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Nonlinear causality of general first-order relativistic viscous hydrodynamics
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Effective theory arguments are used to derive the most general energy-momentum tensor of a relativistic
viscous fluid with an arbitrary equation of state (in the absence of other conserved currents) that is first-
order in the derivatives of the energy density and flow velocity and does not include extended variables
such as in Mueller-Israel-Stewart-like theories. This energy-momentum tensor leads to a causal theory,
provided one abandons the usual conventions for the out-of-equilibrium hydrodynamic variables put
forward by Landau-Lifshitz and Eckart. In particular, causality requires nonzero out-of-equilibrium energy
density corrections and heat flow. Conditions are found to ensure linear stability around equilibrium in flat
space-time. We also prove local existence and uniqueness of solutions to the equations of motion. Our
causality, existence, and uniqueness results hold in the full nonlinear regime, without symmetry
assumptions, in four space-time dimensions, with or without coupling to Einstein’s equations, and are
mathematically rigorously established. Furthermore, a kinetic theory realization of this energy-momentum

tensor is also provided.
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I. INTRODUCTION

Relativistic fluid dynamics plays an important role in
high-energy nuclear physics [1], astrophysics [2], and
cosmology [3]. Its wide range of applicability stems from
the application of general conservation laws in situations
where there is a large hierarchy among length scales, so that
the macroscopic behavior of conserved quantities (such as
energy and momentum [4]) can be determined without
detailed information about the system’s underlying micro-
scopic dynamics.

Ideal hydrodynamic behavior, corresponding to the limit
where dissipation can be neglected, is physically well
understood [2,4]. In the absence of other conserved currents
(i.e., at zero chemical potential), an ideal relativistic fluid
can be described using the energy-momentum tensor
Thy = euw'u’ + P(e) A%, where ¢ is the energy density,
P = P(¢e) is the equilibrium pressure defined by the
thermodynamic equation of state, u* (with wu, = —1)
is the local flow velocity, A, = g, + u,u, is a projector
orthogonal to u*, and g,, is the space-time metric. The
dynamics of the fluid is determined by solving the
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relativistic Euler equations defined by energy-momentum
conservation, i.e., V,Ti, =0, which give first-order
equations of motion for the hydrodynamic variables
{&, u"}. It is known that the equations of motion are locally
well-posed, i.e., given suitable initial data for the variables a
unique solution exists, and that causality (defined below)
also holds [5]. In the more general case where gravitational
effects cannot be neglected [2], the metric is determined by
Einstein’s equations and the initial value problem for the
Einstein-Euler is also locally well-posed and causal [6,7].

Saying that causality holds for a system of equations
means that the values of a solution at a given space-time
point x are completely determined by the space-time region
that is in the past of and causally connected to x [8,9]. In
other words, causality implies that information cannot
propagate at superluminal speeds. Given that this concept
is central in relativity, it must also hold when dissipative
phenomena are taken into account. However, relativistic
causality and dissipation in fluid dynamics have been at
odds since the work of Eckart [10] in 1940.

In this work we investigate the most general expression
for the energy-momentum tensor of a relativistic viscous
fluid at zero chemical potential, with an arbitrary equation
of state, where dissipative corrections are taken into
account via first-order derivatives of the energy density
and flow velocity. Theories where dissipative effects are
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modeled in this way are traditionally referred to as
first-order theories. We go beyond all previous results
concerning relativistic viscous hydrodynamics by proving
causality, local existence, and uniqueness of solutions to
Einstein’s equations coupled to this most general viscous
fluid in the nonlinear regime. We show that causality
requires nonzero out-of-equilibrium energy density correc-
tions and heat flow. Without these ingredients, our theory
reduces to that of Landau and Lifshitz [4], which is known
to be acausal. Comprehensive conditions are found to
ensure linear stability around equilibrium in flat space-
time. Furthermore, we show how the general energy-
momentum introduced here can be derived from kinetic
theory.

The results we present here consist of a significant
generalization of [11], where the particular case of an
energy-momentum tensor for a conformal fluid was con-
sidered. In fact, in the absence of conformal invariance, the
most general energy-momentum tensor derived here in (1)
and (2) has six transport coefficients instead of only three,
as found in the case of a conformal system in [11]. This
considerably complicates the corresponding causality, sta-
bility, and well-posedness analyses, which forced us to
significantly sharpen our techniques and calculations. In
fact, in comparison to the work presented in [11], a much
more detailed analysis of the system’s characteristics was
needed here in order to establish causality in the nonlinear
regime. Moreover, differently than causality, which
requires analyzing only the principal part of the system,
for stability the full Fourier polynomials' must be taken
into account. Therefore, even small changes compared to
the conformal case can radically change the factorization
properties of such polynomials and thus one’s ability to
determine the behavior of its roots. As a consequence, it is
not even clear at the start that the stability found in the
conformal case carries over to the nonconformal tensor.
Furthermore, a systematic study of the properties of a
nonconformal fluid must also involve the special case
where the fluid’s speed of sound vanishes at nonzero
energy density, an approximation commonly employed
to describe the fluid motion of matter in cosmological
models [3]. Such a study is also done in this paper.
Additionally, the kinetic theory analysis is considerably
more general and intricate in this case, as now the particle’s
mass is also taken into account.

This paper is organized as follows. In the next section we
briefly review the previous approaches to relativistic
viscous fluid dynamics. Section III provides a derivation
of the most general viscous energy-momentum tensor at
first-order and discusses our proof of causality, local
existence, and uniqueness of solutions to the equations

'By which we mean the polynomials determined by plane-
wave solutions, whose roots characterize the modes of the
system, see Sec. III B.

that describe the viscous fluid and its coupling to Einstein’s
equations. A linear stability analysis around hydrostatic
equilibrium in Minkowski space-time is also presented in
this section. We finish the paper with our conclusions and
outlook in Sec. IV. Appendix A shows how the energy-
momentum tensor studied here can be derived from kinetic
theory while in Appendix B we discuss the formal aspects
of the proofs and give the necessary technical mathematical
details. We use units where ¢ = A = kz = 1. The space-
time metric signature is (— + ++). Greek indices run from
0 to 3, Latin indices from 1 to 3.

II. PREVIOUS APPROACHES

Formulations of viscous relativistic fluid dynamics were
first proposed by Eckart [10] and Landau and Lifshitz [4].
Given that u,T’. = —eu”, the Landau-Lifshitz theory
assumes that the same relation holds when dissipation is
included. The most general energy-momentum tensor for a
fluid that satisfies this condition is 7" = eutu’+
(P +IT)A* + 7, where II is the bulk scalar and z** is
the shear stress tensor, 7, = A%Taﬂ, where AZ{f =
(AZAD + AZALY/2 = AA,, /3. Tn equilibrium TT and
" vanish and one returns to ideal hydrodynamics.
Assuming that the only degrees of freedom are still the
hydrodynamic fields already defined in the ideal case, small
deviations from local equilibrium described by II and 7
can be written as an expansion in powers of the space-time
derivatives of {e,u*}. This is known as the gradient
expansion in fluid dynamics [12—-15]. When truncating
this expansion at first order in the Landau-Lifshitz theory,

one finds I1 = —-¢{V, " and n,, = -250,,, where ¢,, =

Aﬂfvauﬂ. The second law of thermodynamics [4] then
implies that the shear and bulk viscosities, # and ¢,
respectively, are non-negative. After making this choice
for the dissipative fields, energy-momentum conservation
then gives equations of motion that provide a possible
relativistic generalization of the classical Navier-Stokes
equations [4]. Despite being physically motivated, this
theory is acausal [16] and unstable [17]. Such pathologies
are very severe, especially in the context of general
relativity applications (Eckart’s theory has the same prob-
lems). In fact, the results of [17] hold for a large (but not
exhaustive) class of first-order theories, leading to a wide-
spread belief that causality and stability could not be
accomplished in the framework of first-order theories.

A possible solution to this long-standing acausality
problem was proposed by Mueller, Israel, and Stewart
(MIS) [18-20] decades ago. Again, the energy-momentum
tensor of the viscous fluid at zero chemical potential is
assumed to obey the Landau-Lifshitz condition u, 7" =
—eu” but now the dissipative fields, IT and ##, are found by
solving new equations of motion that couple these variables
to the other hydrodynamic fields. The new equations of
motion for such new variables are typically postulated

104020-2



NONLINEAR CAUSALITY OF GENERAL FIRST-ORDER ...

PHYS. REV. D 100, 104020 (2019)

based on some general physical principle such as the
second law of thermodynamics. A solution to the full set
of equations of motion requires specifying initial data for
the extended set of variables {e, u#,II, z#*}. Theories of
this type, based on the developments put forward in [15]
and [21], have been successfully used to describe the quark-
gluon plasma formed in heavy ion collisions (see [22] for a
review).

However, it is important to stress that, apart from
statements regarding causality (and stability) valid only
in the linearized regime [23-26], it is not known if causality
indeed holds under general conditions for MIS theories.” In
fact, pathologies associated with nonlinear behavior were
observed before in [37]. Moreover, questions regarding the
existence and uniqueness of solutions, including the case
when the fluid is coupled to gravity, remain open with the
exception of highly symmetric situations [38]. In this
regard, hyperbolicity and causality in MIS theories includ-
ing shear and bulk viscosities were investigated in [39]
assuming an azimuthally symmetric and boost invariant
expansion. To this date, the only general statement regard-
ing causality and well-posedness of solutions in the non-
linear regime in MIS theories, without assuming any
simplifying symmetry or near-equilibrium behavior, was
recently proven in [40] for the case where only bulk
viscosity is included. Therefore, it is not known if the
MIS mechanism is powerful enough (or needed) to solve
the acausality (and well-posedness) problem of relativistic
viscous fluid dynamics under general conditions in the
nonlinear regime. In this regard, in order to describe the
rapid expansion and the highly anisotropic initial state of
the matter formed in heavy ion collisions, a different way to
generalize the MIS framework involving a nontrivial
resummation of dissipative stresses called anisotropic
hydrodynamics [41,42] was derived. This approach is
rapidly being developed (for a review, see [43]) and
successful comparisons to heavy-ion data have already
been made [44]. However, precise statements concerning
causality and well-posedness in this framework are
not known.

III. GENERAL ENERGY-MOMENTUM TENSOR
AT FIRST-ORDER

Here, we take a different approach to the problem of
acausality in relativistic viscous fluids. Our approach is
motivated by [11], where a first-order stable, causal, and
locally well-posed theory was introduced. However, the
work [11] was restricted to conformal fluids, so that it was
not clear if causality could indeed be a general feature of
first-order theories, as we show here, or if it was a

“Causality has also been studied in the context of the so-called
divergence-type theories [27-30]. Examples of fluid dynamic
theories constructed in this approach can be found in [31-33]
(additionally, see [34-36]).

consequence of the severe constraints imposed by con-
formal invariance.

The starting point is that away from equilibrium quan-
tities such as the local temperature 7 and u* are not
uniquely defined [20] and different choices differ from each
other by gradients of the hydrodynamic variables [45], each
particular choice being called a hydrodynamic frame.
Different frames have been studied over the years by
Eckart [10], Landau [4], Stewart [46] and others [47—
50]. Therefore, a priori, one is not forced to define the
hydrodynamic variables such that the Landau-Lifshitz
condition u, 7" = —eu” holds out of equilibrium. If this
condition 1is lifted, the most general energy-momentum
tensor for the fluid [11] is T* = (e + A))ufu’+
(P(e) + Ay) A" + o + QFu + QYu¥, where A; and
A, are the nonequilibrium corrections to the energy den-
sity and equilibrium pressure, respectively, and OV =
—AYT"u, is the heat flow.

Instead of treating the nonequilibrium corrections as new
degrees of freedom (and consequently postulating addi-
tional equations for them) as in MIS theories and extended
irreversible thermodynamics [51], here we consider the
case where the effective theory describing the macroscopic
motion of the system is defined solely in terms of {e, u*}.
In this case, {A;, .A,, Q*, ##*} must be given in terms of
the hydrodynamic fields {e,u*} and their derivatives,
which may be organized through a gradient expansion
[15]. Assuming that deviations from equilibrium are small,
the most general theory compatible with the symmetries
that can be written at first-order in gradients is given by

™" = (e + A))u'u’ + (P(e) + Ay) A*

-2 + u' Q¥ + u’ Q*, (1)
where
u®Vv e u*V e
— a V a, — a v (X’
A, )(1£+P+)(2 alt A, )(38+P+)(4 alt
C2A'V e
QM =1 (ﬁ + M“Vauﬂ> (2)

where 4,7, y., a =1, 2, 3, 4 are transport coefficients
which are known functions of &, and ¢? = dP(e)/de is
the speed of sound squared. We assume that 0 < ¢2 < 1.
The coefficients 4, y, regularize the ultraviolet behavior
of the collective modes of the system in such a way that
causality and stability hold. In fact, at the linear level one
can show that 1/(e + P) acts as a type of regulator of high
momentum shear modes, playing the same role as the shear
relaxation time in MIS theories [22]. A similar effect occurs
in the sound channel, although in a less transparent way.
Finally, we note that the conformal tensor proposed in [11]
is recovered when P =¢/3 and y; = y, = y and y; =

x4 =x/3 in Eq. (2).
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The general expression above fulfills the idea that
hydrodynamics can be understood as an effective theory
that describes the near-equilibrium behavior of inter-
acting matter at scales where the only relevant degrees
of freedom are the standard hydrodynamic fields. As
such, this effective theory should be valid for both
weakly and strongly coupled systems. Also, we note
that since the entropy density is s = (¢ + P)/T [4], we
have V,T/T =V ,P/(e + P) = ¢?V,¢/(e + P). Thus, one
could also have used {T,u*} as variables, as it naturally
occurs in kinetic theory [11]. We can further use kinetic
theory to determine the transport coefficients in (1)—(2).
This is shown in Appendix A, where we derive (1) from
kinetic theory. This derivation, in particular, gives that both
terms in Q¥ are multiplied by the same transport coefficient
(this also follows more generally from the imposition that
this term correctly vanishes in thermodynamic equilibrium,
as shown in [52]). Kinetic theory also shows that only three
out of the six transport coefficients are independent.

Additionally, we remark that even though the pressure
corrections seem more complicated than the standard
—{V,,u" expression, the long wavelength behavior of sound
disturbances around hydrostatic equilibrium in this theory

is given by @guna(k) = ek —i(Z1+ L5 + O(K),
where k = \/kik; and the bulk viscosity is identified as
¢ = y3—ya+X(x» — x1). Shear disturbances are found
t0 be Wgpear (k) = —igk—Tz + O(k*) and, thus, the long wave-
length behavior of this theory near equilibrium is the same
as Landau-Lifshitz theory [22] (we note that the coefficient
A only enters at higher orders in the expansion). In fact, as
argued in [52], in the domain of validity of the equations
(i.e., imposing that 7 is accurate to Ist order) entropy
production equals the known expression from Landau-
Lifshitz theory [4] and becomes non-negative if #, { > 0
(there are no further conditions on the other coefficients
from this entropy argument).

However, differently than Landau-Lifshitz theory, the
equations of motion obtained from V, 7" = 0 with the
energy-momentum tensor given by (1) and (2) lead to
causal propagation, even in the fully nonlinear regime. As a
matter of fact, causality only holds when both the heat flow
and the non-equilibrium corrections to the energy density
(which are both set to zero in Landau-Lifshitz theory) are
taken into account. In the next section we present the proof
of causality, local existence, and uniqueness of solutions to
the equations of motion of this new theory. To motivate
further studies of viscous fluid dynamics in the presence of
strong gravitational fields in astrophysics and cosmology,
the viscous fluid equations are coupled to Einstein’s
equations.

A. Causality

In this section we prove that causality holds in the
nonlinear regime for the coupled Einstein-viscous fluid

system of equations when 4, y; > 0, > 0, and conditions
(6) and (7) below are satisfied, which is the main result of
this section. Local existence and uniqueness of the solu-
tions to the equations of motion are also proven below.
In order to study causality, we need to consider the
principal part of the system, which is obtained by retaining
the terms of highest order in derivatives in the equations
of motion V, 7" =0 and Einstein’s equations R,, —
(1/2)g,,R + Ag,, = 82GT,, (Where A is the cosmological
constant, added here for completeness) [11]. In view of the
constraint u“u, = —1, only three components of u* are in
fact independent. It is more convenient, however, to treat all
the components u* on the same footing, using the constraint
instead to split the energy-momentum tensor conserva-
tion equation into five equations u,V, 7" =0 and
AGV,T" = 0, and we must use the constraint explicitly
in the development. Then, the complete set of equations of
motion (expressed in wave gauge) can be written as

y1uuP + c2AAP

0,0pe + (x2 + /1)14(/’5,0,') 0,05u"

e+ P
+ B(e,u, g)0*g = B(0e, 0u, dg), (3a)
(23 + c%l)”(”Aﬂm Haf v
(8 + P) 3(,8,;8 + By aaaﬂu
+ B*(e,u, 9)0*g = B*(0e, Ou, dg). (3b)
970,059, = B, (0¢, 0u, dg). (3¢)

where B(e, u, g)0*g and B*(e,u,g)0%g contain all terms
of 2nd order in derivatives of the metric g and order zero in
e, u, and g,,, while B(0e,du,dg), B*(0e, du, dg), and
B,,(0e,0u, dg) contain all terms with derivatives of order
no greater than one (the exact form of B and B will not be
relevant for our purposes). Also, we defined B:™ =
3’%—_”&‘(/753) + (Au®u’ —nA®)&;. By constructing the
vector U = (&, u”, g,,)" € RP (we consider only the 10
independent g,,), we may write (3) in matrix form as
MP2,U = B, where B = (B,B,,B,,) € R" and

(4)

e — |: ma poB :|

O10xs 9110

is a 15 x 15 real matrix. For simplicity, we define

meh — yiuu? + AP
N e+ P

()(3 + C%A)MWAM}) pap

* (e 4+ P) B

(12 + Aulsy

(5)

while b is a 5 x 10 matrix written in terms of the B’s.
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Let & be an arbitrary covector in space-time. To establish
causality, we need to verify the following [53]. For each
nonzero &, the roots & = &(&, &, &) of det(M™PE Es) =
0 are all real and define a cone, given by the set
{E:8) = &y(&. &5, &)}, that lies outside’ or equals the
light cone g% &,&5 = 0.

From (4) it is straightforward to see that the terms in b do
not contribute and that det(M¥E,&p) = (¢€,£,)"0 x
det(m*¢&,&5). The roots coming from the gravity sector,
namely, g”ﬂfaéﬁ = 0, give the light cones. For the matter

sector, we obtain det(m?&,&y) = %Hu:li [(u&,)*—

T, APE g, where ny =3 and ny =1, and 7; =7
343Ut o)+ 21 (An=34) £ VA :
iy . The existence of real

roots demands 4, y; > 0, and

T4 =

A=92 3¢t +64c3 1 (4n=34) 22+ 12) + 3102263 (A+ 12)]
+ 1 (4n=313) +313(+ 12) 20. (6)

In order to fulfill the aforementioned conditions of cau-
sality, we need to impose that 0 < 7, < 1, which gives the
following conditions: 4, y; > 0, >0

Az, (7a)

;(3xa —4m) 20, (7b)

4n
Ax1+ 2 <;(4 - ?> > cihxn +Axs + xoxs

- ()(4 - gn> 20.  (7c)

Therefore, the Einstein + viscous fluid system in (3) is
causal in the nonlinear regime when 4, y; > 0, n > 0, and
conditions (6) and (7) are satisfied. Note that, in particular,
for ¢, =0 the condition (7b) is automatically satisfied
and does not impose any new constraint on y, and 7.
This completes the causality proof (see also Appendix B
for further mathematical details). The same holds in
Minkowski space-time. We note that the fact that
A, 1 > 0 implies that heat flow and nonequilibrium cor-
rections to the energy density must be included for non-
linear causality to hold in a viscous fluid, which explains
why Landau-Lifshitz theory [4] (where those terms are
omitted) is acausal.

We conclude this section with the following important
remark. The following criteria has been used in the
literature as a test for causality: @gounq(k) and @geq (k)
cannot grow faster than |k| for |k| > 1 [26]. We stress that

3Outside because £ is a covector, so the discussion here is in
momentum space. By duality, the corresponding cone in physical
space will be inside the light cone.

this simple test is restricted only to the linear regime and
may only suggest causality violation. As a matter of fact,
there are well-known calculations in causal microscopic
theories where w(k) ~ B|k| with g > 1 for large |k|, as
found for instance in Ref. [54]. In contrast with other works
that relied on tentative linear tests [48,52,55], here we
provide the first full proof of causality, valid even at the
nonlinear level, in general first-order theories at zero
chemical potential.

B. Linear stability

We follow [11,17] and consider small fluctuations
around global equilibrium in flat space-time, i.e., € —
e+ de and u* — u* + Su' (u,6u" = 0) with u* = y(1,v"),
y=1/V1—=1> (v* = v'p;), and 0 < v < 1. After linear-
izing the fluid equations of motion, we define o0& =
de/(e + P) and consider plane wave solutions ¢, 6u® —
eTT+ikx) 58 5u*, where k* = (il", k') (we include 7T in the
exponent to make k* dimensionless). We recall that linear
stability demands that the real part R(I') <0 for any
(constant and uniform) background velocity »'. For sim-
plicity, we first write the equations in the rest frame
where v = 0. Using k> = k'k; and following [17], the
equations determining the perturbed modes split into two
channels:

Shear channel: A2 +jjk*> + T = 0, (8)
Sound channel: Ay +A T+ A2+ A3+ A, T4 =0, (9)

where A, = k*c? + §2k4(3)’(4 —4i7), A =1kK[BZ(+
7o) + 40+ 373 =37, Ay=1+R g3+ A+ ks —
)?1()_(4_%)]’ Ay =A+)x, Ay=2x, and x,=Ty,/
(e +P),ij=Tn/(e + P),and A = TA/(e + P) are dimen-
sionless quantities. The corresponding polynomials when
vi £ 0 can be obtained via a boost, which amounts to
changing T — y(T + ik'v;) and k* - —y*(T + ik'v;)* +
2+ k2.

For the shear channel, it is straightforward to prove
analytically that condition (7), found to ensure causality,
implies stability for any v". A comparison to similar studies
in MIS theory [22] shows that 1/ (¢ + P) plays the role of a
shear relaxation time. The analysis of the sound channel is
more complicated. In the rest frame, real I"-roots demand
A; > 0. This is guaranteed by the causality conditions (7b),
(7¢), A, y1 >0, and >0 together with c2(A+ y,)+
%’7 + x3— x4 2 0. Taking I' =T’y + i['; one may use the
Routh-Hurwitz criterion [56] to obtain that 'y < 0 imposes
the following conditions: Eq. (6) together with

4
C+?’720, (10a)
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3c2{ 1[40 = 3x4) + 3x3(=22 + Aya + x3)] + AN (4n + 33 = 3x4) + 32513
+ 2240+ 9x3 = 3xa)] + xi(4n = 3x4) 22+ x2)} = 932 (1 — x2) A+ x2)

+ (47 + 33 = 3xa) (X340 = 3x4) + 30x3(A+ x2) + 3x20321) = 0.

It is worth mentioning that these conditions coincide with
the ones obtained in Ref. [52] for the rest frame. Never-
theless, the equal sign in the above inequalities has been
included in order to incorporate the also stable situation
M(I) = 0. Since the case where n = 0 is well defined, in
general (10) is satisfied if { > 0, in accordance with non-
negative entropy production. When v’ # 0, in the homo-
geneous k = 0 case (which corresponds to the lowest order
contribution to the dispersion relation w(k) = w(0) + O(k)
for the sound waves parallel to v', where w(0) # 0) the sta-
bility conditions are: (6), (7¢), (7c), and (1 + y;)(1 — ¢2)—
- 43—” > 0. Note that in Ref. [52] the stability conditions for
the boosted frame have been verified only for the first and
second lowest orders in k for the dispersion relation (k)
for the sound waves perpendicular to », which does not
demand any new condition besides (10). In this sense, the
conditions coming from the homogeneous frame are
essential and make a direct link between linear stability
and nonlinear causality. In the non-homogeneous case with
v' # 0, one is left with a very complex polynomial that
cannot be analyzed analytically. In this case we can still
carry out the stability analysis numerically, and we did
verified stability for several possible choices of parameters.
An extensive numerical study of stability, however, is
beyond the scope of the present work and we believe that
it is better to investigate stability on a case-by-case basis,
where one already has a pre-determined range of parameter
values relevant for specific applications.

Special case where c, = 0: In particular, when c¢; = 0,
the condition (7b) may be dropped and all the above
conditions for nonlinear causality and linear stability are
satisfied if 4, y; > 0,7 >0, 1 > 5, and

4
Ay = x3) 2 xoxs + 11 (gn—)m) >0, (lla)

4n
1 (g—ﬂm) +Ax3(A+ x2) + xixax3 =0, (11b)

4
/14-)(12)(34‘?’7—){420. (11c)

C. Local existence and uniqueness

We can also establish local existence and uniqueness of
solutions to the system of equations (3). The proof relies on
techniques of Leray systems (see [57]). The statement of
local existence and uniqueness can be summarized as

(10b)

|

follows. Given sufficiently regular initial conditions for
the system of equations (3), there exists a unique solution to
(3). We refer the reader to Appendix B for a mathematically
rigorous statement and its proof. We remark that while this
result is of a mathematical nature, its importance in physics
cannot be underestimated. Not only are proofs of local
existence and uniqueness crucial to provide a solid foun-
dation for the formal aspects of a theory, but the reliability
of numerical simulations might be called into question
absent such proofs [58].

IV. CONCLUSIONS

In this work we derived the most general energy-
momentum tensor of a viscous fluid with an arbitrary
equation of state, without further conserved currents, that is
first-order in the derivatives of the energy density and flow
velocity and does not include extended variables such as in
Mueller-Israel-Stewart-like theories. We showed that if a
choice of hydrodynamic variables distinct from the ones
introduced by Eckart and Landau-Lifshitz is adopted, this
energy-momentum tensor gives rise to a causal theory.
Local existence and uniqueness of solutions has also been
established. These results hold with or without coupling to
Einstein’s equations and have been rigorously established.
We also showed that linear perturbations of equilibrium
states are stable. A kinetic theory realization of such
energy-momentum tensor was also provided. These results
provide a nontrivial generalization of the conformal case
previously studied by the authors in [11]. The physical
and mathematical properties of the generalization of (1) that
includes the effects from a nonzero chemical potential
will be the scope of a future work [59] (the general form of
the energy-momentum tensor and the conserved current
to first-order can already be found in the work of
Kovtun [52]).

Our results are of relevance for the study of the non-
equilibrium dynamics of the quark-gluon plasma formed in
heavy-ion collisions. The space-time evolution of this
highly dense matter is currently described using MIS
theories [22], which may be seen as an approximate way
to describe the interactions between the hydrodynamic
degrees of freedom and the other (faster) degrees of
freedom present in the system. After Ref. [60] showed
that the gradient expansion can diverge in rapidly expand-
ing systems (see also [61-63]), attractor dynamics has been
proposed [64] as a way to provide a broader definition of
hydrodynamic behavior that can be extended toward the
far-from-equilibrium regime [65]. The emergence of a
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hydrodynamic attractor in the system would then mark the
time after which dissipative contributions to the energy-
momentum tensor could be reliably described in terms of
constitutive relations involving the gradients of the hydro-
dynamic variables. It is known that MIS theories [64,66,67]
and anisotropic hydrodynamics [68] display attractor
behavior under highly symmetrical flow conditions.
Reference [11] already showed that the conformal version
of the general first-order theory derived here displays a
similar attractor behavior. Future work will reveal how the
powerful constraints derived here from nonlinear causality,
existence, uniqueness, and stability affect the properties of
the hydrodynamic attractor of the new theory studied here
that contains shear, bulk, and heat flow contributions.

Our study opens the door for the investigation of several
important problems that require a casual, linearly stable,
and local well-posed theory of relativistic viscous fluids,
such as the study of neutron star mergers, the formation of
shocks in relativistic viscous fluids, and the generalization,
to the viscous context, of known mathematical results valid
for perfect fluids. We hope to be able to address some of
these questions in the near future.
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Note added.—While we were finishing this paper, we
became aware of [52], which also investigated stability
and causality (in the linear regime) of the energy-momentum
tensor in (1) and (2).

APPENDIX A: KINETIC THEORY DERIVATION

Following [21], we consider the Boltzmann equation for

a dilute relativistic gas of (single species) particles with
constant mass M (in flat space-time)
KV, fi(x) = C[fu], (A1)

where C|[f] is the collision kernel and f;(x) = f(k, x) is

the distribution function that depends on the space-time
coordinates x* and on the on-shell momenta k* = (k°, k'),

*The coupling with gravity is straightforward, see [14].

with K = \/k'k; + M?. From f, we may define quantities
such as the energy-momentum tensor

T (x) = (kHR), (A2)
where (h;) stands for
() = [ fuh
k
for any function /;. We also define [, = [ %, with

@fﬁ being the Lorentz invariant measure. We focus here
on the derivation of TH.

The collision kernel is given by

Clf =1

2] WK |pp")(f o f pr = frf i)

rppr

(A3)

where W(kk'|pp’) is the Lorentz invariant transition rate
for (elastic) 2 to 2 collisions.” For simplicity, in this work
we neglect effects from quantum statistics and consider
classical statistics, as this does not affect the important steps
needed in the derivation of the energy-momentum tensor.
The collision kernel obeys the relations

lc[fk]_/kkﬂc[ i =0,

which define the conservation laws.
We note that any distribution function of the form
ek“g/&—}—(p (A4)
with £,, 9,9 being at this point arbitrary (normalized)
timelike vector and scalar fields, respectively, is a zero of
the collision kernel, i.e., C[e¥“/%+%] = 0. However, such a
distribution is only a solution of the Boltzmann equation if
the left-hand side is also zero, i.e., if the fields obey

KV, (el 90y = 0, (A5)

which implies that

Vp=0 and V,(£/9)+V,(/9) =0 (A6)
so £,/8 is a Killing vector field [14]. The fields {¢,, 9, ¢}
may then be identified with the standard hydrodynamic
variables {u,, T,u} of ideal hydrodynamics and (A6) can
be written as

>Though the exact form of W (kk'|pp’) is not important in the
following, we assume that the standard properties needed for the
H-theorem to hold [14] are valid.

104020-7



BEMFICA, DISCONZI, and NORONHA

PHYS. REV. D 100, 104020 (2019)

0, =0 (A7)

V=0 and w*'V,u=0 and w'V,T=0 (AS8)
Vo, +—— V ! =0 (A9)

AV (/T) =0, (A10)

which are the standard conditions that define thermody-
namic equilibrium. It should be clear from the derivation
above that {u,, T, u} are not uniquely defined. In fact, it is
more adequate to say that there are is an infinite number of
equilibrium states that satisfy the Boltzmann equation.

From now on, we set the chemical potential to zero and
denote this class of equilibrium distributions by

) =e

where E;, = —u“k,. Besides the flow velocity, the equilib-
rium part of the energy-momentum tensor involves

~E/T (A11)

1
e=(E?), and P= gAﬂ,,(k”k”>

eq eq’

denotes

h’k>eq = Afiqhk

It is convenient to also define the variation

()5 = (hie) = (i) g

and perform the decompositions k* = E,u* + k" and

where (f;),,

AW
Ejulu’ + Eu'c” + Equtc + KWk + 3 K2,

Kk =

(A12)
|

WV, fi! =

T T

we obtain the equations

1
I4A = F <E%‘C[¢k]>eq’ (Alga)

L 1
%q T5 <EkK [’[¢k]>eq’ (Algb)

2L 1
2os patg, = Lo cig)),, (A8

ke, E, (ViT E2uN, T  k*V,u®
24{4/4 + K |:—k (”T + llavauﬂ>:| + : T2 + }

where x* = A"k, k* = k%, = E? — M?, and kWK =
A’;;k“kﬂ with A"” (1/2)[A’&A;+A3A§—(2/3)A””Aaﬂ].
Then, the most general form for T that includes out-
of-equilibrium contributions is

2
T = (e + (E})s)u'u” + (P + (x 3> )A/‘”

+ (kKWx)) 5 + u (Ek”) 5 + u” (Egk*) s (A13)
where (Ejx*),, =0 and (k) ,, = 0 by symmetry.

We follow the approximations discussed in [11] and
consider perturbations around local equilibrium by setting
fr= i1+ 6fy, where 5f; = fi¢i(x). Then, up to first-
order in ofy, Eq. (Al) may be written as

KN+ RN (i i)

=fi'Llpd.  (Al4)

where

1
Clbd =5 [ WKL)y + by = = o)
pp

(A15)

is an operator with kernel spanned by the set {1, E;, "}
that obeys (M L(zi]) oy = (2 L[i]) oy and (heLlR]),, < O.
We assume that ¢ (x) is first-order in the derivatives of T
and u#. Keeping only terms that are first-order in deriv-
atives, the solution of Eq. (A14) can be obtained from the
moments [11]

lkjl ok RV = L)) = (Al6)

where j =0, 1, .... In particular, for j = 0, 1 one obtains
the conservation laws. As for j = 2, by means of (A12) and

Al17
T (A17)
|
where
ov,T
A=t IV (A19a)
v,“

¢ =~ UV, (A19b)

with
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l_L2,2_1 M2 I,

2 A20
31, 3 1723, (420)

The dimensionless integrals above are defined as (using
the fact that k¥ = A%k,kj > 0)

The kernel of the operator L is a subspace of dimension 5,
which implies that ¢; is not uniquely obtained from (A18).

Actually, one may write ¢, = 45;(’7 )+ @7, where the homo-
geneous part ¢\") € ker(£) (L[] = E[d),(f ))), with the
particular solution qﬁip ) being completely determined by

(EY), (EZx™),, (A18). Thus, the most general ¢, that satisfies (A18) is
I, = >0 and L,,=——3"
Tn+2 Tn+m+2
”k” E2A

b = pa——5—

where in parentheses we wrote the homogeneous terms as
combinations of 1, E;, and x*, while the particular solution
is uniquely determined by A and ¢* from (A18). The most
general form of the homogeneous terms must be combi-

¢B Tg +¢C T3 qu —

(0 + da g5+ 052 ) (a21)

I

independent information regarding transport and they can
be obtained by using (A21) into (A18) and then solving the
following equations:

nations of quantities that vanish in equilibrium, i.e, V,u%, 2Lo4 | e P ) .
u’V,T, and V| T/T + u*V ", and thus 5 Aoy = (R LK) y0up,  (A232)
u*v,T .
B = bl T + b2vau s (AZZa) 14 ?g <E2£[E2]>eq’ (A23b)
u*v,T
C=c + o, V,u®, (A22b) Lss e
22 g0 = S B LB ga (A230)
= Vﬂ r oV ut A22
Dy =d UV (A22¢)  Bxact expressions for the transport coefficients depend on

where the dimensionless coefficients b;, c¢;, and d define the
terms that enter in the first-order theory (and also the sign of
its coefficients). This is how our choice of hydrodynamic
frame appears in the context of kinetic theory, which nicely
provides a microscopic realization of the ideas presented by
Kovtun in [52]. The quantities ¢4, ¢pp, and ¢ contain the

|

A= <Ei¢k>eq =

V,T

u
~T¢p [(bllz +cl3—14)

¢4, ¢Pp, and ¢, which can be found once the microscopic
details involving the particle scattering are given. However,
in this work we will not focus on such calculations. Rather,
our goal here is only to determine their general properties.
First, we remark that (A23) implies that ¢4, ¢p,pc <0
since (h L[h]),, < 0. Then, given that (h;); = (hidhi)
one obtains

eq’

+ (b2]2 + C2]3 - 114)Vau“] s (A24a)

T4 u’v,T
§< K Pk) eq 3 £ [(blLo.z +c1Liy—Lay) + (byLos + oLy = le,z)Vaua} ; (A24b)
T3 VAT
Qﬂ = <EkK”¢k>eq = - ;bc (Ll,Zd - LZ.Z)( ; + Mavau#>’ (A24C)
1
not = =S (KK ) g = —T>pa — 5 0. (A24d)
One can obtain immediately that
Log
> 0.
BT A
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Now, it is easy to see that the energy-momentum tensor
discussed in this paper

" = (e + Ay )u'u” + (P + Ay) A™

= 2no*’ + u' Q¥ + u* QH, (A25)
where
X1 MavaT
.A] = —g T 2Vau s (A26a)
v, T
Ay =BT Ve, (A26b)
c; T
ViT
Q, = ,1< "T + uavau”>, (A26¢)

with Vi = A4V, and dT/T=dP/(e+P)=cide/(e+P),
is obtained when one sets

5 = —m1T3¢B, (A27a)
cS
X2 = _m2T3¢Bs (A27b)
T3
l—; = —mjy ('bB, (A27c)
cs 3
T3¢
X4 = My 3B’ (A274d)
T3
A= 345 < (A27e)
where m; and r are chosen positive such that
b1]2+()113—]4:m1 >0, (A28a)
blLO,Z =+ CILI,Z - L2’2 =m3 > 0 (Ang)
b212 + C213 - lI4 = nmy > 0, (AZSC)
bZLO,Z —|— C2L1,2 — lL2’2 = m4 > O, (A28d)
Ll,2d — L2.2 =r>0. (A28e)

Equations (A28) fix all the 5 parameters b;, c;, and d in
such a way that y,’s and A are positive. In the special case
where M = 0 we must have from (A28) that m; = m5 and
my = mysince L,, , = I,,,, and [ = ¢2 = 1/3 [see (A20)].

Also, in this case m; =3m, so that y;=y;=
x2/3 = y1/3, which reduces to the case considered in [11].

APPENDIX B: FORMAL PROOF OF CAUSALITY,
LOCAL EXISTENCE, AND UNIQUENESS

Here we provide the formal proofs of the statements of
local existence, uniqueness, and causality for Einstein’s
equations coupled to (1). We use the standard terminology
of general relativity (see, e.g., [69]). An initial data set for
Einstein’s equations coupled to (1) consists of a three-
dimensional manifold X, a Riemannian metric ;] and a

symmetric two tensor k on X, two vector fields wand U on

%, and two scalar functions ¢ and € on %, such that the

Einstein constraint equations are satisfied. The fields u and
e correspond to u'|_, and €|,_,, respectively, whereas U

and £ correspond to 0,u’|,_, and 0,¢|,_,, respectively. We
note that only initial data for the projection of u onto the
tangent bundle of X is given initially in view of the
normalization condition u®u, = —1. Similarly for trans-
versal (to X) derivatives of u. In Theorem I below, G* is the
Gevrey space (see, e.g., [70]). For the proof of Theorem I,
we will use techniques of Leray-Ohya systems developed
in [[71] § 6, sec. 27] and [72]. A statement of the result as
needed here appears in [57][Appendix A] (see also [[8],
p. 624] for a simplified statement).

Theorem I: Consider the energy-momentum tensor (1)
and assume that 4, y,, a = 1,...,4, n, and P are given real
valued functions with domain (0, co), where we recall that
in (1) these quantities are functions of e, i.e., 4 = A(¢),
Xa = ¥al€),n =n(e),and P = P(e). Suppose that A, y,, 7,

and P are G regular. Let 7 = (X, e.&.uU ) be an initial
data set for Einstein’s equations coupled to (1). Assume that
the initial data belongs to G*)(X). Suppose that T is

compact and that e> 0. Suppose that P’ > 0, that A > 0,
x1 > 0,7 >0, and that conditions (6) and (7) hold. Finally,
assume that 1 < s < 20/19. Then, there exist a four-
dimensional Lorentzian manifold (M, g), a vector field u
and a real valued function ¢, both defined on M, such that:

(1) Einstein’s equations coupled to (1) hold in M.

(2) There exists an isometric embedding i:(Z,g) —
(M, g) with second fundamental form «.

(3) Identifying X with its image i(X) in M, we have
ey = & and IT5(u) = u, where Iy :TM|s — TE is
the canonical projection from the tangent bundle of
M restricted to X to the tangent bundle of X.
Furthermore, if {x*}3_, is a system of coordinates
near X such that {x'}] | are coordinates on X, then

doels = € and dyully = U.
(4) (M,g) is globally hyperbolic with Cauchy sur-
face i(X).
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(5) (M, g) is causal, in the following sense: for any x in
the future® of i(M), (g(x), u(x), e(x)) depends only
on Z|;s)ny-(x)» Where J~(x) is the causal past of x
(with respect to the metric g).

(6) (M, g) is unique up to actions of diffeomorphisms
of M.

Proof.—We first note that causality, item (5), has already
been proved in Sec. III A. For, assume that a globally
hyperbolic solution exists. Then, the corresponding char-
acteristic manifolds of the Einstein equations coupled to (1)
have been computed in Sec. III A for Einstein’s equations
written in wave coordinates. The invariance of the char-
acteristics [[73] Chapter V] assures that causality holds
independently of the system of coordinates we choose.

In order to establish existence, we embed X into R x X
and consider a coordinate system {x“}3_; in a neighbor-
hood of a point p € X. Without loss of generality we can

assume that {x'}>_ are coordinates on ¥ and that g(p) is
the Euclidean metric when expressed in these coordinates.
We consider Einstein’s equations written in wave gauge, in
which case the equations of motion can be written as in (3).
As usual in problems for Einstein’s equations in wave
gauge, we take as initial conditions for the components of
the metric the following:

gij(o")zéij’ 900(0,-) =—1,  go;(0,-) =0, 5091';:’%',
with 9yg40(0,-) chosen such that {x*} are wave coor-

a
dinates at x° = 0. For the fluid variables, we take

e(0,)=e, 0pe(0,)=Eu'(0,)=u', ui(0,)=U,
with the initial conditions u°(0,-) and dyu°(0,-) deter-
mined from the normalization condition u®u, = —1.

We group that unknowns e, u“, and g, in the 15-
component vector V = (e, u®, g,,). To each component V*
we associate an index my;, [ = 1, ..., 15, and to each one of
the 15 equations in (3) we associate an index 7y, in such a
way that Egs. (3) can be written as
h{(amk—nj—l VK, am,—n,)v[ + bj(am,(—n.,—l VK) — O, (Bl)
where I,J =1, ..., 15, h{ (9m«==1yK gm=nr) is a homo-
geneous differential operator of order m; — n; (which could
possibly be zero) whose coefficients depend on at most
myg — n; — 1 derivatives of VX, K =1, ..., 15, and there is
a sum over [ in iJ(-)V!. The terms b/ (9"« ~1vK) also
depend on at most mg —n,; —1 derivatives of VK,
K =1,...,15. The indices m; and n; are defined up to
an overall additive constant, but the simplest choice to have

The future of a set in M is well-defined because M, g) is
globally hyperbolic.

Egs. (3) written as (Bl) is m; =2, n; =0, for
all 1,J =1,...,15.
The characteristic determinant of (B1) was computed in

Sec. Il A and gives

/14
detH(V.€) = (0 (96,8)"
x T [(u72)? = 1A% 5],
a=1,+

where H = (h] (9™«~=1VK £)) is the characteristic matrix
of the system and the other quantities are as in Sec. Il A.
Under our assumptions, the polynomials ¢*“¢, &, are
hyperbolic polynomials when V takes the initial data.
Also, when V takes the initial data, the polynomials
(u"E,)? = 1,A%E,E5, a = 1, £, are hyperbolic polynomials
for 7, > 0 and products of two hyperbolic polynomials for
7, = 0. Since the roots of a polynomial are continuous
functions of the polynomial coefficients, we conclude that
det H(V,¢&) is a product of at most 20 hyperbolic poly-
nomials for any V sufficiently close to the initial data.
Moreover, the intersection of the characteristic cones defined
by these polynomials has nonempty interior.

Therefore, we have verified the hypotheses of [[57]
Theorem A.23] and we conclude that equations (3) admit a
solution in a neighborhood of p. Recall that a solution to
Einstein’s equations in wave coordinates gives rise to a
solution to the full Einstein equations (i.e., Einstein’s
equations in arbitrary coordinates) if and only if the
constraint equations are satisfied, which is the case by
assumption. Thus, we have obtained a solution to Einstein’s
equations coupled to (1) in a neighborhood of p. A standard
gluing argument that relies on the causality of solutions
already established (see, e.g., [[9] Chapter 10] or [57])
gives a solution defined in a neighborhood of . We have
therefore obtained a space-time where statements (1)-(5)
hold (we notice that statements (2)-(4) are immediate
consequences of the above constructions). Finally, state-
ment (6) is obtained by considering the maximal globally
hyperbolic development of the initial data [74]. L]

We note that some of the assumptions of Theorem I can
be relaxed, but we have not done so for simplicity. For
example, the compactness of X can be dropped provided
that suitable asymptotic conditions on the fields are given.
The Gevrey regularity 1 < s < 20/19 can also be improved.
For example, if we are given two hyperbolic polynomials
of the form p,(&) = (u?E,)* — | AYE,E; and py(€) =
(u"E,)? — QA E 5 with 0 < ¢; < ¢y < 1, then the prod-
uct p(&)p,(€) is a (degree four) hyperbolic polynomial.
Thus, considering products, we can write det H(V, &) as a
product of fewer than 20 polynomials, leading to a better
Gevrey regularity (the range of values of s allowable is
determined by Q/(Q — 1) when det H(V, £) is written as a
product of Q hyperbolic polynomials, see [S7]).
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Typically for problems in relativity, one wants to
establish local existence and uniqueness under more gen-
eral regularity assumptions on the initial data than Gevrey
regularity. A common goal is to have a result valid for
initial data belonging to Sobolev spaces [5]. In this regard,
we announce here the following result, which will be
established in the forthcoming paper [75]:

Theorem II: In Theorem I, assume further that P’ > 0,
and suppose that the data belongs to the Sobolev space H*
for sufficiently large s. Then, the same conclusions of
Theorem I hold.

The above arguments also show that the fluid equations
are locally well posed in a fixed background (i.e., without
considering coupling to Einstein’s equations)
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