocampus,
several other areas have been found to be involved in spa-
tial navigation. Head direction cells in the presubiculum and
entorhinal cortex encode the orientationof the headof the ani-
mal in the horizontal plane (Mizumori and Williams 1993;
Taube 1995). Grid cells in the medial entorhinal cortex and
subicular complex have some similarities with place cells
but exhibit multiple place fields aligned on a triangular grid
which covers at least part of the environment (Hafting et al.
2005; Boccara et al. 2010). Boundary cells, found in the hip-
pocampal formation, i.e., the subiculum, presubiculum, and
entorhinal cortex, encode the existence of a boundary at a spe-
cific angle and distance (Lever et al. 2009; Barry et al. 2006;
Solstad et al. 2008;Boccara et al. 2010). Finally, object vector
cells have recently been found in themedial entorhinal cortex
and respond to specific directions and distances around spa-
tially confined objects, regardless of their locations (Hoydal
et al. 2019). Current theories hold that together, these cells
form a value-neutral map of the environment.

Place cells often change their preferred firing location, or
“remap,” as a result of significant changes in the environment
(Wilson and McNaughton 1993; Lenck-Santini et al. 2005;
Zhang and Manahan-Vaughan 2015). Significant changes of
spatial context are always accompanied by global and appar-
ently random remapping for almost all recorded place cells
(Wilson and McNaughton 1993; Schlesiger et al. 2018), and
their firing rate can be modulated by small spatial context
changes such as adding or subtracting a fraction of spa-
tial cues (Colgin et al. 2008), or changing task demands
(Sanders et al. 2019). The mechanisms by which hippocam-
pal information can be preserved and re-instantiated from
one environment to the next, across multiple environments,
are still theoretically unknown. One possibility is that some
cells in hippocampus encode or are strongly influenced by
important spatial features, such as the location of rewards, but
insensitive to environmental changes. These "importance"
cells would act as invariant "anchors" that would index global
representations. An alternative is that hippocampal cells are
influenced by spatial information and reward information
simultaneously. So far, several properties of rewards have
been shown to affect population activities (Dupret et al. 2010;
Poucet and Hok 2017; Singer and Frank 2009). For instance,
as a result of learning, place fields tend to accumulate around
the locations of rewards (Dupret et al. 2010). Place cells with
place fields away from reward locations could also display
excess firing around reward sites (Poucet and Hok 2017).

Interestingly, it has been shown that some cells may
exhibit two or more spatial properties simultaneously. These

so-called conjunctive cells indicate cross-talk and integration
between the different components of the spatial navigation
system. For example, posterior parietal cortical neurons with
conjunctive egocentric and allocentric properties have been
found (Wilber et al. 2014). In medial entorhinal cortex, posi-
tion x head-direction conjunctive cells have been proposed
to control the network dynamics of a periodic attractor map
(Bush et al. 2015; Navratilova et al. 2012), and the place field
patterns of grid cells can be affected by both the environment
and the velocity of animals (Sargolini et al. 2006).Other stud-
ies have shown that hippocampal cells respond to flashes of
light (Liu et al. 2018) or the conjunction of place and object
location (Deshmukh and Knierim 2013). These single-cell
multi-coding properties suggest that there might be neurons
in the spatial navigation system capable of carrying spatial
and reward information in a conjunctive manner. Motivated
by this hypothesis, we studied the coding properties of CA1
hippocampal cells at or near carefully manipulated reward
sites and spatial contexts.

The most direct evidence of the relationship between sin-
gle hippocampal cell activity and reward is given by the
recent work of Gauthier and Tank, identifying a dedicated
neuron population that explicitly encode reward locations in
a virtual environment (Gauthier and Tank 2018). This study
found that a small fraction (~4.4%) of pyramidal cells (with
place fields in all environments) fired only around reward
sites. For cells in this population (called “reward cells”), their
place fields shifted with changes of reward location but did
not remap during context change of the environment; while
place fields of most place cells stayed at the same location
during reward location changes and exhibited global remap-
ping after context changes. Furthermore, the study found
that one-third of the reward cells predicted the reward. Gau-
thier and Tank observed a sharp coding properties boundary
between place cells and reward cells: All cells active in the
two different environments maintained their identity, with
no place cells becoming reward cells or vice versa. However,
this study used calcium imaging and might have given more
weight to high-firing cells. Also, the use of a unidirectional
infinite virtual reality one-dimensional corridor may have
constrained reward coding properties to a restricted range
of the overall possible coding space (Holscher et al. 2005).
Overall, it is possible that in a more realistic open-field- type
environment in which animals are free to choose movement
direction, reward coding properties become richer and lower
firing cells can show additional properties within the place-
reward spectrum.

Following Gauthier and Tank, we used a set of tasks in
which remapping was produced by large changes in spatial
context and in which animals were required to learn to obtain
rewards from different sets of feeders in different behav-
ioral epochs. By controlling the locations of reward delivery
and the remapping, we were able to find reward and place
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cells as in Gauthier and Tank. Furthermore, we also found
a large population exhibiting conjunctive coding properties
that responded in a mixed manner to reward and place.

2 Methods

2.1 Animals

Four adult (6–7 months old) male Brown Norway rats were
used in this study. All procedures were approved by the Uni-
versity of Arizona IACUC and followed the NIHGuidelines.
Animals were food restricted to 85% of their ad libitum
weights and were housed on a reversed 12/12 h cycle. Ani-
mals were used in the dark cycle.

2.2 Apparatus and task

Rats were trained in a circular maze with a diameter of 1.5 m,
usingmethods previously described (Jones et al. 2012, 2015).
The maze’s spatial context included experimenter-chosen
odor, floor texture, and 2–3 distal visual cues attached to
curtains surrounding the maze. Eight feeders, each with one
blinkingLEDattached,were placed in themaze equidistantly
(Fig. 1b). An overhead camera tracked the rat position on
the maze (20–25 Hz frame rate), and the feeders and lights
were automatically controlled by in-house software (Lab-
View, National Instrument).

Five tasks were carried out successively in each experi-
mental session, termedRandom1, Set1, Set2,RecallSet1, and
Random2 (Fig. 1a). The rat rested on a towel-lined flower pot
for 30 min in the center of the maze before and after each
task. In Random1 and Random2, all LEDs blinked 15 times
each and in a pseudo-random order, cuing the rat to the cor-
responding feeder, with reward delivered every time after the
rat visited the correct blinking feeder. Set1 and Set2 epochs
were subdivided into learning and testing phases. In the learn-
ing phase of Set1, the rat was cued to run to a selected subset
containing only three out of the eight feeders (e.g., 1, 4, and
5). After the rat correctly visited those feeders 25 times each,
the task transitioned to the testing phase. In this phase, the
light cues were delayed by 15 s (a feeder-to-feeder travel
typically lasted 3–5 s). The rats, therefore, were able to visit
and collect rewards from the three possible target feeders
using memory alone (no cues). The light blinked only if the
rat timed out after 15 s. In this phase of the experiment, the
behavior of the rat could be of 2 types to obtain a reward.
(1) If the rat was at an incorrect feeder, the rat could choose
any of the three correct feeders and had a 33% chance of
obtaining the reward. (2) If the rat was at a correct feeder, it
had two choices, each with a 50% probability of obtaining
the reward. The test phase ended (i.e., the set was consid-
ered learned) when the rat visited 15 correct feeders in a row

with no more than two timeouts. A similar task was repeated
in Set2, with three different feeders (e.g., 3, 6, and 8). In
RecallSet1, the rat was cued to recall Set1 by a single blink-
ing light and continued as in the testing phase of Set1 (i.e.,
memory driven) without any cue.

The context of the maze was manipulated to address the
relationship between the coding of reward and the coding
of the environment. We carried out three types of sessions:
(1) five “same-context” sessions where Set1 and Set2 were
learned in the same spatial context (i.e., no context change,
Fig. 1a). In these sessions, the any remapping of cells’ place
fields would therefore only be due to the change in reward
locations; (2) five "different-context" sessions, where Set1
and Set2 were learned in different contexts, hence remapping
might be due to either change of reward location or change
of context; (3) two control sessions where Set1, Set2, and
RecallSet1 epochs were replaced by epochs in which the rat
remained on the flower pot (Random1 and Random2 were
conducted). In all sessions, RecallSet1 was carried out in the
same context in which Set1 had been learned.

2.3 Surgery

All rats were implanted with a hyperdrive supporting 14
tetrodes targeted at the dorsal distal CA1 area of the hip-
pocampus (AP � − 3.8 mm, ML � 2.1–2.6 mm, depth
2.0–2.6 mm, bundle diameter 1.0 mm), using previously
published surgical and histological methods (Valdes et al.
2015). Two of the electrodes were used for referencing and
were placed at or near the hippocampal fissure. Rats were
implantedwith anEMGelectrode in the neckmuscle to ascer-
tain periods of sleep (not used in this study). Rats recovered
for a week and were re-trained in the experimental paradigm
to habituate them to the weight of the implant.

2.4 Data analyses

2.4.1 Sharp wave ripples (SWR) detection

While most SWRs occurred during non-REM sleep, SWRs
could also occur briefly during the task epochs (Fig. 1d).
Typically, such SWRs occur when the animal stops walking,
especially when it consumes rewards (Fig. 1d, e). This type
of awake reactivation may unduly bias the computation of
place fields. Therefore, we extracted SWRs from local field
potential channels, so as to exclude SWR-mediated spiking
when computing place fields (see below).

To extract SWRs, we filtered the local field potentials volt-
age with a frequency between 100 and 240 Hz (fifth-order
Butterworth filter, MATLAB). A Hilbert transform was then
computed and rectified. The mean μ and variance σ of these
traces were computed. Any epoch with an amplitude larger
than μ + 3.0σ (with a probability≤0.27% for a normal dis-
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Fig. 1 Behavioral and electrophysiologicalmethods. aBehavioral time-
line. Set learning was first carried out in context Awith 3 feeders (Set1),
after which Set2 learning was conducted in either context A (same) or
(different) context B with 3 different feeders. Recall of Set1, as well as
random sessions, was always in contextA.All rest epochs lasted 30min.
b Picture of the maze. Each rat was connected to a hyperdrive for elec-
trophysiological recordings with 14 tetrodes (inset). c Recorded spikes
were sorted and clustered using principal component analysis (PCA)

based on the shapes of their waveforms. In this graph, the cyan cluster
was a reward cell. d Spatial distribution of all SWRs (red dots) recorded
during Random1 from one session of Rat1 plotted with tracking data
(blue). Awake sharpwaves generally took place during immobility, near
the feeders. e Spatial distributions for all SWRs from Rat1 only (left),
and density plot of all SWRs from the entire data sets (right, 4 rats,
12 experiments). Green dots in d and e are reward sites (color figure
online)
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tribution), whose duration was between 80and200 ms, was
designated as an SWR.

2.4.2 Place field computation

Spikes from tetrodes with electrophysiology recording were
manually sorted and clustered in the 3 first principal com-
ponent computed on the basis of their shape (Spike 2, CED
and Fig. 1c). Cells were assessed for their theta modulation
and for the absence of spikes within their refractory period
(<2%) to evaluate the quality of spike sorting.

For each cell, the place field was computed as the ratio
of the firing rate map to the spatial occupancy map. For the
occupancy map, the entire space, including the maze, was
divided into 53 by 40 bins (16 cm2 per bin). To avoid sin-
gularity computations, we deleted the place map bins where
animals were there less than 0.08 s. In addition, the track
data were filtered for speed>15 cm/s and the time spent in
each bin was computed. For the firing rate map, all spikes
occurring with SWRs during the task were deleted, and the
number of spikes per spatial bin was computed. Bins with
one spike or no spike were set to zero.

Both the occupancy map and rate map were smoothed by
a 10-bin Hanning window before calculating the place field
map by division. The mean and variance of the place field
map were computed. Areas of the map with intensity larger
than 1 unit of standard deviation and larger than 288 cm2

were considered part of the place field, and an ellipsoid was
fitted to these bins.

2.4.3 Place/reward measures/index

Two indexes based on place maps, termed “place score (P)”
and “reward score (R),” were used to quantify the extent
to which each cell was responding to space or reward loca-
tion across the five tasks. A perfect place cell should have
a consistent place field with a fixed location in different
tasks regardless of the reward location, as long as the spa-
tial context stayed the same. In contrast, place field(s) for an
ideal reward cell should follow the rewarded feeders as they
changed from Random1 to Set1, to Set2, and so on.

When viewing the location of rat, �x , as a random variable
of behavior, the place map of cell C in task T , MC,T (�x), is
a firing probability function of �x . Therefore, we define the
reward score of a cell to be the averaged cosine similarity (or
Pearson correlation) between its place maps and the reward-
location functions. The Reward-location function in task T ,
FT (�x), is the sum of Gaussian surfaces (σ � 5 cm) centered
at the location of correct feeders. That is to say, taking the
locations of feeders as �x f ( f � 1− 8), and the set of correct
feeder for each task as S1 � S5 � {1, 2, 3, 4, 5, 6, 7, 8}
(Random1 and Random2), S2 � S4 � {1, 5, 6} (Set1 and

RecallSet1), S3 � {2, 4, 7} (Set2), then for taskT (i � 1 − 5)
the reward location function is:

FT (�x) �
∑

f ∈Si
Gx f ,σ

2(�x).

Here Gx f ,σ
2 represents the standard Gaussian distribution

function in space. Hence, for task T , the Pearson correlation
between cell C’s place map MC,T (�x) and FT (�x) should be
the inner product between them normalized by the product
of norms:

RC,T � ∫�x FT (�x)MC,T (�x)d�x
||FT || ||MC,T || .

Finally, the reward score of cell C is the average: R̂C �
1
5

∑5
T�1 R

C,T .
Similarly, for a place score to measure the spatial con-

sistency of place maps of a cell, we computed the Pearson
correlations between them, i.e., for task epoch T1 and T2
(T1 �� T2),

PC,T1T2 � ∫�x MC,T1(�x)MC,T2(�x)d�x
||MC,T1 || ||MC,T2 || .

Likewise, the place score of cell C is the average: P̂C �
1(
5
2

)
∑

T1T2 P
C,T1T2 .Since in different-context experiments,

novel place fields for place cells were produced in Task Set2
due to remapping, which could hurt the spatial consistency
and place scores, we ruled out the place maps from Set2
when we calculated the Pearson correlation PC,T1T2 (but we
did not do this in the same-context experiments). That is to
say, for different-context experiments, T1,2 �� 3.

The variation of reward scores is used to recognize the
change in coding properties. For each cell C , if the variation
of RC,T for any two consecutive tasks, i.e.,

∣∣RC,T − RC,T+1
∣∣

is larger than 0.52, we select it as a “transition cell.”

2.4.4 Surrogate place/reward scores

We developed surrogate tests to further categorize
place/reward cells. In these tests, we simulated 2000 sur-
rogate place/reward cells (1000 each). For both simulations,
we used parameters extracted from the data as follows: First,
the number of place fields (PFs) for each cell was randomly
generated from the distribution of PF number in the data.
Then, for each PF, we extracted its location from the distri-
bution of PFs COM in each task. The distribution of drift
distance was extracted from the distances between PFs cen-
ters of cells in Random1/2. Likewise, the distributions of size
and orientation of PFs were also extracted from the data.
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Null Model1: For the reward score, we assumed that all
cells were place cells and checked if it could explain the data,
i.e., Are the firing maps for a cell in multiple tasks made up
by firing around fixed locations plus random drifts of the
PFs? The firing maps for each cell in multiple tasks were
made up by place fields (PFs) in fixed locations with random
drifts (measured in random tasks). The number, size, and
orientation of PFs were simulated from the data distributions
mentioned above.

Null Model 2: For the place score, we assumed that all
cells were reward cells and checked if it could explain the
data, i.e., Are the firingmaps for a cell in multiple tasks made
up by firing around correct feeders? In this case, the number,
size, and orientation of PFs were all randomly generated as
above, from the data distributions. However, the locations
of the PFs were restricted around correct feeders in each
task, i.e., randomly generated from the distributions of PFs
extracted from data, excluding the possibility of a PF away
from any correct feeder.

2.4.5 Measures of coding properties

Following Gauthier and Tank (2018), we studied the extent
to which the activities of reward cells were indicative of the
expectation of rewards or of its delivery. To address these
2 cases, for the firing patterns of a cell C , we computed
their correlations with correct feeder locations/the delivery
of reward/the expectation of reward. These correlations were
indicated by the proportions of spikes taking place in corre-
sponding time-windows.

In task T , a neuron C fired nC,T times. We assumed nC,T
Site

spikes out of the total nC,T spikes were found within 30
pixels (10 cm) from the correct feeders, nC,T

Delv spikes took

placewithin td seconds after the delivery of reward, and n
C,T
Expt

spikes took place within te seconds before the rat reached the
feeder (see time-windows in Fig. 4c). These time-windows
related to expectation and reward delivery were called
“expectation-time-windows” and “delivery-time-windows.”
The time parameters, td,e (d for delivery and e for expecta-
tion), were changeable for the length of the time-windows
ranging from 1 to 3 s, based on the average time for a rat
spent around a feeder (Fig. 4b). We should note that these
three time-windows were not mutually exclusive.

Therefore, in task T , the firing probability (FP) of cell C
around the correct feeder locations was defined as pC,T

Site �
nC,T
Site /nC,T , indicating the correlation of the firing pattern

with the locations of correct feeders. FP is also the firing rate
of the cell in awindowof interest, divided by the overall firing
rate of the cell in the given task. Similarly, the FPs in delivery-
time-window and expectation-time-window were defined as
pC,T
Delv � nC,T

Delv/n
C,T and pC,T

Expt � nC,T
Expt/n

C,T , respectively.

Using the notations above, across different tasks, we com-
puted the averaged FP around the location of correct feeder
for cell C as:

pCSite � 1

#T

∑

T

pC,T
Site .

Similarly, we computed the average pCDelv for the correla-

tion with reward delivery and pCExpt for the correlation with
expectation.

For each cell C , its sensitivity to expectation was
computed as the ratio between the number of spikes
in the expectation-time-windows and the number of all
expectation-time-windows. For example, in an experiment,
a rat visited feeders 300 times across all tasks. Therefore,
we had 300 expectation-time-windows. If spikes from cell
C were found in 240 out of 300 expectation-time-windows,
cell C’s sensitivity to reward expectation (in Set1 only) was
therefore 240/300� 0.8. CellC’s sensitivity to reward deliv-
ery was computed in the same way, except replacing the
expectation-time-windows by delivery-time-windows.

3 Results

Most results were presented in abstract form (Xiao et al.
2019). The results presented below are obtained after the ani-
mals reached asymptotic performance. In these conditions,
animals learned Sets1/2 in 504 ± 143 s and reached sim-
ilar performance as in previous studies (Jones et al. 2012,
2015). Place fields were defined on the basis of the trajec-
tory of the rat on the maze, while the animal was moving
above a given speed threshold. Spikes were extracted dur-
ing these trajectory bouts. In general, most awake SWRs
occurred when the animal stopped or slowed down, so spik-
ing during SWRs would not contribute to the place field
computations. Here, because we were studying the reward
dependence of place fields, we sought to ensure that SWRs
spikes did not contaminate our place field computations.
Figure 1d shows the location of the rat when SWRs were
produced during tasks Random1 from one session of rat1.
Figure 1e shows these locations for the entire set of ses-
sions used in this study (N � 12 sessions, six from Rat1,
four from Rat2, one each from Rat3 and Rat4). For different
types of tasks, there were 0.338±0.149 SWRs/s in Random1
and Random2, 0.372± 0.142 SWRs/s in Set1 and Set2, and
0.321 ± 0.108 SWRs/s in RecallSet1.

From 1217 cells sorted from the raw data (see “Methods”
section) of 12 experimental sessions, we selected 584 cells
(48.0%) with well-defined place field(s) in different tasks.
Here, 286 cells from same-context sessions and 224 cells
from different-context sessions had place field(s) in at least
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Fig. 2 Cell characterizations. a Four representative cells of the 4 cate-
gories identified in this study: place cells (top, spatially fixed), reward
cells (bottom, follow reward sites), and hybrid cells with place coding
dominance (second row) or reward coding dominance (third row). The
“place component” of each place field ismarked by a dashed pink circle.
Rewarded feeders are denoted by a green dot on the periphery of the
circular maze. Maximum firing rates are indicated under each graph.
b Group data showing the skewed nature of the reward/place scores for
all cells recorded from all experiments (N � 584). Place cells (blue)

had small reward scores and high place scores. Reward cells (red) had
the opposite properties. Hybrid cells (light blue to light yellow) showed
mixed coding property. The separation lines in b were chosen above
98%percentiles of surrogate place scores of randomly simulated reward
cells (black dash line, horizontal) and surrogate reward scores randomly
simulated place cells (black dash line, vertical). The four cells in panel
a are indicated by arrows. c Comparison between the distributions of
data and surrogate scores (color figure online)

4 out of 5 tasks, and the remaining 74 cells from control ses-
sions had place fields in both Random1 and Random2. For
different-context sessions, we also included cells with place
field in Set2 only. The other 633 cells had no place fields in
at least two tasks and were excluded from our analyses. We
noticed that place fields had four different spatial character-
istics (Fig. 2a). Like most classical place cells, some cells
had 1 or 2 place fields with fixed locations regardless of the
change of reward-delivery location (Fig. 2a, top, green dots,
N � 136/584). Another group of cells called “reward cells”

had fields tightly bound to the reward location (Fig. 2a, bot-
tom row, N � 70/584). The reward coding property of these
cells was obtained from 5 different-context sessions, where
we obtained 25/224 reward cells. Twelve of 25 cells (48%)
fired around all the correct feeders irrespective of the change
of context because they fired at all the Set2 feeders, which
were also activated in Random1. Notably, we also found a
large number of cells with conjunctive properties, referred to
as “hybrid cells,” for which part of the place fields of the cell
exhibited consistency, yet the cell also had a high firing prob-
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ability around correct feeders irrespective of their location
(Fig. 2a, rows 2 and 3, N � 378/584). Some hybrid cells had
more highly consistent place fields with lower firing prob-
ability around correct feeders (253/378), whereas the other
hybrid cells preferentially coded reward locations (125/378).
Furthermore, we observed a small fraction (18/584) of the
cell population exhibited sharp changes in their coding prop-
erties between different tasks (called “transition cells”), i.e.,
their firing patterns could code some or all of the correct feed-
ers in a task even though they had a fixed place field in the
previous tasks, or vice versa. We will discuss the transition
phenomena later in this paper.

These three types of cells (place cell, reward cell, and
hybrid cell) were classified based on two different indexes.
To measure the extent to which a cell was correlated with
absolute spatial location or with reward location, we com-
puted its place score P̂ j and reward score R̂ j (see “Methods”
section). Figure 2b shows that cells fell on a skewed contin-
uum, with place cells following the place score axis (high
place score P̂ j , low reward score R̂ j . Figure 2b, blue) and
reward cells following the reward score axis (low place score
P̂ j , high reward score R̂ j . Figure 2b, red). Hybrid cells had
lower mixed scores (Fig. 2b, black, with reward scores of
0.25±0.09, and place scores of 0.18±0.03). Observed from
Fig. 2a, an ideal place cell should have identical place fields
in different tasks, whereas an ideal reward cell should have
place fields at some or all locations of correct feeders. The
separation line between place cell and hybrid cell, y � 0.31,
was selected as the 98.4 percentile of place scores of ran-
domly simulated ideal reward cells. Hence, cells with larger
place scores had a high probability of being a place cell.
The separation line between the hybrid cell and reward cell,
x � 0.42 was selected similarly. The classification was not
dichotomous since the entire cell population was distributed
continuously.When comparing the data to surrogate sets (see
“Methods” section), we found that the probability distribu-
tions for both place (Fig. 2c, left) and reward (Fig. 2c, right)
scores had much longer tails than the surrogate scores in the
high-score areas (above the thresholds, dash lines). These
results suggested that our data could not be explained by the
null models.

Although these two scores described the place and reward
components of each cell, from their definition, they were not
entirely independent from each other. However, we found
no cell that had both high place and high reward scores. A
high reward score meant that the cell only had a high fir-
ing probability at correct feeders, but since Set1 and Set2
were designed to contain different feeders, this led to low
correlations between place maps of Set1 and Set2, as well as
Set2 and RecallSet1. On the other hand, a cell with both low
place/reward scores was possible as long as its place maps
were strongly affected by the collection of feeders, and the
place fields were not close to them.

We next compared the physiological properties of the
three classes of cells. Among all cells analyzed, many cells
showed a single clear place field (136/584 cells, Figure 3a).
The majority of place cells had at most 1 or 2 place fields,
compatible with previous findings (Park et al. 2011). Hybrid
cells, however, had several place subfields since they had
stronger responses to the reward locations (black bars in
Fig. 3a). For the reward cells, the number of place subfields
showed that the selectivity to feeders was different from cell
to cell. While some reward cells had as many as 5-8 subfields
because they responded to all feeders in the random tasks
(21/70), others responded only to a smaller subset of cor-
rect feeders (49/70). Overall, the number of place subfields
was not significantly correlated with spatial information (see
definition from Royer et al. 2010) since the coefficients of
determination r2 < 0.01, regardless of the type of the cells
(Fig. 3b). We noted that, especially for reward cells (due to
the higher percentage of spikes around feeders, Fig. 3c), some
spikes around the correct feeders were not successfully rec-
ognized as place fields because the place map values failed to
exceed the 1× standard deviation threshold. The distribution
of place subfield area differed between categories (Fig. 3d),
with the reward cells exhibiting smaller placefields thanother
cells since they only fired around feeders. (Reward cells:
586± 497 cm2. Place cells: 1632± 1094 cm2, Hybrid cells:
1309 ± 828 cm2.) This indicated that even though reward
cells remapped when reward contingencies changed, their
spatial selectivity still allowed for a more precise encoding
than place cells. Many reward cells also had averaged firing
rates in tasks as low as 0.1 Hz (0.12 ± 0.11 Hz, Fig. 3e),
i.e., they only fired about 120 times in a 20-min task. Hybrid
and place cells had larger firing rates which resulted in wider
distributions (0.70 ± 0.67 Hz).

Despite their differences between place fields and firing
rates, reward cells were found mixed with other cells in the
recoding from the tetrodes (Fig. 3f), instead of recorded
together from a small number of tetrodes. The 1217 ana-
lyzed cells came from 65 tetrodes, from which we collected
70 reward cells. In order to assess whether reward cells might
be spatially clustered, we computed the proportion of each
cell type per tetrode. Sixty of 65 tetrodes contained no more
than 2 reward cells, and only 5/65 tetrodes had 3 or 4 reward
cells. When compared with other kinds of excitatory pyra-
midal cells, the distribution of reward cells for each tetrode
yielded a weak positive correlation with the number of all
cells (β1 � 0.03, r2 � 0.04). These results suggest that
although reward cellswere putative pyramidal cells, the num-
ber of reward cells was not correlated with the number of
pyramidal cells recorded. Reward cells therefore may be a
subset of place cells that receive strong or more specific
reward-related inputs.

We further studied the coding properties of reward cells.
For all Set1 andSet2 tasks,we checked if the codingof reward
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Fig. 3 Place-field properties for each cell type. a Number of place
subfields across different tasks. Most place cells had no more than 2
subfields (blue), whereas some reward cells could have 8 subfields (red,
one for each feeder in random tasks). b Information per spike for each
cell. Average values indicated by continuous line. c Fraction of spikes

at correct feeders for place, hybrid, and reward cells. d Reward cells
had smaller place fields than other cell types. e The averaged firing rates
of reward cells were lower than those of the other classes. f Tetrode-
specific numbers of reward cells as a function of the number of all cells
recorded on that same tetrode (color figure online)

cells had any preference for any of the three correct feeders.
For each Set1 or Set2 task featuring reward cells, the number
of spikes produced at eachof the three feederswas counted, as
well as the number of visits to each of the three feeders. After
each task, to assess the firing probability of each cell and the
visit probability to each feeder, the counts were normalized
by the total number of spikes produced by the cell and the
total number of visits during the task, respectively. Figure 4a
shows firing probabilities plotted against visits probabilities
across all same- and different-context sessions (N � 58 cells,
N � 10 sessions). Even though the size of our sample was
relatively small, we saw that for most reward cells the firing
probabilities at a feeder were close to the visit probability to
that same feeder (Fig. 4a, dots in the green circle). On the
other hand, there were a small number of reward cells that
strongly preferred specific feeders, and were unlikely to fire
at other feeders (Fig. 4a, both in blue circles).

We next proceeded to study the extent to which reward
firing was due to the actual delivery of rewards or to the
expectation of reward. Because of the probabilistic nature
of the reward delivery (see “Methods” section), rats could
visit a correct feeder with or without actual reward delivery.
For all rats, the averaged time spent around a correct feeder
without reward and a correct feederwith rewardwas different
(Fig. 4b): Due to reward consumption time, rats stayed~3 s
(Fig. 4b, solid line) around a feeder that delivered a reward,
while they left a feeder faster (~1 s, Fig. 4b, dashed line) if the
feeder did not deliver the reward. These two distributions of
staying time were statistically different (p <0.001, standard
t test).

Rat trajectories were analyzed around the reward sites,
whether rewards were delivered or not during the memory-
driven portions of theSet1 andSet2 learning tasks, and during
recall. Figure 4c shows an example of a time-window spent
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Fig. 4 Properties of the cell population at correct feeders. a Firing prob-
ability of a cell at a correct feeder versus the visiting probability to
that same feeder. While firing probabilities of most cells were propor-
tional to visiting probabilities (around the 45 degree line, marked by
the green circle), some cells exhibited strong preference for specific
feeders and hence were not likely to encode the visit to other feed-

ers (blue circles). b Distributions of time rats spent at a correct feeders.
Average time is indicated by vertical lines (dashed and solid). c Illustra-
tion of the time-windows used for analyses: at-feeder intervals (purple),
expectation-time intervals (green), and consumption time interval (yel-
low). The time of reward delivery is indicated by a red arrow (color
figure online)

at correct feeders that were not rewarded, and a time-window
spent around a rewarded feeder. The red arrow indicates the
time when the sugar water reward was released. For each
visit to a correct feeder, a time-window was chosen from
the time of the feeder triggering, lasting td second (d for
delivery and e for expectation), to assess the response of the
cells to reward delivery (Fig. 4c). On the other hand, for the
response to reward expectation, we set another spike count-
ing time-window lasting te second before the rat entered the
feeder area (10 cm from the feeder). Entrance to this area trig-
gered the reward solenoid which produced an audible click
immediately followed by reward delivery. Therefore, in the
reward expectation window animals did not know whether
theywould receive a reward or not. Based on the distributions
of staying time around feeders, the length of time-windows
was set as td,e � 1 ∼ 3 s (Fig. 4c) to count the spikes
responding to delivery/expectation of the reward and then

obtained the firing probabilities (FP) pCSite, p
C
Delv, p

C
Expt, i.e.,

cell C’s FPs around feeder locations (in at-feeder windows),
in delivery-time-windows, and in expectation-time-windows
(Fig. 4c. See “Methods” section). Different choices of time-
window length were made as td,e � 1 or 3 s to test if the
results were sensitive to the length of time-windows. Specif-
ically, larger time-windows could result in a bigger overlap
between delivery/expectation-time-windows, since rats usu-
ally took 5 s to cross the maze, going from one feeder to its
diametrically opposite one. In addition, FP in delivery win-

dows pCDelv did not necessarily represent the correlation to
“acquisition” of the reward, but rather a reasonable compro-
mise, since the rat consumed reward after the delivery.

An decoding approach, using instantaneous firing rate
in moving 3-s windows, yielded inconclusive results as to
whether a reward cell. When compared to a place cell,
could be indicative of reward expectation or reward delivery
(reward delivery: 53% accuracy, reward expectation: 29.5%
accuracy, details not shown). This observation suggested that

123



Biological Cybernetics (2020) 114:285–301 295

A

B

C

D

Firing Probabilities in At-Feeder Windows

Sensitivity to Expectation (3s)

Sensitivity to Reward (3s)

Fi
rin

g 
P

ro
ba

bi
lit

ie
s

 in
E

xp
ec

ta
tio

n 
W

in
do

w
s 

(3
s)

Fi
rin

g 
P

ro
ba

bi
lit

ie
s 

in
P

os
t-d

el
iv

er
y 

W
in

do
w

s 
(3

s)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.5 1 0 0.5 1

 = -0.47
p = 6.5e-32

 = 0.57
p = 1.9e-50

Place
Reward

Firing Probabilities in At-Feeder Windows
1

Place Reward
0

0.5

Place Reward
0

0.5

**

**

Fig. 5 Firing probabilities in different time-windows reveal the firing
preference of reward cells. a Firing probabilities for place and reward
cells in 3-s expectation windows. Black line indicates the linear regres-
sion across all cells (hybrid cells not plotted). Linear coefficient and
p-value are indicated in inset. Green dashed line: linear regression for
random 3-s windows (data points not plotted for clarity). b Firing prob-

abilities in post-delivery 3-s windows. Labels and regressions as in a, c,
d. Specificity (represented by the firing probabilities in corresponding
windows) versus sensitivity to expectation windows (c) and delivery
windows (d) across all place and reward cells. Insets: mean sensitivity
(color figure online)

instantaneous firing rate might not be sufficient to assess
reward delivery or reward expectation. We therefore ana-
lyzed these epochs more coarsely, using firing probability

within each task. The correlations between FPs (pCSite, p
C
Delv,

pCExpt) revealed a strong preference to the first hypothesis,
i.e., the recorded cells, especially the reward cells, prefer-
ably responded to the acquisition of rewards (Fig. 5, hybrid
cells were omitted for clarity). Generally, a higher FP around
correct feeders resulted in a higher probability for cell C to
be a reward cell. Most of the reward cells had a higher FP
than other cells within the 1-s time-window after delivery of
reward (not shown). Furthermore, FPs around correct feed-
ers and FPs in 3-s delivery-time-window formed a strongly

positive correlation (Fig. 5b black line, β � 0.57, pCDelv ver-

sus pCSite), showing that the spikes produced after delivery
of rewards made up most of the spikes in at-feeder win-
dows, although the latter did not strictly contain the former.
Accordingly, hybrid cells also had higher FP around correct
feeders than place cells, but lower than the reward cells (not
shown). In contrast, FPs around the correct feeders and FPs
in expectation-time-windows showed a negative correlation

(Fig. 5a black line, pCExpt vs pCSite) where most reward cells
had a lower response to expectation than other cells. To assess
the significance of these regressions, we also computed FPs
in random time-windows (regression lines shown as green
dash lines in Fig. 5a, b). For example, in Fig. 5a, for each cell,
we calculated the FPs in as many randomly-chosen 3-s time-
windows, as the number of expectation windows used for the
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analyses and found that FPs in such windows were not sig-
nificantly correlated with the FPs around feeders (the green
dash line, Fig. 5a). Similar results were obtained for the post-
delivery windows (Fig. 5b). We also noted that most reward
cells had very low sensitivity to the reward expectation
because they only fired in a small fraction of expectation-
time-windows prior to entering the feeder areas (Fig. 5c, d,
see definitions in “Methods” section). A small fraction of
reward cells (10 out of 70) exhibited both high sensitivity
and specificity to expectation (high FPs in expectation-time-
windows) when taking te � 1 (not shown). Some hybrid
cells also exhibited a mixed coding property of delivery and
expectation (not shown), though the actual mechanism of
reward coding for pyramidal cells could be more compli-
cated than a simple mixture. Finally, we found that 70% of
the reward cells (43/61 from same/different-context sessions)
had a larger number of spikes in post-delivery windows than
in expectation windows (paired t test, p <0.001) and that
100% of the reward cells had a larger number of spikes in
post-delivery windows than in randomly chosen windows
(not shown).

We next asked whether the place and reward coding prop-
erties of each cell were fixed or could change dynamically.
Figure 6a shows an example of a cell that initially had a
place cell coding property in Random1 and Set1, but then
switched to firing near some of the correct feeders in Set2,
RecallSet1, and Random2. Note that the cell did not fire at
the same correct feeder in these three tasks. This cell showed
a transition from place to reward coding (all tasks in the same
context). Note that the firing rates during sleep epochs (only
included time during in-REM sleep) did not change signifi-
cantly before and after the transition (Fig. 6b), which ruled
out the possibility we had unstable recordings or errors in
spike cutting.

The cells exhibiting transition in coding properties, or
“transition cells,” were detected by the variation of reward
score (see “Methods” section). Encoding a fixed location
resulted in a low reward score, whereas encoding reward
resulted in a high reward score. Hence, a transition should
bring a significant variation to the reward score of such a
cell. By looking at the largest variation of reward scores for
consecutive two tasks, we found that 18/584 cells exhib-
ited transitions of coding property between tasks, whose
reward scores underwent sharp change (variation of reward
score>0.52, dashed green box in Fig. 6c). These transition
cells were classified as hybrid cells at an earlier stage due
to their medium averaged reward and place scores, yet the
sharp change in reward scores rather suggested a change of
coding properties.

We studied the coding properties of these 18 transition
cells in different tasks and found that 11 cells transferred from
place cell to reward cell, whereas the other 7 cells transferred
from reward to place coding. Figure 6d shows the dynamic

of the reward scores for the 21 cells mentioned above. Solid
curves show11 cells for place-to-reward transitions (increase
in reward scores), and dashed curves show 7 cells for reward-
to-place transitions. The red curve shows the cell in Fig. 6a,
and the black dots indicate when the transition took place.
Since we also found 222/584 stable place cells and 67/584
stable reward cells (not shown), cell exhibiting transitions
only made up a small fraction of the population recorded.

To exclude the possibility that the transition phenomena
were the results of a place cell spuriously classified as a
reward cell in some tasks (or vice versa), we built a null
model in which we assumed that there was no transition tak-
ing place during the sessions, and therefore, that the change
of the place maps of a place cell was due to random drift,
whereas for a reward cell it was due to the change of reward
locations. We built the model from the parameters obtained
from the data as above, except that the drift of place fields
was extracted from task to task (not only from Random1/2 as
it was above). In addition, we excluded the possibility that a
surrogate cell had no place field in some task, since the tran-
sition cells we observed had indeed place fields in every task.
We simulated 1000 surrogate place/reward cells separately.
We produced surrogate hybrid cells by linearly combining
the place maps of the 1000 samples of surrogate place and
reward cellswithweights from0.1:0.9, 0.2:0.8,…, to 0.9:0.1,
respectively (0:1 and 1:0 are place/reward cells themselves),
which yielded 9000 samples of hybrid cells.

We found that no place cells out of 1000 and 2 reward
cells out of 1000 exhibited a change of reward scores larger
than 0.52 in two consecutive tasks. The reward score changes
in these 2 cells were due to variation change in the number
of place fields around rewarded feeders. For hybrid cells,
only one out of 9000 exhibited the same threshold crossing.
In all, with a null model in which we assumed no transition
between reward and place cells, the probability to find a sharp
change of reward score larger than 0.52 was<0.2% across
place/hybrid/reward cells,whichwas significantly lower than
the finding in our experiments (3% � 18/584), suggesting
that this result was not due to chance.

4 Discussion

One of the basic tenets of motivated spatial navigation in
robots, animals, and humans is the notion that choosing to
navigate to a specific location is related to the immediate
or delayed expectation of a reward at that location. Many
studies have focused on understanding the neural mech-
anisms of spatial navigation (Hinman et al. 2018) or the
neural basis of reward processing (Luo et al. 2011) separately.
Because in laboratory rats, reward and spatial navigation are
intimately linked, it is reasonable to think that their neural
systems tightly interact to the extent that reward information
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scores for the 18 transitions observed in c. Eleven cells transitioned from
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may be integrated, at least in part, in the spatial navigation
code. Motivated by this hypothesis, we studied the coding
properties of CA1 hippocampal cells at or near carefully
manipulated reward sites. Compatible with others (Dupret
et al. 2010; Poucet andHok2017; Singer andFrank 2009),we
demonstrated the existence of reward-location coding cells
in dorsal CA1, complementing previous studies using virtual
reality on a 1D track (Gauthier and Tank 2018).

4.1 Anatomical and physiological considerations

Many studies have shown that hippocampal CA1 cells may
encodemore than absolute spatial information (Rueckemann
and Buffalo 2017; Eichenbaum 2018; Zhang and Manahan-
Vaughan 2015; Liu et al. 2018). Some cells fire relative to the
locations of neutral objects placed on the maze (Deshmukh
and Knierim 2013), while others are strongly associated with
the location of rewards (Gauthier and Tank 2018; Poucet and
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Hok 2017; Rolls and Xiang 2005). CA1 firingmay reflect the
actual value of a location in complex probabilistic decision-
making tasks (Lee et al. 2012) but not in simpler tasks
(Duvelle et al. 2019). While CA1 is not generally known
to receive direct inputs from the reward systems, CA3, a
synapse away, does (Berridge and Kringelbach 2015; Luo
et al. 2011). It has been suggested that the influence of the
reward system on the hippocampus and associated circuitry
could at least in part be attributed to inputs from the ven-
tral striatum or ventral tegmental area during sleep-induced
reactivation (Lansink et al. 2009; Pennartz et al. 2004; Valdes
et al. 2015) or during behavior (Mamad et al. 2017). Notably,
reactivation can also occur in the awake state during awake
SWRs and often occurs near reward sites, as our results and
that of others showed (Diba and Buzsaki 2007; Jadhav et al.
2012; Malvache et al. 2016; Olafsdottir et al. 2018). As such,
awake reactivation is likely to contaminate the strictly spa-
tial component of hippocampal firing when place fields are
computed and artificially introduce a reward dependency in
the spatial code. Action potentials occurring during SWRs
should therefore be excluded when place fields are analyzed
near reward locations.

Compatible with others, while our results suggest that
there may be a subpopulation of CA1 cells able to encode
specifically for reward zones, our experiments did not allow
for a determination of whether these cells were found
anatomically in different subregions of dorsal distal CA1.
Others have suggested that there may be a CA1-sublayer
specificity in the manner in which place fields aggregate
around reward sites, with deep layers (close to stratum
oriens) beingmore sensitive than superficial (close to stratum
radiatum) layers (Danielson et al. 2016). More work needs
to be done to ascertain these findings.

4.2 Complex spatial navigation and the need
for reward coding

There has been conflicting evidence as towhether place fields
aggregate around or overrepresent reward areas. Notwith-
standing the issue of SWR contamination, it is also possible
that the differences seen can be attributable to the nature
of the task. It is possible that when tasks are simple, with
no cognitive demands or significant decision-making com-
ponents, such as running on a track for rewards (Diba and
Buzsaki 2007; Pennartz et al. 2004) or other simple tasks
(Duvelle et al. 2019; Speakman and O’Keefe 1990) place
fields do not bear any specific relationships to reward loca-
tion and uniformly cover the environment. If the task is
slightly more complex, involving working memory and sim-
ple decision making such as in a continuous alternating T
maze, some place fields may shift coherently toward the
reward location (Lee et al. 2006), and if the same task is
made more challenging, some place field remap to reward

zones (Mamad et al. 2017). These results suggest that if the
task is sufficiently complex and requires a combination of
working memory or short-term memory, probabilistic deci-
sion making among multiple locations, or multiple possible
routes to a goal, such as in our study (memorization of 2
sets of 3 feeders with probabilistic reward delivery, sepa-
rated by several hours), the reward–place systemdynamically
adjusts through remapping, presumably to improve perfor-
mance (Dupret et al. 2010; Gauthier and Tank 2018; Tryon
et al. 2017; Mamad et al. 2017; Rolls and Xiang 2005). The
finding of goal-related place field accumulation may also be
related to the stressful nature of the task, though that rela-
tionship has not been explicitly tested (Hollup et al. 2001).

4.3 A dynamic place-reward conjunctive code

Our results show that a small population of cells dynami-
cally remap from spatial coding to reward coding or vice
versa. Different forms of remapping have been observed in
response to changes in sensory cues or changes in the nature
of the task (Latuske et al. 2017; Ainge et al. 2012; Markus
et al. 1995). Interestingly, studies using a block design across
multiple sessions showed that a small portion of place cells
may remap toward a goal area (Kobayashi et al. 2003). This
study did not vary goal location (Set1/2 as in our study),
so it is not possible to ascertain whether the cells became
reward coders or whether they underwent classic remapping
because of learning-mediated plasticity. Also, rewards in this
studywere throughmedial forebrain bundle self-stimulation,
which may be significantly different from natural rewards.
This dynamic shift between place and reward coding indi-
cates that the field aggregation around reward/goal areas, as
reviewed above, is a dynamic rather than static feature of the
hippocampal circuit in complex tasks.

4.4 Neuromodulation

Most computational theories and robotic implementations of
motivated spatial navigation rely on reinforcement learning
(Chersi and Burgess 2015; Llofriu et al. 2015; Cazin et al.
2019; Scholkopf andMallot 1995; Strosslin et al. 2005). The
conundrum is that reinforcement learning approaches rely
on the usually anatomically and temporally diffuse actions
of neuromodulators such as dopamine. This diffuseness and
low temporal resolution seem at odds with the selectivity
and precision of reward-directed spatial navigation. Recent
work, however, has shown that VTA neurons could selec-
tively and precisely reactivate during sleep, indicating that
specific VTA dopaminergic cells could in principle carry
reward information to specific hippocampal or cortical mem-
ories (Valdes et al. 2015). The finding of reward cells within
the hippocampus furthers this idea and suggests that, with
training, the information about reward might become inte-
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grated into the hippocampal neural code and continues to
work in concert with the VTA. This phenomenon may be
akin to the dynamics between the hippocampus and cortex
during memory consolidation in general (Nadel et al. 2000;
Hardt and Nadel 2018; Sekeres et al. 2018). These reward
cells may be the positive counterpart to the fear "engram
cells" found in the hippocampus (Bittner et al. 2015).

4.5 Comparison with recent work

As others have demonstrated, the presence of reward-
sensitive cells was not due to artifactual correlations with
behavioral or perceptual cues bound to the rewards (Gauthier
and Tank 2018).We furthered this finding and confirmed that
the spikes of reward cells were indeed induced by rewards,
rather than LED blinking or SWR-related bursts. Although
LEDblinking played an important role in random tasks and in
the learning phases of Set1/2 to provide cues, it was delayed
for 15 s in RecallSet1 and the test phases of Set1/2. In these
cue-less conditions, reward cells still responded to the deliv-
ery of reward within 3 s of reaching a correct feeder. Also,
because we had excluded the population bursts during SWRs
before computing place maps, the reward dependence of the
cellswas guaranteed to be independent of SWR-related activ-
ity.

Using the ratemaps of each cell, we used a place score and
reward score for quantifying the similarity and correlations of
the place fields across several tasks, leading to the division of
the cell population into place, reward, and hybrid categories.
Hybrid cells could have a dominance for place coding or
reward coding. Although largely compatible, some of our
findings of the reward coding properties of CA1 neurons
stood in contrast to those from Gauthier and Tank (2018).

First, it was interesting to note that the hybrid-coding phe-
nomenon was not reported by Gauthier and Tank (2018).
They instead used a dichotomy of place coding and reward
codingproperties to explain their results.Whilewe are unsure
of the source of this discrepancy, this may have been rea-
sonable given that their place fields were one-dimensional
on a linear track, and perhaps the shift and the mixing of
place fields were more likely to have been overlooked. Our
observations furthermore confirmedprevious results that hip-
pocampal place fields could shift toward the reward location
(Dupret et al. 2010) and that place cells might exhibit excess
firing around the reward locations (Poucet and Hok 2017).
Whether the finding of such hybrid cells comes from our
more distal CA1 recording site remains to be tested. Sec-
ond, in our experiments, although a small fraction of reward
cells responded to the expectation of reward, most cells
responded after reward delivery. We obtained a higher pro-
portion of reward cells and hybrid reward cells (195 out of
1217 recorded cells, 16.0% vs 4.4% resp.) than found in this
previous study. This difference may be due to the fact that a

reward cell could fire only one or two spikes after the deliv-
ery of reward, making it difficult for its calcium signal to
be detected (Deneux et al. 2016). Third, we observed a few
transitions between place cells and reward cells that put into
question the notion of “sharp boundary” asserted byGauthier
and Tank (2018). We could not observe any preference of the
transition’s direction from only 18 cells, despite that the tran-
sition itself was a reliable phenomenon based on the loss or
gain of firing fields. Place cells and reward cells carried dif-
ferent spatial information in the pyramidal cell population.
Hence, the transitions could represent the potential for pyra-
midal cells to change their coding roles in spatial navigation.

The changes of spatial context or task goals included in
our experiments could not explain the transitions since the
coding properties did not transition back by the recovery
of spatial context or task contingencies (Random2 vs Ran-
dom1, RecallSet1 vs Set1). This leads to the possibility that
the transition could be a result of the synaptic plasticity of
hippocampal and hippocampal-related circuits (Neves et al.
2008). The finding of a seemingly continuous population of
cell in the reward/place coding dimensions raises the possi-
bility that hippocampal pyramidal cells in dorsal CA1 carry
both spatial and reward information in an integrative and
plastic manner to various extents. Place or hybrid place cells
are simply dominated by spatial information, while reward
or hybrid reward cells are dominated by reward information.
A transition is, therefore, a simple plastic change in input
weights yielding a change in coding properties.

In sum, our study suggests that a large fraction of hip-
pocampal pyramidal cells may receive a dynamic mixture
of spatial and reward information that manifests itself in
the spatial firing properties of the neurons across multiple
tasks. Such a mixture can be used to encode and direct moti-
vated spatial behavior appropriately. Further computational
and robotic work is needed to elucidate the functional advan-
tages of this type of continuous and dynamic conjunctive
coding.
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