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Abstract

Graph Isomorphism (GI) is one of a small number of natural al-
gorithmic problems with unsettled complexity status in the P /NP
theory: not expected to be NP-complete, yet not known to be solvable
in polynomial time.

Arguably, the GI problem boils down to filling the gap between
symmetry and regularity, the former being defined in terms of au-
tomorphisms, the latter in terms of equations satisfied by numerical
parameters.

Recent progress on the complexity of GI relies on a combination of
the asymptotic theory of permutation groups and asymptotic properties
of highly regular combinatorial structures called coherent configura-
tions. Group theory provides the tools to infer either global symmetry
or global irregularity from local information, eliminating the symme-
try /regularity gap in the relevant scenario; the resulting global struc-
ture is the subject of combinatorial analysis. These structural studies
are melded in a divide-and-conquer algorithmic framework pioneered
in the GI context by Eugene M. Luks (1980).

1 Introduction

We shall consider finite structures only; so the terms “graph” and “group”
will refer to finite graphs and groups, respectively.
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1.1 Graphs, isomorphism, NP-intermediate status

A graph is a set (the set of vertices) endowed with an irreflexive, symmetric
binary relation called adjacency. Isomorphisms are adjacency-preseving bi-
jections between the sets of vertices. The Graph Isomorphism (GI) problem
asks to determine whether two given graphs are isomorphic.

It is known that graphs are universal among explicit finite structures
in the sense that the isomorphism problem for explicit structures can be
reduced in polynomial time to GI (in the sense of Karp-reductions') [?,
?]. This makes GI a natural algorithmic problem. It is a polynomial-time
verifiable problem: a candidate isomorphism is easily verified. This puts
GI in the complexity class NP. Over time, increasingly strong conjectural
evidence has been found that GI is not NP-complete, yet no polynomial-time
algorithm is known to solve GI. This puts GI among the small number of
natural NP-problems of potentially intermediate complexity (neither in P,
nor NP-complete). (Another such problem is that of factoring integers, cf.
Sec. 7?7.) The interest in this status of GI was recognized at the dawn of the
P /NP theory [?, 7].

1.2 Brief history of the GI problem

Combinatorial heuristics such as individualization and refinement (I/R) (see
Sec. 7?) have been used for the longest time to reduce the GI search space.
It was shown that the “naive refinement” algorithm solves GI for almost
all graphs in linear time [?, ?7]. Efficient algorithms were found for spe-
cial classes such as planar graphs [?, ?]. These algorithms exploited the
combinatorial structure of the graphs concerned. However, combinatorial
refinement methods alone cannot succeed in less than exponential time for
the general GI problem, as shown in a seminal 1992 paper by Cai, Furer,
and Immerman [?].

It has long been known that GI is equivalent to determining whether
two vertices of a given graph belong to the same orbit of the automorphism
group. Refinement procedures have been used to distinguish vertices, try-
ing to refute symmetry by discovering irreqularity. While this gives a first
indication of the critical role of the gap between symmetry and regularity
to GI, the CFI result shows the futility of trying to close this gap using
combinatorial refinement heuristics alone. We use group theory to close
a gap of this nature under particular circumstances (see Theorem 7?7 and

IFor basic concepts of complexity theory we refer to [?7].



the paragraph preceding it). The relevant new group theoretic result, the
“Unaffected Stabilizers Lemma,” is stated in Theorem ?7?.

Elements of group theory were first introduced into the design of GI al-
gorithms in 1979 [?]. The tower of groups method described in that paper
produced the following results. A wertex-colored graph has a “color” as-
signed to each vertex; isomorphisms preserve the colors by definition. The
multiplicity of a color is the number of vertices of that color. The adjacency
matriz of a graph with n vertices is the n xn (0, 1)-matrix whose (i, j)-entry
is 1 if vertex 7 is adjacent to vertex j, and 0 otherwise. By the eigenvalues
of a graph we mean the eigenvalues of its adjacency matrix.

Theorem 1.1. (a) [?, ?] Isomorphism of vertex-colored graphs of bounded
color multiplicities can be tested in polynomial time.  (b) [?] Isomorphism
of graphs with bounded eigenvalue multiplicities can be tested in polynomial
time.

It turns out that the CFI pairs of graphs, i.e., the pairs of graphs shown
in [?] to be hard to separate by combinatorial refinement, can be viewed
as vertex-colored graphs with color multiplicity 4. This shows that elemen-
tary group theory (hardly more than the concept of cosets was used) was
already capable of overcoming exponential barriers to combinatorial refine-
ment methods. Modern extensions of the CFI result show that GI is hard
for several more general refutation systems (see Sec. ??), putting GI in a
somewhat paradoxical position in complexity theory (cf. Sec. 7?).

In-depth use of group theory in the design of GI algorithms arrived with
Luks’s groundbreaking 1980 paper [?]. We state the main result of that
paper. Adjacent vertices of a graph are called neighbors; the degree of a
vertex is the number of its neighbors.

Theorem 1.2 (Luks, 1980). Isomorphism of graphs of bounded degree can
be tested in polynomial time.

Luks’s group theoretic method, combined with a combinatorial refine-
ment result by Zemlyachenko [?], have lead to the moderately exponential

complexity bound of
exp(O(y/nlogn)), (1)

where n denotes the number of vertices (Luks, 1983, cf. [?, ?]). In spite of
intermittent progress on important special cases, notably for strongly requ-
lar graphs [?7, 7, 7, ?] and for primitive coherent configurations [?], Luks’s
bound (?7?) for the general case had not been improved until this author’s



recent annoucement [?] of a quasipolynomial-time algorithm. A quasipoly-
nomial function is a function of the form exp(p(logn)) for some polynomial
p. A quasipolynomial time bound is a bound of this form where n is the
bit-length of the input; but if we take n to be the number of vertices of an
input graph, the form of the bound will not be affected.

Theorem 1.3 (B 2015). Isomorphism of graphs can be tested in quasipoly-
nomial time.

In this paper we outline the main components of this result. For an
introduction to the algorithmic theory of permutation groups we refer to
the monograph [?].

Disclaimer. I should emphasize that the results discussed in this paper
address the mathematical problem of the asymptotic worst-case complexity
of GI and have little relevance to practical computation. A suite of re-
markably efficient GI packages is available for practical GI testing; McKay
and Piperno [?] give a detailed comparison of methods and performance.
These algorithms employ ingenious shortcuts to backtrack search. While
the worst-case performance of these heuristics seems to be exponential, this
is increasingly difficult to demonstrate, cf. [?, 7, ?].

2 The string isomorphism problem

We now define a generalization of the GI problem, introduced by Luks [?].

Let 2 be a finite set; Sym(€2) denotes the symmetric group acting on €2.
Let ¥ be finite alphabet. An Q-string (or just “string”) over ¥ is a function
r:Q — X. There is a natural action r — 7 of Sym(f2) on the set X% of
strings (o € Sym(Q), r € ). We say that o € Sym(Q) is a G-isomorphism
between the strings r and vy if 0 € G and ” = . The strings ¢ and 1 are
G-isomorphic, denoted ¢ =24 v, if such a o exists. The String Isomorphism
(SI) problem asks, given G, ¢, and v, does r =g 1y hold? We refer to G as
the ambient group; it is given by a list of generators.

Luks pointed out [?] that GI reduces to SI by encoding each graph X by
the characteristic function fx of its adjacency relation, fx : (g) — {0,1},

where (g) denotes the set of unordered pairs of elements of 2. So fx is

an (g)—string over the alphabet {0,1}. The pertinent ambient group is
Sym(€2)?), the induced action of Sym(Q) on the set (g) It is easy to see
that two graphs are isomorphic if and only if the corresponding (g)—strings
are Sym(2)@-isomorphic. The actual result we shall discuss concerns the
complexity of SI [?].



Theorem 2.1 (B 2015). String isomorphism can be tested in quasipolyno-
mial time.

Theorem ?? is then a corollary. The previous best bound for SI was
exp(O(n'/?)), where n = |Q| is the length of the strings in question [?]
(cf. [?]). (The tilde hides a polylogarithmic factor.)

Luks also observed that several other problems of computational group
theory are polynomial-time equivalent to SI (under Karp-reductions), in-
cluding the coset intersection, double coset membership, and ‘centralizer
in coset’ problems. Given two subgroups G, H of the symmertic group S,
and two elements o,m € S, the Coset Intersection problem asks whether
GoNHr # 0; the double coset membership problem asks whether o € G H,
and the centralizer in coset problem asks whether there exists an element
in the coset Go that commutes with 7. As a consequence, these problems,
too, can be solved in quasipolynomial time.

The advantage of approaching GI through the SI problem is that SI
permits recursion on the ambient group. This was Luks’s core idea.

3 Divide-and-Conquer

In the theory of algorithms, the term “Divide-and-Conquer” refers to recur-
sive procedures that reduce an instance of a computational problem to a
moderate number of significantly smaller instances. If our input has size n,
we shall consider instances of size < 0.9n to be “significantly smaller.” Let
g(n) be the number of such smaller instances to which our input is reduced;
we refer to g(n) as the multiplicative cost of the reduction. If f(n) denotes
the worst-case cost of processing an input of size n, this leads to the follow-
ing recurrence (ignoring the additive cost of assembling all information from
the smaller instances, which will typically not affect the cost estimate).

f(n) < q(n)f(0.9n) (2)

Assuming that ¢(n) is monotone, this gives the bound f(n) < q(n)?0og™),

so if g(n) is quasipolynomially bounded then so is f(n). Therefore our
goal will be to significantly reduce the problem size at a quasipolynomial
multiplicative cost.

4 Large primitive permutation groups

Not only did Luks point out that GI reduces to SI, but he also showed
that (i) the SI problem for groups with restricted structure can be used to



solve the GI problem for certain classes of graphs; and that (ii) SI can be
solved efficiently under such structural constraints. The issue of relevance
here is bounding the order of primitive permutation groups under structural
constraints.

A permutation group acting on the set Q (the permutation domain) is a
subgroup G < Sym(f2). (The “<” sign stands for “subgroup.”) The degree
of G is |Q|. The set 2% = {27 | ¢ € G} is the G-orbit of x; the orbit has
length |x%|. We say that G is transitive if & =  for some (and therefore
any) x € . A transitive group G < Sym(€QQ) is primitive if |Q > 2 and
there is no nontrivial G-invariant equivalence relation on 2.

In 1982, Palfy [?] and Wolf [?] showed that primitive solvable groups of
degree n have order < n® where ¢ ~ 3.243. It turns out that the critical
structural parameter of a group for polynomial bounds on the order of its
primitive permutation representations is its “thickness.”

Definition 4.1. The thickness? 6(G) of a group G is the largest ¢ such that
the alternating group A; is involved in G as a quotient of a subgroup.

The following result characterizes those hereditary classes of groups (classes
that are closed under subgroups and quotients) which have only small prim-
itive permutation representations.

Theorem 4.2 (B, Cameron, Palfy, 1982). If G is a primitive permutation
group of degree n and thickness t then |G| = n®®),

This result first appeared in [?]; here it is stated with an improved ex-
ponent due to Pyber [?]. Refined versions were subsequently obtained by
Liebeck, Shalev, Mar6ti; see [?, Sec. 3| for a survey of those developments.
We note that while the initial motivation for Theorem 7?7 came from the
GI problem, the result also found applications in other areas, such as the
theory of profinite groups [?].

Luks [?] introduced a group theoretic divide-and-conquer technique to
attack the SI problem. Luks’s method, combined with the above bounds,
yields the following.

Corollary 4.3. The SI problem can be solved in polynomial time if the
ambient group is solvable or more generally, if it has bounded thickness.

Let G be the stabilizer of an edge in the automorphism group of a con-
nected graph in which every vertex has degree < k. It is easy to see that
every composition factor of G is a subgroup of the symmetrc group Si_1.

®The term “thickness” was coined in [?].



In particular, §(G) < k — 1 and therefore the SI problem can be solved in
polynomial time for such G as the ambient group. This fact is at the heart3
of the proof of Theorem ?77.

While Theorem ?7? is helpful for groups with small thickness, our interest
is in the general case. Luks’s technique for SI works in quasipolynomial time
as long as the primitive groups involved in the ambient group have quasipoly-
nomially bounded orders. In 1981, building on the then expected completion
of the classification of the finite simple groups (CFSG), Cameron [?] gave
a precise characterization of primitive groups of large order. The socle of
a group is the product of its minimal normal subgroups. It is known that
the socle of a primitive permutation group is a direct product of isomorphic
simple groups. For a permutation group 7' < Sym(A), the product action of
the direct power T* on the Cartesian power A* is the independent action of
each copy of T" on the corresponding coordinate. Wreath product in addition
permutes the coordinates by some group “on the top.” For a permutation
group G < Sym(Q) we denote by G the induced action of G' on the set

(?) of unordered t-tuples of elements of ).

Definition 4.4. G < S, is a Cameron group with parameters s,t > 1 and
S
k > max(2t + 1,5) if we have n = (l:) , the socle of G is isomorphic to A}

and acts as (A](f))s in the product action, and (A,(:))S <G< S,gt) S5 (wreath
product, product action), moreover the induced action G — S5 on the direct
factors of the socle is transitive.

Theorem 4.5 (Cameron 1981). For n > 25, if G < S, has order |G| >
nitlog2n then G is a Cameron group.

This sharp version of Cameron’s theorem [?] is due to Maréti [?].

5 Luks’s method and the bottleneck

In attacking the SI problem, Luks applies a combination of the following
two types of recursive operations to the ambient group.

e Descend to a subgroup.

e Process orbits one by one.

3Theorem ?? was not available to Luks at the time; he used a further layer of recurrence
so a weaker group-theoretic result was sufficient for his analysis [?].



Orbit-by-orbit processing leads to ultra-efficient (linear-time) recurrence.
Descent to a subgroup H < @G incurs a heavy penalty, namely, a multi-
plicative cost of |G : H|, so this can only be used to replace the ambient
group with a subgroup of small index, and to compensate for the multi-
plicative cost, such a step needs to lead to significantly reduced problem
size. Small primitive groups acting on a minimal system of imprimitivity
(system of maximal blocks of a G-invariant equivalence relation) provide
such an opportunity; the orbits of the kernel of the action of such a prim-
itive group have length < n/2, hence orbit-by-orbit processing reduces the
problem to significantly smaller instances.
Using Theorem 7?7 we can identify the bottleneck for Luks’s method.

Definition 5.1. We say that a group G has a giant quotient of degree m if
G has an epimorphism onto S,, or A,.

Proposition 5.2. For any constant C' > 1 one can use Luks recurrence

for the SI problem to achieve one of the following at a multiplicative cost of
O(logn)
n .

(a) Significantly reduce the problem size.

(b) Reduce the ambient group to a transitive group with a giant quotient of
degree > C'logn.

Our work addresses case (b), the bottleneck situation. The goal is to
either confirm or effectively break the symmetry represented by the giant
quotient. This inserts another layer of recurrence into Luks’s framework:
significant reduction of m, the degree of the giant quotient.

More specifically, let G < Sym(£2) be our ambient group and g,y : Q — X
be two strings of which we wish to determine the G-isomorphisms. Let, fur-
ther, ¢ : G — H be an epimorphism where Alt(I') < H < Sym(T") for
some large set I', where Alt(I") denotes the alternating group (even permu-
tations of I'). Let m = |I'| and let P(r) = p(Autg(r)) < Sym(T'); define
P(y) analogously. We say that a group K < Sym(¥) is a giant on ¥ if
Alt(V) < K < Sym(W).

Theorem 5.3 (Canonical obstruction to symmetry). Either P(r) acts as
a giant on a P-orbit of length > 0.9m, or there exists a P(r)-invariant
canonical k-ary relational structure X(xr) on I' with k = O(logn) such that
X(r) has symmetry defect > 0.1. Moreover, in each case, we can find, via
efficient Luks recurrences, an effective representation of the stated objects.

We explain the concepts involved in this statement.



By ‘efficient Luks recurrence’ we mean a sequence of Luks operations that
significantly reduces the problem size at a multiplicative cost of n@U°gm)

In the first case, ‘effective representation’ means we can find a subgroup
M < Autg(r) such that (M) has a large orbit on which it acts as a giant.
Note that Autg(r) is not known; in fact, determining Autg(r) is equivalent
to the SI problem.

We need to explain the second case. A k-ary relation on a set I' is a
subset of the Cartesian power I'*. A k-ary relational structure on I' is a
pair X = (I',R) where R = (Ry,...,R,) is a list of k-ary relations R; on
I'. ‘Effective representation’ of X simply means listing each R;. We may
assume the R; are disjoint, so the total length of the lists is < mk.

We say that the symmetry defect of X is > « if every orbit of Aut(X) on
which Aut(X) acts as a giant has size < (1 — a)m.

Canonicity of the r — X(r) assignment means this construction is a
functor from the category of G-isomorphisms of strings in the set {r,n}
(two objects) to the category of isomorphisms of k-ary relational structures
on I, so every G-isomorphism 31 — 32 (3; € {r,v}) induces an isomorphism
X(31) = X(32)-

The two cases listed in Theorem 7?7 are mutually exclusive by the defini-
tion of symmetry defect. The result provides a constructive obstruction to
certain type of very large symmetry (small symmetry defect); the stucture
X has sufficient irregularity to preclude such large symmetry. This is the
sense in which, under our special circumstances, we have been able to close
a symmetry vs. regularity gap (see Sec. 77), a key step toward Theorem ?7.

6 Unaffected Stabilizers Lemma

In this section we state a group theoretic result, Theorem 77 (a), that is our
main mathematical (non-algorithmic) tool for the proof of Theorem ?7.

For a group G < Sym(f2) and = € , the stabilizer of z in G is the
subgroup G, = {0 € G | z° = z}. For A C Q, the pointwise stabilizer of A
is the subgroup G'(a) = (\,ea Ge-

For a group G and a set I' we say that the action ¢ : G — Sym(T') is a
giant representation of G (or a giant homomorphism) if the image ¢(G) is
a giant, i.e., (G) > Alt(2). We now define our central new concept.

Definition 6.1 (Affected). Let © and I' be sets, G < Sym(f2), and let
¢ : G — Sym(T") be a giant representation. We say that = € Q is affected
by ¢ if the p-image of the stabilizer G, is not a giant, i.e., p(Gy) # Alt(T).



We note that if z € Q is affected then every element of the orbit z© is
affected. So we can speak of affected orbits.

Theorem 6.2. Let G < Sym(2) be a permutation group of degree n = |{]
and ¢ : G — Sk a giant representation, i. e., p(G) > Ay. Let U C Q denote
the set of elements of ) not affected by w. Then the following hold.

(a) (Unaffected Stabilizers Lemma) Assume k > max{8,2 + logyn}. Then
@ restricted to Gy, the pointwise stabilizer of U, is still a giant rep-
resentation, i.e., o(Gy) = Ax. In particular, U # Q (at least one
element is affected).

(b) (Affected Orbit Lemma) Assume k > 5. If A is an affected G-orbit,
i.e., ANU =0, then ker(p) is not transitive on A; in fact, each orbit
of ker(p) in A has length < |Al/k.

The affected /unaffected dichotomy underlies the core “local certificates”
algorithm (Sec. 77).

Part (b) is an easy exercise; its significance is that it permits efficient
Luks reductions on affected orbits.

Part (a) is the central result mentioned. The proof of part (a) builds
on the O’Nan—Scott—Aschbacher characterization of primitive permutation
groups ([?, 7], cf. [?, Thm. 4.1A]) and depends on the classification of Finite
Simple Groups (CFSG)* through Schreier’s Hypothesis (a consequence of
CFSG) that asserts that the outer automorphism group of every finite simple
group is solvable.

Note that part (a) is counter-intuitive: it asserts that if the stabilizer of
each z € U maps onto Ay, or Si then even the intersection of these stabilizers
maps onto Ay or Sk.

The condition k& > 2 + logyn in part (a) is tight. In fact, there are
infinitely many examples with k = 2 + logy n which have no affected points,
as shown by the example of a semidirect product Zg 23 A, < AGL(k—2,2)
for even k, acting on n = 2¥~2 elements.

7 Local certificates

In this section we describe our core algorithmic result. The goal is to cat-
egorize ordered k-tuples of I', setting the stage for a combinatorial analysis

4A less tight version of the lemma, still sufficient for the quasipolynomial claim, was
recently proved by Pyber [?] without the CFSG.
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of the resulting k-ary relational structure. The method requires the con-
struction of global automorphisms from local information; our key tool is
the Unaffected Stabilizers Lemma.

We consider the Luks bottleneck situation. The input is a transitive
group G < Sym(f), a giant representation ¢ : G — Alt(I"), and two strings
Ly :Q— X We write n = Q| and m = |T'|. We fix a number k& > 2+logyn
(but not much greater, e. g., k = 3+ |logy n|) and assume m > 10k. Subsets
T C T of size |T'| = k will be referred to as “test sets.”

If L < G then L also acts on I' via ¢ so for a test set T" we can speak of
the setwise stabilizer of T in L; we write Ly for this subgroup.

We say that T'is L-invariant if Ly = L. We write ¢y : Gp — Sym(T) for
the map that restricts the domain of ¢ to Gt and the codomain to Sym(7).
The group G can be computed in polynomial time as Gp = ¢~ (Sym(I')7).
Our focus is the (unknown) group P(T') := ¢r(Auta, (r)).

Definition 7.1 (Fullness). Let T be a test set. We say that 7" is full with
respect to the input string ¢ if P(T") > Alt(T), i.e., the G-automorphisms
of r induce a giant on T

We consider the problem of deciding whether a given test set is full and
compute useful certificates of either outcome. We show that this question
can efficiently (in time k! n®™M) be reduced to the String Isomorphism prob-
lem on inputs of size < n/k.

Certificate of non-fullness. We certify non-fullness of the test set T
by computing a permutation group M (T') < Sym(T') such that (i) M(T) #
Alt(T) and (ii) M(T) > P(T) (M (T) is guaranteed to contain the projection
of the G-automorphism group of t).

Such an “encasing group” M (T') can be thought of as a constructive refuta-
tion of fullness.

Certificate of fullness. We certify fullness of the test set 7' by computing
a permutation group K (7') < Sym(2) such that (i) K(T") < Autg, (r) and
(il) Yr(K(T)) > Ale(T).

Note that K(T) < P(T), so K(T) represents a polynomial-time verifiable
proof of fullness of T.

Our ability to find K(T'), the certificate of fullness, may be surprising be-
cause it means that from a local start (that may take only a small segment
of ¢ into account), we have to build up global automorphisms (automor-
phisms of the full string r). Our ability to do so critically depends on the
“Unaffected Stabilizers Lemma” (Theorem ?? (a)).

11



Theorem 7.2 (Local certificates). Let T' C I' where |T| = k is a test set.
Assume max{8,2 + logon} < k < m/10 (where m = |I'|). By making <
k!'n? calls to SI problems on domains of size < n/k and performing k! n@M)
computation we can decide whether T is full and

(a) if T is full, find a certificate K(T') < Autg(z) of fullness
(b) if T is not full, find a certificate M(T) < Sym(T") of non-fullness.

To aggregate the local certificates, first we consider the group F gener-
ated by the fullness certificates. If the support of ¢(F) < Sym(I') has at
least m /10 elements then the structure of ¢(F’) suffices for the proof of The-
orem 77. In the alternative, non-fullness certificates dominate. In this case
a slight extension of Theorem ?7 is needed, to encase not only the group
Yr(Aute, (r) but also the images of the cosets Isoq,, ., (31,32) for all pairs
T, T of test sets and all choices of 31,32 € {r,n}. The result will be two
classifications of the ordered k-tuples of I', one associated with g, the other
with 1, yielding the canonical assignment ¢ — X(r) and ny — X(p).

8 Individualization and refinement

We consider k-ary partition structures X = (I',R) where R = (Ry, ..., R;)
is a partition of I'*. We think of such a structure as a coloring ¢ : T* —
{1,...,7} where ¢(%) = i if ¥ € R; (£ € T*). We also write X = (T, ¢)
instead of X = (', R). A refinement of a coloring ¢ is a coloring ¢’ such that
(V7,7 € TH) (@) = ¢(F) — o(F) = (7).

An assignment X — X’ is canonical if it is defined by a functor between
categories of isomorphisms of structures.

By a binary configuration we mean a binary partition structure X =
(T, ¢) such that

(i) Vz,y,z € T)(c(z,y) = c(z,2) = x=y) and
(ii) (Vx,y € T')(c(x,y) determines c(y, x)).

The Weisfeiler-Leman canonical refinement process (WL) [?, ?] takes
a binary configuration and with every pair (z,y) € I'? associates the list
d(z,y) = (c(z,y),dij(z,y) | i,7 = 1,...,7) where d;(z,y) = |{z € T |
c(x,z) =1i,¢(z,y) = j}|. This is clearly a canonical refinement.

Let X = (I',¢) be a k-ary partition structure. We assign colors to the
elements by setting c(z) = ¢(z,...,x). Individualizing an element z € T’
means assigning it a special color, thereby introducing irregularity. This
irregularity propagates via canonical refinement, reducing the isomorphism

12



search space. Let X, denote X with x € I' individualized. Then X £ Q) «—
(Jy € I') (X =2 Yy). So progress comes at a multiplicative cost of m = |I'|.
The multiplicative cost of individualizing ¢ points is n’, so we need t <
polylog for a quasipolynomial complexity bound.

9 Coherent configurations

The stable configurations of the WL process (where no proper refinement
is obtained) are called coherent configurations. This concept goes back to
Schur [?] who abstracted its axiom from the orbital configurations of permu-
tation groups. An orbital of G < Sym(€Q) is an orbit of the induced action
of G on ©Q x Q. Let X(G) denote the configuration on  with the orbitals
as the relations. This configuration is clearly coherent, but there are many
coherent configurations that do not arise this way. For v > 2k+1, the John-
son scheme J(v, k) has (}) vertices; it is defined as the orbital configuration
of the group Sf)k) (induced action of S, on unordered k-tuples).

A coherent configuration is homogeneous if every point has the same
color. A homogeneous configuration is primitive if |I'| > 2 and each off-
diagonal color (relation) is a (strongly) connected (directed) graph. We
note that the orbital configuration X(G) of a permutation group G is homo-
geneous iff G is transitive and X(G) is primitive iff G is primitive. The rank
of a configuration is the number of colors, so for |I'| > 2 the rank is at least
2. The only rank-2 configuration is the clique; its automorphism group is
Sym(T"). The Johnson scheme J(v, k) has rank k + 1.

The WL process and its natural k-ary generalization play a key role in
the combinatorial analysis of the k-ary relational structures handed down
by the Local Certificates algorithm.

10 Combinatorial partitioning

Recall that we have a giant homomorphism ¢ : G — Sym(I") for some
‘ideal domain’ I' and we are given a canonical k-ary partition structure
X(r) = (', ¢;) with symmetry defect > 0.1 where ¢ is the input string. Here
k = O(logn) where n = |Q] is the size of our original domain. Recall that
our recursive goal is to significantly reduce the size of the ideal domain
at moderate multiplicative cost. Ideally we would like to achieve this by
finding a good canonical coloring of T' (no color has multiplicity greater than
0.9m) or a good equipartition, i.e., a nontrivial canonical equipartition of
the dominant (> 0.9m) vertex-color class.

13



This goal cannot be achieved because of the resilience of the Johnson
schemes to canonical partitioning.

Proposition 10.1 (Resilience of Johnson schemes). The multiplicative cost
of a good canonical coloring or a good canonical equipartition of the Johnson
scheme J(v,t) is > (4t)*/(40),

The proof shows that if we pay less than exponential multiplicative cost then
our Johnson scheme is simply reduced to a slighly smaller Johnson scheme.

Note that ¢ = 2 is an interesting case, largely responsible for the lack of
progress over the exp(O(y/n)) bound for a long time.

The good news is that in a sense, the Johnson schemes are the only
obstacles.

So our modified goal will be to find either (a) a good canonical coloring,
or (b) a good canonical equipartition, or (¢) a canonically embedded Johnson
scheme on a dominant vertex-color class. In item (c), canonical embedding
means a functor from the isomorphisms of the input structures X to the
isomorphisms of the secondary structures whose vertex set is a dominant
vertex-color class in I' (under a canonical coloring).

We achieve this goal in two stages: first we go from k-ary to binary (De-
sign Lemma) and then from binary to the desired goal (Split-or-Johnson).

Theorem 10.2 (Design lemma). Let X = (I',¢) be a k-ary partition struc-
ture with m = |T'| elements, 2 < k < m/2, and symmetry defect > 0.1. Then
in time mP®) we can find a sequence S of at most k — 1 vertices such that
after individualizing each element of S we can either find
(a) a good canonical coloring of T, or
(b) a good canonical equipartition of ', or
(¢) a good canonically embedded primitive coherent configuration of

rank > 3.

Here canonicity is relative to the arbitrary choice of the sequence S.
Outcomes (a) and (b) allow for efficient Luks reduction. Case (c) requires
further processing.

Theorem 10.3 (Split-or-Johnson). Given a primitive coherent configura-
tion X = (I',¢) of rank > 3, at quasipolynomial multiplicative cost we can

find either

(a) a good canonical coloring of T, or
(b) a good canonical equipartition of T, or
(¢) a good canonically embedded nontrivial Johnson scheme.

14



Here canonicity is relative to the arbitrary choices made that resulted in
the multiplicative cost. The trivial Johnson schemes are the cliques J(v, 1).

Outcomes (a) and (b) again allow for efficient Luks reduction. Outcome
(c) provides even greater efficiency. Assume the canonically embedded John-
son scheme is J(m’, t); som > (T:fl) > (”;/) and therefore m’ < 1+v/2m. Now
Aut(J(m’,t)) = S,,, so we can replace I" by a set I of size m’ = O(y/m), a
dramatic reduction of the size of the ideal domain.

Overall algorithm. We follow Luks’s algorithm until we hit a bottleneck,
at which time an “ideal domain” I" arises and our recursive goal becomes to
significantly reduce the size of the ideal domain. First we use our central
group theoretic algorithm (“Local certificates”), based on the “Unaffected
Stabilizers Lemma,” to construct a canonical structure on I' of logarithmic
arity and with non-negligible symmetry defect. Then we use our combi-
natorial partitioning algorithms to achieve the desired reduction. Once I’
itself becomes very small (polylogarithmic), we can individualize all of its
elements, yielding a significant reduction of n, the size of the input string.

11 Paradoxes of Graph Isomorphism

GI is perceived to be an “easy” computational problem. As discussed in
the Introduction (see “Disclaimer”), it is efficiently solved in practice. It is
also provably easy on average. Our result shows it has rather low worst-
case time complexity. In comparison, the problem of factoring integers is
perceived to be “hard” — the assumption that it is hard, not only in the
worst case but even of average, is the basis of the RSA cryptosystem and
many other cryptographic applications. Yet, by common measures used in
structural complexity theory, GI seems harder than factoring. The decision
version of the factorization problem is in NP N coNP; this is not known to
be the case for GI. Factoring is solvable in polynomial time in the quantum
computation model; no quantum advantage has been found (in spite of
significant effort) for GI. Most remarkable is the series of recent hardness
results for GI in proof complexity, inspired by the CFI result. It turns out
that in commonly studied hierarchies of semialgebraic and algebraic proof
systems, isomorphism of certain pairs of graphs cannot be refuted on levels
lower than cn for some constant ¢ > 0 (where n is the number of vertices),
corresponding to refutation proofs of exponential length in these systems
[?, 7, ?]. (Cf. [?] for an overview of these and related systems.)
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12 Open problems

Complexity theory. It is not known whether GI belongs to coNP. On
the other hand, it is also not known whether P has logspace reductions to
GI. This is equivalent to a logspace reduction of the circuit value problem
(CVP) to GI. The CVP takes a Boolean circuit and an input to the circuit
and asks to evaluate the circuit. Such a reduction would be viewed as strong
evidence against the existence of an efficient parallel algorithm for GI.

While GI is universal over isomorphism problems for explicit structures,
there are interesting classes of isomorphism problems for non-explicit struc-
tures that are also not expected to be NP-complete (based on strong evi-
dence from the theory of interactive proofs), yet cannot currently be solved
in less than exponential time. Perhaps the simplest among them is the code
equivalence problem that asks, given two subspaces U and V' of [F" for some
finite field IF, is there a permutation o € S, such that U° = V? Here o acts
on F" by permuting the coordinates.

Can GI be solved in quasipolynomial time and polynomial space? (Luks)

Can canonical forms of graphs be constructed in quasipolynomial time?
(Ct. [?].)

Can isomophism of hypergraphs be decided in time, quasipolynomial in
the number of vertices and polynomial in the number of edges?

Combinatorics. The author’s decades-old project to find combinatorial
relaxations of Cameron’s Theorem 7?7 has seen major progress recently,
made by PhD students. Cameron schemes are the orbital configurations
of Cameron groups (Def. ?7). Let us say that a primitive coherent config-
uration is a non-Cameron PCC' if it is not a Cameron scheme. The author
has circulated various versions of the following conjectures for some time.

Conjecture 12.1. There exists a polynomial p such that the following hold.
Let X be a non-Cameron PCC with n vertices. Let G = Aut(X). Then

(a) O(Aut(X)) < p(logn) (where 0 denotes the thickness, Def. 77)
(polylogarithmically bounded thickness)
(b) |G| < exp(p(logn)) (quasipolynomially bounded order)

Part (a) obviously follows from part (b). Regarding (b), for non-Cameron
PCCs, an upper bound |G| < exp(O(y/n)) was proved in [?] in 1981. After
no progress for three and a half decades, in a recent tour de force of combina-
torial reasoning, Sun and Wilmes reduced this upper bound to exp(Ov (n'/3)),
building a new combinatorial structure theory of primitive coherent config-

urations along the way. The weaker Conjecture (a) has been confirmed
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for rank-3 configurations (essentially, strongly regular graphs) in [?] (2014).
Overcoming an array of technical obstacles through a powerful combination
of structural and spectral theory, Bohdan Kivva [?] very recently confirmed
(a) for rank-4 configurations. These are major steps, and raise the hope of
further progress, although the technical challenges seem daunting.
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