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ABSTRACT

In this article, we propose a two-way multinomial logistic model for recommender systems for categorical
ratings. Specifically, we treat the possible ratings as mutually exclusive events, whose probability is deter-
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mined by the latent factor of the users and the items through a two-way multinomial logistic function. The

proposed method has a compatibility with categorical ratings and the advantage of incorporating both
the covariate information and the latent factors of the users and items uniformly. We show numerically
that the proposed method performs consistently better than five commonly used collaborative filtering
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methods, namely, the restricted singular value decomposition, the soft-impute matrix completion method,
the regression-based latent factor models, the restricted Boltzmann machine, and the group-specific
recommender system on various simulation setups and on MovielLens data. Supplementary materials for

this article are available online.

1. Introduction

The study of recommender systems (Aggarwal 2016) has flour-
ished during the past decades (Resnick and Varian 1997; Ricci,
Rokach, and Shapira 2011; Lu et al. 2015) stimulated by real-
world challenges from Netflix (Bell and Koren 2007; Gomez-
Uribe and Hunt 2015), Yahoo! Music (Koenigstein, Dror, and
Koren 2011), and YouTube (Davidson et al. 2010), to name a
few. Given a partial record of the ratings given by a set of users
on a set of items, we would like to infer how a user will rate an
item that has never been rated before based on the past behavior
of the users and the rating history on the item (Ghosh et al. 1999;
Adomavicius and Tuzhilin 2005; Kim et al. 2005; Aciar et al.
2006).

One of the major challenges in developing recommender
systems that work in the real world is the sparsity of the rating
matrix, as the number of the users and the items in a data is
usually large and the average number of the ratings of a user
or an item is relatively small. This leads to the situation where
for many users and items in the testing set, there is no previous
rating record in the training set to learn from. For example, in
the MovieLens 10M data (Miller et al. 2003; Harper and Konstan
2015) collected by GroupLens Research (http://grouplens.org/
datasets/movielens), 96% of the most recent ratings are from
new users or on new items with no previous rating record (Bi et
al. 2017). This phenomenon is called the “cold-start” problem.
When tackling this problem, the covariate information on the
new users and items, for example, the gender, sex, and age of a
user and the features of an item can provide a relief.

Another feature of many datasets is that the ratings are cate-
gorical, taking values from a finite set of numbers. For example,

the ratings are integers from one to ten for IMDB (Oghina et al.
2012), and from one to five for the MovieLens data (Miller et al.
2003; Harper and Konstan 2015). This inspires using categorical
data models (Agresti and Kateri 2011) to analyze the data.

Previously, two common approaches to predict a new
rating are content-based filtering and collaborative filtering.
For content-based filtering (Mooney and Roy 2000; Blanco-
Fernandez et al. 2008; Iaquinta et al. 2008; Lops, De Gemmis,
and Semeraro 2011; Mirbakhsh and Ling 2015), a new rating
of an item is generated by comparing its content with a user’s
profile. This method has the capability to handle “cold-start”
problems with respect to items. In other words, the rating of
a new item which has never been rated by any user before
can be generated with relatively high accuracy (Levi et al.
2012). However, it cannot handle the “cold-start” problems with
respect to users, since a past history is crucial to constructing
a user’s profile. In addition, sufficient domain knowledge or
covariate information is usually required for content-based
filtering to discriminate items the user likes from items the user
does not like.

For collaborative filtering, the requirement for covariate
information is relaxed by modeling it as latent factors which
are to be inferred from existing ratings (Melville, Mooney, and
Nagarajan 2002; Srebro, Alon, and Jaakkola 2005; Bobadilla et al.
2011; Cacheda et al. 2011; Ekstrand, Riedl, and Konstan 2011).
Some of the most popular collaborative filtering approaches
include restricted Boltzmann machines (Salakhutdinov, Mnih,
and Hinton 2007) and various matrix factorization/completion
methods: restricted singular value decomposition (Koren,
Bell, and Volinsky 2009), the soft-impute matrix completion
method (Mazumder, Hastie, and Tibshirani 2010), and the
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regression-based latent factor models (Agarwal and Chen 2009).
Practically, the performance of all these methods is comparable
in most applications. However, they still cannot solve the “cold-
start” problem effectively for users and the items simultaneously
(Goldberg et al. 2000; Melville, Mooney, and Nagarajan 2002;
Park et al. 2006; Nguyen, Denos, and Berrut 2007).

In this work, we propose a logistic-regression based collective
filtering method that consistently unifies content-based filtering
and collaborative filtering. Previously, for existing collaborative
filtering methods, the covariate information of the users and
items is either not easy to incorporate, or is used solely as an “off-
set” to the ratings (Agarwal and Chen 2009; Cron, Zhang, and
Agarwal 2014), or to group users and the items (Bi et al. 2017).
In our method, both the covariate information and the latent
factors of the users and the items are uniformly incorporated in
the model—they are combined together and contribute equally
to the preference of a user giving or an item receiving a specific
rating via a multinomial logistic method. This promises the
proposed method a better performance in solving the cold-start
problem.

In addition, in our method, we use latent factors to generate
the probability mass functions of the ratings. This is rather differ-
ent from the matrix factorization/completion based collabora-
tive filtering methods (Agarwal and Chen 2009; Koren, Bell, and
Volinsky 2009; Stern, Herbrich, and Graepel 2009; Mazumder,
Hastie, and Tibshirani 2010; Zhu, Shen, and Ye 2016; Bi et al.
2017), where the latent factors are used to generate the values of
the ratings directly.

Admittedly, the matrix-factorization/completion-methods
often boast nice theoretical guarantees on the optimality of the
solutions in the sense of minimizing the root mean square error
of the predicted ratings with respect to the true ratings when
the ratings are generated by the proposed models; however,
most of these results are only valid when the ratings take
values in real numbers. In many applications, the ratings are
categorical (Miller et al. 2003; Oghina et al. 2012; Harper
and Konstan 2015). In particular, the ratings may be binary
in certain circumstances—for example, on a photo or video-
sharing website like Youtube or Instagram, a photo or video is
either liked or disliked by a user. In these cases, our logistic-
regression-based collective filtering method is a more natural
and suitable choice than the matrix-factorization/completion-
methods, especially when the ratings are binary.

Compared to the restricted Boltzmann machine (Salakhut-
dinov, Mnih, and Hinton 2007) that takes a similar approach
of treating possible ratings as mutually exclusive events whose
probability distribution is generated by some hidden variable,
our approach has two advantages. First, in our method, the
latent factors are associated with a specific user or item instead
of being shared within the whole model. Thus they have clearer
interpretation and are more capable of distinguishing the differ-
ent preferences of the users and the items. In addition, it is much
more difficult to incorporate covariate information associated to
a user or an item in the restricted Boltzmann machine than in
our model.

The rest of the article is organized as follows. In Section 2,
we provide the notations and background that will be used in
the rest of the article. In Section 3, we introduce the two-way
multinomial logistic model with or without covariate informa-
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tion and give the algorithm to fit the model into a given set of
ratings. In Section 4, we implement the proposed method on
simulated binary rating data under different missing rates and
under different data sizes, simulated multicategorical rating data
under different missing rates and in the cold-start problem, and
compare the results to the restricted singular value decompo-
sition (Koren, Bell, and Volinsky 2009), the soft-impute matrix
completion method (Mazumder, Hastie, and Tibshirani 2010),
the regression-based latent factor models (Agarwal and Chen
2009), the restricted Boltzmann machine (Salakhutdinov, Mnih,
and Hinton 2007), and the group-specific recommender system
(Bietal.2017).In Section 5, we implement the proposed method
on MovieLens data and compared the results to the same exist-
ing methods. Finally, we conclude this work in Section 6.

2. Notations and Background

In the rest of the article, we denote the set of real numbers
and natural numbers by N and R, respectively. For n € N, let
[n] = {1,...,n}. Let |-| be the cardinality of a set. The indicator
function is denoted by 1y.,). Let e, be the nth natural basis in the
Euclidean space, namely, all the entries in e, are 0 except the nth
entry being 1.

Consider m users rating n items with possible ratings from
{1,...,r}. The records, which may not be complete, can be
represented by an m x n utility matrix R, whose (i, ) entry R;;
gives the score of item j by user i, if it exists; and 0, otherwise.
Let @ = {(i,j) € [m] x [n] | R;j # 0} be the set of entries where
the rating exists, ;. = {j € [n] | R;j # 0} be the set of items
rated by user i, and Q.; = {i € [m] | R;; # 0} be the set of users
rating item j. By slightly modifying the notation, for R € R™*",
let Q(R) be

Q) = Ry, if (i,)) ¢ Q
0,  otherwise.

The matrix factorization/completion based collaborative
filtering methods (Agarwal and Chen 2009; Koren, Bell, and
Volinsky 2009; Mazumder, Hastie, and Tibshirani 2010; Zhu,
Shen, and Ye 2016; Bi et al. 2017) are based on decomposing the
utility matrix R approximately as

QR) ~ QPQY), (1)

where P is an m x [ user preference matrix, Q an n x [ item prefer-
ence matrix, and /is the given number of latent factors. Different
proximity criteria lead to different methods. For example, the
residual after a baseline fit, similar to ANOVA, is suggested in
Koren (2010) and Mazumder, Hastie, and Tibshirani (2010);
and ¢y and ¢; are suggested in Zhu, Shen, and Ye (2016). To
estimate P and Q numerically, it is common to use alternating
least square methods or the gradient descent methods (Koren,
Bell, and Volinsky 2009). Finally, the predicted value of R;; for
(i,j) € Qs given by Pj;.

On the other hand, the restricted Boltzmann machine
method (Salakhutdinov, Mnih, and Hinton 2007) is based on
the belief that the preference of each user is represented by a set
of binary or Gaussian hidden units (hy,. .., hr), whose values
are different among the users. And a user rates the movie i by
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R; = k with probability

P[R; = k] oc Pt irWar @)
for each possible ratingk = 1, .. ., r. Given a partial observation
of the ratings, the parameters bj, Wi and the distribution of
the value of the hidden units /i can be estimated by MCMC
or “contrastive divergence” (Salakhutdinov, Mnih, and Hinton
2007). Then the probability distribution of the missing ratings
can be derived using (2) again, and the expectation can be taken
as the predicted ratings.

3. Method
3.1. The Proposed Model

In this model, each user i has latent factors w; = (u;q,...,u;),
and each item j has latent factors v; = (vj1,..., V), where
Wi, ... Wi, Vijl, ..., Vjr € R!. In addition, there are latent factors

¢ and dj that describe the overall preferences of the users and
the items, respectively. We note that each uj, vjk, ¢k, and dj are
vectors of the same dimension [. The rating of item j by user i is
assumed to follow the probability mass function

e(“ik+ck)T(ij+dk)
P[Rj=k] = ST kelrl. (3
For user i with latent factors (wj; + ¢1,...,u; + ¢;), the

probability that it rates k on the item j is only proportional to
the exponential of the kth coefficient of the item; and the same
for the items.

Therefore, this model can be viewed as a two-way multi-
nomial logistic model. The model (3) is similar to the
restricted Boltzmann machine (2) in the sense that the
possible ratings are treated as mutually exclusive events,
whose probability distribution is determined by the latent
factors. Therefore, it is a more natural and suitable choice than
the matrix-factorization/completion-methods for categorical
ratings.

When the covariate information of the users and the items are
available, we can incorporate them into the model by augmenta-

tion. If each user i has mcy covariate information (e, . . ., €mcy)»
and each item j has ncy covariate information (B,. .., B,.,),
then we can augment the latent factors by

lﬁiik = (uik> > biCIk)) ‘7ik = (Vik’ Ajcrks ﬂic1)> (4)

where a;.;, b, are the latent factors of proper dimensions asso-
ciated with the covariate information. In this case, we have

e(ﬁz‘k+ck)T (Vjk+di)

Yia

Since in this model the latent factors are associated with a
specific user or item instead of being shared within the whole
model, thus they are more capable of telling the different prefer-
ences of the users and the items. More importantly, this makes it
possible to uniformly incorporate covariate information, unlike
the restricted Boltzmann machine.

pijk =P[Ry =k] = kelr]l. (5

e(ﬁil‘i‘cl)T({’jl‘i’dl) ’

Given the augmented latent factors @, Vik, ¢k, and dy, the
predicted ratings are generated depending on the evaluation
criteria (Gunawardana and Shani 2015). Similar to previous
works (Salakhutdinov, Mnih, and Hinton 2007; Agarwal and
Chen 2009; Mazumder, Hastie, and Tibshirani 2010; Bi et
al. 2017), we use the root mean square error (RMSE) to
evaluate the predictions and consider the following objective
function

S= Z (Rj — Rj)?, (6)

(ij)ef2

where the predicted ratings are the expectation of all possible
ratings

Ry =) kpjjk. (7)
k=1

Compared to the maximum likelihood estimation (MLE)
approach, the RMSE approach is more robust to irregular
data, such as in the examples where binary covariates can
completely separate binary responses. In addition, the RMSE
approach is more computationally effective in handling missing
data.

3.2. Estimating the Latent Factors

Given a record of ratings R;; for (i,j) € €, the latent factors
Wik, Vik> k> and di can be estimated by minimizing the mis-
predication rate or the root mean square error by applying the
gradient descent method iteratively on the latent factors. The
gradients of the objective function (7) with respect to the latent
factors wj, Vi, cx, and dy are

oS
— =Y P +d), — = Pulitg +cp),
8uik JEQ;. 8ij i€,
oS - oS -
de = Z Pij(Vik + dy), 3, Z P (i + k),
(i)eQ (i,j) €2
(8)
where
Pijk = 2(Rj — Ryj) (k — Ryj)piji. )

To implement the gradient descent, we set the initial values
for the latent factors as

Wik, Vik ™~ N(O) r)ID)’ aiCIk’bjCIk =0,

1 (10)

¢ =di = Elog Z I{R,-J:k}/l , kelrl,
(i)eQ

where [ is the dimension of each wj, vjx, ¢, and di, and n <
min ¢g. In the simulations, we choose = minc¢;/10. The
choice of ¢t and di is to ensure that when uj and vy are
small, namely, the users and items have no strong preference,
and the probability mass function of the predicted rating is
approximated by the empirical distribution of all the existing
ratings.



3.3. Implementation Issues

We use the stochastic gradient descent method with decreasing
step sizes to fit the model with existing data (Spall 2005). The
purpose is to ensure accurate small-step searching near the local
minimum, while allowing for occasional big steps for a faster
convergence. The step sizes of the gradient descent process for
the latent factors uy, Vi, ¢k, and di are randomly generated,
respectively, by

3u,-k = AK(au,kS(t)))
(Sck = AK(ackS(t))>
SaiCIk = AK(aa,-CIkS(t))’

8ij = AK(avij(t)),
Sdk = AK(adkS(t)))
Sty = Ak (B, S(D)s

(11)
c1k

where the Ak (x) are sampled from the exponential distribution
EXP(max{x, K}) independently with a rate of max{x, K} and K
controlling the step size. Consequently, the latent factors update
by

Wi <— Wik — Su,-k 8uik8(t)) Vijk <= Vijk — 8ij 8vjk8(t),
dp < d; — SdkadkS(t),

Op.

jcik

Cp < C — (SckackS(t),

Ajk < Ak — SaiCIk 8aiCIkS(t)’ bjCIk <~ bjCIk - (SbjCIk

(12)

The convergence in the gradient descent is checked by com-
paring the relative change in the objective function within T
steps. Specifically, if the objective function changes less than e,
relatively, in T steps, then we stop the algorithm. The above
statements are concluded in Algorithm 1.

Algorithm 1 Infer the latent factors by minimizing the mis-
prediction rate or the root mean square error

1: Input: rating matrix R, convergence threshold T\, param-
eterK,t =1
2: Initialize the latent factors W, Vi, ¢k, di by (10)
3: Compute the value of the objective function S(t) by (7)
4: repeat
5. Compute the new latent factors by gradient descent
by (12)

6:  Compute the new value of the objective function S’ by (7)

7. if S’ < S(t) then
Update the latent factors u, Vi, ¢k, dy and set S(t +
1)=¢

9: else

10: Set S(t + 1) = S(¢) and continue

11:  endif

122 t=t+1

13: until t > T and w <e.

4. Simulation

In this section, we implement the two-way multinomial logistic
model with or without covariate information and compare
it to other existing collaborative filtering methods, namely
the restricted singular value decomposition (Koren, Bell, and
Volinsky 2009), the soft-impute matrix completion method
(Mazumder, Hastie, and Tibshirani 2010), the regression-based
latent factor models (Agarwal and Chen 2009), the restricted

S@).
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Boltzmann machine (Salakhutdinov, Mnih, and Hinton 2007),
and the group-specific recommender system (Bi et al. 2017)
on the simulated binary rating data in Section 4.1 and on the
simulated multicategorical rating data in Section 4.2 to study
the performance of our method under different missing rates
and in the cold-start problem.

For the restricted singular value decomposition (Koren,
Bell, and Volinsky 2009), we use the R package. For the soft-
impute matrix completion method (Mazumder, Hastie, and
Tibshirani 2010), we apply the R package “softlmpute” For
the regression-based latent factor models (Agarwal and Chen
2009), we use the default 10 iterations. For the group-specific
recommender system (Bi et al. 2017), we use the Matlab
code available at https://sites.google.com/site/ xuanbigts/software.
For the restricted Boltzmann machine (Salakhutdinov, Mnih,
and Hinton 2007), we use the python package TensorFlow
available at https://github.com/tensorflow/tensorflow. The two-
way multinomial logistic model with or without covariate
information is implemented in Matlab available at https://
bitbucket.org/yuwang0531/tml.

4.1. Binary Classification

In this section, we study the performance of the proposed
method on the simulated binary rating data. This is the kind of
problem that the matrix factorization/completion based meth-
ods are not specialized for. The simulated binary rating data
are generated by the two-way multinomial logistic model with
covariate information introduced in Section 3 with the number
of category r = 2. Due to similarity in the performance of the
competing models in fitting real data (the best one is only 10%
better than the worst one), and the relatively high missing rate,
the trends of the results on simulated data are the same no matter
which modelis used to generate the ratings. (We have performed
an additional simulation with 5-category ratings generated by
1500 users and 1500 items under the RSVD model in the supple-
mentary materials. The trends are similar to the results derived
from the simulated data generated by the proposed model.)
Using the simulated data, we show the advantage of our method
compared to the other methods under different missing rates in
Section 4.1.1 and under different data sizes in Section 4.1.2.

4.1.1. Missing Rate

To study the influence of the missing rate, we generate the
ratings for 300 users and 300 items under the missing rates 0.7,
0.8, 0.9, 0.95. The dimension of latent factors is I = 3. The
numbers of covariate information for both the items and the
users are mcy = 2 and ncy = 2, respectively. The latent factors
Wik, Vjk, €k, d are independently generated from the Gaussian
distribution N(0,0.1). The covariate information for the users
i, and the times B,  is independently generated from the
Bernoulli distribution B(0.5) in {0, 1}. The corresponding latent
factors a;x and b ; are independently generated from the
Gaussian distribution N(0,0.1). To generate the ratings at the
desired missing rate, we first generate all possible m x n ratings
between the users and the items and then pick out a given por-
tion of the ratings. Also, all the ratings are randomly permuted to
simulate random log-ins of users in real applications and divided
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by 60% for training, 15% for tuning, and 25% for testing, to
mimic the setting of MovieLens data (see Section 5).

For the regularized singular value decomposition method
(Koren, Bell, and Volinsky 2009), we set the tuning parameter
A = 3. For the regression-based latent factor model (Agarwal
and Chen 2009), we use the default of 10 iterations. For the
soft-impute method (Mazumder, Hastie, and Tibshirani 2010),
we choose the default . = 0,K = 4 to achieve convergence
for the local minimum. For the group-specific method (Bi et
al. 2017), we choose K = 3. For the restricted Boltzmann
machine (Salakhutdinov, Mnih, and Hinton 2007), 100 hidden
units are used. The two-way multinomial logistic model with or
without covariate information is implemented with dimension
of latent factors I = 3 for the best trade-oft between accuracy
and computational cost.

The simulation results for the above methods are shown in
Table 1, where the mean is calculated from 5000 runs, and
the standard error of the mean is less than 0.002. It shows
that the advantage of the two-way logistic model with covariate
information is generally more significant under high missing
rate. For example, under the missing rate of 95%, the root mean
square error of the two-way logistic model with covariate infor-
mation is 4.3% smaller than the same model without covariate
information, 10.5% smaller than that of the regularized sin-
gular value decomposition method (Koren, Bell, and Volinsky
2009), 7.4% smaller than the restricted Boltzmann machine
(Salakhutdinov, Mnih, and Hinton 2007), 7.0% smaller than the
regression-based latent factor model (Agarwal and Chen 2009),
6.0% smaller than the soft-impute method (Mazumder, Hastie,
and Tibshirani 2010), and 5.5% smaller than the group-specific
recommender system (Bi et al. 2017). This indicates that the
covariate information is more important under high missing
rate and the two-way logistic model utilizes the covariate infor-
mation more effectively.

4.1.2. Data Size

To study the influence of the data size, we generate ratings for
300 users and 300 items, and for 1500 users and 1500 items,
under the missing rates 0.8, 0.95 from the model described in
Section 3. The dimension of latent factors is | = 3. The numbers

of covariate information for both the items and the users are
mcr = 2 and ncp = 2, respectively. The latent factors for the
users and items and ratings in the training, tuning and testing
sets are generated in the same way as in Section 4.1.1. The
parameter settings of the regularized singular value decompo-
sition method (Koren, Bell, and Volinsky 2009), the regression-
based latent factor model (Agarwal and Chen 2009), the soft-
impute method (Mazumder, Hastie, and Tibshirani 2010), the
group-specific method (Bi et al. 2017), the restricted Boltzmann
machine (Salakhutdinov, Mnih, and Hinton 2007), and two-way
multinomial logistic model with or without covariate informa-
tion are also the same as given in Section 4.1.1.

The simulation results for the above methods are shown in
Table 2, where the mean is calculated from 5000 runs, and
the standard error of the mean is less than 0.002. It shows
that the advantage of the two-way logistic model with covariate
information is consistent for different data sizes. For all the
methods, the performance is better on the larger data than in
the smaller data. This is because under the same missing rate,
the number of ratings for each user and each item increases as
the data size increases, thus it is easier to make predictions on
the larger data size.

Table 2 also shows that the two-way logistic model with
covariate information is less sensitive to data size change than
other methods. Namely, this method is better at handling
smaller data than the other methods. For example, under a miss-
ing rate of 95%, the increase in the root mean square error after
changing the data size from 1500 x 1500 to 300 x 300 for the two-
way logistic model with covariate information is 3.80%, while
the increments are 6.95%,5.51%,5.84%,5.84%, 6.79%, 6.27%
for the regularized singular value decomposition method, the
restricted Boltzmann machine, the regression-based latent
factor model, the soft-impute method, the group-specific
recommender system, and the two-way logistic model without
covariate information, respectively.

4.2. Multicategorical Recommendation With Cold-Start

In this section, we study the performance of the proposed
method on multicategorical data. This is the most common

Table 1. Comparison of the root mean square error of the methods under different missing rates on the simulated binary rating data with 300 users and 300 items.

Missing rate RSVD RBM RB N GS T™ML T™MLC
0.7 0.3784 0.3812 0.3742 0.3735 0.3624 0.3543 0.3484
0.8 0.3984 0.3904 0.3843 0.3793 0.3745 0.3635 0.3584
0.9 0.4064 0.3983 0.3997 0.3913 0.3874 0.3793 0.3643
0.95 0.4184 0.4043 0.4026 0.3984 0.3965 0.3913 0.3745

NOTE: RSVD, RBM, RB, SI, GS, TML, and TMLCI stand for the regularized singular value decomposition method (Koren, Bell, and Volinsky 2009), the restricted Boltzmann
machine (Salakhutdinov, Mnih, and Hinton 2007), the regression-based latent factor model (Agarwal and Chen 2009), the soft-impute method (Mazumder, Hastie, and
Tibshirani 2010), the group-specific recommender system (Bi et al. 2017), the proposed two-way multinomial logistic model, and the proposed two-way multinomial

logistic model with covariate information, respectively.

Table 2. Comparison of the methods under different sample sizes on the simulated binary rating data.

Missing rate Data size RSVD RBM RB SI GS T™ML TMLCI
08 300 x 300 0.3984 0.3904 0.3843 0.3793 0.3745 0.3635 0.3584

’ 1500 x 1500 03774 03713 0.3647 0.3573 0.3532 0.3484 0.3454

0.95 300 x 300 0.4184 0.4043 0.4026 0.3984 0.3965 0.3913 0.3795

’ 1500 x 1500 0.3912 0.3832 0.3804 0.3764 03713 0.3682 0.3656




setup for recommender systems in real applications. The simu-
lated multicategorical rating data are generated by the two-way
multinomial logistic model with covariate information intro-
duced in Section 3, with five categories {1, 2, 3,4, 5} in the same
fashion as the MovieLens data. Using simulated data, we show
the advantage of our method compared to the other existing
methods, under different missing rates again in Section 4.2.1,
and in the cold-start problem (Section 4.2.2).

4.2.1. Missing Rate

We generate ratings for 1500 users and 1500 items under the
missing rates 0.7, 0.8, 0.9, 0.95. The dimension of latent factors
is | = 2. The numbers of covariates for both the items and the
users are mcy = 1 and ncy = 1, respectively. The latent factors
Wk, Vjk, €k, di are independently generated from the Gaussian
distribution N(0,0.1). The covariate information for the users
i and the times B, is independently generated from the
Bernoulli distribution B(0.5) in {0, 1}. The corresponding latent
factors a;x and b are independently generated from the
Gaussian distribution N(0,0.1). To generate the ratings at the
desired missing rate, we first generate all possible m x n ratings
between the users and the items and then pick out a given
portion of the ratings. All the ratings are randomly permuted to
simulate random log-ins of the users in the real case, and divided
by 60% for training, 15% for tuning and 25% for testing.

The parameters for the competing methods are tuned for
their best performance, as follows. Specifically, we set K = 4
and A = 6 for the regularized singular value decomposition
method, choose A = 0 and 10 iterations for the regression-
based latent factor model, select K = 4 for the soft-impute
method, and choose 100 hidden units for the restricted Boltz-
mann machine. The two-way multinomial logistic model with
or without covariate information is implemented with dimen-
sion of latent factors [ = 2 for the objective function (6).

The simulation results for the above methods are shown in
Table 3, where the mean is calculated from 10,000 runs, and
the standard error of the mean is less than 0.002. Similar to the
trend shown in Table 1, the advantage of the two-way logistic
model with covariate information is generally more signifi-
cant under high missing rates. For example, under the missing
rate of 95%, the root mean square error of the two-way logis-
tic model with covariate information is 2.3% smaller than the
same model without covariate information, 12.9% smaller than
that of the regularized singular value decomposition method,
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11.5% smaller than the restricted Boltzmann machine, 14.8%
the regression-based latent factor model, 11.0% smaller than the
soft-impute method, and 1.8% smaller than the group-specific
recommender system.

4.2.2. Cold-Start Problem

In this simulation study, we consider the “cold-start” problem
where the testing set contains a large portion of new users
and new items that have not appeared in the training set. We
generate ratings for 1500 users and 1500 items under a missing
rate of 0.99. The dimension of latent factors is I = 2. The
numbers of covariates for both the items and the users are
mcr = 1 and ncgr = 1, respectively. The latent factors for
the users and the items are generated in the same way as in
Section 4.2.1. The parameter settings of the regularized singular
value decomposition method, the regression-based latent factor
model, the soft-impute method, the group-specific method, the
restricted Boltzmann machine, and two-way multinomial logis-
tic model with or without covariant are also the same as given
in Section 4.2.1.

The ratings are generated at a missing rate of 0.99 and ran-
domly permuted to simulate random log-ins of the users in
the real case. They are divided by 75% for training, 10% for
tuning, and 15% for testing. To create a cold-start setup, we then
exchange the ratings in the testing set with the ratings in the
training and tuning sets, such that 50% of the ratings in the
testing set are either from new users or for new items.

The simulation results for the above methods are shown in
Table 4, where the mean is calculated from 10,000 runs, and
the standard error of the mean is less than 0.002. It shows that
the two-way logistic model with or without covariate informa-
tion outperforms the other methods in the cold-start problem.
Specifically, on the whole testing set, the root mean square
error of the two-way logistic model with covariate informa-
tion is 1.3% smaller than the same model without covariate
information, 9.8% smaller than that of the regularized singular
value decomposition method, 9.3% smaller than the restricted
Boltzmann machine, 12.0% the regression-based latent factor
model, 8.8% smaller than the soft-impute method, and 2.2%
smaller than the group-specific recommender system. For the
new ratings, the root mean square error of the two-way logis-
tic model with covariate information is 1.7% smaller than the
same model without covariate information, 11.1% smaller than
that of the regularized singular value decomposition method,

Table 3. Comparison of the methods under different missing rates on the simulated multicategory rating data with 1500 users and 1500 items.

Missing rate RSVD RBM RB Sl GS T™ML TMLCI

0.7 1.0523 1.0341 1.0764 1.0352 0.9724 0.9754 0.9514

0.8 1.0584 1.0404 1.0954 1.0567 0.9745 0.9721 0.9537

0.9 1.0745 1.0632 1.1177 1.0632 0.9798 0.9823 0.9601

0.95 1.1084 1.0903 1.1326 1.0844 0.9834 0.9878 0.9654
Table 4. Comparison of the methods in the cold-start problem on the simulated five-category rating data.

RSVD RBM RB Sl GS T™L TMLCI

old 0.9761 0.9428 0.9817 0.9739 0.9221 0.9175 0.9013

New 1.2033 1.2204 1.2494 1.1834 1.0923 1.0799 1.0692

Average 1.0956 1.0905 1.1236 1.0837 1.0108 1.0020 0.9888
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12.4% smaller than the restricted Boltzmann machine, 14.4%
the regression-based latent factor model, 9.7% smaller than the
soft-impute method, and 2.3% smaller than the group-specific
recommender system.

5. MovielLens Data

We apply the proposed method to the MovieLens 1M and 10M
data (Miller et al. 2003; Harper and Konstan 2015), collected by
GroupLens Research (http://grouplens.org/datasets/movielens).
The MovieLens 1M data contain 1,000,209 integer ratings of
3883 movies by 6040 users ranging from {1, 2, ..., 5}, at a miss-
ing rate of 96%. In addition, it provides demographic informa-
tion including the age, gender, occupation, and zip code of the
users, and the genres of the movies. In the MovieLens 10M data,
10,000,054 ratings are collected from 71,567 users over 10,681
items, at a missing rate of 99%. For the 10M data, the user’s
demographic information is not available.

The categorical covariate information of the users and the
items is binary-coded. To avoid using too many variables, we
divide users” ages by 0-9, 10-19, ..., 60-69 into seven groups,
considering that users of similar ages tend to have similar pref-
erence for movies. The users’ zip codes are divided into 10
groups by 0-9999, ..., 90,000-99,999, since users of similar zip
codes tend to live closer geographically. The users’ gender is
either male or female, hence encoded by {0,1}. In addition,
each user has one of 21 possible occupations. Consequently, the
users’ covariate information is encoded into 39 binary variables.
Each item is labeled by a subset of 18 possible genres; there-
fore, the items’ covariate information is encoded by 18 binary
varijables.

The simulation results for the proposed methods and the
other existing methods are shown in Table 5. The data are
divided by 60% for training, 15% for tuning, and 25% for testing,
sorted by timestamps. For the proposed two-way multinomial
logistic model with or without covariate information, we apply
the loss function (7) and set the parameter I = 5 to achieve the
best performance with the smallest value for I, after searching
over [ =1,2,...,10. The parameters for competing models are
tuned for their best performance as follows. For the RSVD, we
use K = 4and A = 8 for the IM data,and K = 4and A = 6
for the 10M data. For the regression-based latent factor model,
we let K = 1 for both the 1M and 10M data and take 25 and 10
iterations, respectively. For the soft-impute method, we select
A =0,K =4and A = 0,K = 9 for the IM and 10M data,
respectively. For the restricted Boltzmann machine, we choose
200 hidden units for both the 1M and 10M data.

Compared to the collaborative filtering methods based on
matrix factorization/completion, the root mean square error of
the two-way logistic model with covariate information is 10.1%
smaller than that of the regularized singular value decompo-
sition method, 20.8% smaller than the regression-based latent

Table 5. Comparison of the methods on MovieLens TM and 10M data.

factor model, 11.6% smaller than the soft-impute method, and
1.6% smaller than the group-specific recommender system. On
the MovieLens 10M data, the root mean square error of the two-
way logistic model with covariate information is 7.6% smaller
than that of the regularized singular value decomposition
method, 5.4% smaller than the regression-based latent factor
model, 9.5% smaller than the soft-impute method, and 0.9%
smaller than the group-specific recommender system.

Due to the loss of covariate information, the two-way logistic
model without covariate information performs 2.2% worse on
the MovieLens 1M data and 0.4% worse on the MovieLens 10M
data than the same model with covariate information. Com-
pared to the group-specific recommender system (Bi et al. 2017)
that also utilizes covariate information to group up the users
and the items, the two-way logistic model without covariate
information perform 0.5% worse on the MovieLens 1M data,
but 0.4% better on the MovieLens 10M data. As for the other
matrix-factorization-based collaborative filtering methods, the
root mean square error of the two-way logistic model without
covariate information is 8.2% smaller than that of the regular-
ized singular value decomposition method, 19.1% smaller than
the regression-based latent factor model, and 9.7% smaller than
the soft-impute method on the MovieLens 1M data. On the
MovieLens 10M data, it is 7.3% smaller than the regularized
singular value decomposition method, 5.1% smaller than the
regression-based latent factor model, and 9.2% smaller than the
soft-impute method. This shows that the two-way logistic model
is more consistent with the categorical nature of the ratings.

One the other hand, compared to the restricted Boltzmann
method that also generates categorical predicted ratings, the
two-way multinomial logistic model with covariate information
also performs 6.3% better on the MovieLens 1M data and 5.8%
better on the MovieLens 10M data than the restricted Boltz-
mann machine. Even without the covariate information, the
two-way multinomial logistic model without covariate infor-
mation also performs 4.3% better on the MovieLens 1M data
and 5.4% better on the MovieLens 10M data than the restricted
Boltzmann machine.

From the above comparison, we observe that the improve-
ment the two-way logistic model with covariate information
over the same model without covariate information is more
significant for the MovieLens 1M data than the MovieLens 10M
data. This is consistent with the fact that the MovieLens 1M data
contain more covariate information than the MovieLens 10M
data. In addition, the improvement of both the two-way logistic
model with and without covariate information is generally more
significant in the MovieLens 1M data than in the MovieLens
10M data. This is because in both the MovieLens 1M and 10M
data, each user rates about 150 movies on average, while the
average number of ratings for the movies is 250 for the 1M data
and 900 for the 10M data. The availability of more past ratings
makes predicting the new ratings easier on the MovieLens 10M
data than the 1M data.

RSVD RBM RB S| GS T™ML T™MLC
™ 1.0552 1.0128 1.1974 1.0737 0.9644 0.9692 0.9487
10M 0.9966 0.9772 0.9737 1.0177 0.9295 0.9243 0.9207



http://grouplens.org/datasets/movielens

6. Conclusion

In this article, we propose a two-way multinomial logistic model
for recommender systems on categorical ratings. Specifically,
instead of factorizing the ratings immediately into the product
of the latent factors of the users and the items, we use a multiclass
logistic model where the probability mass function of the ratings
of a user on an item is factorized into a function of the latent
factor of that user and item. Each user and each item have
latent factors representing their a priori absolute preference
on giving/receiving a specific rating, and the actual ratings are
generated from a probability distribution of the ratings deter-
mined by the user’s and item’s latent factors together with their
covariate information through a logistic function.

Compared to the existing collaborative filtering methods, the
proposed method can incorporate both the covariate informa-
tion and the latent factors of the users and the items uniformly
in the model. Compared to the matrix factorization/completion
based collaborative filtering methods, where the ratings are
treated as the discretization of the inner products of the latent
factors from the users and the items, we treat the possible rat-
ings as categorical random variables where the probability mass
function is determined by the latent factors and the covariate
information of the users and the items in the proposed method.

These give the proposed method an advantage in handling
categorical ratings and the cold-start problems. As shown by the
numerical experiments, the proposed method performs signif-
icantly better than the restricted singular value decomposition
(Koren, Bell, and Volinsky 2009), the soft-impute matrix com-
pletion method (Mazumder, Hastie, and Tibshirani 2010), the
regression-based latent factor models (Agarwal and Chen 2009),
the restricted Boltzmann machine (Salakhutdinov, Mnih, and
Hinton 2007), and the group-specific recommender system (Bi
et al. 2017) on the simulated binary rating data under different
missing rates and under different data sizes, the simulated mul-
ticategorical rating data under different missing rates and in the
cold-start problem, and the MovieLens 1M and 10M data.

Supplementary Materials

Additional data on comparison of different methods for different missing
rates are available in supplemental material.
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