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Abstract
Classic studies have shown that place cells are organized along the dorsoventral axis of the hippocampus according to their
field size, with dorsal hippocampal place cells having smaller field sizes than ventral place cells. Studies have also suggested
that dorsal place cells are primarily involved in spatial navigation, while ventral place cells are primarily involved in context
and emotional encoding. Additionally, recent work has shown that the entire longitudinal axis of the hippocampus may be
involved in navigation. Based on the latter, in this paper we present a spatial cognition reinforcement learning model inspired
by the multiscale organization of the dorsal–ventral axis of the hippocampus. The model analyzes possible benefits of a
multiscale architecture in terms of the learning speed, the path optimality, and the number of cells in the context of spatial
navigation. The model is evaluated in a goal-oriented task where simulated rats need to learn a path to the goal from multiple
starting locations in various open-field maze configurations. The results show that smaller scales of representation are useful
for improving path optimality, whereas larger scales are useful for reducing learning time and the number of cells required.
The results also show that combining scales can enhance the performance of the multiscale model, with a trade-off between
path optimality and learning time.
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1 Introduction

Over the last few decades, much attention has been paid to
understanding the roles and computational mechanisms of
the hippocampus and medial entorhinal cortex in the con-
text of spatial cognition. O’Keefe and Dostrovsky (1971)
reported the existence of place cells in the hippocampus.
Place cells are hippocampal neurons whose activation pat-
tern is highly correlated with the position of the animal in
an allocentric frame of reference (O’Keefe and Nadel 1978;
McNaughton et al. 1996).Additional cells have been reported
to be involved in spatial cognition. Head direction cells fire
when rats are oriented in a particular allocentric direction
(Taube et al. 1990; Chen et al. 1994). Grid cells activate
regularly over 2D space forming an hexagonal lattice that
is believed to support path-integration-like processes (Fyhn
et al. 2004; Hafting et al. 2005). Border cells have been found
to activate near the borders of environments independently of
possible rescalings (Savelli et al. 2008; Solstad et al. 2008).
Object-vector cells fire when obstacles are found at a given
distance and direction from the rat, thus encoding “vectors”
to nearby obstacles (Hoydal et al. 2018). Although a lot of
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progress has been made since the initial findings, much is
yet to be understood on how all these cell types work and
how they come together to support complex and ethologi-
cally realistic spatial navigation tasks.

In this work, we focus our attention on findings that
show that the brain uses multiple scales of representations
to encode the environment. More specifically, it has been
observed that the spatial specificity of place cells decreases
along the dorsoventral axis of the hippocampus, with dor-
sal place cells having smaller more stable fields than ventral
cells (Jung et al. 1994; Kjelstrup et al. 2008; Maurer et al.
2005). Broadly accepted theories suggest that the dorsal
hippocampus is mainly involved in spatial learning, while
the ventral hippocampus participates in motivation-related
processes (Fanselow and Dong 2010; Harland et al. 2017;
Poppenk et al. 2013; Strange et al. 2014). Recent work has,
however, extended this view, suggesting that in certain con-
ditions, ventral hippocampal neurons may also be involved
in spatial navigation (Contreras et al. 2018; Harland et al.
2017; de Hoz et al. 2003).

Based on the observed scale differences between the dor-
sal and ventral hippocampus, we present a computational
model for multiscale spatial cognition, where we hypothe-
size the benefits of exploiting multiple place cell activation
field sizes to reduce both learning time and the total num-
ber of cells. The model uses place cells to encode the state
in a reinforcement learning algorithm which learns how to
navigate to a goal from a set of different starting locations.
Computationally, the model uses hierarchical radial basis
functions (HRBF) with reinforcement learning methods to
approximate the state and action value functions. The term
“hierarchical” refers to the way in which the radial basis
functions are organized into uniform layers according to their
size. To our knowledge, HRBFs have been usedmainly in the
context of surface reconstruction problems such as in Belloc-
chio et al. (2007) and Pouderoux et al. (2004). In the context
of reinforcement learning algorithms, HRBFs have also been
used in the previous version of ourmodel described in Llofriu
et al. (2015).

There exist other models of multiscale levels of place cell
representation in the hippocampus. In general, these models
concentrate on understanding the multiscale nature of place
cell representation, but are more limited in their investigation
of how multiple layer sizes may impact goal-oriented spatial
navigation. In the rest of this section, we summarize such
models and discuss the main differences with our work.

Lyttle et al. (2013) extended amodel of themedial entorhi-
nal cortex (MEC) and the hippocampus from de Almeida
et al. (2009). The model was used to provide a possible
explanation for the difference in properties observed between
dorsal and ventral place cells; however, the model was not
used for spatial cognition and no attemptwasmade to explain
how the different field sizes are used in this context.

Erdem and Hasselmo (2012, 2014) describe a navigation
model based on the entorhinal cortex and the hippocampus
of rats. The original model used forward look-ahead probes
during periods of inactivity reminiscent of sharp-wave rip-
ples (Jadhav et al. 2012; Leonard et al. 2015). Much like
sharp-wave ripples are believed to guide navigation (John-
son and Redish 2007; Pfeiffer and Foster 2013), the probes
assessed potential paths that the rat could take and used them
to choose an action. In their latter model, Erdem and Has-
selmo added multiscale representation levels to extend the
range of the look-ahead probes improving the ability to reach
the goal. While their work shows how multiscale can benefit
a model using forward look-ahead probes, our work assesses
the benefits within a reinforcement learning architecture dur-
ing goal-oriented tasks.

Llofriu et al. (2015) developed amultiscale model for spa-
tial cognition based on the differences between place field
sizes and the dorsoventral axis of the hippocampus. The
model was assessed in an open-field maze in simulated and
real environments. Their research compared the performance
of the multiscale model with the performance of using a sin-
gle scale in terms of the number of steps and learning time.
In contrast to their work, our work focuses in understanding
the contributions that each scale provides to the multiscale
model. Furthermore, we perform amore extensive parameter
analysis and assess results as a function of maze complexity.

Llofriu et al. (2019) extended their previous model
to reproduce the results obtained from rat experiments
described by Contreras et al. (2018). In the experiments, it
was observed that inactivating either ventral or dorsal hip-
pocampus significantly reduced the performance of rats in
an open-field maze only when obstacles were introduced.

Finally, although not necessarily amodel of the hippocam-
pus, it is worth noting that Fan et al. (2017) developed an
adaptive multiscale visual place recognition system inspired
by grid cells found in the entorhinal cortex. Their system is
capable of adaptively selecting scale sizes based on an opti-
mizeddistancemetric rather than using prefixedvalues. In the
tested datasets, the adaptive system resulted in better recall
performance rates when compared to previous fixed mul-
tiscale approaches and outperforms state of the art robotic
navigation algorithms.

Our work is based on the unknown nature of the readout of
the multiscale representation found in the longitudinal axis
of the hippocampus. How is the information combined and
used?What functional consequences might this combination
have in the context of complex spatial navigation? Themodel
we developed is used to assess the possible contributions that
each scale might provide to the multiscale model. We assess
contributions in terms of learning speed and solution optimal-
ity (i.e., the number of actions required to solve a task). Also,
we compare the results in multiple mazes of different com-
plexities. Much like small scales are used to capture small
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Fig. 1 Algorithm summary. Summary of the computations performed
during each cycle. The diagram on the left shows the flow of informa-
tion (dependencies) between components. The pseudocode on the right
shows the execution order. In the diagram, the numbers on the upper

left corner of each box indicate the associated equations. Also, double
arrows show the inputs and outputs of the model, and subindexes t and
t − 1 indicate whether the dependency was computed in the current or
previous cycle, respectively

details in surface reconstruction and large scales provide the
general shape (Ferrari et al. 2005), we hypothesize that in
our spatial cognition model, smaller scales of representation
will be most useful when precision is required, while larger
scales will be most useful to accelerate learning and reduce
the number of neurons required to solve a task.

In the remainder of the paper, Sect. 2 presents the com-
putational model, Sect. 3 the evaluation method, Sect. 4 the
experiments and results, and Sect. 5 the conclusions and dis-
cussion.

2 Model

Themodel is implemented as an actor critic algorithm (Sutton
et al. 2000) with discrete action space and continuous state
space encoded by the activity of hippocampal place cells of
different field sizes.

The following subsections describe the algorithm in detail,
with each subsection corresponding to the elements from
Fig. 1 which shows a summary of the algorithm.

2.1 Action space (at)

In each cycle, the model performs one of eight possible
actions denoted by the angle of travel direction θ j . Each θ j

represents moving a single step (8 cm) in a specific allocen-
tric direction given by Eq. (1) and shown in Fig. 2. The action
taken at time t is denoted by at , where at = j corresponds
to the rat having moved one step in direction θ j at time t .
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Fig. 2 Action space. The figure shows the eight possible allocentric
directions in which the rat can move

θ j = π

4
j ∀ j : 0 ≤ j < 8 (1)

2.2 Place cells (P�i,t)

In our model, place cells are organized into layers accord-
ing to their field size so that all cells within a given layer
have equal field size. The number of layers, along with their
respective field size, and the number of cells vary according
to the experiment being performed. Figure 3 illustrates the
organization of two sample layers used in the experiments.

Each layer’s place cells are distributed uniformly over
space according to a rectangular grid. To do so, we define
the distance dλ between consecutive place cells according to
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Fig. 3 Sample PC layers. The image shows two sample PC layers used
in the experiments. Circles indicate the boundary of each place field,
while red dots indicate their centers. In both cases, the maze’s width
and height measure 2.2m and 3m, respectively. The layer in the left
figure has parameters rλ = 0.12m (place cell radius) and nλx = 14

(the number of columns). The layer in the right figure has parameters
rλ = 0.56m and nλx = 4. In both cases, the number of rows is propor-
tional to the number of columns multiplied by the aspect ratio h

w
(color

figure online)

Fig. 4 Derivation of dλ. The figure shows how to derive dλ and the
positions of the cells. When cells cannot cover the full maze (i.e., when
2rλnλx < w), they are distributed so that all gaps are of equal length
�, which leads to � = (w − 2rλnλx )/(nλx + 1) and dλ = � + 2rλ. The
position of the first cell is given by � + rλ. On the other hand, when
cells can cover the full width (i.e., when 2rλnλx > w), then � becomes
negative, in which case instead of interpreting � as the size of the gaps,
it can be interpreted as the size of the overlap between consecutive cells
and as the size of the overlaps between the first and final cells with the
outside of the maze

Eq. (2). In Eq. (3), we use the resulting distance along with
row and column numbers to define the center of each place
cell. Figure 4 illustrates how these equations are derived.

dλ = w + 2rλ
nλx + 1

(2)

�xλi = dλ

[
i % nλx + 1
i/nλx + 1

]
−

[
rλ + w

2
rλ + h

2

]
∀i : 0 ≤ i < nλ (3)

where

• dλ is the distance between consecutive place cells in layer
λ,

• rλ is the radius of place cells in layer λ,

• nλx is a parameter that indicates the number of columns
of the grid for layer λ,

• w and h are the width and length of the maze (2.2m and
3m for all experiments),

• �xλi is the center of place cell i in layer λ,
• nλ = nλx

⌊
nλx

w
h

⌋
indicates the total number of cells in

layer λ, and
• % and / indicate the modulo and integer division opera-
tions.

The activation of each place cell is modeled using Gaus-
sian radial basis functions whose values are set to 0 for all
points outside of a given radius from their centers (O’Keefe
and Burgess 1996). To calculate the activation, we calculate
the distance from the rat’s position to the place cell’s center
according to Eq. (4). If the distance is larger than the cell’s
radius, then the activation is set to 0, otherwise it is given
by the Gaussian kernel as shown in Eq. (5), as illustrated in
Fig. 5.

dλi,t = ‖�xt − �xλi‖ (4)

Pλi,t =
{
0 dλi,t > rλ

e

(
dλi,t
rλ

)2
ln(α)

otherwise
(5)

where

• �xt is the rat’s position at time t ,
• dλi,t is the distance from �xλi to �xt ,

123



Biological Cybernetics (2020) 114:187–207 191

Fig. 5 Place cells. Left: variables involved in computing the activation
of a place cell (Eq. 4–5). Right: activation of a place cell as a function
of dλi,t

• Pλi,t is the activation of place cell i from layer λ at time
t ,

• rλ is the radius of place cells in layer λ, and
• α is a constant (0.2) that represents the activation value
of a place field at its border.

2.3 State and action values (Vt,Qj,t)

The state and action value functions are computed using
linear function approximations (Sutton and Barto 2018),
usingnormalizedGaussianhierarchical radial basis functions
according to Eq. (6). Note that if the radial basis functions
were not normalized, then each basis function will generate
a local gradient pointing toward the center of the function,
and the value function would be prone to have local optima,
as discussed by Kretchmar and Anderson (1997).

P ′
λi,t = Pλi,t∑

αk Pαk,t
(6)

where

• P
′
λi,t is the normalized activity of place cell i from layer

λ at time t .

To compute the state and action value functions at time
t , each place cell is associated a value V λi

t , and each (place
cell, action) pair is associated a value Qλi

j,t . The state value
and action value functions are given by Eqs. (7)–(8). The
corresponding associations are illustrated in Fig. 6.

Vt =
∑
λi

V λi
t P ′

λi,t (7)

Q j,t =
∑
λi

Qλi
j,t P

′
λi,t (8)

where

Fig. 6 Neural network architecture. All place cell layers are fully con-
nected to V and Q by the weights V λi and Qλi

j

• Vt is the state value at time t ,
• Q j,t is the action value for action j at time t ,
• V λi

t is the value associated with place cell i from layer λ

at time t , and
• Qλi

j,t is the value associated with place cell i , action j
from layer λ at time t .

2.4 Eligibility traces (T�i
t , T

�i
j,t)

Toaccelerate learning,weuse exponentially decreasing eligi-
bility traces given by Eqs. (9)–(10), which are an adaptation
from Llofriu et al. (2019) to normalized radial basis func-
tions. Traces are initialized to 0 when t = 0.

T λi
t = max

{
αλT

λi
t−1, P

′
λi,t

}
(9)

T λi
j,t = max

{
αλT

λi
j,t−1, δ

at
j P

′
λi,t

}
(10)

where

• T λi
t is the trace at time t for cell i from layer λ,

• T λi
j,t is the trace at time t for cell i from layer λ for action

j ,
• αλ is a decay parameter for layer λ whose value depends

on the experiment being performed, and
• δ

at
j is the Kronecker delta function, whose value is equal

to 1 when at = j (i.e., if the action taken at time t was
action j) and 0 otherwise.

2.5 RL error and update (1Vt)

After performing action at−1, receiving reward rt , and reach-
ing �xt , our model calculates the reinforcement learning error
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by first performing a one-step bootstrap of the value function
according to Eq. (11) and then calculating the time difference
error according to Eq. (12) (Sutton and Barto 2018).

V ′
t = rt + γ

∑
λi

V λi
t−1P

′
λi,t (11)

	Vt = V ′
t − Vt−1 (12)

where

• γ is RL’s discount factor (constant set to 0.999),
• rt is the reward received after performing action at−1.

Note that rt = 1 only when the rat reaches the food, i.e.,
when it reaches a distance of 0.1mor less from the feeder.
For all other times rt = 0.

• 	Vt is the error of the estimation of the value function in
the previous cycle computed at time t .

The state and action values associated with each cell are
updated according to Eqs. (13)–(14), which are an adapta-
tion of the update for linear methods from Sutton and Barto
(2018), using radial basis functions, bootstrapping, and eli-
gibility traces.

V λi
t = V λi

t−1 + αT λi
t−1	Vt (13)

Qλi
j,t = Qλi

j,t−1 + αT λi
j,t−1	Vt (14)

where

• α is a constant learning rate (set to 0.6).

Note that the update shown in Eq. (13) is only computed
if the action performed at−1 was optimal (in other words, if
it is the on-policy action), or if the error is positive, i.e., the
action result was better than the currently expected value.
Here, we define an action to be optimal if it has the highest
action value Qλi

j,t among the actions that can be performed,
i.e., actions that are not blocked by an obstacle.

2.6 Action selection

In each execution cycle, the model chooses an action ran-
domly from a distribution derived from the action values.
This four-step process is summarized in Fig. 7. To derive the
distribution, the model computes an initial set of probabili-
ties by applying the softmax() function to the action values
according to Eq. (15).

p0t ( j) = eQ j,t∑
k e

Qk,t
(15)

where

softmax

affordances bias

random
selection

p0t

p1t

p2t

at−1

Qj,t
at

Action Selection

15

16 17-19

Fig. 7 Action selection process. The image shows a summary of the
action selection process. The numbers on the upper left corner of each
box indicate the associated equations. As in Fig. 1, arrows show the
flow of information between components

• p0t ( j) is the probability of performing action j after
applying softmax().

Themodel uses the concept of affordances (Guazzelli et al.
1998) to prevent the rat from choosing actions which are not
possible to perform such as going through a wall. To do so,
we define an action to be impossible if the distance to the
closest object in the respective direction is smaller than a
given constant (which depends on robot size and step size).
The concept is illustrated in Fig. 8. Based on this defini-
tion, the probability of impossible actions is set to 0 and
the result renormalized. If, in the process, all probabilities
become 0, then the result is replaced with a uniform distri-
bution among possible actions. In either case, the result is
given by Eq. (16). This also allows for smooth, non-chaotic
behavior that privileges continuity of movement over abrupt
changes in direction.

p1t ( j) =

⎧⎪⎨
⎪⎩

ω1
j∑

k ω1
k

∑
k ω1

k p
0
t (k) = 0

ω1
j p

0
t ( j)∑

k ω1
k p

0
t (k)

otherwise
(16)

where

• p1t ( j) is the probability after removing impossible
actions and renormalizing and

• ω1
j is a Boolean value which is 0 if action θ j cannot be

performed and 1 otherwise.

Finally, to prevent the rat from performing undesired tra-
jectories, e.g., continuouslymoving one step forward and one
step backward, the probabilities are transformed before ran-
domly choosing the action. To do so, each action is assigned a
biasing weight based on its similarity to the previous action.
Similar actions are assigned large weights, while different
actions are assigned small weights as illustrated in Fig. 9.
This assignment is carried out by rotating a fixed array which
represents a density distribution with a single peak at index
0 according to Eq. (17).
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Fig. 8 Affordances. Red arrows indicate impossible actions (e.g.,
obstructed), while black arrows indicate possible ones (color figure
online)

Fig. 9 Bias assignment. Actions similar to at−1 are assigned large
weights, while opposing actions are assigned smaller weights

b( j) = B(( j − at−1)%8) (17)

where

• b( j) is bias assigned to action θ j and
• B is the fixed array for assigning weights with values

[0.83, 0.06, 0.01, 0.01, 0.01, 0.01, 0.01, 0.06].

Then, to allow the rat to exploit the policy learned by
the algorithm, as the number of trials increase, the bias is
decreased by interpolating it with a uniform distribution
according to Eq. (18). Finally, to apply the bias, the prob-
ability of each action is multiplied by its respective weight
and the result renormalized according to Eq. (19).

ω2
j = δnb( j) + (1 − δn)

1

8
(18)

p2t ( j) = ω2
j p

1
t ( j)∑

k ω2
k p

1
t (k)

(19)

where

• ω2
j are the weights associated with each action.

• δ is constantwhich determines how fast theweights expo-
nentially decay to a uniform distribution.

• n is the trial number.

• p2t ( j) is the probability after applying the bias.

3 Evaluationmethods

3.1 Evaluation task

The evaluation task consists in having simulated rats learn
how to find food in an open-field maze frommultiple starting
positions. Rats are unable to see the feeder, and food is pro-
vided once the rat is within 10cm of the feeder. Each rat must
execute a total of N = mNm trials where m is the number of
starting positions and Nm is a parameter that defines the num-
ber of trials per starting position. Note that the maze, starting
positions, and the number of trials per starting position vary
according to the experiment.

The reason we use multiple starting positions is threefold.
First, since our place cells do not take into account the pres-
ence of walls, it allows us to assess whether the model can
learn the correct policy on both sides of the walls. Second,
it also helps to reduce the learning time of locations that are
far away from the feeder since rats starting closer to the goal
are more likely to find the food, which in turn helps to prop-
agate the value function sooner to other locations. Finally,
experiments in rats (e.g., water maze) have shown that tasks
that involve multiple starting positions usually require hip-
pocampal information processing (Garthe and Kempermann
2003; Vorhees and Williams 2006).

During the task, a trial starts when the rat is placed in
the maze and it ends either when the rat reaches the food or
when it has performed 3000 steps, in which case the rat is
removed without getting any reward. Note that for the mazes
and starting positions used, 3000 steps allow rats to move at
least 70 times the distance from the farthest starting location
to the goal. Figure 10 illustrates three out of the eight mazes
used in the experiments.

To have the rat learn the path from each starting position,
the starting position is changed on each trial according to a
random set of permutations {σi : 0 ≤ i < Nm} where each
σi is chosen from a uniform distribution between all permu-
tations of m elements. Given the set, the starting position of
trial n is given by σn/m(n % m) where / and % denote inte-
ger division and modulo operations. The starting positions
are chosen in this way to reduce transfer effects of using a
fixed order. Table 1 illustrates an example with m = 3 and
Nm = 2.

3.2 Assessment

To assess the performance of each rat, for each trial we mea-
sure the optimality ratio of the path performed which we
denote by o(n). The optimality ratio is defined as the distance
traveled by the rat divided by the distance of the shortest path
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(a) Maze 0 (b) Maze 1 (c) Maze 2

Fig. 10 Sample mazes. The figure shows three out of the eight mazes
used in the experiments. All mazes have the same width and height
(2.2m and 3m, respectively). Red dots indicate starting locations, while
blue dots indicate feeder locations. Solid lines indicate walls that can-
not be traversed. Note that starting locations are numbered according to

their distance to the feeder from closest to farthest. Mazes 3 through 7
are not shown since they only differ with maze 2 in the width of the gap,
which is incremented in steps of 5cm from 5cm in maze 2 to 30cm in
maze 7 (color figure online)

Table 1 Starting positions example for m = 3 (the number of starting
locations) and Nm = 2 (the number of episodes per starting locations)

Trial 0 1 2 3 4 5

Starting at σ0(0) σ0(1) σ0(2) σ1(0) σ1(1) σ1(2)

Note that first, we use a random permutation σ0 to choose the starting
locations. After traversing all starting locations, then a second random
permutation σ1 is used

from the respective starting location to the goal. The distance
of the shortest path is calculated byfirst constructing a visibil-
ity graph (Lozano-Pérez andWesley 1979) and then applying
Dijkstra’s algorithm (Dijkstra 1959). Note that o(n) ≥ 1 for
all n, and o(n) = 1 only when the path performed is optimal.

Since the performance of the rat in each episode depends
on the starting position, the series o(n) of size N is split
into m subsequences of size Nm (one per starting position)
according to Eq. (20).

o(l, n) = o
(
n + σ−1

n (l)
)

(20)

where

• o(l, n) is the optimality ratio of the nth trial starting at
position l.

• σ−1
n is the inverse of σn .

Finally, instead of evaluating each location separately,
we use a global metric to assess how the optimality ratio
decreases over time in the maze overall. Thus, we com-
pute the geometric mean of the subsequences according to
Eq. (21).

ō(n) = m

√∏
l

o(l, n) ∀n : 0 ≤ n < Nm (21)

Table 2 Experiment configurations. The table shows the parameter
ranges for each experiment. The last two rows are filled only for the
experiments using two layers of place cells. Cells marked with “min”

indicate that the number of cells used for a given layer was the mini-
mum necessary to cover the entire maze with the respective scale. Bold
values indicate the main parameter being varied in the experiment

Experiment 1 2 3 4 5
Experiment Name Traces Single min Single same Two scales Gap

Traces 0–0.9 0.7 0.7 0 0.7

Mazes 1 0–1 0–1 0–1 2–7

Scale 1 rλ (cm) 4–56 4–56 4–56 4–56 4–32

Scale 1 nλx Min Min 40 Min Min

Scale 2 rλ (cm) 4–56

Scale 2 nλx Min
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3.3 Mazes

Through all experiments, a total of eight rectangular mazes
were used (mazes 0 through 7), all sharing the same dimen-
sions (2.2m×3m which corresponds with the available
space for future robot experimentation). Figure 10 shows the
first three mazes.

Maze 0 and maze 1 are identical, except that an extra
wall with a small gap was added in the middle of the maze
separating starting positions 0 and 2 from 1 and 3. Since
starting positions are sorted according to their distance to the
goal, the names for locations 1 and 2 are swapped in mazes
0 and 1. Maze 0 was chosen since it is the simplest possible
maze in the sense that there are no obstacles. Maze 1 was
chosen to assess our hypothesis that small field size will be
more helpful when precision is needed.

Mazes 2 through 7 are also almost identical. The only
difference between them is the size of the gapwhich increases
from 5cm in maze 2 to 30cm in maze 7 in steps of 5cm. The
main difference between these mazes and maze 1 is that, in
maze 1, place cells close to the obstacle wall can activate on
both sides of the wall. On the other hand, in mazes 2 through
7, this does not happen since the walls got thicker and the
field sizes used in the respective experiments were chosen to
prevent it from happening. Mazes 2 thorough 7 were chosen
in this manner to assess how the size of the gap (precision
needed) would affect the performance of each scale.

4 Experiments and results

The following subsections describe each of the experiments
performed using the model along with the results obtained.
Each experiment compares the performance of the model
under different parameter configurations or maze setups. For
each setup, 100 simulated rats were tested using different
random seeds. Table 2 summarizes all experiment configu-
rations.

The results of each experiment compare the median opti-
mality ratio of different groups of rats as a function of the
trial [as defined by Eq. (21)]. To do so, three main types
of plots are used: time series showing the evolution of the
median optimality ratio vs the trial for the different groups
of rats; boxplots (Krzywinski and Altman 2014) showing
the distribution of the optimality ratio in the last trial for
each group, and heatmaps summarizing the results of Dunn
tests (Dinno 2017) that compare the distributions from the
boxplots. Dunn tests were computed using Python’s library
“scikit-posthocs,” using Bonferroni adjustments of p values
(Abdi 2007).

4.1 Experiment 1

The first experiment assesses how to choose the eligibility
trace decay parameter for different field sizes. For this rea-
son, in this experiment we use a single layer of place cells
λ0, varying the field size rλ0 from 0.04m (half a rat step)
to 0.56m (approximately one-fourth of the maze’s width)
in steps of 0.04m, and varying the trace decay parameter
αλ0 from 0 to 0.9 in steps of 0.1. For each field size, nλx is
chosen so that the maze is covered using the minimum num-
ber of cells, which is obtained by imposing the condition
dλ

√
2 < 2rλ and then using Eq. (2) to solve for nλx . Due to

the high computational costs of the experiment, the results
were computed only on maze 1.

4.1.1 Results

The results can be divided into two categories: small scales
(between 0.04 and 0.32m) and large scales (0.36–0.56m).

When assessing convergence time, the median optimality
ratio [as defined in Eq. (21)] converged faster as the trace
decay rate was increased (which is expected since that is the
purpose of eligibility traces). The effect was most notice-
able for the smallest scale, and it faded out as the scale got
larger. After reaching scale 0.36, no further speedup was
observed. Instead, after reaching the minimum around trial
10, the median optimality ratio started diverging faster as the
scale got larger. The results are shown in the left column of
plots of Fig. 11. The plots show themedian optimality ratio as
a function of the trial for each trace value. The first two rows
correspond to small scales 0.04 and 0.32, while the following
two correspond to large scales 0.52 and 0.56.

To assess whether different traces affected the optimality
ratio to which the model converged to, for each scale, we
compared the distributions of the results obtained in the last
trial. These distributions along with their respective boxplots
are shown in the second column of Fig. 11. To assess whether
the differences were statistically significant, a Dunn test was
performed comparing the distributions of each pair of traces.
The results are summarized in the heat maps shown in the
third column of Fig. 11. Green cells indicate that the distribu-
tions being compared are statistically different with p values
smaller than 0.03 for dark green cells, 0.05 for mid-green
cells, and 0.07 for light green cells. Red cells indicate no
statistical difference was observed (i.e., p values greater or
equal to 0.07).

For small scales, the distribution of traces between 0 and
0.8was not statistically different for all scales except 0.08 and
0.24. For scales 0.24 and 0.08, exceptionswere observed. For
scale 0.24, trace 0.4 was statistically better than traces 0, 0.1,
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Fig. 11 Experiment 1 results. The left column shows the median opti-
mality ratio versus the trial for each trace value.Note that highoptimality
ratios are omitted from the plot for clarity purposes. The middle col-
umn shows the distribution of the results during the last trial. The right
column shows the results of a Dunn test comparing the distribution of

each pair of traces. Dark green cells indicate p values lower than 0.03,
mid-green cells indicate p values lower than 0.05, light green cells indi-
cate p values lower than 0.07, and red cells indicate p values of 0.07 or
higher. From top to bottom, each row corresponds to scales 0.08, 0.20,
0.52, and 0.56, respectively (color figure online)
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Fig. 12 Experiment 2 results: The results of using a single layer of place
cells with theminimumnumber of cells required to cover themaze (thus
larger scales have less cells). The left column corresponds to the results
on maze 0, while the right column corresponds to the results on maze
1. The upper row shows the median optimality ratio as a function of the
trial for each scale. Note that high optimality ratios are omitted from
the plot for clarity purposes. The middle row shows the distribution of

the results during the final trial. The bottom row shows the results of
the Dunn tests comparing the distributions shown in middle row. Dark
green cells indicate p values lower than 0.03, mid-green cells indicate
p values lower than 0.05, light green cells indicate p values lower than
0.07, and red cells indicate p values of 0.07 or higher (color figure
online)

and0.2with p values of 0.03, 0.05, and0.03, respectively, and
trace 0.8 was statistically worse than trace 0.2 with p value
of 0.07. For scale 0.08, trace 0.8 was statistically worse than
traces between 0 and 0.7. For trace 0.9, themedianwasworse

than all other traces for all scales, but statistical significance
varied on a case-by-case scenario. In summary, the choice
of the trace value did not significantly affect the optimality
of the solution except for traces 0.8 and 0.9 which yielded
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the degraded results. Note that this analysis is only valid for
scales larger than 0.04, since scale 0.04 had not yet reached
convergence by the last trial for most trace values.

On the other hand, for large scales, when assessing the
median optimality ratio of the final trial, large traces (values
between 0.7 and 0.9) help to either prevent the median from
diverging or to reduce the speed of divergence as observed
in the last two rows of Fig. 11.

4.2 Experiment 2

The second experiment assesses how the field size affects the
convergence time and optimality of the solution.

As in experiment 1, only one layer of cells was used with
field sizes varying from 0.04 to 0.56 in steps of 0.04. Once
again, the number of cells for each scale was chosen so that
the maze was covered using the minimum number of cells.
Based on the results of experiment 1, the trace decay param-
eter was set to 0.7 for all scales.

This experiment was performed both in mazes 0 and 1.
Maze 0 assesses the model when no obstacles are present,
providing a scenario with minimal complexity. On the other
hand, maze 1 introduces a wall which divides the maze in
two halves connecting them by a small gap which results
in two sources of complexity for the model. First, since
the gap is small, the maze requires precise movements for
crossing from one side to the other. Thus, larger place
fields may result in worse optimality ratios due to being
too coarse. Second, since our model of place cells does not
take walls into account, a single place cell can activate on
both sides of the obstacle wall, thus incorrectly generaliz-
ing the value functions from one side of the wall to the
other.

4.2.1 Results

Figure 12 shows the results of experiment 2 (which uses a
single layer of places with just enough cells to cover the
maze). As observed in the first row of the figure, the model
converges faster for larger PC scales than smaller PC scales.
Also, for scales between 0.04 and 0.32m the results seem
to be stable once the minimum is reached, while for scales
between 0.36 and 0.56m, the median diverges after reaching
the minimum.

When comparing the medians of each PC scale in the final
trial (second and third rows of Fig. 12), we found that small
scales (0.04–0.32) were better than large scales (0.36–0.56)
for both mazes with p values smaller than 0.03. When com-
paring the results between the different scales of the small
group, the results differed for mazes 0 and 1. For maze 0,
statistically significant differences were found when com-
paring scale 0.04 and 0.12 with scales 0.28 and 0.32 and
when comparing 0.16 with scales 0.2 to 0.32, and in all cases

the smaller scale achieved better results. On the other hand,
for maze 1, the differences between scales are more notice-
able. Scale 0.04 was statistically better than scales ranging
from 0.12 to 0.32, and scales 0.08 to 0.2 were statistically
better than scales 0.24 to 0.32. On both mazes, all significant
differences had p values smaller than 0.03, except on maze
0 when comparing scale 0.12 to scales 0.28 (p < 0.5) and
0.32 (p < 0.7).

Summarizing the results, in general, we observed that
smaller scales converge to better (median) optimality ratios
than larger scales. The difference between scales is more
noticeable on maze 1 (the more complex maze) than maze
0. Cases where the median of smaller scales converged to
worse results than larger scales were not statistically signifi-
cant (p > 0.07).

4.3 Experiment 3

Experiment 3 repeats experiment 2 but changing the number
of cells used for each scale. Whereas in experiment 2 the
number of cells varied for different scales, in experiment 3
the value is constant with all scales having nλx = 40. Note
that this valuewas the one used for scale 0.04 in experiment 2.

Theobjective of this experiment is to assess how the results
differ from experiment 2when comparing the different scales
using the same number of cells. For example, if a large scale
was outperformed by a smaller scale in experiment 2, would
the result change if both scales had the same number of cells?

4.3.1 Results

Figure 13 shows the results of experiment 3. In contrast to the
results from experiment 2, when using the same number of
cells for all scales, the larger scales take longer to converge.
(Note that the number of trials in this experiment is 5 times
the number of the previous experiment.)

When comparing the distributions of the results during
the final trial, the observations that smaller scales converge
to better results than larger scales still apply, except that now
only scales between 0.04 and 0.24 converge. Also, note that
although in both mazes scale 0 is worse than scales 0.04 and
0.08, the result of the Dunn test indicate that the difference
is not significant (p > 0.07).

4.4 Experiment 4

Experiment 4 assesses whether eligibility traces could be
replaced by multiscale representations which could be a
biologically plausible mechanism for speeding up learning.
Experiment 4 repeats experiment 2 but setting traces to 0,
and using two layers of place cells instead of one, assess-
ing all possible combinations of the original set of layers.
Since originally there were 14 scales, in this experiment we
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Fig. 13 Experiment 3 results: The results of using a single layer of place
cells with a fixed number of cells for all scales. The left column corre-
sponds to the results on maze 0, while the right column corresponds to
the results on maze 1. The upper row shows the median optimality ratio
as a function of the trial for each scale. Note that high optimality ratios
are omitted from the plot for clarity purposes. Themiddle row shows the

distribution of the results during the final trial. The bottom row shows
the results of the Dunn test comparing the distributions shown in the
middle row. Dark green cells indicate p values lower than 0.03, mid-
green cells indicate p values lower than 0.05, light green cells indicate
p values lower than 0.07, and red cells indicate p values of 0.07 or
higher (color figure online)

assess 14·13
2 = 91 possible combinations. Also, note that to

allow for fair comparisons before and after mixing the scales,
the single-scale models from experiment 2 were also rerun
without the use of traces.

4.4.1 Results

Figure 14 summarizes the results of experiment 4. The results
analyze what happens to the speed and value of convergence
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Fig. 14 Experiment 4 results: The results of experiment 4 for mazes 0
and 1. Each cell in the map compares the results of the model using the
single layer of place cells indicated by the row, with the results after
adding the second layer indicated by the column. The results are indi-
cated by the colors of the cells. Black cells indicate “not applicable”, that
is, comparisons that were skipped since using two equal layers is equiv-
alent to using a single layer. Red cells indicate that adding the second
scale slowed down the convergence speed, but significantly improved
the median optimality ratio of the final trial (p < 0.05) both in mazes
0 and 1. Similarly, green cells indicate that adding the second layer
increased the convergence speed but significantly worsened the opti-
mality ratio both in mazes 0 and 1. Single asterisks “*” indicate that the

median optimality ratios were not compared due to at least one group
not having converged by the final trial for at least one of themazes. Dou-
ble asterisks“**” indicate cells for which the median optimality ratio
comparison resulted in the significant results contradicting the color of
the cell for at least one maze. “o”s indicate cells for which the compar-
ison of the optimality ratio was not significant for at least one maze. In
general, adding a second layer of smaller place cells (cells below the
black line) resulted in slower convergence to better optimality ratios.
When adding a second layer of larger place cells (cells above the black
line), convergence speed increased to worse optimality ratios only if the
second scale was large enough (color figure online)

Fig. 15 Sample combinations. The median optimality ratio is shown
as a function of the trial for different layer combinations using the min-
imum number of cells to cover the maze for each layer. Note that high
optimality ratios are omitted from the plot for clarity purposes. The

graph on the left shows all combinations using scale 0.16, while the
graph on the right shows all combinations using scale 0.4. The thicker
lines on each plot show the results of using a single layer of place cells
(layer 0.16 for the left plot and 0.4 for the right plot)

when adding a second layer of cells. The triangle of cells
below the black line correspond to adding a layer of smaller
cells, while the cells above correspond to adding a layer of
larger cells.

As observed in the image, adding a layer of cells smaller
than the original scale always resulted in slowing down con-
vergence but also in improving themedian optimality ratio of
the final trial when a statistically significant difference was
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Fig. 16 Policy comparison. The figure illustrates a comparison between
two policies after the final trial using the two-layer model with scales
0.16 and 0.28. The blue dot at the top of the image indicates the position
of the feeder. Solid lines indicate the walls of the maze. Black arrows
represent the actions corresponding to the highest action values at the
sampled locations using the full model. Shaded regions indicate areas
where the policy generated by the full model differs from the policy
generated by its larger scale alone. Red arrows indicate the actions
chosen by the latter policy. For the most part, both policies coincide.
The areas where the policies differ (i.e., areas where scale 0.16 made
a difference) seem to correspond with the areas where the policy is
changing (color figure online)

observed (p < 0.05). Note than in some cases (marked by
single asterisks in Fig. 14), the comparison between opti-
mality ratios was not performed due to at least one still
converging by the final trial thus preventing a fair compari-
son.

On the other hand, when adding a layer of cells larger
than the original scale, convergence speed was not always
increased. As observed in Fig. 14, for scales 0.24 and smaller,
the gain in speed was only observed if the new cells were
sufficiently large. In all other cases, convergence was slowed
down. Based on experiments 2 and 3, we attribute this obser-
vation to the conflicting properties between the scale size
and the number of cells. As observed in experiment 2, when
using the minimum number of cells, large scales allow for
faster convergence than small scales.On the other hand,when
increasing the number of cells as in experiment 3, conver-
gence is slowed down. Thus, using larger scales allows for

increased convergence speeds, but the incorporation of addi-
tional cells reduces it.

In the cases where the convergence speed was increased
and median optimality ratio comparisons were made, only
the combination (0.16, 0.28) was statistically significantly
improved. In all other cases, the difference was either not
significant or the ratio was worse than the original value.

As an example, in Fig. 15we show the results formaze 0 of
combining layers 0.16 and 0.40with all other layers. Notably,
the larger the second scale used, the faster the convergence,
although when combining scale 0.16 with 0.20 (which is
larger), the result converges slower than scale 0.16 alone.
Finally, note that originally scale 0.40 did not converge, but
by combining it with another scale it either converges or
diverges more slowly.

To further assess how the multiscale model combines the
information from multiple layers, we proceeded to plot the
policy generated by a sample configuration of the two-layer
model and we compared it to the policy generated by the
layer of larger place cells alone. Figure 16 illustrates the
comparison using layers 0.16 and 0.28. As observed in the
image, both policies coincide almost everywhere differing
only in the shaded regions, which seem to coincide with the
areas where the policy is changing. Thus, it seems that the
contribution made by the smaller scale is only used in areas
where the policy generated by the larger scale is changing.
Although in our experiment, those areas represent just a small
portion of the maze, that is mostly due to using only eight
actions and few obstacles, which results in policies that are
constant through big portions of space. Out of the regions
where the smaller scale made a difference, we distinguish
two noteworthy areas. One is the area around the gap in the
maze, where the smaller scale helped the policy point in the
direction of the gap. The other is the area around the feeder,
where the smaller scale contributed in making the policy
point toward the feeder rather than away. Both cases repre-
sent areas where detail is required (where the policy changes
rapidly) and the smaller scale was useful in capturing those
details.

4.5 Experiment 5

In experiment 5, we assess how the required precision of
movement in a maze affects the optimality of the solution for
different scales. This experiment repeats experiment 2 but
using the scales between 0.04 and 0.32m only and perform-
ing the task on mazes 2 through 7 instead of 0 and 1.

Mazes 2–7 are similar to maze 1, but the obstacle wall is
made thicker to prevent place cells from activating on both
sides of the wall. Also, the size of the gap increases from
maze 2 to maze 7, and thus, the precision required to move
from one half of the maze to the other decreases between
mazes.
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Fig. 17 Experiment 5 results (fixed maze): The results of using a sin-
gle layer of place cells with the minimum number of cells required to
cover the maze for scales 0.04–0.32. The left column corresponds to the
results on maze 2, while the right column corresponds to the results on
maze 4. The upper row shows the median optimality ratio as a function
of the trial for each scale. Note that high optimality ratios are omitted
from the plot for clarity purposes. The middle row shows the distri-

bution of the results during the final trial. The bottom row shows the
results of the Dunn test comparing the distributions shown in themiddle
row. Dark green cells indicate p values lower than 0.03, mid-green cells
indicate p values lower than 0.05, light green cells indicate p values
lower than 0.07, and red cells indicate p values of 0.07 or higher (color
figure online)

4.5.1 Results

In experiment 5, we analyze two types of results. First, when
fixing the maze and changing the scales (Fig. 17), the results
were the same as in experiment 2 for all mazes (2 through 7).

That is, smaller scales reach better optimality ratios but take
longer to converge. The only exception to the rule was scale
0.04, but this result is ignored since the median optimality
ratio was still decreasing by the last trial, meaning it still had
not reached convergence.
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Fig. 18 Experiment 5 results (fixed scale): The results of using a single
layer of place cells with the minimum number of cells required to cover
the maze on mazes 2–7. The left column corresponds to the results of
scale 0.04, while the right column corresponds to scale 0.16. The upper
row shows the median optimality ratio as a function of the trial for each
scale. Note that high optimality ratios are omitted from the plot for

clarity purposes. The middle row shows the distribution of the results
during the final trial. The bottom row shows the results of the Dunn test
comparing the distributions shown in the middle row. Dark green cells
indicate p values lower than 0.03, mid-green cells indicate p values
lower than 0.05, light green cells indicate p values lower than 0.07, and
red cells indicate p values of 0.07 or higher (color figure online)

When fixing the scale and changing the maze, the only
consistent result observedwas that the twomazes with small-
est gaps (mazes 2 and 3) took longer to converge than the
other mazes. The results are shown in Fig. 18. Although we
were expecting to find that mazes with smaller gaps would
elicit convergence to worse ratios, this was not observed in

the experiment. Instead, in most scenarios, there were no
statistical differences between the results of the last trial for
different mazes, as can be seen in the last row, right col-
umn of Fig. 18. In the cases where we did observe statistical
differences, the results were not consistent, sometimes get-
ting better results for the mazes with narrower gaps (as when
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comparing mazes 4 and 6 for scale 0.04), and sometimes for
mazes with wider gaps (as when comparing mazes 2 and 4
for scale 0.04).

5 Conclusions and discussions

In this paper, we introduced a computational model for spa-
tial cognition analyzing the effects of combining place fields
of multiple scales during a goal-oriented learning task using
reinforcement learning. The model uses HRBFs to repre-
sent place cells of multiple field sizes and to approximate
the state and action value functions. The model was based
on the field size gradient observed in place cells along the
dorsoventral axis of the hippocampus. The model was used
to assess possible benefits of using a multiscale architecture
in a reinforcement learning algorithm.

The main results of this research are that multiscale repre-
sentations can be used to decrease learning times and improve
the optimality of the solutions based on the choice of the
activation field sizes. Furthermore, a trade-off was generally
observed between the learning time and the optimality of the
solutions.

Additionally, simulations were performed to assess how
the complexity of a maze can affect place field sizes. The
results showed that differences in performance (median opti-
mality ratio during the last episode) are more significant
under the presence of obstacles,with smaller place fields gen-
erally outperforming larger place fields. This suggests that in
order to understand the differences between scales, experi-
ments should be performed in environments more complex
than obstacle-free open mazes. This result goes in hand with
the results from Contreras et al. (2018) where bilateral inac-
tivation of either dorsal or ventral hippocampus was reported
to impair spatial navigation only under the presence of obsta-
cles. Based on the results from experiment 2, this could be
due to any scale being sufficient to solve an obstacle-free
open maze.

When analyzing the results of the experiments performed,
the following specific observations were made:

1. Smaller scales consistently converged to better solutions
than larger scales in all single-scale experiments. We
believe this is due to larger scales generating coarser divi-
sions of space in which the policy remains constant. For
large enough scales (0.36 and higher), the median opti-
mality ratio was observed to diverge due to more and
more rats getting stuck in cycles, presumably due to the
coarseness of the scale.

2. Assessing convergence times for each scale separately
(experiments 2 and 3), we found the two contrasting
results. When each scale had the minimum number of
cells required to cover the maze, the median optimality

ratio decreased faster for larger scales than smaller ones.
On the other hand, the result was reversed when all scales
had the same number of cells, with the optimality ratio
decreasing faster for smaller scales than larger ones. The
latter result coincides with the results from Kretchmar
and Anderson (1997) that performed the same experi-
ment on a different problem from a pure reinforcement
learning context. This phenomenon could be explained
by the following.When approximating a function (in this
case, the reinforcement learning value function), if the
basis functions (place cells) do not overlap, a change in
the value of a single basis function does not affect the
approximation error of other basis functions. Thus, the
update is constrained to that single basis. On the other
hand, if the basis functions overlap with each other, an
update to one basis affects the error obtained using the
surrounding basis functions, generatingwaves of updates
in order to learn the target function. This not only can
account for slower convergence speeds, but could also
explain the instabilities observed in some ratios of exper-
iment 3. Although the results from experiments 2 and 3
would seem to suggest that using the fewest number of
cells to cover the maze produces the best results for many
scales, it must be noted that no noise was introduced in
the simulations. Since noise is themain reason for adding
redundancy (overlap between place cells), this result is
most likely to differ if noise was introduced.

3. In experiment 1, the best results were reached using
traces around 0.7 for all scales. For small scales (using
the minimum number of cells), the use of traces showed
significant improvement in convergence speedwhile con-
verging to the same optimality ratio (for traces smaller
than 0.7–0.8). On the other hand, traces did not improve
convergence speed for the larger scales, nonetheless the
median optimality ratio of the final trial was improved.

4. Multiscale computation can be used to accelerate learn-
ing rates or to improve the quality of the solutions. When
mixing any two layers (using minimum number of cells
on each layer), adding a smaller scale always resulted in
slower convergence rates. On the other hand, adding a
larger scale increased convergence rates only if the scale
was large enough. Inmost cases, a tendencywas observed
where increasing convergence speed decreased the qual-
ity of the solutions and vice versa.

5. Experiment 4 suggested that when using two layers, the
smaller layer is mainly useful in areas where the pol-
icy from the larger layer is changing. In particular, this
includes areas where the optimal policy changes fast over
space such as in areas close to the goal or around obsta-
cles.

6. When assessing how each scale performs under differ-
ent maze complexities, we did not find any conclusive
results. In general, it was observed that smaller scales
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converged to better performances than larger scales with
differences becoming significant under the presence of
obstacles. Nevertheless, when gradually decreasing com-
plexity by changing the size of the gap between mazes
2–7, the only difference observed was a decrease in the
time required to solve the task, but no significant changes
in performance were observed.

While constructing the model based on recent evidence
(Contreras et al. 2018; Harland et al. 2017; de Hoz et al.
2003), our main hypothesis was that the entire longitudinal
axis of the hippocampus is involved in spatial navigation.
More specifically, we hypothesize that dorsal place cells play
a major role when details are required, while ventral place
cells allow to reduce both learning time and the number
of neurons required in larger, more complex environments.
Although the experiments with the model would seem to
support our hypothesis, the results are limited requiring fur-
ther assessment, and we do not yet have rat experiments
supporting the model’s findings. Nevertheless, based on our
experience with the model, we believe that the continuum of
place field sizes observed in the hippocampus allows rats to
learn policies with varying levels of detail that can adapt to
many maze sizes and complexities. In particular, we believe
that larger scales allow to quickly learn rough (coarse/gist)
policies that can be improved upon by smaller scales when
the environment requires more precision. This is consistent
with the results observed in Fig. 16 where the contribu-
tions of the smaller scale were most noticeable around the
gap in the maze and in the areas surrounding the feeder,
considering that larger scales converged faster, but smaller
scales converged to better (here: shorter) solutions. Also, we
believe that by using place fields of appropriate sizes, the
number of neurons involved in a task can be minimized, pos-
sibly increasing the amount of memory and therefore the
ability to solve more complex environments. Given these
observations, we predict the following: (1) deactivating large
scales in large environments will increase learning times
(i.e., the number of episodes to solve a task); (2) deacti-
vating small scales, especially in complex environments,
will reduce performance (increasing the number of steps
required to solve a task) but not learning times; and (3) we
predict that smaller scales will be more active at decision
points and smaller environments, while larger scales will be
more active in open areas and, in general, in larger environ-
ments.

Based on the results of the experiments, to better assess
the differences between scales and the benefits of a multi-
scale architecture, experiments should be performed in more
complex environments. Thus, in the future, we plan to further
analyze the model in environments with varying dimensions
andmore obstacles. Furthermore, we plan to assess combina-
tions of more scales, possibly with a continuum spectrum of

sizes and compare our results to that of future rat experiments
using similar mazes to the ones we proposed.

Although in this initial study, the model was useful in
demonstrating the possible benefits of multiscale and model
dynamics, the model should be extended to address aspects
such asmapping place cells to the environment and increased
environment complexity. Even though the model was able
to solve the tasks presented, before including more scales
or experimenting in more complex environments, the model
would benefit by improving some of the following limita-
tions:

1. First and foremost, our current model of place cell does
not take walls into account. In particular, this means that
the state and action value functions can be incorrectly
generalized from one side of the wall to the other. Unlike
our model, real place cells interact with walls in several
ways such as “deactivating” when a wall is introduced
intersecting its place field (Muller and Kubie 1987), or
“activating” only under the presence of a wall at a given
location (Rivard et al. 2004; Lever et al. 2009). Modeling
these interactions such as in Llofriu et al. (2019) prevents
the policy from incorrectly generalizing between differ-
ent sides of the wall and may allow learning policies
that are conditional on the presence of walls. Introducing
these types of cells would also require further assessment
of how navigation would be affected by them.

2. The state and action value functions were observed to
diverge due to the algorithm suffering from the deadly
triad, as explained in Sutton and Barto (2018). In partic-
ular, this results in numerical instabilities in computations
and the possibility of the rat getting stuck in non-optimal
policies. Fixing this issue may allow to better exploit
the bigger scales used in the experiments which were
observed to diverge.

3. For each layer, the current model distributes place cells
uniformly over space which prevents recruiting dense
populations of place cells were required while using
sparse populations elsewhere. We believe that allowing
arbitrary distributions will help to reduce the number of
cells required to solve a task while keeping high perfor-
mances.

4. The equation used for the update of the action value func-
tion was defined in terms of the error of the state value
function. If the state value function converged, then the
error would become 0, and thus, the action value function
would also converge irrespective of whether it reached
the target value. Future work should improve the update
equation to allow the policy to learn regardless of the
state value function having already converged.

5. The current action selection process is rather basic and
can result in paths which would never be performed by
real rats, also the added biases can influence the pol-
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icy learned by the reinforcement learning algorithm. The
model would greatly benefit from including a working
memory model in the action selection process, as well as
a curiosity model.

6 Complex spatial navigation

The computation model described in this paper addresses
the problem of spatial navigation in complex environments
by analyzing the potential benefits of the dorsoventral mul-
tiscale organization of place cell fields in the hippocampus,
where smaller scales of representation seem to be useful in
improving path optimality, whereas larger scales seem to be
useful in reducing learning time. The results suggest that
combining scales can enhance the performance of the mul-
tiscale model, with a trade-off between path optimality and
learning time. Furthermore, the involvement of larger scales
may reduce the number of total cells required to represent a
particular environment, where the total number and size of
the cellswould depend on the environment complexity.Addi-
tionally, the results show that differences in performance are
more significant under the presence of obstacles,with smaller
place fields generally outperforming larger place fields, i.e.,
dorsal place cells play a major role when details are required,
while ventral place cells allow to reduce both learning time
and the number of neurons required in larger and more com-
plex environments.
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