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Subgroup analysis based on structured mixed-effects mc
longitudinal data

Juan Shen? and Annie Qu @

aDepartment of Statistics, Fudan University, Shanghai, China; PDepartment of Statistics, University ¢
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ABSTRACT ARTICLE
In recent years, subgroup analysis has emerged as an important tool to identify Received 1
unknown subgroup memberships. However, subgroup analysis is still under- Accepted 2
studied for longitudinal data. In this paper, we propose a structured mixed- KEYWORE
effects approach for longitudinal data to model subgroup distribution and EM algoritt
identify subgroup membership simultaneously. In the proposed structured heterogene
mixed-effects model, the heterogeneous treatment effect is modeled as mixed-effe
a random effect from a two-component mixture model, while the membership mixture me
of the mixture model is incorporated using a logistic model with respect to identificatic

some covariates. One advantage of our approach is that we are able to derive
the estimation of the treatment effects through an EM-type algorithm which
keeps the subgroup membership unchanged over time. Our numerical studies
and real data example demonstrate that the proposed model outperforms
other competing methods.

1. Introduction

Subgroup analysis has emerged as an important tool in various applications such as
personalized medicine, and market segmentation. The earlier development of subg
mainly focused on analysis with given subgroup memberships, such as in Song and C
Altstein et al. (2011), among others. In recent years, there has been growing interest
subgroups whose memberships are unknown. Su et al. (2009), Foster et al. (2011) a
et al. (2011) utilize tree-based methods to categorize subgroups with an enhanced tre
Cai et al. (2011) and Zhao et al. (2013) derive a parametric scoring system to facilit
assignments to new patients. A Bayesian method for multiple subgroup analysis is
Berger et al. (2014). Shen and He (2015) and Shen et al. (2017) also propose a struct
mixture model that simultaneously models subgroup membership and treatment out
each subgroup as functions of other covariates. Wu et al. (2016) and Fan et al. (201
model in Shen and He (2015) for Cox models and semi-parametric models.

However, not much work has been done in subgroup identification for longitudi
which occur frequently in biomedical studies since responses are usually collected ove
numerical studies provided by the aforementioned papers, they consider the data at o
point only, even though more longitudinal data are actually available. This could lea
information as not all time points are utilized. In this paper, our goal is to ident
through a structured mixed-effects model for longitudinal data.

Our method is motivated by the Aids Clinical Trials Group 320 study (ACTG320) (]
1997) on the human immunodeficiency virus type 1 (HIV-1) infection where the in
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effects. The targeted outcome of the treatment is to increase or to inhibit the declin
counts. Therefore, the observed response of this study is the change in CD4 counts a
points.

For longitudinal data analyses, there are two main approaches in general. One is
estimating equation method, such as in Liang and Zeger (1986) and Tang and Qu (20
the marginal estimating equations approach in Tang and Qu (2016) is designed for gr
ship changing over time, which is not applicable as we require that the subgroup
remain unchanged over time in clinical trials case here.

Another popular approach is to apply a random-effects model to incorporate the
repeated measurements from the same subject. In addition, to capture the heterogene:
population, the random effects are viewed to follow a mixture distribution with con
tions. For example, Verbeke and Lesaffre (1996) apply a linear mixed-effects model w
effects and random effects, and the random-effects are formulated from normal n
model configurations are widely used in various applications, such as longitudinal clin
and Hedeker (2001)), next-generation sequencing data (Cacho et al. (2018)), and 1
expression data (Celeux et al. (2005)). To study the association of the latent class mem
the covariates, the group structure is further modeled through another level of model.
Lin et al. (2002) propose a latent class approach to jointly model and estimate long
where the latent class is determined by some covariates through a multi-logit model. Ir
Asparouhov (2009), a two-level mixture model is proposed to investigate gender .
mathematical achievement from the US National Education Longitudinal Survey.
Komarek et al. (2010) introduce a two-step method to classify subjects into multiple g1
Lima et al. (2016) propose a joint model to analyze multiple longitudinal markers
causes of progression simultaneously based on a latent process and latent classes. L
(2014) develop a nonlinear mixed-effects mixture model for longitudinal data to ac
geneity and skewness. The misspecified effects on classes are examined in multiva
models through Monte Carlo simulations in Nylund-Gibson and Masyn (2016) .

In general, mixture models are widely applicable in many fields; for instance see T
Lindsay (1995) and Fruhwirth-Schnatter (2006). Mixture models with covariates-depe
are popular in social sciences for individual longitudinal profiles where latent classes a
dependent are represented as the growth mixture framework (Hu et al. 2017; Huang
and Harring 2017; Muthen et al. 2002; Proust-Lima et al. 2017). Such models are a
“mixture of experts” models (Jordan and Jacobs 1994; Yuksel et al. 2012) in compute

In this paper, we adopt a mixed-effects model where the treatment effect is modelec
effect from a two-component mixture model, and the membership of the mixture mc
modeled using a logistic model of other covariates. There are four main advantages of
method. First, we extract a subgroup with more efficient estimation of treatmen
longitudinal data information is fully utilized, compared to existing ones using data
time point only. The random-effects model also enables us to incorporate dependency
subject. Second, the proposed method ensures that the constraint of unchanged subgr
ship is satisfied. Third, the proposed method models the subgroup membership and th
of each subgroup jointly, which provides better prediction and interpretation of
Fourth, we provide a continuous score function for future subjects, and a higher =
a higher chance of enhanced treatment effect. In addition, we provide an efficient
algorithm in our estimation.

The rest of the paper is organized as follows. We elaborate the proposed methodolog
where the structured mixed-effects model is introduced, and estimation and further



2. Methodology
2.1. Structured mixed-effects models

In this section, we illustrate the structured mixed-effects model for subgroup analysis. ]
the random effects are assumed to follow a normal mixture model (Verbeke and Le:
That is, for each observation, the response y; € R"*! is modeled as

yi=Xia+Zibj +¢&,i=1,--- N,

where X; and Z; are vectors of the covariate, « is the fixed effect, and b; is the vector ¢
specific random effect following a normal mixture distribution:

bi~pN(u;, D) + (1 — p)N(yy, D).

In Xu and Hedeker (2001), the random effect in (2.1) is assumed to follow a k — |
mixture model with equal covariance X but different means y,,-- -, 4, and the prop
sponding to mixture components are constants p;, - - -, px. An EM algorithm is derived
estimation where the random effects are treated as missing. Based on the joint distribut
the posterior distribution of b; is derived given y; and the current parameter p, y,, y,, a
the E step, the posterior mean can be calculated. A similar strategy is also applied in H
(2005) and Ng et al. (2006) to model correlated data with unknown clusters.

In our approach, we incorporate covariance information to characterize subgroup
where the mixture proportion also depends on covariates, such as the baseline med
ments in the ACTG320 study.

We first consider a simple case where there are two subgroups capturing two differ
random effects with different means. Let Y;; be a continuous response fori = 1,---,n;
X; € R are covariates associated with the subgroup membership; and Z; € R are
covariates associated with the subgroup mean. We introduce a latent subgroup, §; €
can be modeled through a logistic regression of X;. That is,

logit(P(8; = 1|1X;,Z;)) = X['y.
Given §;, the treatment effect b; is a random vector following a normal mixture model
if §; =1 and y, if §; = 0, and the covariance matrix D; = 021, %n,- Let Y; = (Yiq,---

and Z; € R1*" be the matrix of {Z; : t = 1,...,n;}. Given the subgroup indicator §;
covariate information, Y; is normally distributed.

Yi|(8i, X1, Zi, Ty, bi) = Zl a+ Tib;i + &,

where £~N(0,0%R,,«y,), and T; € {0, 1} with 1 for treatment and 0 for control group
effect b;~N(u;, 0°1,,+n, ), independent of the noise ¢;. Then, conditional on X;, Z;, T; an

are jointly normal:
Y,‘ ZITOC —+ T,[/l Zi T,‘D,'
~ N i ,
bl' [/tz- TiDi Di

where y, = u,8; + puy(1 — 8:), D; = 0°Ly,xn,;, and Z; = T?D; + o*R;. For balanced data, v
the i index for R; and D;. Let Y; = (Yi,. .., Y,-,,i)T, then we can also write the model as
Fort=1,...,n;,



pasea on (2.4), tne posterior mean or v; given A;, Z;, 1;,0;, ana 1; 18
Z;i = E[bi’Yi, 61] = U; + T,DZZ_IQ/I — ZZTOC — Tl‘l/ll)

In addition, for each subgroup k = 0,1, let

b = py + TDZ (i — Z] & — Tigyy),
where the corresponding covariance matrix is

D; = D; — T?’D;2; ' D;.

Then, the second moment of random effects b; conditional on latent variable §; and

Bik - E[blbIT|5, - k, Yl] - I;ikg;ll; + bi-

For simplicity, we first consider the balanced case where n; = ny,R; = R, for all i =
parameters we intend to estimate are 0 = (y, &, y;, Hy, 02, R). When u,#pu,, the n
defined. Therefore, without loss of generality, we assume that y, >y, and provide
algorithm for parameter estimation in the next section.

2.2. Estimation

In this section, we treat the random effect b and the indicator § as missing. The log-lik
hypothetical complete data (Y, d, b) is

Cl(0) =D " {8ilogn(x[y) + (1 — &) log(1 — n(x]y))}
—+ Z?:l {5, lOg (p(yi,Z;TOC + Tib,’, O'ZR) —+ (1 — 81) IOg ¢(yi,ZiT0£ —+ Tibi, C
+> " {8ilog ¢(bi,py, a°1) + (1 — 8) log ¢ (bi, g, 0° 1)},

where 7(x) = 1/(1 +e*) and ¢(y,u,X) is a multivariate normal density at y with
covariance matrix X.
We implement the EM-type algorithm as follows. Given current parameter estima

next step, we have Q(Q\@O)) = I, + I, where
L= " {E[8|Y]logn(x]y) + E[(1 — &;)|¥]log(1 — n(x]y))},

and

L= S PO MY ) bk — ) + (D)

202

n 1 P(8; = k|Y) . T . 2
DD D s Y- ZT& — Tiby) RY(Y; — ZT& — Tiby) + T

— Nlog(o®) — glog IR|,

where D; is defined in (2.8), and N = > n; (= nny for the balanced case).
We estimate 0 at the (j + 1)th step:

60V = argmaxsQ(6]6Y).



anduﬁt tfle linear mc;del in (2.3) wi:h b; substituted b)\f ‘141’5,- + po(1 —8;) to ob‘E
the initial parameters. ‘
(2) (E Step) Given the current parameter oY),
(@) Fori=1,---,n, let
pin = P(8 = 1|y;, 09)
_ n (YD) g (i, 27 o) + Ty, 20))
m(x[y0)p(yis ZT a0 + Tyt 20) + (1 = m(xy9)) (i, ZT o) + Tip], 2

and pjo = 1 — p;;, where ¢(-,u, %) is the probability density function ¢
vector with mean y and covariance matrix X.

(b) For each subgroup k = 0,1, calculate by following (2.7), where the «
covariance matrix D; is calculated via (2.8) and By is obtained via (2.9).
(3) (M Step)
(a) Calculation of the subgroup membership parameter y:

(+1)

YUY = argmax,p;i log m(x]y) + piolog(1 — 7(x]y)).

(b) Calculation of the subgroup mean parameters: for k = 0, 1, we have

Gy _ 1 N~ g
,uk Zpikzplk ik

i=1

(c) Calculation of the parameter « associated with covariates Z:

. _1 n
i) = {3z Y {30 S IR (Y= T

(d) Calculation of the variance parameters:

(1)) ALt A
2N

where Ay = 31, 3o pul(bie — wy)" (bix — ) + tr(Di)] and Ay =3
[(Yl — ZZ'OC — Tibik)TR_l(Yi — ZiOC - Tibﬂ) + Tiztr(R_lbi))], and

. 1 n 1 ~ ~ T I
RO+ — Wzizl > o Pl (Yi = Zis — Tiby) (Yi — Zis — Tiby)" + T; D]
(4) (Stopping Criterion) Iterate E-step and M-step until |8/ — 99| < 1073,

Since the EM-type algorithm only guarantees a local optimum, in practice we
multiple starting values and searching for the best one among all local optima. In ¢
studies, we try about 10 different starting values by applying different §¢°s in the initi

In the EM-type algorithm, the standard error of the estimator can be obtained fo
(1982). That is, for the i-th observation, let S; and B; be the first derivative and the ne

derivative of the complete log-likelihood in (2.10), respectively. Let 6 be the estimatc



n T
o Zi;&j (E(éi,hf\wf;é) Si) (E(5j7b1|wi§é) Sf) )

From (2.10), the information matrix I is a block diagonal for y and the rest of the para
the block diagonal matrix associated with y is

Bi(y) = n(X['y) - {1 — n(X[y)}X:X],

and the corresponding score function associated with y is

Si(y) = {8 — n(X[y)}X.

Therefore, the standard errors for  and the other estimators can be calculated se
standard error calculation for y only involves B;(9), Si(y), and Equation (2.16). '
errors of y are useful to identify the subgroup membership. In addition, we can
Wald test or construct confidence intervals to choose the covariates which are re
subgroup membership. For example, if the absolute coefficient estimator corr
a covariate is more than twice its standard error, then this covariate is likely i
subgroup identification. The calculation of standard errors for the rest of the |
provided in Web Appendix A.

2.3. Extension to model with time interaction

In Section 2.1, we assume that the treatment effect is normally distributed with a cc
However, in general, the treatment effect could change over time. In this subsection, w:
mean parameter to be associated with time. Given the subgroup indicator variable §; =

bi ~ N(py Time + g, D).

The model of other parameters is similar as in Section 2.1.

Given X;,Z;,T; and §;, Y; and b; are jointly normal distributed as ir
y; = (u;, Time + p,,)8; + (4o, Time + p,,)(1 — 8;); for each subgroup k = 0,1, the p«
of b; given X;, Z;, T}, 6;, and Y; is

I;ik = pyy Time + py0 + TiDz_l{)’i - ZiT“ — Ti(uy,, Time + py) }-

We apply the EM-type algorithm similarly as in Section 2.2 to estimate the parameters.
we compute p; as in (2.11); the conditional mean of the random effect is calculated
k = 0, 1, and the conditional variance of the random effect is obtained via (2.8).

In the M step, the subgroup membership parameter y is estimated similarly as in
that the subgroup mean parameters (y,,,,,) satisfy the following equations:

(D" pitime™ Time )y, + (3 pit i Time )y = > pibf Time,
(ZPiTimeTlnixl)#u + <2Pi17{,x11nixl).‘"10 = ZpibiTllnixl-

Similarly, the mean parameters (u,,,H,,) for the other subgroup are defined as the
equations similar to (2.21), where p;, bi1,u,;, and u,, are replaced by gj, b,
respectively. For the rest of the parameter estimation and standard error cal
computation follows in a similar fashion as in Section 2.2, and the details are
Web Appendix A.



we may nave unpalanceda aata winere te supjects are measured at dilferent tume ponts. 1 n
to impose a specific working correlation structure with some unknown correlation parame
correlation matrix R;(p) is the exchange structure or the first-order autoregressive with d;
sizes n;, and this leads to the estimation of p instead of estimating R in the M step. For sim
apply the moment estimator instead of maximizing the Q function to obtain p.

From (2.4), given §; = k(k = 0, 1), we have E(Y;) = Zla + Ty, and Var(Y;) = %I,
Let ¢; = y; — Zl'a — Tiji,; where k = 1 if P(§; = 1) >0.5 and otherwise 0. In addition, b
€i~Ny, (0, 721, <, + 0*Ri(p)). Then, given the estimated residual é;,i = 1,...,n,j =1
be estimated as follows.

(1) For exchangeable correlation structure with parameter p,

. 1 . ..
P = PS5 —1) Zze’jeik;

i—1 1i(ni i=1 j#k

(2) For AR(1) correlation structure with parameter p,

Vl,'—l

. 1 . N
p = - Eijei(]‘+1)-
TS 1) 2 2

3. Simulation studies

In this section, we perform simulation studies to compare the proposed method to
under various settings. First, we generate data based on the proposed models, that is
and (2.3) with time-invariant treatment effect, where the coefficients are specified in 1
with covariance structures specified as exchangeable and AR(1). Next, we genera
a misspecified model with an error in (2.3) following a ¢ distribution to study the
our method. We also study the unbalanced case and report the results in Table 4. We
mean-squared errors of the proposed estimators under different correlation structures,
true and working correlation structures, and the empirical estimator from the algoritl

In Tables 1 and 2, we provide the mean and standard deviations of the estimates u
scenarios. The true parameter is: y = (—1,1),a = (—1,1),0 = 1, 4, = (10, ...,10), 4,
and the sample size is 100. The estimations of all the parameters under various settiny
ably close to the true parameters. In particular, the standard errors calculated by (16) «
standard deviations for y. For example, in the first setting of Table 1, when the mod
specified, the standard deviations for y from 250 simulations are 0.55 and 0.40, while
errors by (2.16) are 0.52 and 0.40, respectively. Additional estimation results for d
based on Model (2.2) and (2.19) with time-varying treatment effects are shown in W
Web Appendix B.

Next, we compare the estimation performances for different sample sizes. For mod
time effect, we generate data with sample sizes of 50, 100, and 200, and obtain the est
the parameters. In Figure 1, we show the box plots for the estimations of the paramet
and «;, where the true values are 1, 2, 1, and 1, respectively. Figure 1 indicates clearly
sample sizes increase from 50 to 200, the variances of the estimators get smaller, and
the estimators get closer to the true parameters. This implies that when the mods
specified, the proposed estimators are consistent.



est 9.99 10.02 9.98 9.99 9.99 1.1 1.08

sd 0.29 0.27 0.31 0.29 0.31 0.55 0.40
s.e. 0.29 0.30 0.29 0.30 0.30 0.52 0.40
Ho a
true 0.00 0.00 0.00 0.00 0.00 —-1.00 1.00
est —0.01 0.01 0.00 —0.03 0.00 —-0.99 1.00
sd 0.31 0.30 0.28 0.29 0.29 0.09 0.06
s.e. 0.29 0.30 0.30 0.30 0.30 0.09 0.05
AR(1) with p = 0.8
Hy 14
true 10.00 10.00 10.00 10.00 10.00 —-1.00 1.00
est 9.99 10.01 9.98 9.99 9.99 -1.11 1.08
sd 0.30 0.30 0.31 0.30 0.32 0.55 0.40
s.e. 0.34 0.32 0.33 0.33 0.33 0.59 0.47
Ho a
true 0.00 0.00 0.00 0.00 0.00 —-1.00 1.00
est —0.01 0.00 0.01 —0.03 —0.00 —-0.99 1.00
sd 0.31 0.32 0.30 0.30 0.30 0.15 0.09
s.e. 0.27 0.27 0.27 0.26 0.27 0.09 0.05
Exchangeable with p = 0.2
Hy 14
true 10.00 10.00 10.00 10.00 10.00 —-1.00 1.00
est 9.99 10.01 9.98 9.99 9.99 -1.11 1.08
sd 0.29 0.27 0.31 0.29 0.31 0.55 0.40
s.e. 0.28 0.27 0.27 0.27 0.27 0.42 0.39
Ho a
true 0.00 0.00 0.00 0.00 0.00 —-1.00 1.00
est —0.01 0.01 0.01 —0.03 0.00 —-0.99 1.00
sd 0.31 0.30 0.28 0.29 0.29 0.11 0.07
s.e. 0.29 0.29 0.29 0.30 0.30 0.09 0.06
Exchangeable with p = 0.8
Hy 14
true 10.00 10.00 10.00 10.00 10.00 —-1.00 1.00
est 9.98 10.01 9.98 9.99 9.99 —1.11 1.08
sd 0.30 0.29 0.31 0.30 0.32 0.55 0.40
s.e. 0.32 0.31 0.31 0.31 0.32 0.45 0.32
Ho a
true 0.00 0.00 0.00 0.00 0.00 —-1.00 1.00
est —0.02 0.00 0.01 —0.03 —0.01 —0.99 1.00
sd 0.32 0.32 0.31 0.30 0.30 0.16 0.10
s.e. 0.31 0.32 0.32 0.32 0.32 0.08 0.06

In Table 3, the true error in (2.3) is generated from ¢ distributions with degrees of fre
respectively, or lognormal distributions. However, we assume that the errors follow a no
tion. The estimation for y's,y, and « still remains reasonably close to the true parameter
when the error follows a ¢ distribution with degrees of freedom 3, we multiply 1/1/3 to e
variance remains 1. For the same reason, when the error follows a ¢ distribution with degr:
4, we multiply by /1/2. For the error of t3, the estimation of ¢* assuming a normal dis
has mean 1.02; while for the error of ¢4, the estimation of 6> has mean 0.98. In general, t]
of the parameters remain reasonable as long as the true error is a t distribution with a su
degree of freedom. Meanwhile, when the error follows a log-normal distribution with pa



true 10.00 10.00 10.00 10.00 10.00 -1.00 1.00

est 9.96 9.99 9.96 9.97 9.98 -1.11 1.08
sd 0.31 0.30 0.32 0.30 0.32 0.55 0.40
s.e. 0.33 0.32 0.32 0.32 0.32 0.47 0.29
Ho a
true 0.00 0.00 0.00 0.00 0.00 -1.00 1.00
est 0.00 0.02 0.02 -0.01 0.01 -0.99 1.00
sd 0.32 0.33 0.32 0.31 0.31 0.16 0.10
s.e. 0.30 0.30 0.31 0.31 0.30 0.09 0.06
AR(1) with p = 0.8
My 14
true 10.00 10.00 10.00 10.00 10.00 —-1.00 1.00
est 9.99 10.01 9.98 9.99 9.99 -1.11 1.08
sd 0.30 0.30 0.31 0.30 0.32 0.55 0.40
s.e. 0.33 0.34 0.33 0.34 0.33 0.54 0.44
Ho a
true 0.00 0.00 0.00 0.00 0.00 -1.00 1.00
est —-0.01 0.00 0.01 -0.03 —-0.00 -0.99 1.00
sd 0.31 0.32 0.30 0.30 0.30 0.15 0.09
s.e. 0.30 0.30 0.30 0.29 0.29 0.16 0.10
Exchangeable with p = 0.2
My 14
true 10.00 10.00 10.00 10.00 10.00 —-1.00 1.00
est 9.99 10.01 9.98 9.99 9.99 -1.11 1.08
sd 0.29 0.27 0.31 0.29 0.31 0.55 0.40
s.e. 0.31 0.30 0.30 0.31 0.30 0.49 0.37
Ho a
true 0.00 0.00 0.00 0.00 0.00 —-1.00 1.00
est —0.01 0.01 0.00 —0.03 0.00 —0.99 1.00
sd 0.31 0.30 0.28 0.29 0.29 0.11 0.07
s.e. 0.30 0.29 0.29 0.28 0.28 0.12 0.08
Exchangeable with p = 0.8
My 14
true 10.00 10.00 10.00 10.00 10.00 —-1.00 1.00
est 9.96 9.99 9.96 9.97 9.98 -1.11 1.08
sd 0.31 0.30 0.32 0.30 0.32 0.55 0.40
s.e. 0.35 0.36 0.37 0.35 0.36 0.56 0.51
Ho a
true 0.00 0.00 0.00 0.00 0.00 —-1.00 1.00
est 0.00 0.02 0.02 —0.01 0.01 —0.99 1.00
sd 0.32 0.33 0.32 0.31 0.31 0.16 0.10
s.e. 0.36 0.34 0.35 0.35 0.35 0.18 0.11

where the value of the parameter (y, 0) is specified in the table, we rescale the error first

its mean exp(u + 02/2) and dividing its standard variation \/(exp(02) — 1) exp(2u + o
ing the data. The slope of y from 250 datasets has a mean 1.06 and a standard deviation o
the results when the error is generated from a normal distribution in Table 1 of Web S
Material where the same parameter has a mean 1.09 and a standard deviation 0.45 from «
The estimations of other parameters are also sound in Table 3 when a lognormal distribut;
on the error term. This confirms that the estimation is also robust against different error
Next, we evaluate the performance of our method under the unbalanced design. \
same simulation setting as in Table 2 for Model (2.2) and (2.3) but allow the data
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Figure 1. Box plots of the estimates for sample sizes 50, 100, and 200 for model (2.2) and (2.19).

Table 3. The mean and standard deviations of all the parameters from 250 experiments for model (2.2)
and the random error follows a t or lognormal distributions.

Hio H1q Hoo Ho1 14
Random error follows t; x /1/2
true 1 2 0 1 -1 1 -1 1
est 0.94 2.01 0.06 0.99 -1.11 1.10 -1.01 1.01
sd 0.35 0.09 0.37 0.09 0.56 0.46 0.16 0.10
Random error follows t; x /1/3
true 1 2 0 1 -1 1 -1 1
est 0.95 2.00 0.13 0.98 -1.09 1.08 —-1.02 1.01
sd 0.36 0.10 2.15 0.40 0.67 0.45 0.16 0.11
Random error follows centered lognormal(0,1)
true 1 2 0 1 -1 1 -1 1
est 0.94 1.99 -0.00 0.98 -1.03 1.06 -1.00 1.01
sd 0.32 0.09 0.33 0.08 0.57 0.42 0.13 0.10
Random error follows centered lognormal(1,1)
true 1 2 0 1 =1 1 -1 1
est 0.94 1.99 —0.00 0.98 -1.03 1.06 -1.00 1.01
sd 0.32 0.09 0.33 0.08 0.57 0.42 0.13 0.10




true 10.00 10.00 10.00 10.00 10.00 -1.00 1.00
est 9.98 9.95 9.97 10.03 9.98 -1.12 1.12
sd 0.38 0.38 0.39 0.44 0.55 0.57 0.43
Ho a
true 0.00 0.00 0.00 0.00 0.00 —1.00 1.00
est 0.04 0.04 0.06 0.01 0.02 —1.00 1.00
sd 0.52 0.57 0.56 0.57 0.71 0.12 0.08
Exchangeable with p = 0.2
Hq )4
true 10.00 10.00 10.00 10.00 10.00 —1.00 1.00
est 10.00 9.99 9.94 9.93 9.97 -1.07 1.08
sd 0.58 0.57 0.58 0.64 0.67 0.54 0.41
Ho a
true 0.00 0.00 0.00 0.00 0.00 —1.00 1.00
est 0.01 0.05 0.07 0.06 0.09 -1.00 1.00
sd 0.49 0.51 0.49 0.47 0.56 0.12 0.08

randomly. Specifically, for each subject, we generate 5 observations but only ke
observations randomly. The mean and standard deviations of all the parameter est
250 experiments are reported in Table 4, where correlation p is estimated via (2.22) anc
exchangeable or AR(1) structure, respectively. Table 4 shows that the proposed met
reasonably well under the unbalanced data setting.

In longitudinal data analysis, the true correlation structure is often unknown, and it
assume a working correlation structure instead. In the following, we compare our esti
we apply the true and the working correlation structures, in addition to an empir
correlation from the M step. Table 5 provides the means, standard deviations, and
errors (MSE) from 250 simulations for the model without time interaction under the tr
structures of AR(1) or exchangeable with p = 0.8. In general, the MSE is the smallest -
correlation structure is incorporated, and the next most efficient estimator is based on -
estimated correlation structure. For example, when the true correlation structure is Al
of the slope estimator y is 0.221 under the true correlation structure while the MSE of y
empirical correlation estimator is applied.

In Table 5, we also provide estimation results if the correlation information is ignored.
EM algorithm to obtain parameter estimators under the independent assumption, denot
as in the table. Specifically, the MSE’s of the parameter estimators assuming independc
than twice those incorporating correlation structures. For example, when the true correlz
is AR(1), the MSE of y assuming independence increases to 0.379. Therefore, it is
incorporate correlation information to achieve consistent and efficient estimation for lon,

4, Data analysis

In this section, we analyze longitudinal data from the Aids Clinical Trials Grot
(ACTG320). In particular, we are interested in identifying a subpopulation which
from the treatment. The CD4 cell counts are measured at the baseline, and the 4, 8.
week. The response variable is the CD4 change at the 4,8,24, and 40th week, an
cd4.4,cd4.8,cd4.24, and cd4.40, respectively. The relevant covariates include baselir
acid (rna.0), which is similar to DNA and plays essential roles in coding, decoding, r«
expression of genes. Other baselines are CD4 (cd4.0) and age. The summary statistic



true 1 2 0] I -1 I =1
AR(1) with p =0.8

TRU est 0.967 1.997 0.017 1.000 -1.120 1.095 —0.993 1
sd 0.350 0.095 0.349 0.090 0.584 0.443 0.152 (
MSE 0.147 0.034 0.147 0.033 0.366 0.221 0.048 (
Est est 0.969 1.997 0.013 1.001 -1.123 1.096 —0.991 1
sd 0.351 0.095 0.348 0.090 0.587 0.447 0.152 (
MSE 0.149 0.035 0.148 0.034 0.371 0.226 0.049 (
Ind est 1.025 1.988 —0.035 1.007 —-1.097 1.073 —0.995 1
sd 0.352 0.097 0.347 0.092 0.586 0.441 0.150 (
MSE 0.142 0.027 0.138 0.026 0.361 0.213 0.041 (
MAR est 1.223 1.942 —-0.216 1.052 —-0.926 0.917 —0.991 (
sd 0.415 0.148 0.390 0.150 0.597 0.489 0.151 (
MSE 0.312 0.162 0.292 0.162 0.496 0.379 0.163 (
Exchangeable with p = 0.8
TRU est 0.953 2.001 0.029 0.999 -1.121 1.094 —0.996 1
sd 0.326 0.079 0.328 0.075 0.585 0.447 0.166 (
MSE 0.133 0.033 0.134 0.032 0.369 0.227 0.054 (
Est est 0.954 2.001 0.026 0.999 -1.121 1.094 —0.995 1
sd 0.326 0.079 0.329 0.075 0.586 0.448 0.167 (
MSE 0.133 0.033 0.135 0.033 0.370 0.228 0.055 C
Ind est 1.037 1.986 —0.056 1.012 —1.086 1.063 —0.994 1
sd 0.327 0.083 0.323 0.078 0.583 0.445 0.164 C
MSE 0.125 0.025 0.122 0.024 0.357 0.215 0.044 (
MAR est 1.230 1.956 —-0.212 1.039 —-1.013 0.999 —0.984 (
sd 0.386 0.083 0.388 0.078 0.599 0.448 0.156 C
MSE 0.275 0.133 0.277 0.132 0.485 0.327 0.150 (

sizes of data are provided in Web Table 2 in Web Appendix C. Specifically, there are 1(
the beginning of the study, and the sample size drops to 564 by the end of the stuc
include the patients who have completed observations during the entire study, the sam]
However, our method allows unbalanced data, therefore, we include the patients with
time-point observations, that is, those who drop out at least after the 24th week, and
increasing sample size of 819. The sample sizes from the control and treatment gro
similar among the patients. In addition, we apply log transformation on the RNA and
in the model and standardize the response variable.

We denote X as covariates of baselines, such as age, cd4.0, and rna.0. The covariate
the intercept and time variable. Through the EM-type algorithm described in Section
we investigate the time-invariant model based on the complete data (sample size
unbalanced data (sample size 819). The corresponding estimators of the parameters at
Web Table 3 in Web Appendix C.

Under the time-invariant model assumption of the random effects, the subgrouj
depends on the covariates through a logistic model, and the corresponding estimated ¢
provided as follows:

logit(P(8;= 1|Xi, Z;))= —10.820 — 0.154Age + 0.563 log cd4.0 + 1.4101log,, rna.

Given §; = 1, the treatment effect b; is normal with means of 1.749,2.152,2.204, and :
4,8,24 and 40; and given §; = 0, the treatment effect b; is normal with means of 0.055
and 0.563, respectively, which are significantly smaller than those given §; = 1. In add

and b;,
Yi|(6,‘,X,‘, Z,‘, Ti, bl) = —0.138 — 0.086Time —+ Tl'bi -+ &,



and rna.0 corresponding to the logistic model (4.1) are 0.183,0.181, and 0.393, respe
logistic model (4.1), the estimated coefficients of cd4.0 and rna.0 are 0.563 and 1.4
more than twice their corresponding standard errors 0.181 and 0.393, while the estimas
of age is — 0.154 with standard error 0.183, indicating that cd4.0 and rna.0 are mo
determining subgroup memberships. Based on (4.1), those with higher baseline score:
rna.0 are more likely to be categorized in the subgroup with more enhanced treatm
compared to other patients. In particular, the treatment effects from the beneficial
1.749, 2.152, 2.204, and 2.092 at weeks 4, 8,24 and 40, respectively.

When we add the incomplete samples with the sample size of 819, the estimated m

logit(P(6; = 1|X;, Z;)) = —16.185 — 0.538Age + 0.551 log cd4.0 + 2.171log,, rna

Given §; = 1, the treatment effect b; is normal with means of 2.671, 2.923, 2.992,
weeks 4,8,24 and 40; and given J§; =0, the treatment effect b; is normal wi
0.238, 0.356, 0.624, and 0.717, respectively, which are significantly smaller than
6, = 1. In addition, given §; and b;,

Yi|(6i,Xi,Zi, Ti, bl) = —0.212 — 0.027Time + Tibi —+ &,

where €~N(0,0.500R), where R is treated as a working correlation matrix, similar
standard errors of the coefficient estimators are summarized in Web Table 3 in Web

For both models, we conclude that the subjects with higher baseline CD4 and R
likely to benefit from the treatment. To examine our method more thoroughly, we ran
with respect to the probability with which subjects would benefit more from the treat:
the top-benefitting subjects to form a targeted group, and calculate the treatment ¢
score functions S; as in (4.1), and S, as in (4.3) from the logistic models utilizing all tin
S; as in Shen and He (2015) where only the responses at the 24th week are used. Th:

Si = B;Age + B,;logcd4.0 + B;.log ;rna.0, i=1,2,

where the estimators of 3,;, ,; and f3;; in §;s and their standard errors are listed in W
Web Appendix C.

A higher score on S; corresponds to having a better chance to receive benefit from |
Consequently, we calculate the scores in (4.5) for all subjects and rank them by the
different quantiles g = 0.1,0.11, ..., 0.9, we select the subjects among the top (1 — q) >
to form a target subgroup, and calculate the treatment effect for this selected subgrou
the same time point from where S; is calculated. Figure 2 presents the treatment
selected subgroups for different quantile g‘s using three different score functions .
Figure 2 shows that when g is less than 0.5, that is, when we select a relatively large-si
with enhanced treatment effect, the three methods provide subgroups with simi
treatment effects. As g gets larger, the treatment effects of the target subgroups form
circles) and S, (blue crossings), are clearly above those of S; (green solid circles). In
score functions from S; and S, from the proposed model using longitudinal data choc
with better treatment effects than S;. When g> 0.5, the subgroups formed by S, (blue ¢
higher treatment effects than those formed by S; (red circles) mostly (about 80% times
more samples.
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Figure 2. Treatment effects in selected subgroups from top scores by three different score functions S;,5, anc

5. Discussion

In this paper, we propose a structured mixed-effects model for subgroup analysis or
observations. In particular, we model the treatment effect as a random effect from a tw
mixture normal model, where the proportions of the mixture model are modeled u:
model depending on some covariates. Through this structured model, we can simultar
the subgroup membership and the distribution of the response within the subgroups.
EM-type algorithm to obtain parameter estimation.

For balanced data, we can estimate the correlation matrix R from the M step direct]
iteration. For unbalanced data, we assume correlation structures with an unknown param
AR(1) or exchangeable, where p is obtained through moment estimation in the iterations,
each individual correlation matrix can be calculated based on the estimated p. The pro
address problems concerning both time-invariant treatment effect as in Section 2.1, a
varying treatment effect as in Section 2.3. In addition, the time-varying model can be
cases where the treatment effect is linearly associated with other covariates besides time.

In our approach, we only consider the normal distribution of response for ea
However, our method is capable of extending to binomial or Poisson distribution in e
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