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ABSTRACT
In recent years, subgroup analysis has emerged as an important tool to identify
unknown subgroup memberships. However, subgroup analysis is still under-
studied for longitudinal data. In this paper, we propose a structured mixed-
effects approach for longitudinal data to model subgroup distribution and
identify subgroup membership simultaneously. In the proposed structured
mixed-effects model, the heterogeneous treatment effect is modeled as
a random effect from a two-component mixturemodel, while themembership
of the mixture model is incorporated using a logistic model with respect to
some covariates. One advantage of our approach is that we are able to derive
the estimation of the treatment effects through an EM-type algorithm which
keeps the subgroupmembership unchanged over time. Our numerical studies
and real data example demonstrate that the proposed model outperforms
other competing methods.
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1. Introduction

Subgroup analysis has emerged as an important tool in various applications such as clinical trials,
personalized medicine, and market segmentation. The earlier development of subgroup analysis
mainly focused on analysis with given subgroup memberships, such as in Song and Chi (2007) and
Altstein et al. (2011), among others. In recent years, there has been growing interest in identifying
subgroups whose memberships are unknown. Su et al. (2009), Foster et al. (2011) and Lipkovich
et al. (2011) utilize tree-based methods to categorize subgroups with an enhanced treatment effect.
Cai et al. (2011) and Zhao et al. (2013) derive a parametric scoring system to facilitate treatment
assignments to new patients. A Bayesian method for multiple subgroup analysis is proposed in
Berger et al. (2014). Shen and He (2015) and Shen et al. (2017) also propose a structured logistic-
mixture model that simultaneously models subgroup membership and treatment outcomes within
each subgroup as functions of other covariates. Wu et al. (2016) and Fan et al. (2017) extend the
model in Shen and He (2015) for Cox models and semi-parametric models.

However, not much work has been done in subgroup identification for longitudinal responses,
which occur frequently in biomedical studies since responses are usually collected over time. In the
numerical studies provided by the aforementioned papers, they consider the data at one single time
point only, even though more longitudinal data are actually available. This could lead to a loss of
information as not all time points are utilized. In this paper, our goal is to identify subgroups
through a structured mixed-effects model for longitudinal data.

Our method is motivated by the Aids Clinical Trials Group 320 study (ACTG320) (Hammer et al.
1997) on the human immunodeficiency virus type 1 (HIV–1) infection where the information on
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subjects is collected at multiple time points. The clinical treatment in this study is to impose
a protease inhibitor in addition to two nucleoside analogues, while the control group receives only
the two nucleosides. However, the new-added component is toxic, so it is important to identify
a subgroup where the treatment has sufficient improvement for patients to compensate for the side
effects. The targeted outcome of the treatment is to increase or to inhibit the decline of CD4 cell
counts. Therefore, the observed response of this study is the change in CD4 counts at certain time
points.

For longitudinal data analyses, there are two main approaches in general. One is the marginal
estimating equation method, such as in Liang and Zeger (1986) and Tang and Qu (2016). However,
the marginal estimating equations approach in Tang and Qu (2016) is designed for group member-
ship changing over time, which is not applicable as we require that the subgroup memberships
remain unchanged over time in clinical trials case here.

Another popular approach is to apply a random-effects model to incorporate the correlation of
repeated measurements from the same subject. In addition, to capture the heterogeneity among the
population, the random effects are viewed to follow a mixture distribution with constant propor-
tions. For example, Verbeke and Lesaffre (1996) apply a linear mixed-effects model with both fixed
effects and random effects, and the random-effects are formulated from normal mixtures. Such
model configurations are widely used in various applications, such as longitudinal clinical trials (Xu
and Hedeker (2001)), next-generation sequencing data (Cacho et al. (2018)), and repeated gene
expression data (Celeux et al. (2005)). To study the association of the latent class memberships with
the covariates, the group structure is further modeled through another level of model. For instance,
Lin et al. (2002) propose a latent class approach to jointly model and estimate longitudinal data,
where the latent class is determined by some covariates through a multi-logit model. In Muthen and
Asparouhov (2009), a two-level mixture model is proposed to investigate gender differences in
mathematical achievement from the US National Education Longitudinal Survey. In addition,
Komarek et al. (2010) introduce a two-step method to classify subjects into multiple groups. Proust-
Lima et al. (2016) propose a joint model to analyze multiple longitudinal markers and multiple
causes of progression simultaneously based on a latent process and latent classes. Lu and Huang
(2014) develop a nonlinear mixed-effects mixture model for longitudinal data to address hetero-
geneity and skewness. The misspecified effects on classes are examined in multivariate mixture
models through Monte Carlo simulations in Nylund-Gibson and Masyn (2016) .

In general, mixture models are widely applicable in many fields; for instance see Turner (2000),
Lindsay (1995) and Fruhwirth-Schnatter (2006). Mixture models with covariates-dependent groups
are popular in social sciences for individual longitudinal profiles where latent classes are covariates-
dependent are represented as the growth mixture framework (Hu et al. 2017; Huang et al. 2010; Li
and Harring 2017; Muthen et al. 2002; Proust-Lima et al. 2017). Such models are also known as
“mixture of experts” models (Jordan and Jacobs 1994; Yuksel et al. 2012) in computer science.

In this paper, we adopt a mixed-effects model where the treatment effect is modeled as a random
effect from a two-component mixture model, and the membership of the mixture model is further
modeled using a logistic model of other covariates. There are four main advantages of the proposed
method. First, we extract a subgroup with more efficient estimation of treatment effect since
longitudinal data information is fully utilized, compared to existing ones using data at one single
time point only. The random-effects model also enables us to incorporate dependency on the same
subject. Second, the proposed method ensures that the constraint of unchanged subgroup member-
ship is satisfied. Third, the proposed method models the subgroup membership and the distribution
of each subgroup jointly, which provides better prediction and interpretation of subgrouping.
Fourth, we provide a continuous score function for future subjects, and a higher score suggests
a higher chance of enhanced treatment effect. In addition, we provide an efficient and feasible
algorithm in our estimation.

The rest of the paper is organized as follows. We elaborate the proposed methodology in Section 2,
where the structured mixed-effects model is introduced, and estimation and further extension are
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provided. Simulation studies and application on the AIDS data are investigated in Section 3 and
Section 4, respectively. The paper is concluded with discussion in Section 5. Additional supporting
information for estimation and some detailed results of the numerical studies are presented in the
online supplementary materials.

2. Methodology

2.1. Structured mixed-effects models

In this section, we illustrate the structured mixed-effects model for subgroup analysis. In our setting,
the random effects are assumed to follow a normal mixture model (Verbeke and Lesaffre (1996)).
That is, for each observation, the response yi 2 Rni!1 is modeled as

yi ¼ Xiαþ Zibi þ εi; i ¼ 1; $ $ $ ;N; (2:1)

where Xi and Zi are vectors of the covariate, α is the fixed effect, and bi is the vector of the subject-
specific random effect following a normal mixture distribution:

bi,pNðμ1;DÞ þ ð1' pÞNðμ0;DÞ:

In Xu and Hedeker (2001), the random effect in (2.1) is assumed to follow a k' group normal
mixture model with equal covariance Σ but different means μ1; $ $ $ ; μk, and the proportions corre-
sponding to mixture components are constants p1; $ $ $ ; pk. An EM algorithm is derived for parameter
estimation where the random effects are treated as missing. Based on the joint distribution of ðyi; biÞ,
the posterior distribution of bi is derived given yi and the current parameter p; μ1; μ0, and D; then in
the E step, the posterior mean can be calculated. A similar strategy is also applied in Hall and Wang
(2005) and Ng et al. (2006) to model correlated data with unknown clusters.

In our approach, we incorporate covariance information to characterize subgroup membership,
where the mixture proportion also depends on covariates, such as the baseline medical measure-
ments in the ACTG320 study.

We first consider a simple case where there are two subgroups capturing two different groups of
random effects with different means. Let Yit be a continuous response for i ¼ 1; $ $ $ ; n; t ¼ 1; $ $ $ ; ni;
Xi 2 Rq2 are covariates associated with the subgroup membership; and Zit 2 Rq1 are time-varying
covariates associated with the subgroup mean. We introduce a latent subgroup, δi 2 f0; 1g, which
can be modeled through a logistic regression of Xi. That is,

logitðPðδi ¼ 1jXi;ZiÞÞ ¼ XT
i γ: (2:2)

Given δi, the treatment effect bi is a random vector following a normal mixture model with mean μ1
if δi ¼ 1 and μ0 if δi ¼ 0, and the covariance matrix Di ¼ σ2Ini!ni . Let Yi ¼ ðYi1; $ $ $ ;YiniÞ

T 2 Rni ,
and Zi 2 Rq1!ni be the matrix of fZit : t ¼ 1; . . . ; nig. Given the subgroup indicator δi and the other
covariate information, Yi is normally distributed.

Yijðδi;Xi;Zi;Ti; biÞ ¼ ZT
i αþ Tibi þ εi; (2:3)

where εi,Nð0; σ2Rni!niÞ, and Ti 2 f0; 1g with 1 for treatment and 0 for control group. The random
effect bi,Nðμi; σ2Ini!niÞ, independent of the noise εi. Then, conditional on Xi;Zi;Ti and δi, Yi and bi
are jointly normal:

Yi

bi

! "
,N ZT

i αþ Tiμi
μi

# $
;

Σi TiDi

TiDi Di

# $
(2:4)

where μi ¼ μ1δi þ μ0ð1' δiÞ, Di ¼ σ2Ini!ni , and Σi ¼ T2
i Di þ σ2Ri. For balanced data, we could drop

the i index for Ri and Di. Let Yi ¼ ðYi1; . . . ;YiniÞ
T , then we can also write the model as the following.

For t ¼ 1; . . . ; ni,
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Yit ¼ ZT
itαþ Tibit þ εit; (2:5)

where Covðεit; εit0 Þ ¼ σ2Rtt0 .
Based on (2.4), the posterior mean of bi given Xi;Zi;Ti; δi, and Yi is

b̂i ¼ E½bijYi; δi) ¼ μi þ TiDΣ'1
i ðyi ' ZT

i α' TiμiÞ: (2:6)

In addition, for each subgroup k ¼ 0; 1, let

b̂ik ¼ μk þ TiDiΣ'1
i ðyi ' ZT

i α' TiμkÞ; (2:7)

where the corresponding covariance matrix is

D̂i ¼ Di ' T2
i DiΣ'1

i Di: (2:8)

Then, the second moment of random effects bi conditional on latent variable δi and Yi is

Bik ¼ E½bibTi jδi ¼ k;Yi) ¼ b̂ikb̂Tik þ D̂i: (2:9)

For simplicity, we first consider the balanced case where ni ¼ n0;Ri ¼ R, for all i ¼ 1; . . . ; n. The
parameters we intend to estimate are θ ¼ ðγ; α; μ1; μ0; σ2;RÞ. When μ1!μ0, the model is well-
defined. Therefore, without loss of generality, we assume that μ1 > μ0, and provide the EM-type
algorithm for parameter estimation in the next section.

2.2. Estimation

In this section, we treat the random effect b and the indicator δ as missing. The log-likelihood of the
hypothetical complete data ðY; δ; bÞ is

ClðθÞ ¼
Xn

i¼1
fδi log πðxTi γÞ þ ð1' δiÞ logð1' πðxTi γÞÞg

þ
Xn

i¼1
fδi logϕðyi;ZT

i αþ Tibi; σ2RÞ þ ð1' δiÞ logϕðyi;ZT
i αþ Tibi; σ2RÞg

þ
Xn

i¼1
fδi logϕðbi; μ1; σ

2IÞ þ ð1' δiÞ log ϕðbi; μ0; σ
2IÞg; (2.10)

where πðxÞ ¼ 1=ð1þ e'xÞ and ϕðy; μ;ΣÞ is a multivariate normal density at y with mean μ and
covariance matrix Σ.

We implement the EM-type algorithm as follows. Given current parameter estimator θðjÞ, at the
next step, we have QðθjθðjÞÞ ¼ I1 þ I2, where

I1 ¼
Xn

i¼1
fE½δijY) log πðxTi γÞ þ E½ð1' δiÞjY) logð1' πðxTi γÞÞg;

and

I2 ¼
Xn

i¼1

X1

k¼0
' Pðδi ¼ kjYÞ

2σ2
½ðbik ' μkÞ

Tðbik ' μkÞ þ trðD̂iÞÞ)

þ
Xn

i¼1

X1

k¼0
' Pðδi ¼ kjYÞ

2σ2
½ðYi ' ZT

i α̂' TibikÞ
T
R'1ðYi ' ZT

i α̂' TibikÞ þ T2
i trðR

'1D̂iÞ)

' N logðσ2Þ ' n
2
log jRj;

where D̂i is defined in (2.8), and N ¼
P

ni ( ¼ nn0 for the balanced case).
We estimate θ at the ðjþ 1Þth step:

θðjþ1Þ ¼ argmaxθQðθjθðjÞÞ:
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The detailed EM-type algorithm is provided as follows.

(1) (Initialization) Randomly generate a Bernoulli sample δ0 to mimic the unobserved true
subgroup indicators, then fit the logistic model as in (2.2) to obtain the starting value of γð0Þ,
and fit the linear model in (2.3) with bi substituted by μ1δi þ μ0ð1' δiÞ to obtain the rest of
the initial parameters.

(2) (E Step) Given the current parameter θðjÞ,
(a) For i ¼ 1; $ $ $ ; n, let

pi1 ¼ Pðδi ¼ 1jyi; θðjÞÞ

¼ πðxTi γðjÞÞϕðyi;ZT
i α

ðjÞ þ Tiμ
ðjÞ
1 ;ΣðjÞÞ

πðxTi γðjÞÞϕðyi;ZT
i αðjÞ þ Tiμ

ðjÞ
1 ;ΣðjÞÞ þ ð1' πðxTi γðjÞÞÞϕðyi;ZT

i αðjÞ þ Tiμ
ðjÞ
0 ;ΣðjÞÞ

(2:11)

and pi0 ¼ 1' pi1, where ϕð$; μ;ΣÞ is the probability density function of the normal
vector with mean μ and covariance matrix Σ.

(b) For each subgroup k ¼ 0; 1, calculate bik following (2.7), where the corresponding
covariance matrix D̂i is calculated via (2.8) and Bik is obtained via (2.9).

(3) (M Step)
(a) Calculation of the subgroup membership parameter γ:

γðjþ1Þ ¼ argmaxγpi1 log πðxTi γÞ þ pi0 logð1' πðxTi γÞÞ: (2:12)

(b) Calculation of the subgroup mean parameters: for k ¼ 0; 1, we have

μðjþ1Þ
k ¼ 1P

pik

Xn

i¼1

pikbik:

(c) Calculation of the parameter α associated with covariates Z:

α̂ðjþ1Þ ¼
X

ZT
i R

'1Zi

n o'1 Xn

i¼1

X1

k¼0
pikZT

i R
'1ðYi ' TibikÞ

n o
: (2:13)

(d) Calculation of the variance parameters:

ðσ̂2Þðjþ1Þ¼ A1 þ A2

2N
; (2:14)

where A1 ¼
Pn

i¼1

P1
k¼0 pik½ðbik ' μkÞ

Tðbik ' μkÞÞ þ trðD̂iÞ) and A2 ¼
Pn

i¼1

P1
k¼0 pik

½ðYi ' Ziα' TibikÞTR'1ðYi ' Ziα' Tibi1Þ þ T2
i trðR'1D̂iÞÞ), and

Rðjþ1Þ ¼ 1
nσ2

Xn

i¼1

X1

k¼0
pik½ðYi ' Ziα̂' TibikÞðYi ' Ziα̂' TibikÞT þ T2

i D̂i): (2:15)

(4) (Stopping Criterion) Iterate E-step and M-step until jθðjþ1Þ ' θðjÞj< 10'3.

Since the EM-type algorithm only guarantees a local optimum, in practice we suggest using
multiple starting values and searching for the best one among all local optima. In our numerical
studies, we try about 10 different starting values by applying different δ0‘s in the initialization step.

In the EM-type algorithm, the standard error of the estimator can be obtained following Louis
(1982). That is, for the i-th observation, let Si and Bi be the first derivative and the negative second
derivative of the complete log-likelihood in (2.10), respectively. Let θ̂ be the estimator at the final
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step, and Wi ¼ ðYi;Zi;XiÞ. The inverse of the covariance matrix, an equivalent observed Fisher
information matrix of the parameter estimator is

I ¼
Xn

i¼1
Eðδi;bijWi;θ̂ÞBiðYi; δi; bi; θ̂Þ '

Xn

i¼1
Eðδi;bijWi;η̂ÞSiðYi; δi; bi; θ̂ÞSiðYi; δi; bijZi; θ̂ÞT

'
Xn

i!j
ðEðδi;bijWi;θ̂ÞSiÞðEðδj;bjjWi;θ̂ÞSjÞ

T :
(2:16)

From (2.10), the information matrix I is a block diagonal for γ and the rest of the parameters, where
the block diagonal matrix associated with γ is

BiðγÞ ¼ πðXT
i γÞ $ f1' πðXT

i γÞgXiXT
i ; (2:17)

and the corresponding score function associated with γ is

SiðγÞ ¼ fδi ' πðXT
i γÞgXi: (2:18)

Therefore, the standard errors for γ̂ and the other estimators can be calculated separately. The
standard error calculation for γ̂ only involves Biðγ̂Þ, Siðγ̂Þ, and Equation (2.16). The standard
errors of γ̂ are useful to identify the subgroup membership. In addition, we can perform the
Wald test or construct confidence intervals to choose the covariates which are relevant to the
subgroup membership. For example, if the absolute coefficient estimator corresponding to
a covariate is more than twice its standard error, then this covariate is likely important for
subgroup identification. The calculation of standard errors for the rest of the parameters is
provided in Web Appendix A.

2.3. Extension to model with time interaction

In Section 2.1, we assume that the treatment effect is normally distributed with a constant mean.
However, in general, the treatment effect could change over time. In this subsection, we consider the
mean parameter to be associated with time. Given the subgroup indicator variable δi ¼ k; ðk ¼ 0; 1Þ,

bi,Nðμk1Timeþ μk0;DÞ: (2:19)

The model of other parameters is similar as in Section 2.1.
Given Xi;Zi;Ti and δi, Yi and bi are jointly normal distributed as in (2.4), and

μi ¼ ðμ11Timeþ μ10Þδi þ ðμ01Timeþ μ00Þð1' δiÞ; for each subgroup k ¼ 0; 1, the posterior mean
of bi given Xi;Zi;Ti; δi, and Yi is

b̂ik ¼ μk1Timeþ μk0 þ TiDΣ'1fyi ' ZT
i α' Tiðμk1Timeþ μk0Þg: (2:20)

We apply the EM-type algorithm similarly as in Section 2.2 to estimate the parameters. In the E step,
we compute pi as in (2.11); the conditional mean of the random effect is calculated via (2.20) for
k ¼ 0; 1, and the conditional variance of the random effect is obtained via (2.8).

In the M step, the subgroup membership parameter γ is estimated similarly as in (2.12), except
that the subgroup mean parameters ðμ11; μ10Þ satisfy the following equations:

X
piTimeTTime

% &
μ11 þ

X
pi1Tni!1Time

% &
μ10 ¼

X
pibTi1Time;

X
piTimeT1ni!1

% &
μ11 þ

X
pi1Tni!11ni!1

% &
μ10 ¼

X
pibTi11ni!1:

(2:21)

Similarly, the mean parameters ðμ01; μ00Þ for the other subgroup are defined as the solutions of
equations similar to (2.21), where pi; bi1; μ11, and μ10 are replaced by qi; bi0; μ01, and μ00,
respectively. For the rest of the parameter estimation and standard error calculation, the
computation follows in a similar fashion as in Section 2.2, and the details are provided in
Web Appendix A.
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2.4. Extension to the unbalanced case

In the previous sections, we assume that the number of repeated measurements is the same for each
subject so that the correlation structure can be characterized by a common covariancematrix. In practice,
wemay have unbalanced data where the subjects are measured at different time points. This requires one
to impose a specific working correlation structure with some unknown correlation parameters ρ, e.g., the
correlation matrix RiðρÞ is the exchange structure or the first-order autoregressive with different cluster
sizes ni, and this leads to the estimation of ρ instead of estimating R in the M step. For simplification, we
apply the moment estimator instead of maximizing the Q function to obtain ρ.

From (2.4), given δi ¼ kðk ¼ 0; 1Þ, we have EðYiÞ ¼ ZT
i αþ Tiμi and VarðYiÞ ¼ τ2Ini!ni þ σ2RiðρÞ.

Let !̂i ¼ yi ' ZT
i α̂' Tiμ̂ik where k ¼ 1 if Pðδi ¼ 1Þ> 0:5 and otherwise 0. In addition, based on (2.4),

!̂i,Nnið0; τ2Ini!ni þ σ2RiðρÞÞ. Then, given the estimated residual !̂ij; i ¼ 1; . . . ; n; j ¼ 1; . . . ; ni, ρ̂ can
be estimated as follows.

(1) For exchangeable correlation structure with parameter ρ,

ρ̂ ¼ 1
σ̂2

Pn
i¼1 niðni ' 1Þ

Xn

i¼1

X

j!k

!̂ij!̂ik; (2:22)

(2) For AR(1) correlation structure with parameter ρ,

ρ̂ ¼ 1
σ̂2

Pn
i¼1ðni ' 1Þ

Xn

i¼1

Xni'1

j¼1

!̂ij!̂iðjþ1Þ: (2:23)

3. Simulation studies

In this section, we perform simulation studies to compare the proposed method to existing ones
under various settings. First, we generate data based on the proposed models, that is, Model (2.2)
and (2.3) with time-invariant treatment effect, where the coefficients are specified in Tables 1 and 2
with covariance structures specified as exchangeable and AR(1). Next, we generate data from
a misspecified model with an error in (2.3) following a t distribution to study the robustness of
our method. We also study the unbalanced case and report the results in Table 4. We compare the
mean-squared errors of the proposed estimators under different correlation structures, including the
true and working correlation structures, and the empirical estimator from the algorithm.

In Tables 1 and 2, we provide the mean and standard deviations of the estimates under different
scenarios. The true parameter is: γ ¼ ð'1; 1Þ; α ¼ ð'1; 1Þ; σ ¼ 1, μ1 ¼ ð10; . . . ; 10Þ, μ0 ¼ ð0; . . . ; 0Þ,
and the sample size is 100. The estimations of all the parameters under various settings are reason-
ably close to the true parameters. In particular, the standard errors calculated by (16) agree with the
standard deviations for γ̂. For example, in the first setting of Table 1, when the model is correctly
specified, the standard deviations for γ̂ from 250 simulations are 0:55 and 0:40, while the standard
errors by (2.16) are 0:52 and 0:40, respectively. Additional estimation results for data generated
based on Model (2.2) and (2.19) with time-varying treatment effects are shown in Web Table 1 in
Web Appendix B.

Next, we compare the estimation performances for different sample sizes. For model (2.19) with
time effect, we generate data with sample sizes of 50, 100, and 200, and obtain the estimators of all
the parameters. In Figure 1, we show the box plots for the estimations of the parameters μ10; μ11; γ1
and α1, where the true values are 1, 2, 1, and 1, respectively. Figure 1 indicates clearly that when the
sample sizes increase from 50 to 200, the variances of the estimators get smaller, and the means of
the estimators get closer to the true parameters. This implies that when the model is correctly
specified, the proposed estimators are consistent.
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In Table 3, the true error in (2.3) is generated from t distributions with degrees of freedom 3 and 4,
respectively, or lognormal distributions. However, we assume that the errors follow a normal distribu-
tion. The estimation for μ‘s,γ, and α still remains reasonably close to the true parameters. Specifically,
when the error follows a t distribution with degrees of freedom 3, we multiply

ffiffiffiffiffiffiffiffi
1=3

p
to ensure that the

variance remains 1. For the same reason, when the error follows a t distribution with degrees of freedom
4, we multiply by

ffiffiffiffiffiffiffiffi
1=2

p
. For the error of t3, the estimation of σ2 assuming a normal distributed error

has mean 1:02; while for the error of t4, the estimation of σ2 has mean 0:98. In general, the estimations
of the parameters remain reasonable as long as the true error is a t distribution with a sufficiently large
degree of freedom. Meanwhile, when the error follows a log-normal distribution with parameter ðμ; σÞ

Table 1. The mean and standard deviations of all the parameters from 250 experiments for model (2.2) and (2.3).

AR(1) with ρ ¼ 0:2

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 9.99 10.02 9.98 9.99 9.99 −1.11 1.08
sd 0.29 0.27 0.31 0.29 0.31 0.55 0.40
s.e. 0.29 0.30 0.29 0.30 0.30 0.52 0.40

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est −0.01 0.01 0.00 −0.03 0.00 −0.99 1.00 0.97
sd 0.31 0.30 0.28 0.29 0.29 0.09 0.06 0.07
s.e. 0.29 0.30 0.30 0.30 0.30 0.09 0.05 0.06

AR(1) with ρ ¼ 0:8

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 9.99 10.01 9.98 9.99 9.99 −1.11 1.08
sd 0.30 0.30 0.31 0.30 0.32 0.55 0.40
s.e. 0.34 0.32 0.33 0.33 0.33 0.59 0.47

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est −0.01 0.00 0.01 −0.03 −0.00 −0.99 1.00 0.96
sd 0.31 0.32 0.30 0.30 0.30 0.15 0.09 0.10
s.e. 0.27 0.27 0.27 0.26 0.27 0.09 0.05 0.06

Exchangeable with ρ ¼ 0:2

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 9.99 10.01 9.98 9.99 9.99 −1.11 1.08
sd 0.29 0.27 0.31 0.29 0.31 0.55 0.40
s.e. 0.28 0.27 0.27 0.27 0.27 0.42 0.39

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est −0.01 0.01 0.01 −0.03 0.00 −0.99 1.00 0.97
sd 0.31 0.30 0.28 0.29 0.29 0.11 0.07 0.07
s.e. 0.29 0.29 0.29 0.30 0.30 0.09 0.06 0.06

Exchangeable with ρ ¼ 0:8

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 9.98 10.01 9.98 9.99 9.99 −1.11 1.08
sd 0.30 0.29 0.31 0.30 0.32 0.55 0.40
s.e. 0.32 0.31 0.31 0.31 0.32 0.45 0.32

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est −0.02 0.00 0.01 −0.03 −0.01 −0.99 1.00 0.96
sd 0.32 0.32 0.31 0.30 0.30 0.16 0.10 0.11
s.e. 0.31 0.32 0.32 0.32 0.32 0.08 0.06 0.07
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where the value of the parameter ðμ; σÞ is specified in the table, we rescale the error first by subtracting
its mean expðμþ σ2=2Þ and dividing its standard variation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðexpðσ2Þ ' 1Þ expð2μþ σ2Þ

p
in generat-

ing the data. The slope of γ from 250 datasets has a mean 1:06 and a standard deviation of 0:42, close to
the results when the error is generated from a normal distribution in Table 1 of Web Supplementary
Material where the same parameter has a mean 1.09 and a standard deviation 0.45 from of 250 dataset.
The estimations of other parameters are also sound in Table 3 when a lognormal distribution is imposed
on the error term. This confirms that the estimation is also robust against different error distributions.

Next, we evaluate the performance of our method under the unbalanced design. We follow the
same simulation setting as in Table 2 for Model (2.2) and (2.3) but allow the data to be missing

Table 2. The mean and standard deviations of all the parameters from 250 experiments for model (2.2) and (2.3)
with ρ estimated by (2.22) and (2.23).

AR(1) with ρ ¼ 0:2

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 9.96 9.99 9.96 9.97 9.98 −1.11 1.08
sd 0.31 0.30 0.32 0.30 0.32 0.55 0.40
s.e. 0.33 0.32 0.32 0.32 0.32 0.47 0.29

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est 0.00 0.02 0.02 −0.01 0.01 −0.99 1.00 0.96
sd 0.32 0.33 0.32 0.31 0.31 0.16 0.10 0.11
s.e. 0.30 0.30 0.31 0.31 0.30 0.09 0.06 0.07

AR(1) with ρ ¼ 0:8

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 9.99 10.01 9.98 9.99 9.99 −1.11 1.08
sd 0.30 0.30 0.31 0.30 0.32 0.55 0.40
s.e. 0.33 0.34 0.33 0.34 0.33 0.54 0.44

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est −0.01 0.00 0.01 −0.03 −0.00 −0.99 1.00 0.96
sd 0.31 0.32 0.30 0.30 0.30 0.15 0.09 0.10
s.e. 0.30 0.30 0.30 0.29 0.29 0.16 0.10 0.07

Exchangeable with ρ ¼ 0:2

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 9.99 10.01 9.98 9.99 9.99 −1.11 1.08
sd 0.29 0.27 0.31 0.29 0.31 0.55 0.40
s.e. 0.31 0.30 0.30 0.31 0.30 0.49 0.37

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est −0.01 0.01 0.00 −0.03 0.00 −0.99 1.00 0.97
sd 0.31 0.30 0.28 0.29 0.29 0.11 0.07 0.07
s.e. 0.30 0.29 0.29 0.28 0.28 0.12 0.08 0.06

Exchangeable with ρ ¼ 0:8

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 9.96 9.99 9.96 9.97 9.98 −1.11 1.08
sd 0.31 0.30 0.32 0.30 0.32 0.55 0.40
s.e. 0.35 0.36 0.37 0.35 0.36 0.56 0.51

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est 0.00 0.02 0.02 −0.01 0.01 −0.99 1.00 0.96
sd 0.32 0.33 0.32 0.31 0.31 0.16 0.10 0.11
s.e. 0.36 0.34 0.35 0.35 0.35 0.18 0.11 0.07
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Figure 1. Box plots of the estimates for sample sizes 50, 100, and 200 for model (2.2) and (2.19).

Table 3. The mean and standard deviations of all the parameters from 250 experiments for model (2.2) and (2.19)
and the random error follows a t or lognormal distributions.

μ10 μ11 μ00 μ01 γ α σ2

Random error follows t4 !
ffiffiffiffiffiffiffi
1=2

p

true 1 2 0 1 −1 1 −1 1 1
est 0.94 2.01 0.06 0.99 −1.11 1.10 −1.01 1.01 0.99
sd 0.35 0.09 0.37 0.09 0.56 0.46 0.16 0.10 0.19

Random error follows t3 !
ffiffiffiffiffiffiffi
1=3

p

true 1 2 0 1 −1 1 −1 1 1
est 0.95 2.00 0.13 0.98 −1.09 1.08 −1.02 1.01 0.98
sd 0.36 0.10 2.15 0.40 0.67 0.45 0.16 0.11 0.37

Random error follows centered lognormal(0,1)
true 1 2 0 1 −1 1 −1 1 1
est 0.94 1.99 −0.00 0.98 −1.03 1.06 −1.00 1.01 0.97
sd 0.32 0.09 0.33 0.08 0.57 0.42 0.13 0.10 0.09

Random error follows centered lognormal(1,1)
true 1 2 0 1 −1 1 −1 1 1
est 0.94 1.99 −0.00 0.98 −1.03 1.06 −1.00 1.01 0.97
sd 0.32 0.09 0.33 0.08 0.57 0.42 0.13 0.10 0.09
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randomly. Specifically, for each subject, we generate 5 observations but only keep 3, 4 or 5
observations randomly. The mean and standard deviations of all the parameter estimators from
250 experiments are reported in Table 4, where correlation ρ is estimated via (2.22) and (2.23) for an
exchangeable or AR(1) structure, respectively. Table 4 shows that the proposed method performs
reasonably well under the unbalanced data setting.

In longitudinal data analysis, the true correlation structure is often unknown, and it is practical to
assume a working correlation structure instead. In the following, we compare our estimations when
we apply the true and the working correlation structures, in addition to an empirical-estimated
correlation from the M step. Table 5 provides the means, standard deviations, and mean square
errors (MSE) from 250 simulations for the model without time interaction under the true correlation
structures of AR(1) or exchangeable with ρ ¼ 0:8. In general, the MSE is the smallest when the true
correlation structure is incorporated, and the next most efficient estimator is based on the empirical-
estimated correlation structure. For example, when the true correlation structure is AR(1), the MSE
of the slope estimator γ̂ is 0.221 under the true correlation structure while the MSE of γ̂ is 0.226 if the
empirical correlation estimator is applied.

In Table 5, we also provide estimation results if the correlation information is ignored. We apply the
EM algorithm to obtain parameter estimators under the independent assumption, denoted by “MAR”
as in the table. Specifically, the MSE’s of the parameter estimators assuming independence are more
than twice those incorporating correlation structures. For example, when the true correlation structure
is AR(1), the MSE of γ̂ assuming independence increases to 0.379. Therefore, it is important to
incorporate correlation information to achieve consistent and efficient estimation for longitudinal data.

4. Data analysis

In this section, we analyze longitudinal data from the Aids Clinical Trials Group 320 study
(ACTG320). In particular, we are interested in identifying a subpopulation which could benefit
from the treatment. The CD4 cell counts are measured at the baseline, and the 4; 8; 24, and 40th
week. The response variable is the CD4 change at the 4; 8; 24, and 40th week, and denoted as
cd4:4;cd4:8 ;cd4:24, and cd4:40, respectively. The relevant covariates include baseline ribonucleic
acid (rna:0), which is similar to DNA and plays essential roles in coding, decoding, regulation, and
expression of genes. Other baselines are CD4 (cd4:0) and age. The summary statistics and sample

Table 4. The mean and standard deviations of all the parameters from 250 experiments for model (2.2) and (2.3)
with ρ estimated by (2.22) and (2.23) for the unbalanced design.

AR(1) with ρ ¼ 0:2

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 9.98 9.95 9.97 10.03 9.98 −1.12 1.12
sd 0.38 0.38 0.39 0.44 0.55 0.57 0.43

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est 0.04 0.04 0.06 0.01 0.02 −1.00 1.00 0.97
sd 0.52 0.57 0.56 0.57 0.71 0.12 0.08 0.06

Exchangeable with ρ ¼ 0:2

μ1 γ

true 10.00 10.00 10.00 10.00 10.00 −1.00 1.00
est 10.00 9.99 9.94 9.93 9.97 −1.07 1.08
sd 0.58 0.57 0.58 0.64 0.67 0.54 0.41

μ0 α σ2

true 0.00 0.00 0.00 0.00 0.00 −1.00 1.00 1.00
est 0.01 0.05 0.07 0.06 0.09 −1.00 1.00 0.97
sd 0.49 0.51 0.49 0.47 0.56 0.12 0.08 0.08
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sizes of data are provided in Web Table 2 in Web Appendix C. Specifically, there are 1080 subjects at
the beginning of the study, and the sample size drops to 564 by the end of the study. If we only
include the patients who have completed observations during the entire study, the sample size is 519.
However, our method allows unbalanced data, therefore, we include the patients with at least three
time-point observations, that is, those who drop out at least after the 24th week, and this results an
increasing sample size of 819. The sample sizes from the control and treatment groups are quite
similar among the patients. In addition, we apply log transformation on the RNA and baseline CD4
in the model and standardize the response variable.

We denote X as covariates of baselines, such as age, cd4.0, and rna.0. The covariates Z consist of
the intercept and time variable. Through the EM-type algorithm described in Sections 2.2 and 2.3,
we investigate the time-invariant model based on the complete data (sample size 519) and the
unbalanced data (sample size 819). The corresponding estimators of the parameters are provided in
Web Table 3 in Web Appendix C.

Under the time-invariant model assumption of the random effects, the subgroup indicator δi
depends on the covariates through a logistic model, and the corresponding estimated coefficients are
provided as follows:

logitðPðδi¼ 1jXi;ZiÞÞ¼ '10:820' 0:154Ageþ 0:563 log cd4:0þ 1:410 log10 rna:0: (4:1)

Given δi ¼ 1, the treatment effect bi is normal with means of 1:749; 2:152; 2:204, and 2:092 at weeks
4; 8; 24 and 40; and given δi ¼ 0, the treatment effect bi is normal with means of 0:055; 0:210; 0:502,
and 0:563, respectively, which are significantly smaller than those given δi ¼ 1. In addition, given δi
and bi,

Yijðδi;Xi;Zi;Ti; biÞ ¼ '0:138' 0:086Timeþ Tibi þ εi; (4:2)

Table 5. The mean and standard deviations of all the parameters from 250 experiments for model (2.2) and (2.19) under true
(“TRU”) or working with independent correlation structure (“Ind”) or the estimated (“Est”) covariance structure, and also by
a marginal mixture model without the random effects (referred to as “MAR”).

μ10 μ11 μ00 μ01 γ α σ2

true 1 2 0 1 −1 1 −1 1 1

AR(1) with ρ ¼ 0:8
TRU est 0.967 1.997 0.017 1.000 −1.120 1.095 −0.993 1.005 0.985

sd 0.350 0.095 0.349 0.090 0.584 0.443 0.152 0.094 0.065
MSE 0.147 0.034 0.147 0.033 0.366 0.221 0.048 0.034 0.029

Est est 0.969 1.997 0.013 1.001 −1.123 1.096 −0.991 1.004 0.975
sd 0.351 0.095 0.348 0.090 0.587 0.447 0.152 0.094 0.094
MSE 0.149 0.035 0.148 0.034 0.371 0.226 0.049 0.035 0.035

Ind est 1.025 1.988 −0.035 1.007 −1.097 1.073 −0.995 1.006 0.964
sd 0.352 0.097 0.347 0.092 0.586 0.441 0.150 0.095 0.094
MSE 0.142 0.027 0.138 0.026 0.361 0.213 0.041 0.027 0.027

MAR est 1.223 1.942 −0.216 1.052 −0.926 0.917 −0.991 0.987 1.156
sd 0.415 0.148 0.390 0.150 0.597 0.489 0.151 0.112 0.061
MSE 0.312 0.162 0.292 0.162 0.496 0.379 0.163 0.152 0.143

Exchangeable with ρ ¼ 0:8
TRU est 0.953 2.001 0.029 0.999 −1.121 1.094 −0.996 1.008 0.984

sd 0.326 0.079 0.328 0.075 0.585 0.447 0.166 0.102 0.064
MSE 0.133 0.033 0.134 0.032 0.369 0.227 0.054 0.037 0.031

Est est 0.954 2.001 0.026 0.999 −1.121 1.094 −0.995 1.007 0.973
sd 0.326 0.079 0.329 0.075 0.586 0.448 0.167 0.102 0.100
MSE 0.133 0.033 0.135 0.033 0.370 0.228 0.055 0.037 0.037

Ind est 1.037 1.986 −0.056 1.012 −1.086 1.063 −0.994 1.007 0.961
sd 0.327 0.083 0.323 0.078 0.583 0.445 0.164 0.103 0.103
MSE 0.125 0.025 0.122 0.024 0.357 0.215 0.044 0.028 0.028

MAR est 1.230 1.956 −0.212 1.039 −1.013 0.999 −0.984 0.980 1.154
sd 0.386 0.083 0.388 0.078 0.599 0.448 0.156 0.113 0.063
MSE 0.275 0.133 0.277 0.132 0.485 0.327 0.150 0.139 0.130
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where εi,Nð0; 0:428RÞ, and R is the correlation matrix of the error distribution for the same subject.
Here we treat R as a working correlation matrix with a nuisance correlation parameter, and using
AR(1) or exchangeable structure of R provide similar estimations for the remaining parameters. Web
Table 3 in Web Appendix C shows that the standard errors of the coefficient estimators of age, cd4.0,
and rna.0 corresponding to the logistic model (4.1) are 0:183; 0:181, and 0:393, respectively. In the
logistic model (4.1), the estimated coefficients of cd4.0 and rna.0 are 0:563 and 1:410, which are
more than twice their corresponding standard errors 0:181 and 0:393, while the estimated coefficient
of age is ' 0:154 with standard error 0:183, indicating that cd4.0 and rna.0 are more relevant in
determining subgroup memberships. Based on (4.1), those with higher baseline scores of cd4.0 and
rna.0 are more likely to be categorized in the subgroup with more enhanced treatment outcomes
compared to other patients. In particular, the treatment effects from the beneficial subgroup are
1:749; 2:152; 2:204, and 2:092 at weeks 4; 8; 24 and 40, respectively.

When we add the incomplete samples with the sample size of 819, the estimated model becomes

logitðPðδi ¼ 1jXi;ZiÞÞ ¼ '16:185' 0:538Ageþ 0:551 log cd4:0þ 2:171 log10 rna:0: (4:3)

Given δi ¼ 1, the treatment effect bi is normal with means of 2:671; 2:923; 2:992, and 2:592 at
weeks 4; 8; 24 and 40; and given δi ¼ 0, the treatment effect bi is normal with means of
0:238; 0:356; 0:624, and 0:717, respectively, which are significantly smaller than those given
δi ¼ 1. In addition, given δi and bi,

Yijðδi;Xi;Zi;Ti; biÞ ¼ '0:212' 0:027Timeþ Tibi þ εi; (4:4)

where εi,Nð0; 0:500RÞ; where R is treated as a working correlation matrix, similar to (4.2). The
standard errors of the coefficient estimators are summarized in Web Table 3 in Web Appendix C.

For both models, we conclude that the subjects with higher baseline CD4 and RNA are more
likely to benefit from the treatment. To examine our method more thoroughly, we rank the subjects
with respect to the probability with which subjects would benefit more from the treatment, allocate
the top-benefitting subjects to form a targeted group, and calculate the treatment effects. Define
score functions S1 as in (4.1), and S2 as in (4.3) from the logistic models utilizing all time points, and
S3 as in Shen and He (2015) where only the responses at the 24th week are used. That is,

Si ¼ β1iAgeþ β2i log cd4:0þ β3ilog10rna:0; i ¼ 1; 2; (4:5)

where the estimators of β1i; β2i and β3i in Si‘s and their standard errors are listed in Web Table 4 in
Web Appendix C.

A higher score on Si corresponds to having a better chance to receive benefit from the treatment.
Consequently, we calculate the scores in (4.5) for all subjects and rank them by their scores. For
different quantiles q ¼ 0:1; 0:11; . . . ; 0:9, we select the subjects among the top ð1' qÞ ! 100% scores
to form a target subgroup, and calculate the treatment effect for this selected subgroup at week 24,
the same time point from where S3 is calculated. Figure 2 presents the treatment effects in the
selected subgroups for different quantile q‘s using three different score functions S1; S2 and S3.
Figure 2 shows that when q is less than 0.5, that is, when we select a relatively large-sized subgroup
with enhanced treatment effect, the three methods provide subgroups with similar but small
treatment effects. As q gets larger, the treatment effects of the target subgroups formed by S1 (red
circles) and S2 (blue crossings), are clearly above those of S3 (green solid circles). In summary, the
score functions from S1 and S2 from the proposed model using longitudinal data choose subgroups
with better treatment effects than S3. When q> 0:5, the subgroups formed by S2 (blue crossings) have
higher treatment effects than those formed by S1 (red circles) mostly (about 80% times) by including
more samples.
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5. Discussion

In this paper, we propose a structured mixed-effects model for subgroup analysis on longitudinal
observations. In particular, we model the treatment effect as a random effect from a two-component
mixture normal model, where the proportions of the mixture model are modeled using a logistic
model depending on some covariates. Through this structured model, we can simultaneously model
the subgroup membership and the distribution of the response within the subgroups. We adopt an
EM-type algorithm to obtain parameter estimation.

For balanced data, we can estimate the correlation matrix R from the M step directly in each EM
iteration. For unbalanced data, we assume correlation structures with an unknown parameter ρ, such as
AR(1) or exchangeable, where ρ is obtained through moment estimation in the iterations, and therefore
each individual correlation matrix can be calculated based on the estimated ρ. The proposed models
address problems concerning both time-invariant treatment effect as in Section 2.1, and also time-
varying treatment effect as in Section 2.3. In addition, the time-varying model can be generalized to
cases where the treatment effect is linearly associated with other covariates besides time.

In our approach, we only consider the normal distribution of response for each subgroup.
However, our method is capable of extending to binomial or Poisson distribution in each subgroup
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Figure 2. Treatment effects in selected subgroups from top scores by three different score functions S1; S2 and S3.
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for discrete data such as binary or count responses, or continuous data such as Gamma and
exponential responses. However, under such settings, the joint distribution of the response and
the random effect are no longer a bivariate normal and requires the Monte Carlo method to compute
the conditional moments of the random effects in the E-step.
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