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Effective theory arguments are used to derive the most general energy-momentum tensor of a relativistic
viscous fluid with an arbitrary equation of state (in the absence of other conserved currents) that is first-
order in the derivatives of the energy density and flow velocity and does not include extended variables
such as in Mueller-Israel-Stewart-like theories. This energy-momentum tensor leads to a causal theory,
provided one abandons the usual conventions for the out-of-equilibrium hydrodynamic variables put
forward by Landau-Lifshitz and Eckart. In particular, causality requires nonzero out-of-equilibrium energy
density corrections and heat flow. Conditions are found to ensure linear stability around equilibrium in flat
space-time. We also prove local existence and uniqueness of solutions to the equations of motion. Our
causality, existence, and uniqueness results hold in the full nonlinear regime, without symmetry
assumptions, in four space-time dimensions, with or without coupling to Einstein’s equations, and are
mathematically rigorously established. Furthermore, a kinetic theory realization of this energy-momentum
tensor is also provided.
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I. INTRODUCTION

Relativistic fluid dynamics plays an important role in
high-energy nuclear physics [1], astrophysics [2], and
cosmology [3]. Its wide range of applicability stems from
the application of general conservation laws in situations
where there is a large hierarchy among length scales, so that
the macroscopic behavior of conserved quantities (such as
energy and momentum [4]) can be determined without
detailed information about the system’s underlying micro-
scopic dynamics.
Ideal hydrodynamic behavior, corresponding to the limit

where dissipation can be neglected, is physically well
understood [2,4]. In the absence of other conserved currents
(i.e., at zero chemical potential), an ideal relativistic fluid
can be described using the energy-momentum tensor
Tμν
ideal ¼ εuμuν þ PðεÞΔμν, where ε is the energy density,

P ¼ PðεÞ is the equilibrium pressure defined by the
thermodynamic equation of state, uμ (with uμuμ ¼ −1)
is the local flow velocity, Δμν ¼ gμν þ uμuν is a projector
orthogonal to uμ, and gμν is the space-time metric. The
dynamics of the fluid is determined by solving the

relativistic Euler equations defined by energy-momentum
conservation, i.e., ∇μT

μν
ideal ¼ 0, which give first-order

equations of motion for the hydrodynamic variables
fε; uμg. It is known that the equations of motion are locally
well-posed, i.e., given suitable initial data for the variables a
unique solution exists, and that causality (defined below)
also holds [5]. In the more general case where gravitational
effects cannot be neglected [2], the metric is determined by
Einstein’s equations and the initial value problem for the
Einstein-Euler is also locally well-posed and causal [6,7].
Saying that causality holds for a system of equations

means that the values of a solution at a given space-time
point x are completely determined by the space-time region
that is in the past of and causally connected to x [8,9]. In
other words, causality implies that information cannot
propagate at superluminal speeds. Given that this concept
is central in relativity, it must also hold when dissipative
phenomena are taken into account. However, relativistic
causality and dissipation in fluid dynamics have been at
odds since the work of Eckart [10] in 1940.
In this work we investigate the most general expression

for the energy-momentum tensor of a relativistic viscous
fluid at zero chemical potential, with an arbitrary equation
of state, where dissipative corrections are taken into
account via first-order derivatives of the energy density
and flow velocity. Theories where dissipative effects are
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modeled in this way are traditionally referred to as
first-order theories. We go beyond all previous results
concerning relativistic viscous hydrodynamics by proving
causality, local existence, and uniqueness of solutions to
Einstein’s equations coupled to this most general viscous
fluid in the nonlinear regime. We show that causality
requires nonzero out-of-equilibrium energy density correc-
tions and heat flow. Without these ingredients, our theory
reduces to that of Landau and Lifshitz [4], which is known
to be acausal. Comprehensive conditions are found to
ensure linear stability around equilibrium in flat space-
time. Furthermore, we show how the general energy-
momentum introduced here can be derived from kinetic
theory.
The results we present here consist of a significant

generalization of [11], where the particular case of an
energy-momentum tensor for a conformal fluid was con-
sidered. In fact, in the absence of conformal invariance, the
most general energy-momentum tensor derived here in (1)
and (2) has six transport coefficients instead of only three,
as found in the case of a conformal system in [11]. This
considerably complicates the corresponding causality, sta-
bility, and well-posedness analyses, which forced us to
significantly sharpen our techniques and calculations. In
fact, in comparison to the work presented in [11], a much
more detailed analysis of the system’s characteristics was
needed here in order to establish causality in the nonlinear
regime. Moreover, differently than causality, which
requires analyzing only the principal part of the system,
for stability the full Fourier polynomials1 must be taken
into account. Therefore, even small changes compared to
the conformal case can radically change the factorization
properties of such polynomials and thus one’s ability to
determine the behavior of its roots. As a consequence, it is
not even clear at the start that the stability found in the
conformal case carries over to the nonconformal tensor.
Furthermore, a systematic study of the properties of a
nonconformal fluid must also involve the special case
where the fluid’s speed of sound vanishes at nonzero
energy density, an approximation commonly employed
to describe the fluid motion of matter in cosmological
models [3]. Such a study is also done in this paper.
Additionally, the kinetic theory analysis is considerably
more general and intricate in this case, as now the particle’s
mass is also taken into account.
This paper is organized as follows. In the next section we

briefly review the previous approaches to relativistic
viscous fluid dynamics. Section III provides a derivation
of the most general viscous energy-momentum tensor at
first-order and discusses our proof of causality, local
existence, and uniqueness of solutions to the equations

that describe the viscous fluid and its coupling to Einstein’s
equations. A linear stability analysis around hydrostatic
equilibrium in Minkowski space-time is also presented in
this section. We finish the paper with our conclusions and
outlook in Sec. IV. Appendix A shows how the energy-
momentum tensor studied here can be derived from kinetic
theory while in Appendix B we discuss the formal aspects
of the proofs and give the necessary technical mathematical
details. We use units where c ¼ ℏ ¼ kB ¼ 1. The space-
time metric signature is ð−þþþÞ. Greek indices run from
0 to 3, Latin indices from 1 to 3.

II. PREVIOUS APPROACHES

Formulations of viscous relativistic fluid dynamics were
first proposed by Eckart [10] and Landau and Lifshitz [4].
Given that uμT

μν
ideal ¼ −εuν, the Landau-Lifshitz theory

assumes that the same relation holds when dissipation is
included. The most general energy-momentum tensor for a
fluid that satisfies this condition is Tμν ¼ εuμuνþ
ðPþ ΠÞΔμν þ πμν, where Π is the bulk scalar and πμν is
the shear stress tensor, πμν ¼ Δαβ

μνTαβ, where Δαβ
μν ¼

ðΔα
μΔ

β
ν þ Δα

νΔ
β
μÞ=2 − ΔαβΔμν=3. In equilibrium Π and

πμν vanish and one returns to ideal hydrodynamics.
Assuming that the only degrees of freedom are still the
hydrodynamic fields already defined in the ideal case, small
deviations from local equilibrium described by Π and πμν

can be written as an expansion in powers of the space-time
derivatives of fε; uμg. This is known as the gradient
expansion in fluid dynamics [12–15]. When truncating
this expansion at first order in the Landau-Lifshitz theory,
one finds Π ¼ −ζ∇μuμ and πμν ¼ −2ησμν, where σμν ¼
Δαβ

μν∇αuβ. The second law of thermodynamics [4] then
implies that the shear and bulk viscosities, η and ζ,
respectively, are non-negative. After making this choice
for the dissipative fields, energy-momentum conservation
then gives equations of motion that provide a possible
relativistic generalization of the classical Navier-Stokes
equations [4]. Despite being physically motivated, this
theory is acausal [16] and unstable [17]. Such pathologies
are very severe, especially in the context of general
relativity applications (Eckart’s theory has the same prob-
lems). In fact, the results of [17] hold for a large (but not
exhaustive) class of first-order theories, leading to a wide-
spread belief that causality and stability could not be
accomplished in the framework of first-order theories.
A possible solution to this long-standing acausality

problem was proposed by Mueller, Israel, and Stewart
(MIS) [18–20] decades ago. Again, the energy-momentum
tensor of the viscous fluid at zero chemical potential is
assumed to obey the Landau-Lifshitz condition uμTμν ¼
−εuν but now the dissipative fields,Π and πμν, are found by
solving new equations of motion that couple these variables
to the other hydrodynamic fields. The new equations of
motion for such new variables are typically postulated

1By which we mean the polynomials determined by plane-
wave solutions, whose roots characterize the modes of the
system, see Sec. III B.
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based on some general physical principle such as the
second law of thermodynamics. A solution to the full set
of equations of motion requires specifying initial data for
the extended set of variables fε; uμ;Π; πμνg. Theories of
this type, based on the developments put forward in [15]
and [21], have been successfully used to describe the quark-
gluon plasma formed in heavy ion collisions (see [22] for a
review).
However, it is important to stress that, apart from

statements regarding causality (and stability) valid only
in the linearized regime [23–26], it is not known if causality
indeed holds under general conditions for MIS theories.2 In
fact, pathologies associated with nonlinear behavior were
observed before in [37]. Moreover, questions regarding the
existence and uniqueness of solutions, including the case
when the fluid is coupled to gravity, remain open with the
exception of highly symmetric situations [38]. In this
regard, hyperbolicity and causality in MIS theories includ-
ing shear and bulk viscosities were investigated in [39]
assuming an azimuthally symmetric and boost invariant
expansion. To this date, the only general statement regard-
ing causality and well-posedness of solutions in the non-
linear regime in MIS theories, without assuming any
simplifying symmetry or near-equilibrium behavior, was
recently proven in [40] for the case where only bulk
viscosity is included. Therefore, it is not known if the
MIS mechanism is powerful enough (or needed) to solve
the acausality (and well-posedness) problem of relativistic
viscous fluid dynamics under general conditions in the
nonlinear regime. In this regard, in order to describe the
rapid expansion and the highly anisotropic initial state of
the matter formed in heavy ion collisions, a different way to
generalize the MIS framework involving a nontrivial
resummation of dissipative stresses called anisotropic
hydrodynamics [41,42] was derived. This approach is
rapidly being developed (for a review, see [43]) and
successful comparisons to heavy-ion data have already
been made [44]. However, precise statements concerning
causality and well-posedness in this framework are
not known.

III. GENERAL ENERGY-MOMENTUM TENSOR
AT FIRST-ORDER

Here, we take a different approach to the problem of
acausality in relativistic viscous fluids. Our approach is
motivated by [11], where a first-order stable, causal, and
locally well-posed theory was introduced. However, the
work [11] was restricted to conformal fluids, so that it was
not clear if causality could indeed be a general feature of
first-order theories, as we show here, or if it was a

consequence of the severe constraints imposed by con-
formal invariance.
The starting point is that away from equilibrium quan-

tities such as the local temperature T and uμ are not
uniquely defined [20] and different choices differ from each
other by gradients of the hydrodynamic variables [45], each
particular choice being called a hydrodynamic frame.
Different frames have been studied over the years by
Eckart [10], Landau [4], Stewart [46] and others [47–
50]. Therefore, a priori, one is not forced to define the
hydrodynamic variables such that the Landau-Lifshitz
condition uμTμν ¼ −εuν holds out of equilibrium. If this
condition is lifted, the most general energy-momentum
tensor for the fluid [11] is Tμν ¼ ðεþA1Þuμuνþ
ðPðϵÞ þA2ÞΔμν þ πμν þQμuν þQνuμ, where A1 and
A2 are the nonequilibrium corrections to the energy den-
sity and equilibrium pressure, respectively, and Qμ ¼
−Δμ

νTναuα is the heat flow.
Instead of treating the nonequilibrium corrections as new

degrees of freedom (and consequently postulating addi-
tional equations for them) as in MIS theories and extended
irreversible thermodynamics [51], here we consider the
case where the effective theory describing the macroscopic
motion of the system is defined solely in terms of fε; uμg.
In this case, fA1;A2;Qμ; πμνg must be given in terms of
the hydrodynamic fields fε; uμg and their derivatives,
which may be organized through a gradient expansion
[15]. Assuming that deviations from equilibrium are small,
the most general theory compatible with the symmetries
that can be written at first-order in gradients is given by

Tμν ¼ ðεþA1Þuμuν þ ðPðεÞ þA2ÞΔμν

− 2ησμν þ uμQν þ uνQμ; ð1Þ

where

A1 ¼ χ1
uα∇αε

εþP
þ χ2∇αuα; A2 ¼ χ3

uα∇αε

εþP
þ χ4∇αuα;

Qμ ¼ λ

�
c2sΔν

μ∇νε

εþP
þ uα∇αuμ

�
ð2Þ

where λ; η; χa, a ¼ 1, 2, 3, 4 are transport coefficients
which are known functions of ε, and c2s ¼ dPðεÞ=dε is
the speed of sound squared. We assume that 0 ≤ c2s < 1.
The coefficients λ; χa regularize the ultraviolet behavior
of the collective modes of the system in such a way that
causality and stability hold. In fact, at the linear level one
can show that λ=ðεþ PÞ acts as a type of regulator of high
momentum shear modes, playing the same role as the shear
relaxation time in MIS theories [22]. A similar effect occurs
in the sound channel, although in a less transparent way.
Finally, we note that the conformal tensor proposed in [11]
is recovered when P ¼ ε=3 and χ1 ¼ χ2 ¼ χ and χ3 ¼
χ4 ¼ χ=3 in Eq. (2).

2Causality has also been studied in the context of the so-called
divergence-type theories [27–30]. Examples of fluid dynamic
theories constructed in this approach can be found in [31–33]
(additionally, see [34–36]).
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The general expression above fulfills the idea that
hydrodynamics can be understood as an effective theory
that describes the near-equilibrium behavior of inter-
acting matter at scales where the only relevant degrees
of freedom are the standard hydrodynamic fields. As
such, this effective theory should be valid for both
weakly and strongly coupled systems. Also, we note
that since the entropy density is s ¼ ðεþ PÞ=T [4], we
have ∇αT=T ¼∇αP=ðεþPÞ ¼ c2s∇αε=ðεþPÞ. Thus, one
could also have used fT; uμg as variables, as it naturally
occurs in kinetic theory [11]. We can further use kinetic
theory to determine the transport coefficients in (1)–(2).
This is shown in Appendix A, where we derive (1) from
kinetic theory. This derivation, in particular, gives that both
terms inQμ are multiplied by the same transport coefficient
(this also follows more generally from the imposition that
this term correctly vanishes in thermodynamic equilibrium,
as shown in [52]). Kinetic theory also shows that only three
out of the six transport coefficients are independent.
Additionally, we remark that even though the pressure

corrections seem more complicated than the standard
−ζ∇μuμ expression, the long wavelength behavior of sound
disturbances around hydrostatic equilibrium in this theory
is given by ωsoundðkÞ ¼ �csk − ið 2

3T
η
s þ 1

2T
ζ
sÞk2 þOðk3Þ,

where k ¼
ffiffiffiffiffiffiffiffi
kiki

p
and the bulk viscosity is identified as

ζ ¼ χ3 − χ4 þ c2sðχ2 − χ1Þ. Shear disturbances are found
to be ωshearðkÞ ¼ −i ηs

k2
T þOðk4Þ and, thus, the long wave-

length behavior of this theory near equilibrium is the same
as Landau-Lifshitz theory [22] (we note that the coefficient
λ only enters at higher orders in the expansion). In fact, as
argued in [52], in the domain of validity of the equations
(i.e., imposing that Tμν is accurate to 1st order) entropy
production equals the known expression from Landau-
Lifshitz theory [4] and becomes non-negative if η, ζ ≥ 0
(there are no further conditions on the other coefficients
from this entropy argument).
However, differently than Landau-Lifshitz theory, the

equations of motion obtained from ∇μTμν ¼ 0 with the
energy-momentum tensor given by (1) and (2) lead to
causal propagation, even in the fully nonlinear regime. As a
matter of fact, causality only holds when both the heat flow
and the non-equilibrium corrections to the energy density
(which are both set to zero in Landau-Lifshitz theory) are
taken into account. In the next section we present the proof
of causality, local existence, and uniqueness of solutions to
the equations of motion of this new theory. To motivate
further studies of viscous fluid dynamics in the presence of
strong gravitational fields in astrophysics and cosmology,
the viscous fluid equations are coupled to Einstein’s
equations.

A. Causality

In this section we prove that causality holds in the
nonlinear regime for the coupled Einstein-viscous fluid

system of equations when λ; χ1 > 0, η ≥ 0, and conditions
(6) and (7) below are satisfied, which is the main result of
this section. Local existence and uniqueness of the solu-
tions to the equations of motion are also proven below.
In order to study causality, we need to consider the

principal part of the system, which is obtained by retaining
the terms of highest order in derivatives in the equations
of motion ∇νTμν ¼ 0 and Einstein’s equations Rμν −
ð1=2ÞgμνRþ Λgμν ¼ 8πGTμν (whereΛ is the cosmological
constant, added here for completeness) [11]. In view of the
constraint uαuα ¼ −1, only three components of uμ are in
fact independent. It is more convenient, however, to treat all
the components uμ on the same footing, using the constraint
instead to split the energy-momentum tensor conserva-
tion equation into five equations uμ∇νTμν ¼ 0 and
Δα

μ∇νTμν ¼ 0, and we must use the constraint explicitly
in the development. Then, the complete set of equations of
motion (expressed in wave gauge) can be written as

χ1uαuβ þ c2sλΔαβ

εþ P
∂α∂βεþ ðχ2 þ λÞuðβδαÞν ∂α∂βuν

þ B̃ðε; u; gÞ∂2g ¼ Bð∂ε; ∂u; ∂gÞ; ð3aÞ

ðχ3 þ c2sλÞuðαΔμβÞ

ðεþ PÞ ∂α∂βεþ Bμαβ
ν ∂α∂βuν

þ B̃μðε; u; gÞ∂2g ¼ Bμð∂ε; ∂u; ∂gÞ; ð3bÞ

gαβ∂α∂βgμν ¼ Bμνð∂ε; ∂u; ∂gÞ: ð3cÞ

where B̃ðε; u; gÞ∂2g and B̃μðε; u; gÞ∂2g contain all terms
of 2nd order in derivatives of the metric g and order zero in
ε, uμ, and gμν, while Bð∂ε; ∂u; ∂gÞ, Bμð∂ε; ∂u; ∂gÞ, and
Bμνð∂ε; ∂u; ∂gÞ contain all terms with derivatives of order
no greater than one (the exact form of B̃ and B will not be
relevant for our purposes). Also, we defined Bμαβ

ν ¼
3 χ4−η

3
ΔμðβδαÞν þ ðλuαuβ − ηΔαβÞδμν . By constructing the

vector U ¼ ðε; uα; gμνÞT ∈ R15 (we consider only the 10
independent gμν), we may write (3) in matrix form as
Mαβ∂2

αβU ¼ B, where B ¼ ðB;Bμ; BμνÞ ∈ R15 and

Mαβ ¼
�
mαβ bαβ

010×5 gαβI10

�
ð4Þ

is a 15 × 15 real matrix. For simplicity, we define

mαβ ¼
�
χ1uαuβ þ c2sλΔαβ

εþ P
ðχ2 þ λÞuðβδαÞν

×
ðχ3 þ c2sλÞuðαΔμβÞ

ðεþ PÞ Bμαβ
ν

�
ð5Þ

while b is a 5 × 10 matrix written in terms of the B̃’s.
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Let ξ be an arbitrary covector in space-time. To establish
causality, we need to verify the following [53]. For each
nonzero ξ, the roots ξ0 ¼ ξ0ðξ1; ξ2; ξ3Þ of detðMαβξαξβÞ ¼
0 are all real and define a cone, given by the set
fξ∶ξ0 ¼ ξ0ðξ1; ξ2; ξ3Þg, that lies outside3 or equals the
light cone gαβξαξβ ¼ 0.
From (4) it is straightforward to see that the terms in b do

not contribute and that detðMαβξαξβÞ ¼ ðgμνξμξνÞ10 ×
detðmαβξαξβÞ. The roots coming from the gravity sector,
namely, gαβξαξβ ¼ 0, give the light cones. For the matter

sector, we obtain detðmαβξαξβÞ ¼ λ4 χ1
ðεþPÞ

Q
a¼1;� ½ðuαξαÞ2−

τaΔαβξαξβ�na , where n1 ¼ 3 and n� ¼ 1, and τ1 ¼ η
λ,

τ� ¼ 3½λ χ2c2sþ χ3ðλþ χ2Þ�þ χ1ð4η−3 χ4Þ�
ffiffiffi
Δ

p
6λ χ1

. The existence of real
roots demands λ; χ1 > 0, and

Δ¼9λ2 χ22c
4
sþ6λc2s ½χ1ð4η−3χ4Þð2λþ χ2Þþ3χ2 χ3ðλþ χ2Þ�

þ½χ1ð4η−3χ4Þþ3χ3ðλþ χ2Þ�2≥0: ð6Þ

In order to fulfill the aforementioned conditions of cau-
sality, we need to impose that 0 ≤ τa ≤ 1, which gives the
following conditions: λ; χ1 > 0, η ≥ 0

λ ≥ η; ð7aÞ

c2sð3χ4 − 4ηÞ ≥ 0; ð7bÞ

λχ1 þ c2sλ

�
χ4 −

4η

3

�
≥ c2sλχ2 þ λχ3 þ χ2 χ3

− χ1

�
χ4 −

4

3
η

�
≥ 0: ð7cÞ

Therefore, the Einsteinþ viscous fluid system in (3) is
causal in the nonlinear regime when λ; χ1 > 0, η ≥ 0, and
conditions (6) and (7) are satisfied. Note that, in particular,
for cs ¼ 0 the condition (7b) is automatically satisfied
and does not impose any new constraint on χ4 and η.
This completes the causality proof (see also Appendix B
for further mathematical details). The same holds in
Minkowski space-time. We note that the fact that
λ; χ1 > 0 implies that heat flow and nonequilibrium cor-
rections to the energy density must be included for non-
linear causality to hold in a viscous fluid, which explains
why Landau-Lifshitz theory [4] (where those terms are
omitted) is acausal.
We conclude this section with the following important

remark. The following criteria has been used in the
literature as a test for causality: ωsoundðkÞ and ωshearðkÞ
cannot grow faster than jkj for jkj ≫ 1 [26]. We stress that

this simple test is restricted only to the linear regime and
may only suggest causality violation. As a matter of fact,
there are well-known calculations in causal microscopic
theories where ωðkÞ ∼ βjkj with β > 1 for large jkj, as
found for instance in Ref. [54]. In contrast with other works
that relied on tentative linear tests [48,52,55], here we
provide the first full proof of causality, valid even at the
nonlinear level, in general first-order theories at zero
chemical potential.

B. Linear stability

We follow [11,17] and consider small fluctuations
around global equilibrium in flat space-time, i.e., ε →
εþ δε and uμ → uμ þ δuμ (uμδuμ ¼ 0) with uμ ¼ γð1; viÞ,
γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
(v2 ¼ vivi), and 0 ≤ v < 1. After linear-

izing the fluid equations of motion, we define δε̄ ¼
δε=ðεþ PÞ and consider plane wave solutions δε̄; δuα →
eTðΓtþikixiÞδε̄; δuα, where kμ ¼ ðiΓ; kiÞ (we include T in the
exponent to make kμ dimensionless). We recall that linear
stability demands that the real part ℜðΓÞ ≤ 0 for any
(constant and uniform) background velocity vi. For sim-
plicity, we first write the equations in the rest frame
where v ¼ 0. Using k2 ¼ kiki and following [17], the
equations determining the perturbed modes split into two
channels:

Shear channel∶ λ̄Γ2 þ η̄k2 þ Γ ¼ 0; ð8Þ

Sound channel∶A0þA1ΓþA2Γ2þA3Γ3þA4Γ4¼0; ð9Þ

where A0 ¼ k2c2s þ c2s
3
λ̄k4ð3 χ̄4 − 4η̄Þ, A1 ¼ 1

3
k2½3c2sðλ̄þ

χ̄2Þ þ 4η̄þ 3 χ̄3 − 3 χ̄4�, A2¼1þk2½λ̄ χ̄3þc2s χ̄2λ̄þ χ̄2 χ̄3 −
χ̄1ð χ̄4− 4η̄

3
Þ�, A3 ¼ λ̄þ χ̄1, A4 ¼ λ̄ χ̄1, and χ̄a ¼ T χa=

ðεþ PÞ, η̄ ¼ Tη=ðεþ PÞ, and λ̄ ¼ Tλ=ðεþ PÞ are dimen-
sionless quantities. The corresponding polynomials when
vi ≠ 0 can be obtained via a boost, which amounts to
changing Γ → γðΓþ ikiviÞ and k2 → −γ2ðΓþ ikiviÞ2 þ
Γ2 þ k2.
For the shear channel, it is straightforward to prove

analytically that condition (7), found to ensure causality,
implies stability for any vi. A comparison to similar studies
in MIS theory [22] shows that λ=ðεþ PÞ plays the role of a
shear relaxation time. The analysis of the sound channel is
more complicated. In the rest frame, real Γ-roots demand
Ai ≥ 0. This is guaranteed by the causality conditions (7b),
(7c), λ, χ1 > 0, and η ≥ 0 together with c2sðλþ χ2Þþ
4η
3
þ χ3 − χ4 ≥ 0. Taking Γ ¼ ΓR þ iΓI one may use the

Routh-Hurwitz criterion [56] to obtain that ΓR ≤ 0 imposes
the following conditions: Eq. (6) together with

ζ þ 4η

3
≥ 0; ð10aÞ

3Outside because ξ is a covector, so the discussion here is in
momentum space. By duality, the corresponding cone in physical
space will be inside the light cone.
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3c2sfχ1½λ2ð4η − 3χ4Þ þ 3χ3ð−λ2 þ λχ2 þ χ22Þ� þ λ½λ2ð4ηþ 3χ3 − 3χ4Þ þ 3χ22 χ3

þ λχ2ð4ηþ 9χ3 − 3χ4Þ� þ χ21ð4η − 3χ4Þð2λþ χ2Þg − 9c4sλ2ðχ1 − χ2Þðλþ χ2Þ
þ ð4ηþ 3χ3 − 3χ4Þðχ21ð4η − 3χ4Þ þ 3λχ3ðλþ χ2Þ þ 3χ2 χ3 χ1Þ ≥ 0: ð10bÞ

It is worth mentioning that these conditions coincide with
the ones obtained in Ref. [52] for the rest frame. Never-
theless, the equal sign in the above inequalities has been
included in order to incorporate the also stable situation
ℜðΓÞ ¼ 0. Since the case where η ¼ 0 is well defined, in
general (10) is satisfied if ζ ≥ 0, in accordance with non-
negative entropy production. When vi ≠ 0, in the homo-
geneous k ¼ 0 case (which corresponds to the lowest order
contribution to the dispersion relationωðkÞ ¼ ωð0Þ þOðkÞ
for the sound waves parallel to vi, where ωð0Þ ≠ 0) the sta-
bility conditions are: (6), (7c), (7c), and ðλþ χ1Þð1 − c2sÞ−
ζ − 4η

3
≥ 0. Note that in Ref. [52] the stability conditions for

the boosted frame have been verified only for the first and
second lowest orders in k for the dispersion relation ωðkÞ
for the sound waves perpendicular to vi, which does not
demand any new condition besides (10). In this sense, the
conditions coming from the homogeneous frame are
essential and make a direct link between linear stability
and nonlinear causality. In the non-homogeneous case with
vi ≠ 0, one is left with a very complex polynomial that
cannot be analyzed analytically. In this case we can still
carry out the stability analysis numerically, and we did
verified stability for several possible choices of parameters.
An extensive numerical study of stability, however, is
beyond the scope of the present work and we believe that
it is better to investigate stability on a case-by-case basis,
where one already has a pre-determined range of parameter
values relevant for specific applications.
Special case where cs ¼ 0: In particular, when cs ¼ 0,

the condition (7b) may be dropped and all the above
conditions for nonlinear causality and linear stability are
satisfied if λ; χ1 > 0, η ≥ 0, λ ≥ η, and

λðχ1 − χ3Þ ≥ χ2 χ3 þ χ1

�
4η

3
− χ4

�
≥ 0; ð11aÞ

χ21

�
4η

3
− χ4

�
þ λχ3ðλþ χ2Þ þ χ1 χ2 χ3 ≥ 0; ð11bÞ

λþ χ1 ≥ χ3 þ
4η

3
− χ4 ≥ 0: ð11cÞ

C. Local existence and uniqueness

We can also establish local existence and uniqueness of
solutions to the system of equations (3). The proof relies on
techniques of Leray systems (see [57]). The statement of
local existence and uniqueness can be summarized as

follows. Given sufficiently regular initial conditions for
the system of equations (3), there exists a unique solution to
(3). We refer the reader to Appendix B for a mathematically
rigorous statement and its proof. We remark that while this
result is of a mathematical nature, its importance in physics
cannot be underestimated. Not only are proofs of local
existence and uniqueness crucial to provide a solid foun-
dation for the formal aspects of a theory, but the reliability
of numerical simulations might be called into question
absent such proofs [58].

IV. CONCLUSIONS

In this work we derived the most general energy-
momentum tensor of a viscous fluid with an arbitrary
equation of state, without further conserved currents, that is
first-order in the derivatives of the energy density and flow
velocity and does not include extended variables such as in
Mueller-Israel-Stewart-like theories. We showed that if a
choice of hydrodynamic variables distinct from the ones
introduced by Eckart and Landau-Lifshitz is adopted, this
energy-momentum tensor gives rise to a causal theory.
Local existence and uniqueness of solutions has also been
established. These results hold with or without coupling to
Einstein’s equations and have been rigorously established.
We also showed that linear perturbations of equilibrium
states are stable. A kinetic theory realization of such
energy-momentum tensor was also provided. These results
provide a nontrivial generalization of the conformal case
previously studied by the authors in [11]. The physical
and mathematical properties of the generalization of (1) that
includes the effects from a nonzero chemical potential
will be the scope of a future work [59] (the general form of
the energy-momentum tensor and the conserved current
to first-order can already be found in the work of
Kovtun [52]).
Our results are of relevance for the study of the non-

equilibrium dynamics of the quark-gluon plasma formed in
heavy-ion collisions. The space-time evolution of this
highly dense matter is currently described using MIS
theories [22], which may be seen as an approximate way
to describe the interactions between the hydrodynamic
degrees of freedom and the other (faster) degrees of
freedom present in the system. After Ref. [60] showed
that the gradient expansion can diverge in rapidly expand-
ing systems (see also [61–63]), attractor dynamics has been
proposed [64] as a way to provide a broader definition of
hydrodynamic behavior that can be extended toward the
far-from-equilibrium regime [65]. The emergence of a
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hydrodynamic attractor in the system would then mark the
time after which dissipative contributions to the energy-
momentum tensor could be reliably described in terms of
constitutive relations involving the gradients of the hydro-
dynamic variables. It is known that MIS theories [64,66,67]
and anisotropic hydrodynamics [68] display attractor
behavior under highly symmetrical flow conditions.
Reference [11] already showed that the conformal version
of the general first-order theory derived here displays a
similar attractor behavior. Future work will reveal how the
powerful constraints derived here from nonlinear causality,
existence, uniqueness, and stability affect the properties of
the hydrodynamic attractor of the new theory studied here
that contains shear, bulk, and heat flow contributions.
Our study opens the door for the investigation of several

important problems that require a casual, linearly stable,
and local well-posed theory of relativistic viscous fluids,
such as the study of neutron star mergers, the formation of
shocks in relativistic viscous fluids, and the generalization,
to the viscous context, of known mathematical results valid
for perfect fluids. We hope to be able to address some of
these questions in the near future.
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APPENDIX A: KINETIC THEORY DERIVATION

Following [21], we consider the Boltzmann equation for
a dilute relativistic gas of (single species) particles with
constant mass M (in flat space-time)4

kμ∇μfkðxÞ ¼ C½fk�; ðA1Þ

where C½fk� is the collision kernel and fkðxÞ ¼ fðk; xÞ is
the distribution function that depends on the space-time
coordinates xμ and on the on-shell momenta kμ ¼ ðk0; kiÞ,

with k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kiki þM2

p
. From fk we may define quantities

such as the energy-momentum tensor

TμνðxÞ ¼ hkμkνi; ðA2Þ

where hhki stands for

hhki ¼
Z
k
fkhk

for any function hk. We also define
R
k ¼

R
d3k

ð2πÞ3k0, with
d3k

ð2πÞ3k0 being the Lorentz invariant measure. We focus here

on the derivation of Tμν.
The collision kernel is given by

C½fk� ¼
1

2

Z
k0pp0

Wðkk0jpp0Þðfpfp0 − fkfk0 Þ; ðA3Þ

where Wðkk0jpp0Þ is the Lorentz invariant transition rate
for (elastic) 2 to 2 collisions.5 For simplicity, in this work
we neglect effects from quantum statistics and consider
classical statistics, as this does not affect the important steps
needed in the derivation of the energy-momentum tensor.
The collision kernel obeys the relations

Z
k
C½fk� ¼

Z
k
kμC½fk� ¼ 0;

which define the conservation laws.
We note that any distribution function of the form

ek
μξμ=ϑþφ ðA4Þ

with ξμ, ϑ;φ being at this point arbitrary (normalized)
timelike vector and scalar fields, respectively, is a zero of
the collision kernel, i.e., C½ekμξμ=ϑþφ� ¼ 0. However, such a
distribution is only a solution of the Boltzmann equation if
the left-hand side is also zero, i.e., if the fields obey

kν∇νðekμξμ=ϑþφÞ ¼ 0; ðA5Þ

which implies that

∇μφ ¼ 0 and ∇μðξν=ϑÞ þ∇νðξμ=ϑÞ ¼ 0 ðA6Þ

so ξν=ϑ is a Killing vector field [14]. The fields fξν; ϑ;φg
may then be identified with the standard hydrodynamic
variables fuν; T; μg of ideal hydrodynamics and (A6) can
be written as

4The coupling with gravity is straightforward, see [14].

5Though the exact form of Wðkk0jpp0Þ is not important in the
following, we assume that the standard properties needed for the
H-theorem to hold [14] are valid.
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σμν ¼ 0 ðA7Þ

∇μuμ ¼ 0 and uν∇νμ ¼ 0 and uν∇νT ¼ 0 ðA8Þ

uν∇νuμ þ
∇μT

T
¼ 0 ðA9Þ

Δν
β∇νðμ=TÞ ¼ 0; ðA10Þ

which are the standard conditions that define thermody-
namic equilibrium. It should be clear from the derivation
above that fuν; T; μg are not uniquely defined. In fact, it is
more adequate to say that there are is an infinite number of
equilibrium states that satisfy the Boltzmann equation.
From now on, we set the chemical potential to zero and

denote this class of equilibrium distributions by

feqk ðxÞ ¼ e−Ek=T ðA11Þ

where Ek ¼ −uαkα. Besides the flow velocity, the equilib-
rium part of the energy-momentum tensor involves

ε ¼ hE2
kieq and P ¼ 1

3
Δμνhkμkνieq;

where hhkieq denotes

hhkieq ¼
Z
k
feqk hk:

It is convenient to also define the variation

hhkiδ ¼ hhki − hhkieq
and perform the decompositions kμ ¼ Ekuμ þ κμ and

kμkν ¼ E2
ku

μuν þ Ekuμκν þ Ekuνκμ þ khμkνi þ Δμν

3
κ2;

ðA12Þ

where κμ ¼ Δμνkν, κ2 ¼ κακα ¼ E2
k −M2, and khμkνi ¼

Δμν
αβk

αkβ, with Δμν
αβ¼ð1=2Þ½Δμ

αΔν
βþΔν

αΔ
μ
β−ð2=3ÞΔμνΔαβ�.

Then, the most general form for Tμν that includes out-
of-equilibrium contributions is

Tμν ¼ ðεþ hE2
kiδÞuμuν þ

�
Pþ hκ2iδ

3

�
Δμν

þ hκhμκνiiδ þ uμhEkκ
νiδ þ uνhEkκ

μiδ; ðA13Þ

where hEr
kκ

μieq ¼ 0 and hκhμκνiieq ¼ 0 by symmetry.
We follow the approximations discussed in [11] and

consider perturbations around local equilibrium by setting
fk ≈ feqk þ δfk, where δfk ¼ feqk ϕkðxÞ. Then, up to first-
order in δfk, Eq. (A1) may be written as

kμ∇μf
eq
k þ kμ∇μðfeqk ϕkÞ ¼ feqk L½ϕk�; ðA14Þ

where

L½ϕk� ¼
1

2

Z
pp0k0

Wðkk0jpp0Þfeqk0 ðϕp þ ϕp0 − ϕk − ϕk0 Þ

ðA15Þ

is an operator with kernel spanned by the set f1; Ek; κμg
that obeys hhkL½zk�ieq ¼ hzkL½hk�ieq and hhkL½hk�ieq < 0.
We assume that ϕkðxÞ is first-order in the derivatives of T
and uμ. Keeping only terms that are first-order in deriv-
atives, the solution of Eq. (A14) can be obtained from the
moments [11]

Z
k
kj1 � � � kjnfkμ∇μf

eq
k − feqk L½ϕk�g ¼ 0; ðA16Þ

where j ¼ 0; 1;…. In particular, for j ¼ 0, 1 one obtains
the conservation laws. As for j ¼ 2, by means of (A12) and

uμ∇μf
eq
k ¼ feqk

�
khμkνiσμν

T
þ κμ

�
Ek

T

�∇⊥
μ T

T
þ uα∇αuμ

��
þ E2

ku
α∇αT
T2

þ κ2∇αuα

3T

�
ðA17Þ

we obtain the equations

I4A ¼ 1

T5
hE2

kL½ϕk�ieq; ðA18aÞ

L2;2

3
qμ ¼ 1

T5
hEkκ

μL½ϕk�ieq; ðA18bÞ

2L0;4

15
Δμναβσαβ ¼

1

T5
hkhμkνiL½ϕk�ieq ðA18cÞ

where

A ¼ uα∇αT
T

þ l∇αuα; ðA19aÞ

qμ ¼ ∇μ
⊥T
T

þ uα∇αuμ; ðA19bÞ

with
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l ¼ L2;2

3I4
¼ 1

3
−
M2

T2

I2
3I4

; ðA20Þ

The dimensionless integrals above are defined as (using
the fact that κ2 ¼ Δαβkαkβ ≥ 0)

In ¼
hEn

kieq
Tnþ2

> 0 and Ln;m ¼ hEn
kκ

mieq
Tnþmþ2

> 0:

The kernel of the operator L is a subspace of dimension 5,
which implies that ϕk is not uniquely obtained from (A18).

Actually, one may write ϕk ¼ ϕðpÞ
k þ ϕh

k , where the homo-

geneous part ϕðhÞ
k ∈ kerðLÞ (L½ϕk� ¼ L½ϕðpÞ

k �), with the

particular solution ϕðpÞ
k being completely determined by

(A18). Thus, the most general ϕk that satisfies (A18) is

ϕk ¼ ϕA
khμkνiσμν

T3
þ ϕB

E2
kA
T3

þ ϕC
Ekκ

μ

T3
qμ −

�
ϕB

B
T
þ ϕB

C
T
Ek

T
þ ϕC

κμ

T2
D⊥

μ

�
; ðA21Þ

where in parentheses we wrote the homogeneous terms as
combinations of 1; Ek, and κμ, while the particular solution
is uniquely determined by A and qμ from (A18). The most
general form of the homogeneous terms must be combi-
nations of quantities that vanish in equilibrium, i.e, ∇αuα,
uα∇αT, and ∇μ

⊥T=T þ uα∇αuμ, and thus

B ¼ b1
uα∇αT

T
þ b2∇αuα; ðA22aÞ

C ¼ c1
uα∇αT

T
þ c2∇αuα; ðA22bÞ

Dμ
⊥ ¼ d

�∇μ
⊥T
T

þ uα∇αuμ
�
; ðA22cÞ

where the dimensionless coefficients bi, ci, and d define the
terms that enter in the first-order theory (and also the sign of
its coefficients). This is how our choice of hydrodynamic
frame appears in the context of kinetic theory, which nicely
provides a microscopic realization of the ideas presented by
Kovtun in [52]. The quantities ϕA, ϕB, and ϕC contain the

independent information regarding transport and they can
be obtained by using (A21) into (A18) and then solving the
following equations:

2L0;4

15
Δμναβσαβ ¼

ϕA

T8
hkhμkνiL½khαkβi�ieqσαβ; ðA23aÞ

I4 ¼
ϕB

T8
hE2

kL½E2
k�ieq; ðA23bÞ

L2;2

3
qμ ¼ ϕC

T8
hEkκ

μL½Ekκ
ν�ieqqν: ðA23cÞ

Exact expressions for the transport coefficients depend on
ϕA, ϕB, and ϕC, which can be found once the microscopic
details involving the particle scattering are given. However,
in this work we will not focus on such calculations. Rather,
our goal here is only to determine their general properties.
First, we remark that (A23) implies that ϕA;ϕB;ϕC < 0
since hhkL½hk�ieq < 0. Then, given that hhkiδ ¼ hhkϕkieq,
one obtains

A1 ¼ hE2
kϕkieq ¼ −T3ϕB

�
ðb1I2 þ c1I3 − I4Þ

uα∇αT
T

þ ðb2I2 þ c2I3 − lI4Þ∇αuα
�
; ðA24aÞ

A2 ¼
1

3
hκ2ϕkieq ¼ −

T3ϕB

3

�
ðb1L0;2 þ c1L1;2 − L2;2Þ

uα∇αT
T

þ ðb2L0;2 þ c2L1;2 − lL2;2Þ∇αuα
�
; ðA24bÞ

Qμ ¼ hEkκ
μϕkieq ¼ −

T3ϕC

3
ðL1;2d − L2;2Þ

�∇μ
⊥T
T

þ uα∇αuμ
�
; ðA24cÞ

ησμν ¼ −
1

2
hkhμkνiϕkieq ¼ −T3ϕA

L0;4

15
σμν: ðA24dÞ

One can obtain immediately that

η ¼ −ϕA
L0;4

15T3
> 0:
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Now, it is easy to see that the energy-momentum tensor
discussed in this paper

Tμν ¼ ðεþA1Þuμuν þ ðPþA2ÞΔμν

− 2ησμν þ uμQν þ uνQμ; ðA25Þ

where

A1 ¼
χ1
c2s

uα∇αT
T

þ χ2∇αuα; ðA26aÞ

A2 ¼
χ3
c2s

uα∇αT
T

þ χ4∇αuα; ðA26bÞ

Qμ ¼ λ

�∇⊥
μ T

T
þ uα∇αuμ

�
; ðA26cÞ

with ∇⊥
μ ¼ Δν

μ∇ν and dT=T¼dP=ðεþPÞ¼c2sdε=ðεþPÞ,
is obtained when one sets

χ1
c2s

¼ −m1T3ϕB; ðA27aÞ

χ2 ¼ −m2T3ϕB; ðA27bÞ

χ3
c2s

¼ −m3

T3ϕB

3
; ðA27cÞ

χ4 ¼ −m4

T3ϕB

3
; ðA27dÞ

λ ¼ −r
T3ϕC

3
; ðA27eÞ

where mi and r are chosen positive such that

b1I2 þ c1I3 − I4 ¼ m1 > 0; ðA28aÞ

b1L0;2 þ c1L1;2 − L2;2 ¼ m3 > 0 ðA28bÞ

b2I2 þ c2I3 − lI4 ¼ m2 > 0; ðA28cÞ

b2L0;2 þ c2L1;2 − lL2;2 ¼ m4 > 0; ðA28dÞ

L1;2d − L2;2 ¼ r > 0: ðA28eÞ

Equations (A28) fix all the 5 parameters bi, ci, and d in
such a way that χa’s and λ are positive. In the special case
whereM ¼ 0 we must have from (A28) that m1 ¼ m3 and
m2 ¼ m4 since Lm;n ¼ Imþn and l ¼ c2s ¼ 1=3 [see (A20)].

Also, in this case m1 ¼ 3m2 so that χ4 ¼ χ3 ¼
χ2=3 ¼ χ1=3, which reduces to the case considered in [11].

APPENDIX B: FORMAL PROOF OF CAUSALITY,
LOCAL EXISTENCE, AND UNIQUENESS

Here we provide the formal proofs of the statements of
local existence, uniqueness, and causality for Einstein’s
equations coupled to (1). We use the standard terminology
of general relativity (see, e.g., [69]). An initial data set for
Einstein’s equations coupled to (1) consists of a three-
dimensional manifold Σ, a Riemannian metric g

∘
and a

symmetric two tensor κ on Σ, two vector fields u∘ and U
∘
on

Σ, and two scalar functions ε
∘
and E

∘
on Σ, such that the

Einstein constraint equations are satisfied. The fields u
∘
and

ε
∘
correspond to uijt¼0 and εjt¼0, respectively, whereas U

∘

and E
∘
correspond to ∂tuijt¼0 and ∂tεjt¼0, respectively. We

note that only initial data for the projection of u onto the
tangent bundle of Σ is given initially in view of the
normalization condition uαuα ¼ −1. Similarly for trans-
versal (to Σ) derivatives of u. In Theorem I below, Gs is the
Gevrey space (see, e.g., [70]). For the proof of Theorem I,
we will use techniques of Leray-Ohya systems developed
in [[71] § 6, sec. 27] and [72]. A statement of the result as
needed here appears in [57][Appendix A] (see also [[8],
p. 624] for a simplified statement).
Theorem I: Consider the energy-momentum tensor (1)

and assume that λ, χa, a ¼ 1;…; 4, η, and P are given real
valued functions with domain (0;∞), where we recall that
in (1) these quantities are functions of ε, i.e., λ ¼ λðεÞ,
χa ¼ χaðεÞ, η ¼ ηðεÞ, and P ¼ PðεÞ. Suppose that λ, χa, η,
and P are GðsÞ regular. Let I ¼ ðΣ; ε∘; E

∘
; u
∘
; U
∘ Þ be an initial

data set for Einstein’s equations coupled to (1). Assume that
the initial data belongs to GðsÞðΣÞ. Suppose that Σ is

compact and that ε
∘
> 0. Suppose that P0 ≥ 0, that λ > 0,

χ1 > 0, η ≥ 0, and that conditions (6) and (7) hold. Finally,
assume that 1 < s < 20=19. Then, there exist a four-
dimensional Lorentzian manifold (M; g), a vector field u
and a real valued function ε, both defined on M, such that:
(1) Einstein’s equations coupled to (1) hold in M.
(2) There exists an isometric embedding i∶ðΣ; g∘Þ →

ðM; gÞ with second fundamental form κ.
(3) Identifying Σ with its image iðΣÞ in M, we have

εjΣ ¼ ε
∘
and ΠΣðuÞ ¼ u

∘
, where ΠΣ∶TMjΣ → TΣ is

the canonical projection from the tangent bundle of
M restricted to Σ to the tangent bundle of Σ.
Furthermore, if fxαg3α¼0 is a system of coordinates
near Σ such that fxig3i¼1 are coordinates on Σ, then

∂0εjΣ ¼ E
∘
and ∂0uijΣ ¼ U

∘
.

(4) (M; g) is globally hyperbolic with Cauchy sur-
face iðΣÞ.
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(5) (M; g) is causal, in the following sense: for any x in
the future6 of iðMÞ, ðgðxÞ; uðxÞ; εðxÞÞ depends only
on I jiðΣÞ∩J−ðxÞ, where J−ðxÞ is the causal past of x
(with respect to the metric g).

(6) (M; g) is unique up to actions of diffeomorphisms
of M.

Proof.—We first note that causality, item (5), has already
been proved in Sec. III A. For, assume that a globally
hyperbolic solution exists. Then, the corresponding char-
acteristic manifolds of the Einstein equations coupled to (1)
have been computed in Sec. III A for Einstein’s equations
written in wave coordinates. The invariance of the char-
acteristics [[73] Chapter V] assures that causality holds
independently of the system of coordinates we choose.
In order to establish existence, we embed Σ into R × Σ

and consider a coordinate system fxαg3α¼0 in a neighbor-
hood of a point p ∈ Σ. Without loss of generality we can

assume that fxig3i¼1 are coordinates on Σ and that g
∘ðpÞ is

the Euclidean metric when expressed in these coordinates.
We consider Einstein’s equations written in wave gauge, in
which case the equations of motion can be written as in (3).
As usual in problems for Einstein’s equations in wave
gauge, we take as initial conditions for the components of
the metric the following:

gijð0; ·Þ¼g
∘
ij; g00ð0; ·Þ¼−1; g0ið0; ·Þ¼0; ∂0gij¼ κij;

with ∂0gα0ð0; ·Þ chosen such that fxαg3α are wave coor-
dinates at x0 ¼ 0. For the fluid variables, we take

εð0; ·Þ¼ ε
∘
; ∂0εð0; ·Þ¼ E

∘
;uið0; ·Þ¼ u

∘ i; ∂0uið0; ·Þ¼U
∘ i
;

with the initial conditions u0ð0; ·Þ and ∂0u0ð0; ·Þ deter-
mined from the normalization condition uαuα ¼ −1.

We group that unknowns ε, uα, and gμν in the 15-
component vector V ¼ ðε; uα; gμνÞ. To each component VI

we associate an index mI , I ¼ 1;…; 15, and to each one of
the 15 equations in (3) we associate an index nJ, in such a
way that Eqs. (3) can be written as

hJI ð∂mK−nJ−1VK;∂mI−nJÞVIþbJð∂mK−nJ−1VKÞ¼0; ðB1Þ

where I; J ¼ 1;…; 15, hJI ð∂mK−nJ−1VK; ∂mI−nJÞ is a homo-
geneous differential operator of ordermI − nJ (which could
possibly be zero) whose coefficients depend on at most
mK − nJ − 1 derivatives of VK , K ¼ 1;…; 15, and there is
a sum over I in hJI ð·ÞVI. The terms bJð∂mK−nJ−1VKÞ also
depend on at most mK − nJ − 1 derivatives of VK ,
K ¼ 1;…; 15. The indices mI and nJ are defined up to
an overall additive constant, but the simplest choice to have

Eqs. (3) written as (B1) is mI ¼ 2, nJ ¼ 0, for
all I; J ¼ 1;…; 15.
The characteristic determinant of (B1) was computed in

Sec. III A and gives

detHðV; ξÞ ¼ λ4 χ1
ðεþ PÞ ðg

μνξμξνÞ10

×
Y

a¼1;�
½ðuαξαÞ2 − τaΔαβξαξβ�na ;

whereH ¼ ðhJI ð∂mK−nJ−1VK; ξÞÞ is the characteristic matrix
of the system and the other quantities are as in Sec. III A.
Under our assumptions, the polynomials gμνξμξν are
hyperbolic polynomials when V takes the initial data.
Also, when V takes the initial data, the polynomials
ðuαξαÞ2 − τaΔαβξαξβ, a ¼ 1;�, are hyperbolic polynomials
for τa > 0 and products of two hyperbolic polynomials for
τa ¼ 0. Since the roots of a polynomial are continuous
functions of the polynomial coefficients, we conclude that
detHðV; ξÞ is a product of at most 20 hyperbolic poly-
nomials for any V sufficiently close to the initial data.
Moreover, the intersection of the characteristic cones defined
by these polynomials has nonempty interior.
Therefore, we have verified the hypotheses of [[57]

Theorem A.23] and we conclude that equations (3) admit a
solution in a neighborhood of p. Recall that a solution to
Einstein’s equations in wave coordinates gives rise to a
solution to the full Einstein equations (i.e., Einstein’s
equations in arbitrary coordinates) if and only if the
constraint equations are satisfied, which is the case by
assumption. Thus, we have obtained a solution to Einstein’s
equations coupled to (1) in a neighborhood of p. A standard
gluing argument that relies on the causality of solutions
already established (see, e.g., [[9] Chapter 10] or [57])
gives a solution defined in a neighborhood of Σ. We have
therefore obtained a space-time where statements (1)-(5)
hold (we notice that statements (2)-(4) are immediate
consequences of the above constructions). Finally, state-
ment (6) is obtained by considering the maximal globally
hyperbolic development of the initial data [74]. ▪
We note that some of the assumptions of Theorem I can

be relaxed, but we have not done so for simplicity. For
example, the compactness of Σ can be dropped provided
that suitable asymptotic conditions on the fields are given.
The Gevrey regularity 1 < s < 20=19 can also be improved.
For example, if we are given two hyperbolic polynomials
of the form p1ðξÞ ¼ ðuαξαÞ2 − c1Δαβξαξβ and p2ðξÞ ¼
ðuαξαÞ2 − c2Δαβξαξβ with 0 < c1 < c2 ≤ 1, then the prod-
uct p1ðξÞp2ðξÞ is a (degree four) hyperbolic polynomial.
Thus, considering products, we can write detHðV; ξÞ as a
product of fewer than 20 polynomials, leading to a better
Gevrey regularity (the range of values of s allowable is
determined by Q=ðQ − 1Þ when detHðV; ξÞ is written as a
product of Q hyperbolic polynomials, see [57]).

6The future of a set in M is well-defined because (M; g) is
globally hyperbolic.
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Typically for problems in relativity, one wants to
establish local existence and uniqueness under more gen-
eral regularity assumptions on the initial data than Gevrey
regularity. A common goal is to have a result valid for
initial data belonging to Sobolev spaces [5]. In this regard,
we announce here the following result, which will be
established in the forthcoming paper [75]:

Theorem II: In Theorem I, assume further that P0 > 0,
and suppose that the data belongs to the Sobolev space Hs

for sufficiently large s. Then, the same conclusions of
Theorem I hold.
The above arguments also show that the fluid equations

are locally well posed in a fixed background (i.e., without
considering coupling to Einstein’s equations)
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