

Subgroup analysis based on structured mixed-effects models for longitudinal data

Juan Shen & Annie Qu

To cite this article: Juan Shen & Annie Qu (2020) Subgroup analysis based on structured mixed-effects models for longitudinal data, *Journal of Biopharmaceutical Statistics*, 30:4, 607-622, DOI: [10.1080/10543406.2020.1730867](https://doi.org/10.1080/10543406.2020.1730867)

To link to this article: <https://doi.org/10.1080/10543406.2020.1730867>

[View supplementary material](#)

Published online: 04 Mar 2020.

[Submit your article to this journal](#)

Article views: 80

[View related articles](#)

[View Crossmark data](#)

Subgroup analysis based on structured mixed-effects model for longitudinal data

Juan Shen^a and Annie Qu ^b

^aDepartment of Statistics, Fudan University, Shanghai, China; ^bDepartment of Statistics, University of California, Irvine, Irvine, California, USA

ABSTRACT

In recent years, subgroup analysis has emerged as an important tool to identify unknown subgroup memberships. However, subgroup analysis is still under-studied for longitudinal data. In this paper, we propose a structured mixed-effects approach for longitudinal data to model subgroup distribution and identify subgroup membership simultaneously. In the proposed structured mixed-effects model, the heterogeneous treatment effect is modeled as a random effect from a two-component mixture model, while the membership of the mixture model is incorporated using a logistic model with respect to some covariates. One advantage of our approach is that we are able to derive the estimation of the treatment effects through an EM-type algorithm which keeps the subgroup membership unchanged over time. Our numerical studies and real data example demonstrate that the proposed model outperforms other competing methods.

ARTICLE INFO

Received 1
Accepted 2

KEYWORD

EM algorithm
heterogeneous
mixed-effects
mixture model
identification

1. Introduction

Subgroup analysis has emerged as an important tool in various applications such as personalized medicine, and market segmentation. The earlier development of subgroup analysis mainly focused on analysis with given subgroup memberships, such as in Song and Cai (2007), Altstein et al. (2011), among others. In recent years, there has been growing interest in subgroups whose memberships are unknown. Su et al. (2009), Foster et al. (2011) and Li et al. (2011) utilize tree-based methods to categorize subgroups with an enhanced tree. Cai et al. (2011) and Zhao et al. (2013) derive a parametric scoring system to facilitate assignments to new patients. A Bayesian method for multiple subgroup analysis is proposed by Berger et al. (2014). Shen and He (2015) and Shen et al. (2017) also propose a structured mixture model that simultaneously models subgroup membership and treatment outcome for each subgroup as functions of other covariates. Wu et al. (2016) and Fan et al. (2017) propose a model in Shen and He (2015) for Cox models and semi-parametric models.

However, not much work has been done in subgroup identification for longitudinal data, which occur frequently in biomedical studies since responses are usually collected over time. In the numerical studies provided by the aforementioned papers, they consider the data at one point only, even though more longitudinal data are actually available. This could lead to information loss as not all time points are utilized. In this paper, our goal is to identify subgroups through a structured mixed-effects model for longitudinal data.

Our method is motivated by the Aids Clinical Trials Group 320 study (ACTG320) (Joshi et al., 1997) on the human immunodeficiency virus type 1 (HIV-1) infection where the infection status of the patients changes over time.

CONTACT Annie Qu aqu2@uci.edu Department of Statistics, University of Illinois at Urbana-Champaign, IL, USA

 Supplemental data for this article can be accessed [here](#).

© 2020 Taylor & Francis Group, LLC

effects. The targeted outcome of the treatment is to increase or to inhibit the decline counts. Therefore, the observed response of this study is the change in CD4 counts a points.

For longitudinal data analyses, there are two main approaches in general. One is estimating equation method, such as in Liang and Zeger (1986) and Tang and Qu (2016). The marginal estimating equations approach in Tang and Qu (2016) is designed for group changing over time, which is not applicable as we require that the subgroup remain unchanged over time in clinical trials case here.

Another popular approach is to apply a random-effects model to incorporate the repeated measurements from the same subject. In addition, to capture the heterogeneity in population, the random effects are viewed to follow a mixture distribution with components. For example, Verbeke and Lesaffre (1996) apply a linear mixed-effects model with random effects and random effects, and the random-effects are formulated from normal distributions. Model configurations are widely used in various applications, such as longitudinal clinical trials (Lin and Hedeker (2001)), next-generation sequencing data (Cacho et al. (2018)), and gene expression data (Celeux et al. (2005)). To study the association of the latent class membership with the covariates, the group structure is further modeled through another level of model. Lin et al. (2002) propose a latent class approach to jointly model and estimate longitudinal data where the latent class is determined by some covariates through a multi-logit model. In Asparouhov (2009), a two-level mixture model is proposed to investigate gender differences in mathematical achievement from the US National Education Longitudinal Survey. Komarek et al. (2010) introduce a two-step method to classify subjects into multiple groups. Lima et al. (2016) propose a joint model to analyze multiple longitudinal markers and causes of progression simultaneously based on a latent process and latent classes. Liu et al. (2014) develop a nonlinear mixed-effects mixture model for longitudinal data to account for autocorrelation, geneity and skewness. The misspecified effects on classes are examined in multivariate models through Monte Carlo simulations in Nylund-Gibson and Masyn (2016).

In general, mixture models are widely applicable in many fields; for instance see Tsiatis and Lindsay (1995) and Fruhwirth-Schnatter (2006). Mixture models with covariates-dependent are popular in social sciences for individual longitudinal profiles where latent classes are dependent and are represented as the growth mixture framework (Hu et al. 2017; Huang and Harring 2017; Muthén et al. 2002; Proust-Lima et al. 2017). Such models are a “mixture of experts” models (Jordan and Jacobs 1994; Yuksel et al. 2012) in computer science.

In this paper, we adopt a mixed-effects model where the treatment effect is modeled as an effect from a two-component mixture model, and the membership of the mixture model is modeled using a logistic model of other covariates. There are four main advantages of the proposed method. First, we extract a subgroup with more efficient estimation of treatment effect. The longitudinal data information is fully utilized, compared to existing ones using data at a single time point only. The random-effects model also enables us to incorporate dependency of subjects. Second, the proposed method ensures that the constraint of unchanged subgroup membership is satisfied. Third, the proposed method models the subgroup membership and the covariates of each subgroup jointly, which provides better prediction and interpretation of the treatment effect. Fourth, we provide a continuous score function for future subjects, and a higher score indicates a higher chance of enhanced treatment effect. In addition, we provide an efficient estimation algorithm in our estimation.

The rest of the paper is organized as follows. We elaborate the proposed methodology in Section 2, where the structured mixed-effects model is introduced, and estimation and further

2. Methodology

2.1. Structured mixed-effects models

In this section, we illustrate the structured mixed-effects model for subgroup analysis. The random effects are assumed to follow a normal mixture model (Verbeke and Lesaffre, 1996). That is, for each observation, the response $y_i \in R^{n_i \times 1}$ is modeled as

$$y_i = X_i\alpha + Z_i b_i + \varepsilon_i, i = 1, \dots, N,$$

where X_i and Z_i are vectors of the covariate, α is the fixed effect, and b_i is the vector of the specific random effect following a normal mixture distribution:

$$b_i \sim pN(\mu_1, D) + (1-p)N(\mu_0, D).$$

In Xu and Hedeker (2001), the random effect in (2.1) is assumed to follow a $k - 1$ mixture model with equal covariance Σ but different means μ_1, \dots, μ_k , and the proportions corresponding to mixture components are constants p_1, \dots, p_k . An EM algorithm is derived for estimation where the random effects are treated as missing. Based on the joint distribution of the posterior distribution of b_i is derived given y_i and the current parameter p, μ_1, μ_0 , and the E step, the posterior mean can be calculated. A similar strategy is also applied in Huang et al. (2005) and Ng et al. (2006) to model correlated data with unknown clusters.

In our approach, we incorporate covariance information to characterize subgroup where the mixture proportion also depends on covariates, such as the baseline measurements in the ACTG320 study.

We first consider a simple case where there are two subgroups capturing two different random effects with different means. Let Y_{it} be a continuous response for $i = 1, \dots, n$; $X_i \in R^{q_2}$ are covariates associated with the subgroup membership; and $Z_{it} \in R^{q_1}$ are covariates associated with the subgroup mean. We introduce a latent subgroup, $\delta_i \in \{0, 1\}$, which can be modeled through a logistic regression of X_i . That is,

$$\text{logit}(P(\delta_i = 1 | X_i, Z_i)) = X_i^T \gamma.$$

Given δ_i , the treatment effect b_i is a random vector following a normal mixture model if $\delta_i = 1$ and μ_0 if $\delta_i = 0$, and the covariance matrix $D_i = \sigma^2 I_{n_i \times n_i}$. Let $Y_i = (Y_{i1}, \dots, Y_{in_i})^T$ and $Z_i \in R^{q_1 \times n_i}$ be the matrix of $\{Z_{it} : t = 1, \dots, n_i\}$. Given the subgroup indicator δ_i and covariate information, Y_i is normally distributed.

$$Y_i | (\delta_i, X_i, Z_i, T_i, b_i) = Z_i^T \alpha + T_i b_i + \varepsilon_i,$$

where $\varepsilon_i \sim N(0, \sigma^2 R_{n_i \times n_i})$, and $T_i \in \{0, 1\}$ with 1 for treatment and 0 for control group. The treatment effect $b_i \sim N(\mu_i, \sigma^2 I_{n_i \times n_i})$, independent of the noise ε_i . Then, conditional on X_i, Z_i, T_i and δ_i , Y_i are jointly normal:

$$\begin{pmatrix} Y_i \\ b_i \end{pmatrix} \sim N \left[\begin{matrix} Z_i^T \alpha + T_i \mu_i \\ \mu_i \end{matrix} \right], \left[\begin{matrix} \Sigma_i & T_i D_i \\ T_i D_i & D_i \end{matrix} \right]$$

where $\mu_i = \mu_1 \delta_i + \mu_0 (1 - \delta_i)$, $D_i = \sigma^2 I_{n_i \times n_i}$, and $\Sigma_i = T_i^2 D_i + \sigma^2 R_i$. For balanced data, we can drop the i index for R_i and D_i . Let $Y_i = (Y_{i1}, \dots, Y_{in_i})^T$, then we can also write the model as $Y_i | (\delta_i, X_i, Z_i, T_i) \sim N(\mu_i, \Sigma_i)$. For $t = 1, \dots, n_i$,

Based on (2.4), the posterior mean of b_i given $x_i, \alpha_i, \tau_i, o_i$, and δ_i is

$$\hat{b}_i = E[b_i|Y_i, \delta_i] = \mu_i + T_i D_i \Sigma_i^{-1} (y_i - Z_i^T \alpha - T_i \mu_i).$$

In addition, for each subgroup $k = 0, 1$, let

$$\hat{b}_{ik} = \mu_k + T_i D_i \Sigma_i^{-1} (y_i - Z_i^T \alpha - T_i \mu_k),$$

where the corresponding covariance matrix is

$$\hat{D}_i = D_i - T_i^2 D_i \Sigma_i^{-1} D_i.$$

Then, the second moment of random effects b_i conditional on latent variable δ_i and

$$B_{ik} = E[b_i b_i^T | \delta_i = k, Y_i] = \hat{b}_{ik} \hat{b}_{ik}^T + \hat{D}_i.$$

For simplicity, we first consider the balanced case where $n_i = n_0, R_i = R$, for all i = parameters we intend to estimate are $\theta = (\gamma, \alpha, \mu_1, \mu_0, \sigma^2, R)$. When $\mu_1 \neq \mu_0$, the α defined. Therefore, without loss of generality, we assume that $\mu_1 > \mu_0$, and provide algorithm for parameter estimation in the next section.

2.2. Estimation

In this section, we treat the random effect b and the indicator δ as missing. The log-lik hypothetical complete data (Y, δ, b) is

$$\begin{aligned} Cl(\theta) = & \sum_{i=1}^n \{ \delta_i \log \pi(x_i^T \gamma) + (1 - \delta_i) \log(1 - \pi(x_i^T \gamma)) \} \\ & + \sum_{i=1}^n \{ \delta_i \log \phi(y_i, Z_i^T \alpha + T_i b_i, \sigma^2 R) + (1 - \delta_i) \log \phi(y_i, Z_i^T \alpha + T_i b_i, \epsilon) \} \\ & + \sum_{i=1}^n \{ \delta_i \log \phi(b_i, \mu_1, \sigma^2 I) + (1 - \delta_i) \log \phi(b_i, \mu_0, \sigma^2 I) \}, \end{aligned}$$

where $\pi(x) = 1/(1 + e^{-x})$ and $\phi(y, \mu, \Sigma)$ is a multivariate normal density at y with covariance matrix Σ .

We implement the EM-type algorithm as follows. Given current parameter estimation next step, we have $Q(\theta|\theta^{(j)}) = I_1 + I_2$, where

$$I_1 = \sum_{i=1}^n \{ E[\delta_i|Y] \log \pi(x_i^T \gamma) + E[(1 - \delta_i)|Y] \log(1 - \pi(x_i^T \gamma)) \},$$

and

$$\begin{aligned} I_2 = & \sum_{i=1}^n \sum_{k=0}^1 -\frac{P(\delta_i = k|Y)}{2\sigma^2} [(b_{ik} - \mu_k)^T (b_{ik} - \mu_k) + \text{tr}(\hat{D}_i))] \\ & + \sum_{i=1}^n \sum_{k=0}^1 -\frac{P(\delta_i = k|Y)}{2\sigma^2} [(Y_i - Z_i^T \hat{\alpha} - T_i b_{ik})^T R^{-1} (Y_i - Z_i^T \hat{\alpha} - T_i b_{ik}) + T_i^2 \\ & - N \log(\sigma^2) - \frac{n}{2} \log|R|], \end{aligned}$$

where \hat{D}_i is defined in (2.8), and $N = \sum n_i$ ($= nn_0$ for the balanced case).

We estimate θ at the $(j + 1)$ th step:

$$\theta^{(j+1)} = \text{argmax}_{\theta} Q(\theta|\theta^{(j)}).$$

and fit the linear model in (2.3) with b_i substituted by $\mu_1\delta_i + \mu_0(1 - \delta_i)$ to obtain the initial parameters.

(2) (E Step) Given the current parameter $\theta^{(j)}$,

(a) For $i = 1, \dots, n$, let

$$p_{i1} = P(\delta_i = 1 | y_i, \theta^{(j)})$$

$$= \frac{\pi(x_i^T \gamma^{(j)}) \phi(y_i, Z_i^T \alpha^{(j)} + T_i \mu_1^{(j)}, \Sigma^{(j)})}{\pi(x_i^T \gamma^{(j)}) \phi(y_i, Z_i^T \alpha^{(j)} + T_i \mu_1^{(j)}, \Sigma^{(j)}) + (1 - \pi(x_i^T \gamma^{(j)})) \phi(y_i, Z_i^T \alpha^{(j)} + T_i \mu_0^{(j)}, \Sigma^{(j)})}$$

and $p_{i0} = 1 - p_{i1}$, where $\phi(\cdot, \mu, \Sigma)$ is the probability density function of a vector with mean μ and covariance matrix Σ .

(b) For each subgroup $k = 0, 1$, calculate b_{ik} following (2.7), where the covariance matrix \hat{D}_i is calculated via (2.8) and B_{ik} is obtained via (2.9).

(3) (M Step)

(a) Calculation of the subgroup membership parameter γ :

$$\gamma^{(j+1)} = \operatorname{argmax}_{\gamma} p_{i1} \log \pi(x_i^T \gamma) + p_{i0} \log(1 - \pi(x_i^T \gamma)).$$

(b) Calculation of the subgroup mean parameters: for $k = 0, 1$, we have

$$\mu_k^{(j+1)} = \frac{1}{\sum p_{ik}} \sum_{i=1}^n p_{ik} b_{ik}.$$

(c) Calculation of the parameter α associated with covariates Z :

$$\hat{\alpha}^{(j+1)} = \left\{ \sum_i Z_i^T R^{-1} Z_i \right\}^{-1} \left\{ \sum_{i=1}^n \sum_{k=0}^1 p_{ik} Z_i^T R^{-1} (Y_i - T_i b_{ik}) \right\}.$$

(d) Calculation of the variance parameters:

$$(\hat{\sigma}^2)^{(j+1)} = \frac{A_1 + A_2}{2N},$$

where $A_1 = \sum_{i=1}^n \sum_{k=0}^1 p_{ik} [(b_{ik} - \mu_k)^T (b_{ik} - \mu_k) + \operatorname{tr}(\hat{D}_i)]$ and $A_2 = \sum [(Y_i - Z_i \alpha - T_i b_{ik})^T R^{-1} (Y_i - Z_i \alpha - T_i b_{ik}) + T_i^2 \operatorname{tr}(R^{-1} \hat{D}_i)]$, and

$$R^{(j+1)} = \frac{1}{n \hat{\sigma}^2} \sum_{i=1}^n \sum_{k=0}^1 p_{ik} [(Y_i - Z_i \hat{\alpha} - T_i b_{ik}) (Y_i - Z_i \hat{\alpha} - T_i b_{ik})^T + T_i^2 \hat{D}_i].$$

(4) (Stopping Criterion) Iterate E-step and M-step until $|\theta^{(j+1)} - \theta^{(j)}| < 10^{-3}$.

Since the EM-type algorithm only guarantees a local optimum, in practice we use multiple starting values and searching for the best one among all local optima. In our studies, we try about 10 different starting values by applying different δ_0 's in the initial step.

In the EM-type algorithm, the standard error of the estimator can be obtained following the method of [Rubin \(1982\)](#). That is, for the i -th observation, let S_i and B_i be the first derivative and the second derivative of the complete log-likelihood in (2.10), respectively. Let $\hat{\theta}$ be the estimate of θ .

$$- \sum_{i \neq j}^n (\mathbb{E}_{(\delta_i, b_i | W_i; \hat{\theta})} S_i) (\mathbb{E}_{(\delta_j, b_j | W_i; \hat{\theta})} S_j)^T.$$

From (2.10), the information matrix I is a block diagonal for γ and the rest of the parameters. The block diagonal matrix associated with γ is

$$B_i(\gamma) = \pi(X_i^T \gamma) \cdot \{1 - \pi(X_i^T \gamma)\} X_i X_i^T,$$

and the corresponding score function associated with γ is

$$S_i(\gamma) = \{\delta_i - \pi(X_i^T \gamma)\} X_i.$$

Therefore, the standard errors for $\hat{\gamma}$ and the other estimators can be calculated since the standard error calculation for $\hat{\gamma}$ only involves $B_i(\hat{\gamma})$, $S_i(\hat{\gamma})$, and Equation (2.16). The standard errors of $\hat{\gamma}$ are useful to identify the subgroup membership. In addition, we can perform a Wald test or construct confidence intervals to choose the covariates which are related to subgroup membership. For example, if the absolute coefficient estimator corresponding to a covariate is more than twice its standard error, then this covariate is likely to be associated with subgroup membership. The calculation of standard errors for the rest of the parameters is provided in Web Appendix A.

2.3. Extension to model with time interaction

In Section 2.1, we assume that the treatment effect is normally distributed with a constant mean. However, in general, the treatment effect could change over time. In this subsection, we consider the mean parameter to be associated with time. Given the subgroup indicator variable $\delta_i = 1$

$$b_i \sim N(\mu_{k1} \text{Time} + \mu_{k0}, D).$$

The model of other parameters is similar as in Section 2.1.

Given X_i, Z_i, T_i and δ_i , Y_i and b_i are jointly normal distributed as in (2.11). If $\mu_i = (\mu_{11} \text{Time} + \mu_{10})\delta_i + (\mu_{01} \text{Time} + \mu_{00})(1 - \delta_i)$; for each subgroup $k = 0, 1$, the posterior distribution of b_i given X_i, Z_i, T_i, δ_i , and Y_i is

$$\hat{b}_{ik} = \mu_{k1} \text{Time} + \mu_{k0} + T_i D \Sigma^{-1} \{y_i - Z_i^T \alpha - T_i(\mu_{k1} \text{Time} + \mu_{k0})\}.$$

We apply the EM-type algorithm similarly as in Section 2.2 to estimate the parameters. We compute p_i as in (2.11); the conditional mean of the random effect is calculated for $k = 0, 1$, and the conditional variance of the random effect is obtained via (2.8).

In the M step, the subgroup membership parameter γ is estimated similarly as in Section 2.2, and the subgroup mean parameters (μ_{11}, μ_{10}) satisfy the following equations:

$$\begin{aligned} \left(\sum p_i \text{Time}^T \text{Time} \right) \mu_{11} + \left(\sum p_i 1_{n_i \times 1}^T \text{Time} \right) \mu_{10} &= \sum p_i b_{i1}^T \text{Time}, \\ \left(\sum p_i \text{Time}^T 1_{n_i \times 1} \right) \mu_{11} + \left(\sum p_i 1_{n_i \times 1}^T 1_{n_i \times 1} \right) \mu_{10} &= \sum p_i b_{i1}^T 1_{n_i \times 1}. \end{aligned}$$

Similarly, the mean parameters (μ_{01}, μ_{00}) for the other subgroup are defined as the equations similar to (2.21), where p_i, b_{i1}, μ_{11} , and μ_{10} are replaced by q_i, b_{i0}, μ_{01} , and μ_{00} respectively. For the rest of the parameter estimation and standard error calculation, the computation follows in a similar fashion as in Section 2.2, and the details are provided in Web Appendix A.

we may have unbalanced data where the subjects are measured at different time points. In order to impose a specific working correlation structure with some unknown correlation parameter, the correlation matrix $R_i(\rho)$ is the exchange structure or the first-order autoregressive with dimension sizes n_i , and this leads to the estimation of ρ instead of estimating R in the M step. For simplicity, we apply the moment estimator instead of maximizing the Q function to obtain ρ .

From (2.4), given $\delta_i = k(k = 0, 1)$, we have $E(Y_i) = Z_i^T \alpha + T_i \mu_i$ and $Var(Y_i) = \tau^2 I_{n_i}$. Let $\hat{\epsilon}_i = y_i - Z_i^T \hat{\alpha} - T_i \hat{\mu}_{ik}$ where $k = 1$ if $P(\delta_i = 1) > 0.5$ and otherwise 0. In addition, $\hat{\epsilon}_i \sim N_{n_i}(0, \tau^2 I_{n_i \times n_i} + \sigma^2 R_i(\rho))$. Then, given the estimated residual $\hat{\epsilon}_{ij}, i = 1, \dots, n, j = 1, \dots, n_i$, ρ can be estimated as follows.

(1) For exchangeable correlation structure with parameter ρ ,

$$\hat{\rho} = \frac{1}{\hat{\sigma}^2 \sum_{i=1}^n n_i(n_i - 1)} \sum_{i=1}^n \sum_{j \neq k} \hat{\epsilon}_{ij} \hat{\epsilon}_{ik};$$

(2) For AR(1) correlation structure with parameter ρ ,

$$\hat{\rho} = \frac{1}{\hat{\sigma}^2 \sum_{i=1}^n (n_i - 1)} \sum_{i=1}^n \sum_{j=1}^{n_i-1} \hat{\epsilon}_{ij} \hat{\epsilon}_{i(j+1)}.$$

3. Simulation studies

In this section, we perform simulation studies to compare the proposed method to the existing methods under various settings. First, we generate data based on the proposed models, that is, (2.3) and (2.4) with time-invariant treatment effect, where the coefficients are specified in Table 1 with covariance structures specified as exchangeable and AR(1). Next, we generate data under a misspecified model with an error in (2.3) following a t distribution to study the performance of our method. We also study the unbalanced case and report the results in Table 4. We compare the mean-squared errors of the proposed estimators under different correlation structures, the true and working correlation structures, and the empirical estimator from the algorithm.

In Tables 1 and 2, we provide the mean and standard deviations of the estimates under various scenarios. The true parameter is: $\gamma = (-1, 1)$, $\alpha = (-1, 1)$, $\sigma = 1$, $\mu_1 = (10, \dots, 10)$, $\mu_0 = (0, \dots, 0)$ and the sample size is 100. The estimations of all the parameters under various settings are very close to the true parameters. In particular, the standard errors calculated by (16) are very close to the standard deviations for $\hat{\gamma}$. For example, in the first setting of Table 1, when the model is correctly specified, the standard deviations for $\hat{\gamma}$ from 250 simulations are 0.55 and 0.40, while the standard errors by (2.16) are 0.52 and 0.40, respectively. Additional estimation results for the parameters based on Model (2.2) and (2.19) with time-varying treatment effects are shown in Web Appendix B.

Next, we compare the estimation performances for different sample sizes. For model (2.3) with time effect, we generate data with sample sizes of 50, 100, and 200, and obtain the estimates of the parameters. In Figure 1, we show the box plots for the estimations of the parameters γ , α_1 , and α_2 , where the true values are 1, 2, 1, and 1, respectively. Figure 1 indicates clearly that as the sample sizes increase from 50 to 200, the variances of the estimators get smaller, and the estimators get closer to the true parameters. This implies that when the model is correctly specified, the proposed estimators are consistent.

est	9.99	10.02	9.98	9.99	9.99	-1.11	1.08
sd	0.29	0.27	0.31	0.29	0.31	0.55	0.40
s.e.	0.29	0.30	0.29	0.30	0.30	0.52	0.40
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	-0.01	0.01	0.00	-0.03	0.00	-0.99	1.00
sd	0.31	0.30	0.28	0.29	0.29	0.09	0.06
s.e.	0.29	0.30	0.30	0.30	0.30	0.09	0.05
AR(1) with $\rho = 0.8$							
μ_1						γ	
true	10.00	10.00	10.00	10.00	10.00	-1.00	1.00
est	9.99	10.01	9.98	9.99	9.99	-1.11	1.08
sd	0.30	0.30	0.31	0.30	0.32	0.55	0.40
s.e.	0.34	0.32	0.33	0.33	0.33	0.59	0.47
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	-0.01	0.00	0.01	-0.03	-0.00	-0.99	1.00
sd	0.31	0.32	0.30	0.30	0.30	0.15	0.09
s.e.	0.27	0.27	0.27	0.26	0.27	0.09	0.05
Exchangeable with $\rho = 0.2$							
μ_1						γ	
true	10.00	10.00	10.00	10.00	10.00	-1.00	1.00
est	9.99	10.01	9.98	9.99	9.99	-1.11	1.08
sd	0.29	0.27	0.31	0.29	0.31	0.55	0.40
s.e.	0.28	0.27	0.27	0.27	0.27	0.42	0.39
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	-0.01	0.01	0.01	-0.03	0.00	-0.99	1.00
sd	0.31	0.30	0.28	0.29	0.29	0.11	0.07
s.e.	0.29	0.29	0.29	0.30	0.30	0.09	0.06
Exchangeable with $\rho = 0.8$							
μ_1						γ	
true	10.00	10.00	10.00	10.00	10.00	-1.00	1.00
est	9.98	10.01	9.98	9.99	9.99	-1.11	1.08
sd	0.30	0.29	0.31	0.30	0.32	0.55	0.40
s.e.	0.32	0.31	0.31	0.31	0.32	0.45	0.32
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	-0.02	0.00	0.01	-0.03	-0.01	-0.99	1.00
sd	0.32	0.32	0.31	0.30	0.30	0.16	0.10
s.e.	0.31	0.32	0.32	0.32	0.32	0.08	0.06

In Table 3, the true error in (2.3) is generated from t distributions with degrees of freedom 3, 4, respectively, or lognormal distributions. However, we assume that the errors follow a normal distribution. The estimation for μ 's, γ , and α still remains reasonably close to the true parameter when the error follows a t distribution with degrees of freedom 3, we multiply $\sqrt{1/3}$ to ϵ so that the variance remains 1. For the same reason, when the error follows a t distribution with degrees of freedom 4, we multiply by $\sqrt{1/2}$. For the error of t_3 , the estimation of σ^2 assuming a normal distribution has mean 1.02; while for the error of t_4 , the estimation of σ^2 has mean 0.98. In general, the estimation of the parameters remain reasonable as long as the true error is a t distribution with a suitable degree of freedom. Meanwhile, when the error follows a log-normal distribution with parameters μ and σ^2 , the estimation of μ and σ^2 are not as accurate as the estimation of μ and γ when the error follows a t distribution with degrees of freedom 3 or 4.

true	10.00	10.00	10.00	10.00	10.00	-1.00	1.00
est	9.96	9.99	9.96	9.97	9.98	-1.11	1.08
sd	0.31	0.30	0.32	0.30	0.32	0.55	0.40
s.e.	0.33	0.32	0.32	0.32	0.32	0.47	0.29
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	0.00	0.02	0.02	-0.01	0.01	-0.99	1.00
sd	0.32	0.33	0.32	0.31	0.31	0.16	0.10
s.e.	0.30	0.30	0.31	0.31	0.30	0.09	0.06
AR(1) with $\rho = 0.8$							
μ_1						γ	
true	10.00	10.00	10.00	10.00	10.00	-1.00	1.00
est	9.99	10.01	9.98	9.99	9.99	-1.11	1.08
sd	0.30	0.30	0.31	0.30	0.32	0.55	0.40
s.e.	0.33	0.34	0.33	0.34	0.33	0.54	0.44
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	-0.01	0.00	0.01	-0.03	-0.00	-0.99	1.00
sd	0.31	0.32	0.30	0.30	0.30	0.15	0.09
s.e.	0.30	0.30	0.30	0.29	0.29	0.16	0.10
Exchangeable with $\rho = 0.2$							
μ_1						γ	
true	10.00	10.00	10.00	10.00	10.00	-1.00	1.00
est	9.99	10.01	9.98	9.99	9.99	-1.11	1.08
sd	0.29	0.27	0.31	0.29	0.31	0.55	0.40
s.e.	0.31	0.30	0.30	0.31	0.30	0.49	0.37
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	-0.01	0.01	0.00	-0.03	0.00	-0.99	1.00
sd	0.31	0.30	0.28	0.29	0.29	0.11	0.07
s.e.	0.30	0.29	0.29	0.28	0.28	0.12	0.08
Exchangeable with $\rho = 0.8$							
μ_1						γ	
true	10.00	10.00	10.00	10.00	10.00	-1.00	1.00
est	9.96	9.99	9.96	9.97	9.98	-1.11	1.08
sd	0.31	0.30	0.32	0.30	0.32	0.55	0.40
s.e.	0.35	0.36	0.37	0.35	0.36	0.56	0.51
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	0.00	0.02	0.02	-0.01	0.01	-0.99	1.00
sd	0.32	0.33	0.32	0.31	0.31	0.16	0.10
s.e.	0.36	0.34	0.35	0.35	0.35	0.18	0.11

where the value of the parameter (μ, σ) is specified in the table, we rescale the error first by its mean $\exp(\mu + \sigma^2/2)$ and dividing its standard variation $\sqrt{(\exp(\sigma^2) - 1) \exp(2\mu + \sigma^2)}$ by the data. The slope of γ from 250 datasets has a mean 1.06 and a standard deviation 0.05. The results when the error is generated from a normal distribution in Table 1 of Web S Material where the same parameter has a mean 1.09 and a standard deviation 0.45 from 250 datasets. The estimations of other parameters are also sound in Table 3 when a lognormal distribution is used for the error term. This confirms that the estimation is also robust against different error distributions.

Next, we evaluate the performance of our method under the unbalanced design. We use the same simulation setting as in Table 2 for Model (2.2) and (2.3) but allow the data to be unbalanced. The results are shown in Table 3.

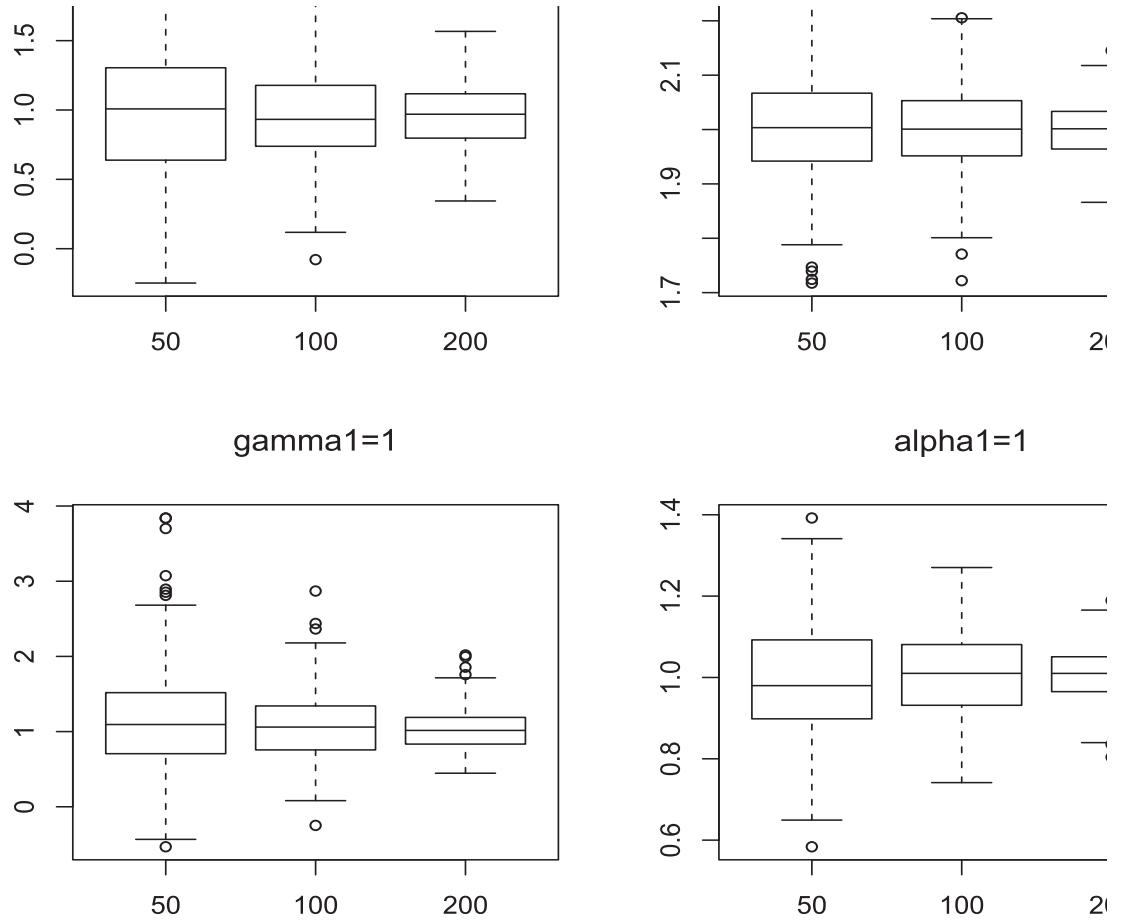


Figure 1. Box plots of the estimates for sample sizes 50, 100, and 200 for model (2.2) and (2.19).

Table 3. The mean and standard deviations of all the parameters from 250 experiments for model (2.2) and the random error follows a t or lognormal distributions.

	μ_{10}	μ_{11}	μ_{00}	μ_{01}	γ	α
Random error follows $t_4 \times \sqrt{1/2}$						
true	1	2	0	1	-1	1
est	0.94	2.01	0.06	0.99	-1.11	1.10
sd	0.35	0.09	0.37	0.09	0.56	0.46
Random error follows $t_3 \times \sqrt{1/3}$						
true	1	2	0	1	-1	1
est	0.95	2.00	0.13	0.98	-1.09	1.08
sd	0.36	0.10	2.15	0.40	0.67	0.45
Random error follows centered lognormal(0,1)						
true	1	2	0	1	-1	1
est	0.94	1.99	-0.00	0.98	-1.03	1.06
sd	0.32	0.09	0.33	0.08	0.57	0.42
Random error follows centered lognormal(1,1)						
true	1	2	0	1	-1	1
est	0.94	1.99	-0.00	0.98	-1.03	1.06
sd	0.32	0.09	0.33	0.08	0.57	0.42

true	10.00	10.00	10.00	10.00	10.00	-1.00	1.00
est	9.98	9.95	9.97	10.03	9.98	-1.12	1.12
sd	0.38	0.38	0.39	0.44	0.55	0.57	0.43
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	0.04	0.04	0.06	0.01	0.02	-1.00	1.00
sd	0.52	0.57	0.56	0.57	0.71	0.12	0.08
Exchangeable with $\rho = 0.2$							
μ_1						γ	
true	10.00	10.00	10.00	10.00	10.00	-1.00	1.00
est	10.00	9.99	9.94	9.93	9.97	-1.07	1.08
sd	0.58	0.57	0.58	0.64	0.67	0.54	0.41
μ_0						α	
true	0.00	0.00	0.00	0.00	0.00	-1.00	1.00
est	0.01	0.05	0.07	0.06	0.09	-1.00	1.00
sd	0.49	0.51	0.49	0.47	0.56	0.12	0.08

randomly. Specifically, for each subject, we generate 5 observations but only keep 3 observations randomly. The mean and standard deviations of all the parameter estimates from 250 experiments are reported in [Table 4](#), where correlation ρ is estimated via (2.22) and the correlation structure is exchangeable or AR(1) structure, respectively. [Table 4](#) shows that the proposed method performs reasonably well under the unbalanced data setting.

In longitudinal data analysis, the true correlation structure is often unknown, and it is common to assume a working correlation structure instead. In the following, we compare our estimation results under the true and the working correlation structures, in addition to an empirical correlation structure. [Table 5](#) provides the means, standard deviations, and mean squared errors (MSE) from 250 simulations for the model without time interaction under the true and working correlation structures of AR(1) or exchangeable with $\rho = 0.8$. In general, the MSE is the smallest when the true correlation structure is incorporated, and the next most efficient estimator is based on the estimated correlation structure. For example, when the true correlation structure is AR(1), the MSE of the slope estimator $\hat{\gamma}$ is 0.221 under the true correlation structure while the MSE of $\hat{\gamma}$ under the empirical correlation estimator is applied.

In [Table 5](#), we also provide estimation results if the correlation information is ignored. We apply the EM algorithm to obtain parameter estimators under the independent assumption, denoted as $\hat{\gamma}_{\text{indep}}$ in the table. Specifically, the MSE's of the parameter estimators assuming independence are more than twice those incorporating correlation structures. For example, when the true correlation structure is AR(1), the MSE of $\hat{\gamma}$ assuming independence increases to 0.379. Therefore, it is important to incorporate correlation information to achieve consistent and efficient estimation for longitudinal data.

4. Data analysis

In this section, we analyze longitudinal data from the Aids Clinical Trials Group (ACTG320). In particular, we are interested in identifying a subpopulation which benefits from the treatment. The CD4 cell counts are measured at the baseline, and the 4, 8, 24, and 40th week. The response variable is the CD4 change at the 4, 8, 24, and 40th week, and the covariates are *cd4.4*, *cd4.8*, *cd4.24*, and *cd4.40*, respectively. The relevant covariates include baseline CD4 cell count (*cd4.0*), which is similar to DNA and plays essential roles in coding, decoding, re-expression of genes. Other baselines are CD4 cell count (*cd4.0*) and age. The summary statistic

	true	1	2	0	1	-1	1	-1
AR(1) with $\rho = 0.8$								
TRU	est	0.967	1.997	0.017	1.000	-1.120	1.095	-0.993
	sd	0.350	0.095	0.349	0.090	0.584	0.443	0.152
	MSE	0.147	0.034	0.147	0.033	0.366	0.221	0.048
Est	est	0.969	1.997	0.013	1.001	-1.123	1.096	-0.991
	sd	0.351	0.095	0.348	0.090	0.587	0.447	0.152
	MSE	0.149	0.035	0.148	0.034	0.371	0.226	0.049
Ind	est	1.025	1.988	-0.035	1.007	-1.097	1.073	-0.995
	sd	0.352	0.097	0.347	0.092	0.586	0.441	0.150
	MSE	0.142	0.027	0.138	0.026	0.361	0.213	0.041
MAR	est	1.223	1.942	-0.216	1.052	-0.926	0.917	-0.991
	sd	0.415	0.148	0.390	0.150	0.597	0.489	0.151
	MSE	0.312	0.162	0.292	0.162	0.496	0.379	0.163
Exchangeable with $\rho = 0.8$								
TRU	est	0.953	2.001	0.029	0.999	-1.121	1.094	-0.996
	sd	0.326	0.079	0.328	0.075	0.585	0.447	0.166
	MSE	0.133	0.033	0.134	0.032	0.369	0.227	0.054
Est	est	0.954	2.001	0.026	0.999	-1.121	1.094	-0.995
	sd	0.326	0.079	0.329	0.075	0.586	0.448	0.167
	MSE	0.133	0.033	0.135	0.033	0.370	0.228	0.055
Ind	est	1.037	1.986	-0.056	1.012	-1.086	1.063	-0.994
	sd	0.327	0.083	0.323	0.078	0.583	0.445	0.164
	MSE	0.125	0.025	0.122	0.024	0.357	0.215	0.044
MAR	est	1.230	1.956	-0.212	1.039	-1.013	0.999	-0.984
	sd	0.386	0.083	0.388	0.078	0.599	0.448	0.156
	MSE	0.275	0.133	0.277	0.132	0.485	0.327	0.150

sizes of data are provided in Web Table 2 in Web Appendix C. Specifically, there are 1000 patients at the beginning of the study, and the sample size drops to 564 by the end of the study. We include the patients who have completed observations during the entire study, the sample size is 819. However, our method allows unbalanced data, therefore, we include the patients with time-point observations, that is, those who drop out at least after the 24th week, and the final sample size is 819. The sample sizes from the control and treatment groups are similar among the patients. In addition, we apply log transformation on the RNA and protein levels in the model and standardize the response variable.

We denote X as covariates of baselines, such as age, cd4.0, and rna.0. The covariate age is the intercept and time variable. Through the EM-type algorithm described in Section 3, we investigate the time-invariant model based on the complete data (sample size 1000) and unbalanced data (sample size 819). The corresponding estimators of the parameters are provided in Web Table 3 in Web Appendix C.

Under the time-invariant model assumption of the random effects, the subgroup effect depends on the covariates through a logistic model, and the corresponding estimated coefficients are provided as follows:

$$\text{logit}(P(\delta_i = 1 | X_i, Z_i)) = -10.820 - 0.154\text{Age} + 0.563 \log_{10} \text{cd4.0} + 1.410 \log_{10} \text{rna.0}.$$

Given $\delta_i = 1$, the treatment effect b_i is normal with means of 1.749, 2.152, 2.204, and 2.204 for week 4, 8, 24 and 40; and given $\delta_i = 0$, the treatment effect b_i is normal with means of 0.055, 0.055, 0.055, and 0.563, respectively, which are significantly smaller than those given $\delta_i = 1$. In addition, the coefficients of b_i are provided as follows:

$$Y_i | (\delta_i, X_i, Z_i, T_i, b_i) = -0.138 - 0.086\text{Time} + T_i b_i + \varepsilon_i,$$

and rna.0 corresponding to the logistic model (4.1) are 0.183, 0.181, and 0.393, respectively. For the logistic model (4.1), the estimated coefficients of cd4.0 and rna.0 are 0.563 and 1.4, respectively. The estimated standard errors of cd4.0 and rna.0 are 0.181 and 0.393, while the estimated standard error of age is 0.154 with standard error 0.183, indicating that cd4.0 and rna.0 are more important than age in determining subgroup memberships. Based on (4.1), those with higher baseline scores of rna.0 are more likely to be categorized in the subgroup with more enhanced treatment effects compared to other patients. In particular, the treatment effects from the beneficial model are 1.749, 2.152, 2.204, and 2.092 at weeks 4, 8, 24 and 40, respectively.

When we add the incomplete samples with the sample size of 819, the estimated model is

$$\text{logit}(P(\delta_i = 1 | X_i, Z_i)) = -16.185 - 0.538\text{Age} + 0.551 \log \text{cd4.0} + 2.171 \log_{10} \text{rna.0}$$

Given $\delta_i = 1$, the treatment effect b_i is normal with means of 2.671, 2.923, 2.992, 3.061, 3.131 and 3.201 at weeks 4, 8, 24 and 40; and given $\delta_i = 0$, the treatment effect b_i is normal with means of 0.238, 0.356, 0.624, 0.717, 0.805 and 0.893, respectively, which are significantly smaller than those for $\delta_i = 1$. In addition, given δ_i and b_i ,

$$Y_i | (\delta_i, X_i, Z_i, T_i, b_i) = -0.212 - 0.027\text{Time} + T_i b_i + \varepsilon_i,$$

where $\varepsilon_i \sim N(0, 0.500R)$, where R is treated as a working correlation matrix, similar to the one in Table 3. The standard errors of the coefficient estimators are summarized in Web Table 3 in Web Appendix C.

For both models, we conclude that the subjects with higher baseline CD4 and R are more likely to benefit from the treatment. To examine our method more thoroughly, we ran the simulation with respect to the probability with which subjects would benefit more from the treatment. We select the top-benefiting subjects to form a targeted group, and calculate the treatment effects using the score functions S_1 as in (4.1), and S_2 as in (4.3) from the logistic models utilizing all time points, and S_3 as in Shen and He (2015) where only the responses at the 24th week are used. The

$$S_i = \beta_{1i}\text{Age} + \beta_{2i} \log \text{cd4.0} + \beta_{3i} \log_{10} \text{rna.0}, \quad i = 1, 2,$$

where the estimators of β_{1i} , β_{2i} and β_{3i} in S_i 's and their standard errors are listed in Web Table 3 in Web Appendix C.

A higher score on S_i corresponds to having a better chance to receive benefit from the treatment. Consequently, we calculate the scores in (4.5) for all subjects and rank them by the different quantiles $q = 0.1, 0.11, \dots, 0.9$, we select the subjects among the top $(1 - q) \times 100$ to form a target subgroup, and calculate the treatment effect for this selected subgroup at the same time point from where S_3 is calculated. Figure 2 presents the treatment effects of the selected subgroups for different quantile q 's using three different score functions. Figure 2 shows that when q is less than 0.5, that is, when we select a relatively large-size target subgroup, the three methods provide subgroups with similar treatment effects. As q gets larger, the treatment effects of the target subgroups formed by S_1 (green solid circles) and S_2 (blue crossings), are clearly above those of S_3 (green solid circles). In particular, the treatment effects of the target subgroups formed by the proposed score functions from S_1 and S_2 from the proposed model using longitudinal data are consistently with better treatment effects than S_3 . When $q > 0.5$, the subgroups formed by S_2 (blue crossings) have higher treatment effects than those formed by S_1 (red circles) mostly (about 80% times) for more samples.

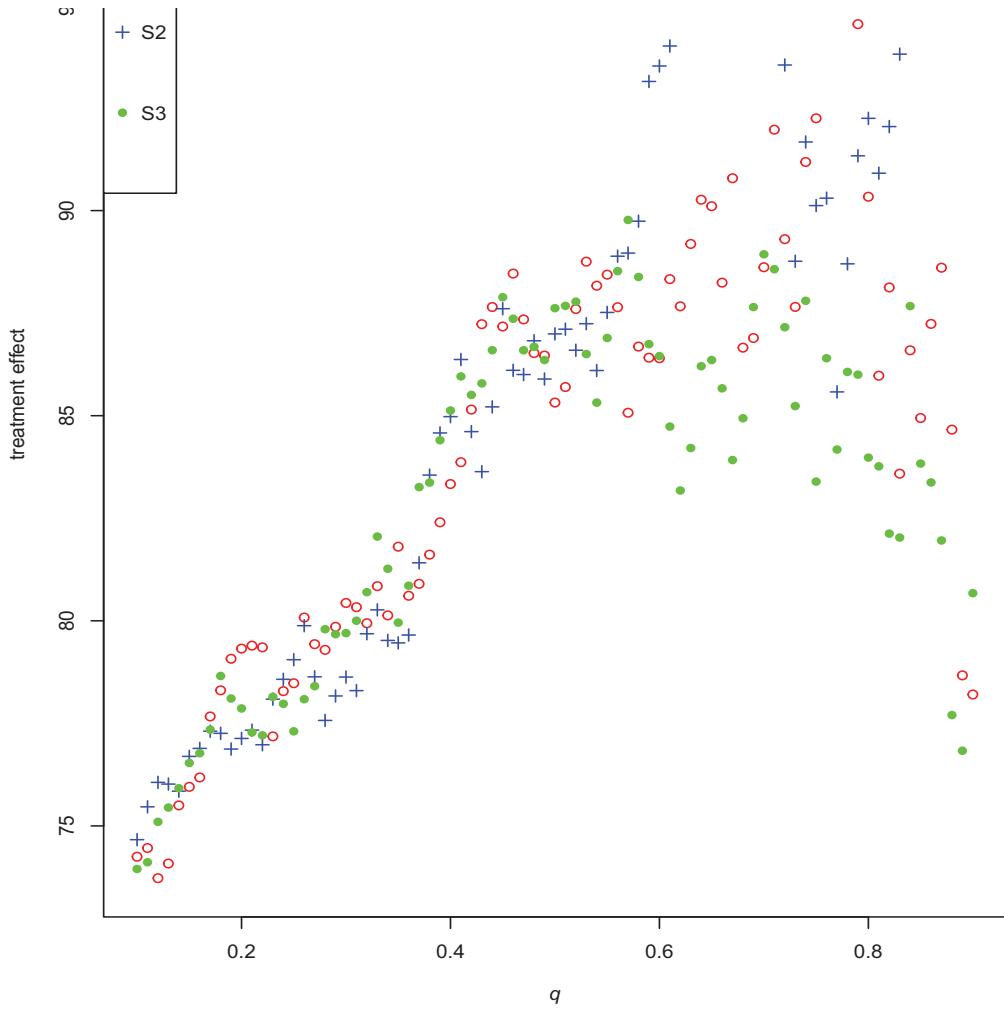


Figure 2. Treatment effects in selected subgroups from top scores by three different score functions S_1, S_2 and S_3

5. Discussion

In this paper, we propose a structured mixed-effects model for subgroup analysis of observations. In particular, we model the treatment effect as a random effect from a two mixture normal model, where the proportions of the mixture model are modeled using a model depending on some covariates. Through this structured model, we can simultaneously model the subgroup membership and the distribution of the response within the subgroups. An EM-type algorithm is used to obtain parameter estimation.

For balanced data, we can estimate the correlation matrix R from the M step directly. For unbalanced data, we assume correlation structures with an unknown parameter ρ (e.g., AR(1) or exchangeable), where ρ is obtained through moment estimation in the iterations, and each individual correlation matrix can be calculated based on the estimated ρ . The proposed model can address problems concerning both time-invariant treatment effect as in Section 2.1, a time-varying treatment effect as in Section 2.3. In addition, the time-varying model can be applied to cases where the treatment effect is linearly associated with other covariates besides time.

In our approach, we only consider the normal distribution of response for ease of interpretation. However, our method is capable of extending to binomial or Poisson distribution in ease of interpretation.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (115011690012), and the National Science Foundation (DMS 1613190 and DMS 182119). In addition, very grateful for constructive comments and suggestions from Associate Editor and referees.

Funding

This work was partially supported by the National Natural Science Foundation of China (115011690012), and the National Science Foundation (DMS 1613190 and DMS 182119).

ORCID

Annie Qu <http://orcid.org/0000-0002-8396-7828>

References

Altstein, L. L., G. Li, and R. M. Elashoff. 2011. A method to estimate treatment efficacy among late a randomized clinical trial. *Statistics in Medicine* 30 (7):709–717. doi:[10.1002/sim.v30.7](https://doi.org/10.1002/sim.v30.7).

Berger, J. O., X. Wang, and L. Shen. 2014. A Bayesian approach to subgroup identificat *Biopharmaceutical Statistics* 24 (1):110–129. doi:[10.1080/10543406.2013.856026](https://doi.org/10.1080/10543406.2013.856026).

Cacho, A., W. Yao, and X. Cui. 2018. Base-calling using a random effects mixture model on sequencing data. *Statistics in Biosciences* 10:3–19. doi:[10.1007/s12561-017-9190-3](https://doi.org/10.1007/s12561-017-9190-3).

Cai, T., L. Tian, P. H. Wong, and L. J. Wei. 2011. Analysis of randomized comparative clinic personalized treatment selections. *Biostatistics* 12 (2):270–282. doi:[10.1093/biostatistics/kxq060](https://doi.org/10.1093/biostatistics/kxq060).

Cleuz, G., O. Martin, and C. Lavergne. 2005. Mixture of linear mixed models for clustering gene ex from repeated microarray experiments. *Statistical Modelling* 5:1–25. doi:[10.1191/1471082X05st096](https://doi.org/10.1191/1471082X05st096).

Fan, A., R. Song, and W. Lu. 2017. Change-plane analysis for subgroup detection and sample size calc *of the American Statistical Association* 112 (518):769–778. doi:[10.1080/01621459.2016.1166115](https://doi.org/10.1080/01621459.2016.1166115).

Foster, J. C., J. M. Taylor, and S. J. Ruberg. 2011. Subgroup identification from randomized clinical tri *in Medicine* 30 (24):2867–2880. doi:[10.1002/sim.4322](https://doi.org/10.1002/sim.4322).

Fruhwirth-Schnatter, S. 2006. *Finite mixture and markov switching models*. New York, NY: Springer.

Hall, D. B., and L. Wang. 2005. Two-component mixtures of generalized linear mixed effects models for correlated data. *Statistical Modelling* 5:21–37. doi:[10.1191/1471082X05st090oa](https://doi.org/10.1191/1471082X05st090oa).

Hammer, S. M., K. E. Squires, M. D. Hughes, J. M. Grimes, L. M. Demeter, J. S. Currier, J. J. Eron, H. H. Balfour, L. R. Deyton et al. 1997. A controlled trial of two nucleoside analogues plus indinavir in human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. *The New England Journal of Medicine*. 337(11):725–733. doi:[10.1056/NEJM199709113371101](https://doi.org/10.1056/NEJM199709113371101).

Hu, J., W. L. Leite, and M. Gao. 2017. An evaluation of the use of covariates to assist in class enum growth mixture modeling. *Behavior Research Methods* 49:1179–1190. doi:[10.3758/s13428-016-0778](https://doi.org/10.3758/s13428-016-0778).

Huang, D., M.-L. Brecht, M. Hara, and Y.-I. Hser. 2010. Influences of covariates on growth mixture mod *of Drug Issues* 40:173–194. doi:[10.1177/002204261004000110](https://doi.org/10.1177/002204261004000110).

Jordan, M. I., and R. A. Jacobs. 1994. Hierarchical mixtures of experts and the EM algorithm. *Neural Computation* (2):181–214. doi:[10.1162/neco.1994.6.2.181](https://doi.org/10.1162/neco.1994.6.2.181).

Komarek, A., B. E. Hansen, E. M. Kuiper, H. R. van Buuren, and E. Lesaffre. 2010. Discriminan a multivariate linear mixed model with a normal mixture in the random effects distribution. *Statistica Neerlandica* 29:3267–3283. doi:[10.1002/sim.3849](https://doi.org/10.1002/sim.3849).

Li, M., and J. R. Harring. 2017. Investigating approaches to estimating covariate effects in growth mixture models: A simulation study. *Educational and Psychological Measurement* 77:766–791. doi:[10.1177/001316491771101](https://doi.org/10.1177/001316491771101).

Liang, K. Y., and S. L. Zeger. 1986. Longitudinal data analysis using generalized linear models. *Biometrika* 73:13–22. doi:[10.1093/biomet/73.1.13](https://doi.org/10.1093/biomet/73.1.13).

Lipkovich, I., A. Dmitrienko, J. Denne, and G. Enas. 2011. Subgroup identification based on differential recursive partitioning method for establishing response to treatment in patient subpopulations. *Journal of Clinical Medicine* 30 (21):2601–2621. doi:[10.1002/sim.4289](https://doi.org/10.1002/sim.4289).

Louis, T. A. 1982. Finding the observed information matrix when using the EM algorithm. *Journal of the Royal Statistical Society, Series B: Statistical Methodology* 44 (2):226–233.

Lu, X., and Y. Huang. 2014. Bayesian analysis of nonlinear mixed-effects mixture models for longitudinal heterogeneity and skewness. *Statistics in Medicine* 33:2830–2849. doi:[10.1002/sim.6136](https://doi.org/10.1002/sim.6136).

Muthén, B., C. H. Brown, K. Masyn, B. Jo, S.-T. Khoo, -C.-C. Yang, C.-P. Wang, S. G. Kellam, J. B. Cai, and J. B. Pitblado. 2002. General growth mixture modeling for randomized preventive interventions. *Biostatistics* 3:4.459. doi:[10.1093/biostatistics/3.4.459](https://doi.org/10.1093/biostatistics/3.4.459).

Muthén, B., and T. Asparouhov. 2009. Multilevel regression mixture analysis. *Journal of the Royal Statistical Society, Series A: Statistics in Society* 172 (3):639–657. doi:[10.1111/j.1467-985X.2009.00589.x](https://doi.org/10.1111/j.1467-985X.2009.00589.x).

Ng, S. K., G. J. McLachlan, K. Wang, L. B. Jones, and S. Ng. 2006. A mixture model with random-effects for clustering correlated gene-expression profiles. *Bioinformatics* 22 (14):1745–1752. doi:[10.1093/bioinformatics/btl165](https://doi.org/10.1093/bioinformatics/btl165).

Nylund-Gibson, K., and K. E. Masyn. 2016. Covariates and mixture modeling: Results of a simulation study on the impact of misspecified effects on class enumeration. *Structural Equation Modeling: A Multidisciplinary Journal* 23:782–797. doi:[10.1080/10705511.2016.1221313](https://doi.org/10.1080/10705511.2016.1221313).

Proust-Lima, C., J.-F. Dartigues, and H. Jacqmin-Gaddaa. 2016. Joint modeling of repeated multi-level measures and competing risks of dementia and death: A latent process and latent class approach. *Journal of Clinical Medicine* 35:382–398. doi:[10.1002/sim.v35.3](https://doi.org/10.1002/sim.v35.3).

Proust-Lima, C., V. Philipps, and B. Liquet. 2017. Estimation of extended mixed models using latent class processes: The R package LCMM. *Journal of Statistical Software* 78:1–56. doi:[10.18637/jss.v078.i02](https://doi.org/10.18637/jss.v078.i02).

Shen, J., and X. He. 2015. Inference for subgroup analysis with a structured logistic-normal mixture model. *Journal of the American Statistical Association* 110 (509):303–312. doi:[10.1080/01621459.2014.894763](https://doi.org/10.1080/01621459.2014.894763).

Shen, J., Y. Wang, and X. He. 2017. Penalized likelihood for logistic-normal mixture models with unstructured variance components. *Statistica Sinica* 27:711–731.

Song, Y., and G. Y. Chi. 2007. A method for testing a pre-specified subgroup in clinical trials. *Statistics in Medicine* 26:3535–3549. doi:[10.1002/sim.2825](https://doi.org/10.1002/sim.2825).

Su, X., C. L. Tsai, H. Wang, D. M. Nickerson, and B. Li. 2009. Subgroup analysis via recursive partitioning. *Machine Learning Research* 10:141–158.

Tang, X., and A. Qu. 2016. Mixture modeling for longitudinal data. *Journal of Computational and Graphical Statistics* 25:1117–1137. doi:[10.1080/10618600.2015.1092979](https://doi.org/10.1080/10618600.2015.1092979).

Turner, T. R. 2000. Estimating the propagation rate of a viral infection of potato plants via mixture modeling. *Journal of the Royal Statistical Society, Series C: Applied Statistics* 49:371–384. doi:[10.1111/1467-9899.00200](https://doi.org/10.1111/1467-9899.00200).

Verbeke, G., and E. Lesaffre. 1996. A linear mixed-effects model with heterogeneity in the random-effects coefficients. *Journal of the American Statistical Association* 91 (433):217–221. doi:[10.1080/01621459.1996.1047635](https://doi.org/10.1080/01621459.1996.1047635).

Wu, R., M. Zheng, and W. Yu. 2016. Subgroup analysis with time-to-event data under a logistic-cox model. *Scandinavian Journal of Statistics* 43 (3):863–878. doi:[10.1111/sjos.v43.3](https://doi.org/10.1111/sjos.v43.3).

Xu, W., and D. Hedeker. 2001. A random-effects mixture model for classifying treatment response in clinical trials. *Journal of Biopharmaceutical Statistics* 11:253–273. doi:[10.1081/BIP-120008848](https://doi.org/10.1081/BIP-120008848).

Yuksel, S. E., J. N. Wilson, and P. D. Gader. 2012. Twenty years of mixture of experts. *IEEE Transactions on Neural Networks and Learning Systems* 23 (8):1177–1193. doi:[10.1109/TNNLS.2012.2200299](https://doi.org/10.1109/TNNLS.2012.2200299).

Zhao, L., L. Tian, T. Cai, B. Claggett, and L. J. Wei. 2013. Effectively selecting a target population in a comparative study. *Journal of the American Statistical Association* 108 (502):527–531. doi:[10.1080/01621459.2013.770705](https://doi.org/10.1080/01621459.2013.770705).