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ABSTRACT

This work is motivated by multimodality breast cancer imaging data, which is quite challenging in that the
signals of discrete tumor-associated microvesicles are randomly distributed with heterogeneous patterns.
This imposes a significant challenge for conventional imaging regression and dimension reduction models
assuming a homogeneous feature structure. We develop an innovative multilayer tensor learning method
to incorporate heterogeneity to a higher-order tensor decomposition and predict disease status effectively
through utilizing subject-wise imaging features and multimodality information. Specifically, we construct
a multilayer decomposition which leverages an individualized imaging layer in addition to a modality-
specific tensor structure. One major advantage of our approach is that we are able to efficiently capture
the heterogeneous spatial features of signals that are not characterized by a population structure as well
as integrating multimodality information simultaneously. To achieve scalable computing, we develop a
new bi-level block improvement algorithm. In theory, we investigate both the algorithm convergence
property, tensor signal recovery error bound and asymptotic consistency for prediction model estimation.
We also apply the proposed method for simulated and human breast cancerimaging data. Numerical results
demonstrate that the proposed method outperforms other existing competing methods. Supplementary
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1. Introduction

In recent years imaging analysis has encountered explosive
growth due to high demand and applications in biomedical
imaging for diagnosing disease status and assessing treatment
outcomes. The biomedical applications of imaging analyses are
especially powerful in cancer radiotherapy and neuroimaging
(Fass 2008; Martino et al. 2008; Caffo et al. 2010; Zhou, Li,
and Zhu 2013; Li et al. 2015). In addition, new advanced
technologies in imaging analysis can be used to better
understand the structures of the human body associated with
biological, psychological, and clinical traits (Lindquist 2008;
Lazar 2008; Friston 2009; Hinrichs et al. 2009; Kang et al. 2012),
so cancer and chronic diseases can be diagnosed earlier and
intervention treatments can be implemented.

This article is motivated by using multimodality optical
imaging data for diagnosing early stage breast cancer prior
to tumor formation. Figure 1 illustrates four-modality optical
imaging data for cancerous and normal rat breast tissues,
showing that a large number of tumor-associated microvesicles
(TMVs; circled in red) appear spatially aligned in the cancerous
tissue. One unique aspect of cancer imaging is that indivi-
duals might have imaging at various locations, and TMV's as
an important biomarker are also randomly located leading to
heterogeneous signal patterns. This is quite different from the
brain imaging where the same regions of the brain usually share
similar characteristics and functions over different subjects.

Moreover, TMVs have relatively weak signals in terms of
smaller size and pixel contrast values compared to modality-
specific background and noise. Both great heterogeneity and
weak strength make the signals difficult to be captured by a
conventional population model which mainly characterizes the
population-wise variation. In addition, it is also crucial to inte-
grate information from multiple imaging modalities effectively.

In contrast to standard vector data, imaging data are usu-
ally in the form of a multidimensional array (also known as
a multiorder tensor), which preserves higher-order structures
containing rich spatial information. Traditional statistical mod-
els mostly treat covariates as vectors. However, fitting a model
with the vectorized imaging array becomes infeasible when the
array size is large. For instance, a four-modality breast cancer
imaging size of 3600 x 3600 for each modality implicitly requires
4 x 36002 = 51,840,000 regression parameters. This leads to
an ultrahigh-dimensional problem which could be unestimable
even with additional regularization techniques. Most impor-
tantly, vectorization of an array is not capable of preserving the
important spatial structure of imaging. Under the vectorization
framework, Bayesian variable selection approaches have been
developed for high-dimensional imaging regression models to
identify important regions, by applying Markov random field
priors to account for the spatial correlation between voxels
(Penny, Trujillo-Barreto, and Friston 2005; Bowman 2007; Bow-
man et al. 2008; Derado, Bowman, and Kilts 2010; Li et al. 2015).
However, this would rapidly increase the complexity of the prior
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Figure 1. The four-modality microscope images for a normal rat’s tissue and a cancerous rat’s tissue. The increased amount and appearance of TMVs are clearly evident in
the cancerous breast tissue, compared to the normal breast tissue (see red circles of TMVs).

when the tensor order increases, and could be computationally
infeasible if the tensor order is high.

Alternatively, functional data analysis can be adopted to
construct a two-dimensional image predictor (Reiss and Ogden
2010) in a functional regression model. Nevertheless, the
extension to three dimensions or beyond could be impractical
due to high-dimensional parameters arising from higher-order
imaging data (Zhou, Li, and Zhu 2013). Recent developments in
imaging analyses employ a two-stage strategy, that is, perform
a dimension reduction such as principle component analysis
(PCA) first, and then fit a regression model based on the
extracted principal components (Caffo et al. 2010), however,
which still requires conversion of the image into a vector first.

To use the unique higher-order structure of the image covari-
ates, Zhou, Li, and Zhu (2013) and Li et al. (2013) proposed a
tensor regression model, where the coefficients associated with
imaging voxels are formulated as a tensor and assumed to be
low-rank. But this potentially requires voxel-wise registration
over different individuals, which is not applicable for cancer
imaging. In addition, the tensor decomposition technique, such
as the CANDECOMP/PARAFAC (CP) method (Beckmann and
Smith 2005), is applied for processing signals from the image
covariates directly (Cong et al. 2012; Merup et al. 2006; Karahan
et al. 2015; Lee et al. 2007; Miranda, Zhu, and Ibrahim 2018).
Due to its population-wise low-rank constraint, it is not capable
of capturing heterogeneous imaging information.

Another prevalent tool in image recognition and classifica-
tion is the deep learning method, in particular the convolu-
tional neural network (CNN, Ciresan et al. 2011; Krizhevsky,
Sutskever, and Hinton 2012). In general, the CNN is powerful
for image classification, which use multiple hidden layers with a
variety of convolution, pooling, and activation methods. How-
ever, due to its complex architecture and the large number of
parameters involved, the CNN usually requires massive train-
ing data to guarantee good performance (Keshari et al. 2018;
Wagner et al. 2013; Abbasi-Asl and Yu 2017a, 2017b), especially
when the imaging signals are heterogeneous and relatively weak.
In our motivated cancer imaging study, such a large sample size
for homogeneous samples is infeasible.

In this article, we propose an individualized multilayer tensor
learning (IMTL) using additional individualized layers to incor-
porate heterogeneity to a higher-order tensor decomposition,
which captures extra variation of the imaging covariates that
cannot be characterized by a population structure. Further-
more, we extend it to multimodality data to integrate individual-
specific information over different modalities and incorporate
modality-specific features through different layers. We develop
a scalable and efficient algorithm which can be implemented
with parallel computing. In addition, we establish theoretical
results regarding signal tensor recovery, identifiability, and pre-
dictive model consistency as well as the algorithm convergence
property.

From a feature extraction perspective, in a sense, the decom-
posed basis tensor layers in the proposed approach can be
viewed as some full-size feature extraction filters analogues
to those in the CNN. In contrast to the CNN which applies
homogeneous filters over all subjects, the individualized lay-
ers in the proposed method serve as subject-specific filters to
capture additional individual-wise characteristics and hetero-
geneity information, which enables us to effectively capture
heterogeneous outcome-associated signals such as the TMVs in
breast cancer imaging data. Wang, Zhang, and Dunson (2017)
proposed a similar idea for a multiple graph factorization model
via decomposing the edge probability matrix to a population-
shared baseline and an individual deviation. However, Wang,
Zhang, and Dunson’s (2017) model is not applicable to the
problem considered in this article, as their approach focuses on
binary data and assumes a symmetric matrix structure, while we
have a multimodal three-way tensor covariate with continuous
measurements of pixels.

Another advantage of the proposed method is that the
individualized layer efficiently integrates multimodality images
from the same subject, as it extracts a common structure
over different modalities while accounting for modality-
specific background noise. Multimodal imaging analysis has
drawn great attention in recent years, for example, in cross-
modality registration (Maes et al. 1997; Luan et al. 2008) and
multiple image fusion (Wang, Sun, and Guan 2006). To the
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best of our knowledge, most existing methods model the inter-
modality information either after selecting features from each
imaging modality separately (Zhang and Shen 2012; Liu et al.
2014), or by combining all modalities into a joint model but
assuming independence between modalities (Hinrichs et al.
2011; Yuan et al. 2012). In contrast, through the individualized
layers in tensor decomposition, the proposed model integrates
multimodality information in both feature extraction and
prediction modeling more effectively.

The article is organized as follows. Section 2 introduces the
main methodology and the background. Section 3 presents the
estimation and computation framework. Section 4 establishes
theoretical results. Section 5 provides simulation studies. Sec-
tion 6 illustrates an application for human breast cancer optical
imaging data. The last section provides concluding remarks and
discussion.

2. Methodology
2.1. Notation and Operations

Tensor, which also refers to a multidimensional array, plays a
central role in the proposed approach. We start with providing
a brief summary of tensor notation. Extensive references can be
found in the review reports (Kolda 2006; Kolda and Bader 2009).
A Dth-order (or D-way) tensor is a D-dimensional array X €
RP1*P2XXPD _where the dimensions of a tensor are also known
as modes. We denote py (1 < d < D) as the marginal dimension
of the dth mode. In this article, we use the terms way, mode, and
order interchangeably. The mode-d matricization of X, denoted
as X (g), is defined as a (pg x [[ 4 £d pa)-dimensional matrix,
where the (ij,...,ip)th element of X maps to the (ig,j)th
element of X'y andj = 1+ >y 4Ga — D [lgcg gr zaPar
(Kolda and Bader 2009). Moreover, we denote vec(-) as a vec-
torizing operation which converts a tensor to a vector, where
the element x;,_;, in a D-way tensor X is turned to be the
(il +32 g —1) ]_[;l:_l1 pj])th element in the long vector
vec(X).

Next we introduce some useful matrix and tensor operations.
Given two matrices A € R™*" and B € RP*1, the Kronecker
product is an mp X nq matrix denoted as A ® B. If A and B
have the same number of columns n = g, then the Khatri-Rao
product (Rao and Mitra 1971) is defined as an mp x n matrix by
AOB=[A1®B; --- A, ®B.,], where Ay is the kth column
of A. The inner product (-,-) of two tensors with the same
dimension is defined as (A, B) = (vec(A),vec(13)), which
follows that (A, A) =| A II%, where || - || is the Frobenius
norm. Moreover, an outer product “o” operating on multiple
vectors b' € R, ..., bP € RPP creates a rank-1 D-way tensor
B=>blob*0...0b", where the (i1, 12, . .., ip)th element of B
is defined as b;,, i, = bil1 biz2 ... bg, and b9 = w4, ..., bgd)’ is
the factor vector at mode d.

Consequently, a D-way tensor B € RP1I*P2X"XPD jg of
rank R if it can be represented as B = Zle bl o b’ o

- o bP, where b%s (r = 1,...,R) are p;-dimensional vec-
tors (d = 1,...,D). For ease of notation, we introduce the
Kruskal operator (Kolda and Bader 2009) for a rank-R D-way
tensor as B = B! o B> o --- o B = [B,B?...,B"],

where B = [b%,b4,..., bﬁ] € RPa*R denotes the factor
matrix at mode d. This tensor rank decomposition is also known
as CANDECOMP/PARAFAC (CP) decomposition, or Kruskal
decomposition (Coppi and Bolasco 1988). An alternative tensor
decomposition is high-order singular value decomposition, also
called Tucker decomposition (Tucker 1966), which decomposes
atensor into a D-way core tensor associated with D orthonormal
bases-matrices. However, the core tensor in Tucker decomposi-
tion is not guaranteed to be diagonal, and thus the tensor rank is
not very clear. Therefore, we adopt the CP decomposition here.

2.2. Basic Framework and Background

The sample imaging data is usually a mixture of true signal
structure and random noises. In general, we assume that

X, =0,+N;, i=1,...,N, 1)
where X; € RPY"*PD s the observed D-way sample tensor
covariate for the ith subject, ®; is the true signal tensor asso-
ciated with the outcome response, and N/; is the correspond-
ing dimensional noise background. The elements of A/; are
independent and identically distributed with mean of zero and
variance of o'2.

Let f(-) denote an appropriate feature extraction or trans-
formation mapping on the tensor predictor @; — f(©;) :
RPr><xPp. — R4, In a sample version with recovered signal
0, let f(xX) = f (©;) denote the extracted sample feature.
A general supervised learning stage to link the image tensor
covariate X’; and the observed outcome response y; can be
modeled as

1 N
min % > L (7 f (X, B). @)

i=1

where L(-) is a selected loss function related to a predictive
model based on the response types. For example, an L; loss,
Lyif(X),B) = lyi — f(Xi)TﬂHz, is usually applied for a
linear regression model with a continuous response variable,
while for the binary response in real data, we can employ a
logistic regression where the corresponding L(-) refers to the
negative log-likelihood function. Alternatively, it is also flexible
to utilize a machine learning model such as the support vector
machine (SVM, Vapnik, Guyon, and Hastie 1995) with a hinge
loss for a classification problem. Furthermore, regularization
and penalty can be also incorporated to the model in (2).
Apparently, that feature extraction and data transformation
is the key part to use the imaging information. One naive
transformation method is to directly unfold the imaging tensor
X;to along vector via f (X;) = vec(X';). However, the number
of unknown parameters in (2) using the vectorizing covariates
is HdD:1 Pd> which is ultrahigh-dimensional and would lead to
an unestimable model even applying common regularization
methods. In addition, some measurement errors on the imaging
data are also incorporated to the model in (2). A natural solution
to solve these problems is to employ a dimension reduction tech-
nique to recover true signal structure and thus extract important
features from the tensor covariates, and then fit the model in (2)



based on the extracted information. Intuitively, we consider a
low-rank approximation for tensor X’; as

where B,’s (r = 1,...,R) are normalized D-way tensor bases
shared by populations. This rank-R structure can be estimated
by minimizing the difference between the observed imaging and
approximated values under the Frobenius norm: Zfil | X —
Zle wirBB; ||%, and thus let f(X;) = (Wi,..., W) be the
extracted features, where the w;,’s are the projection loadings of
the X'; onto the estimated bases. However, without specifying
any structures on tensor bases, the general approximation above
is still likely to be unestimable and inefficient, as it is essentially a
singular value decomposition problem corresponding to an N x
I—[g:l p4-dimensional matrix for the vectorized data.

2.3. Individualized Multilayer Tensor Decomposition

In this subsection, we propose a novel individualized multilayer
tensor decomposition framework for true signal recovery and
feature extraction. Following the model in (1), we have a D-
way tensor covariate X; € RP1*"*PD for each individual (i =
L,...,N),andlet X = [X] ... Xn] € RNXP1X"XPD denote
the aligned higher-order tensor covariate, @ = [@; ... Oy]
denote the aligned true signal tensor, and N =[N ... Nyl
denote the corresponding dimensional noise tensor. In general,
the observed tensor covariate is mixed with a true signal struc-
ture and some random noises: X = @ + N

To motivate our model, we first start with considering a low-
rank structure modeling of the grand signal tensor © following
a CP decomposition

R
®=WoBlo...oBD=ZW.,oB},o...oBE, (3)
r=1

where B_dr (r = 1,...,R) denotes the rth column vector of
mode-d factor matrix B? € RPi*R (§ = 1,...,D), and
W = [wy,...,wn] € RN*R s the factor matrix corresponding
to the dimension of individuals, and w; = (wi1,...,wir) is
the loading vector associated to the ith individual. To avoid

1 d
——B“% be the
IBE) T :

normalized factor vector at mode d. We further let B, = B, o

B’o---0B” and i, = wi [15_, B[, and thus | B, ||r = 1 (see
supplementary materials A.1 for details). Then each individual
tensor can be represented as

. . . =d
the indeterminacy from scaling, we let B, =

R
Xi=®j+Ni=Zﬁ/irBr+Ni> (4)

r=1

where B,’s serve as population-wise rank-1 basis tensors, and
thus the individual-specific feature based on the signal tensor
@, is pooled as f(®;) = w; = (Wj1,...,w;ir)". In the sample
version, the extracted feature based on the observed sample
covariates is f(X;) = f((:),-) = w;, where the estimated
signals ©/s as well as the #;’s are obtained by minimizing an
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Ly-loss: | X — © ||12; under the model in (3). We refer this model
to the higher-order CP decomposition (HOCPD) model. The
HOCPD method is powerful for reducing the tensor covariates’
dimensionality, as the feature dimension is effectively reduced
from ]_[g: | Pa to R for the supervised learning in (2); however,
it highly depends on the low-rank assumption on the grand
signal tensor, which could fail to capture complex tensor data
information if there is significant heterogeneous variation aris-
ing from unique individuals. Moreover, it is infeasible to capture
heterogeneity simply by increasing the rank in an HOCPD
model, as it might lead to nonidentifiability and unstable model
estimation.

In the following, we propose an individualized multilayer
tensor learning (IMTL) method to incorporate heterogeneous
structures to tensor decomposition. For the ith individual, we
assume

R
0= Z wi By + S, s.t.

r=1

(B.,Si)=0,1<r<R,

€)
where B,’s are the population-shared rank-1 bases analogous to
thosein (4),and S; = sl.1 os? o--- os? is an individualized rank-
1 structure. With normalized vectors Ef’s and u; = HdD:l ||s;.’l||,
we can rewrite S; = u;S; where S; = 511 o 312 0---o0 EiD.
Given observed sample tensor covariates, the latent parameters
in model (5) are estimated through

N R
min _ Y XY wiBr — uSillf
r=1

wiBrui-Si ;7]
s.t. (Br,3i> =0,1<r<R

The orthogonal constraint is imposed to ensure the identifia-
bility between the homogeneous layers and the heterogeneous
layers, and also to improve the computational stability. Based
on the recovered signal @;, the extracted individual feature
is f(@i) = (ﬁ/;, Ui, {§;d}g:1)/, containing the weights of the
population-shared layers fv,- = (Wi1,...,wir), the weight of
the individualized layer fi;, and the decomposed factors of the
individualized layers §f’s, respectively.

In contrast to the HOCPD in (4), each signal tensor ®; in
(5) is characterized by two different layers, one consisting of
a linear combination of homogeneous structures (B,’), and
another containing an individualized structure (S;) capturing
the heterogeneity of individual features. Intuitively, the individ-
ualized layer S; is the “best” rank-1 structure extracted from
the “residual” tensor of a higher-order decomposition. This
additional layer enables us to capture the individual-specific
information of the tensor cRovariate which is not characterized

by a population structure > w;B,, while the rank-1 structure
r=1
in (5) avoids overfitting on the individualized layers.
Additionally, in practice, the informative heterogeneous sig-
nals could be relatively weak compared to the population-wise
background and noise. For example, in real data, the important
biomarker TMVs are discrete and random spatially distributed,
while the signal strength is also quite weak. Therefore, they are
very likely to be washed out if only low-rank homogeneous
bases are used. In some sense, the homogeneous bases in the
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population layer serve as some full-size filters to remove those
homogeneous variation, so the subject-specific signals which
deviate from the low-rank homogeneous background can be
captured. Consequently, the population layer and the individual
layer effectively coordinate to extract informative features from
sample tensor covariates and thus improve model prediction
power.

2.4. Multilayer Tensor Reconstruction for Multimodality
Data

Multimodality imaging data are widely adopted and have drawn
great attentions in recent years. In our motivating application,
optical imaging produces multiple images using different wave-
lengths of light in one examination. Although a single modality
model is applicable, there is a critical need to integrate all
information collected from multiple modalities, so important
features associated with clinical outcomes can be extracted more
effectively and the prediction power can be greatly enhanced.
In the following, we develop a multimodality imaging tensor
model which extends the individualized multilayer approach in
(5) to incorporate different sources of modality information.
We consider an M-modality tensor covariate

0 =00 ... @M] where @™ ¢ RN*P1xXpp (] <y <
M). For a single modality m, we propose a multilayer tensor
decomposition

O — woB™!l...oRBmD + 8,
where B4 are modality-specific factors,and S =
SNn] € RNXP1XXPp contains heterogeneous layers. With
normalized factors, each individual tensor can be rewritten as

@Wl) Zw(m)B(m)—i-MS st. (BM,8))=0,1<r<R,

r=1

(6)
where {B(m) = B __, is the set of bases for
the mth modality, and S i = MzS is an individualized layer
shared by different modalities @gm) (m = 1,...,M) of the ith
subject. Similarly, the proposed model in (6) can be estimated
by minimizing a sum of squared loss: Y™ _, || X — @™ |2
with the constraints. Let @; = [@51) ... @l(M)] be the mul-
timodality tensor signal for the ith subject, and denote ©; as
the sample estimator based on (6). The extracted subject-wise
feature is f((:)i) = (tiv,', i, {fsf}dD |)s containing the weights of
the modality specific layers w; = {w(m)}ETfRM , the weight of
the individualized layer fLi» and the decomposed factors of the
individualized layer s¥s, respectively.

For the proposed multlmodahty model in (6), the individu-
alized layer §; is a common low-rank structure capturing the
individual-specific spatial pattern shared by different modali-
ties. Similarly, for a given subject, if we consider removing the

(m), L (M)) }

modality-specific layers Z w( 'B™ from each modality Q(m)

first, and then aligning the ‘residuals” from multiple modalities
to a higher-order tensor (RP1 > *P0*M) then the individualized
layer can be interpreted as a tensor slice along the modality
mode of the “best” rank-1 structure extracted from the higher-
order residual tensor.

[S1S, ...

In addition to characterizing the heterogeneous structures
analogues to the singlemodality case, the individualized layer
also makes it feasible to integrate the information of multiple
modalities effectively. Although the individual-specific signals
are randomly distributed across different individuals, their spa-
tial pattern is shared by different modalities from the same
individual. Therefore, the individualized layer extracted over
multiple modalities aggregates the information regarding their
common structure and thus captures this individual-specific
feature more accurately. Figure 2 provides an illustration of the
individualized layers and the modality-specific layers on the
four-modality breast cancer images.

Alternatively, we can simply align the four modalities
together to a higher-order tensor predictor with a size of
p1 X -+ X pp X M, and then apply the proposed singlemodality
model in (5). However, this is inadequate to capture the variation
among different modalities. In the following, we compare the
singlemodality model in (5) with the integrated tensor and
multimodality model in (6). Let ®; = [G);l), .. ,G);M)] €
RP1XPDXM denote the multimodality integrated tensor. With
a singlemodality model, we have

R
@,’ = Z Wirbi o
r=1

where brnOdal
modaly/
biM )

cobPobmodl fglo. oo s““’dall

modal __

(bmodal) . bﬁ?dal)/ and st

( Smodal

are both basis vectors on the mode of modality. Hence,
for the mth modality (m = 1, 2, 3,4), the corresponding tensor
slice (p1 x - -+ x pp-dimensional tensor) can be written as

(m) modaly, 1 D modal _1 D
0, ZW by b, o---0b’ 4557 s; 0058

This implies that the population-shared basis layers B, = b! o

-0 bf’ (I < r < R) are the same across all modalities up to
scaling and permutation. In contrast, the multimodality model
in (6) allows different modality-specific layers Bﬁm) across dif-
ferent modalities to capture the modality-wise heterogeneity. In
fact, the singlemodality model on the integrated data is a special
case of the multimodality model (6), with additional constraints
on all modalities sharing the same set of population bases.

3. Computation

In this section, we address the estimation problem of multilayer
decomposition in (6) for the proposed IMTL model. In contrast
to traditional CP decomposition, incorporating modality lay-
ers and individual layers of the proposed method significantly
increases the computation cost, and conventional algorithms
for tensor decomposition are not necessarily scalable in our
situation. Therefore, we propose a bi-level block improvement
algorithm which alternately updates different layers and apply a
maximum block improvement (MBI) strategy for the estimation
of each layer.

The proposed model in (6) yields a constrained optimiza-
tion requiring orthogonality between the modality layers
and the individual layers. Hence, we employ a penalization
method (Nocedal and Wright 2006) to achieve orthogonality
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Figure 2. Anillustration of the individualized layers and the modality-specific layers for four-modality optical images of the breast cancer tissues.

constrained optimization, that is, to minimize the objective
function

M
L (W, {B(m)’d}m/s,d/s’ {sf}i/s,d/s |X) = Z ||X(m) _ G(M)||12~"

m=1

+as ) (B, S
mi,r

7)

Note that the orthogonal property of the decomposed layers
is not critical here as it only serves to ensure identifiability.
Although the penalization method cannot guarantee an exact
orthogonality of the estimated layers, it is sufficient for pursuing
the layers’ identifiability in practice.

The objective function in (7) is convex and differentiable with
respect to each separate block of parameters, which makes it
applicable to apply a block-wise updating procedure. However,
the traditional tensor decomposition algorithms, for example,
alternating least squares (ALS, Carroll and Chang 1970) and
block relaxation algorithm (De Leeuw 1994; Lange 2010), are
nearly infeasible and unscalable due to the large number ((M +
N)D + 1) of blocks, and updating one block at each iteration
could lead to poor convergence performance. In addition, the
estimation of different blocks (layers) use different parts of the
data, for example, B®™%s are estimated within each modality
and s?’s are estimated within each subject. This allows for alter-
nately estimating different layers, and makes parallel computing
feasible, which significantly improves the computational scal-
ability. Finally, in general, for D > 2, the ALS-type cyclical
algorithm is not guaranteed to converge to a stationary point

(Chen et al. 2012). Therefore, we propose a bi-level algorithm,
that is, within the estimation of each layer, we apply the MBI
strategy (Chen et al. 2012) in estimating specific blocks, and
then we update each layer alternately.

Specifically, given the individual-layer factors, we let X ™ =
X _ & and alternately update blocks of W and {B"4}s;
that is,

M
~ [new] ) 5, (m) ~ (m),D ~ (m),1\ ] 2
W - H - o H ?
arg min E X W(B ©---OB ) ;

m=1
(8)

where X EY;) is the mode-1 matricization. The sub-optimization
turns to be a ridge-type problem and thus has a unique explicit
solution. Next, given W, we update {BM} ;¢ through parallel
computing across different modalities (m = 1,...,M), and
apply the MBI strategy. Let

4 5 (m) AT
L0V (BB ) = | Xy - BB © W) |

N 2
1) (B, 8408
i

F

be the reduced objective function with respect to B while
fixing all other blocks, where B(_”;) = BM.D ... gm.d+l
Bm-d=1.. .o BM:1 and Si,(d) is the mode-d matricization of
S ;. Given the latest iterate {B(™-LIH Bm.DIth 'y calculate

Brmyd _ arg;?yi)r}i Lm (B(m)’d|{B(m)’d/’[t]}d’;éd),

, )
45 = . L(m) B*(m),d B(m),d L[t] , ,
= arg 1211?13 ( I{ Yar£d)
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and update only the block B™-*[*] at the mode d = d, for
maximum improvement.

Similarly, given the modality-layer factors, the individualized
layers can be estimated within each subject using parallel com-

. o < (m) m R . )
puting. For each subject i, let X;" = X7 — > w3, 7,
r=1

and let

M
4 3-(m)
Li(sf s Jaza) = D 1%icq) — s{ Sica) "I
m=1

-~ (m)
+ s ) (st B, Si-a)
m,r

be the reduced objective function with respect to s;i, where

Sia=s 0 --siTod... osPand Bin:;) is the mode-d

]

matricization. Given the latest iterate {sil’[t et siD’m }, calculate

s;"d =arg mgn Li(sfil{s? ’[t]}d/;td), and
Si
: dy ]
df = arg min Li(sil1s/ ) 2a), (10)
and update only mode-d} block. The detailed algorithm is sum-
marized in following Algorithm 1.

For any objective function f(A;,...,A,) with blocks of
parameters {A;}?,, a point of (A],...,A}) in the parameter
space is defined as a block-wise stationary point of f(-) if for
any block, there is A7 = argming, f(A],..., A7 |, A, A},
AT

Let {W, B(m)’d,sf}m,,-,d be an element-wise collection of all
parameters and let 2 be the corresponding parameter space. We
provide a global convergence property of Algorithm 1 as follows.

Lemma 1. Assume 2 is compact, then any accumulative point of
the iterations from Algorithm 1, say {W*, B s} |, o 1 is
a block-wise stationary point of the objective function in (7).

In general, multiple initializations are suggested to obtain
a sound optimum in (7). The normalization on modes’ factor
vectors can be performed after the last iteration. Given the
estimated tensor signals Oy, for binary response, we employ
an L;-penalized logistic regression model with the extracted
sample features f (@i)’s in (2) for prediction. The rank of the
population-shared layers and the other tuning parameter are
selected based on a grid search to minimize the prediction
errors on the validation set or via a cross-validation method.
More details and discussion about tuning procedure and the
prediction on a new subject are provided in the supplementary
materials.

4, Theory

In this section, we develop the theoretical framework for the
proposed model regarding both tensor signal recovery and pre-
diction modeling. First, we introduce conditions to ensure iden-
tifiability of the proposed multilayer tensor modeling. Further-
more, we provide an accurate error bound for the recovered sig-
nal tensor and show that the estimated signal tensor converges

Algorithm 1 A bi-level block improvement algorithm with par-
allel computing

1.(Initialization). Set t = 1 and the tuning parameter A;. Set

ir(}itial values for W01, gim.d.[0]>g (1<m<M;1<d<D,).Set

sl —0(1<i<N;1<d<D).
2.(Modality layers). At the tth iteration, given {s‘-i’[t_l]}’ s,
Y lay g i
estimate Wt and {B(™-alt}/,
(i) Set Wit — wlt=11 gim.ditl  gim.dlt=11 (5 ).
(ii)Fixing all B"®[1s, update W't through (8).
(iiifixing W, for each modality m, (a) calculate d%’s and
B*™@s based on (9); (b) assign B -dlthey < prim.d jf
g
d = d*, and B"-®lthew  BOM-AIL i g £ g%
(ivptop iteration if ﬁ || Wthew — Wit 2 4 L Y omp
otherwise  assign

MR 1'[5:1 pd
W[t] (_W[t]new’ B(m))da[t] (_B(m)’d)[t]new (m’s’ d’S), and go
to Step 2(ii).
3. (Individualized layers). Given W1, BM-4lths for individual i

(1 <i < N), estimate s;i’[[]’s.

(i) Set s?’[t] <« s?’[t_l] (d’s).
(ii) (a) Calculate d*’s and s*s based on (10); (b) assign
1 1 g
sf’[t]“ew «sifd = d*,and sf’[t]“w <—s?’m ifd # d;.
1 Zd ”s?x[t]new _sf»[t] ”%510*4’ oth-

x Bl _ gl |2 <104,

(iii) Stop iteration if

[Ta-1 Pa
erwise assign s?’m <—sf’[t]“ew, and go to Step 3(ii).
) . . lelfl—el-11)32 3 .
4. (Stopping criterion). Stop if ———7——L<107~, otherwise set

NMTTi-1 pa
t<t+ 1 and go to Step 2.

to the true one. Finally, we present the theoretical results of the
supervised learning stage to evaluate prediction performance.
All proofs are provided in supplementary materials Section A.

We first address the tensor modeling identifiability issue
before establishing the statistical property, which is critical for
tensor representation. In particular, we provide sufficient con-
ditions to achieve identifiable layers in the proposed multilayer
tensor model, which can be verified easily in practice. For ease of
notation, the following discussion focuses on the single modal-
ity model while the presented conditions can be easily extended
to the multimodality model.

In the proposed framework, potential unidentifiability could
occur in the multilayer CP decomposition of tensor predictors
in (5), which can be attributed to three aspects. The first two
indeterminacies arise from scaling and permutation, and the
last aspect is the nonuniqueness of the CP decomposition for
a tensor, that is, the possibility that more than one combination
of population layers and individualized layers can lead to the
underlying true image tensor. In the proposed model, the scaling
indeterminacy, which refers to possible rescaling over different
modes’ factor vectors for each layer, is eliminated by imposing

a unit-norm constraint on parameterization, that is, ||Bi =1
and ||§§i||2 = 1. Moreover, the permutation indeterminacy refers
to the arbitrary reordering of the population bases. To address
this point, we could align the population bases according to a



descending order of the first element of mode-1 factor vectors,
thatis, B, > B}, > - -+ > B},

After controlling the scaling and the permutation, in general,
the CP decomposition of a tensor could still be nonunique,
due to the possibility of multiple combinations of rank-one ten-
sors in decomposition. Although various identifiability condi-
tions have been presented for a conventional CP decomposition
(Coppi and Bolasco 1988; Sidiropoulos and Bro 2000; Kolda
and Bader 2009), they are infeasible here as all of them require
checking each individual tensor ®; (1 < i < N) separately,
which is not effective in practice, especially when the sample size
N is increasing.

In the following, we provide a much weaker sufficient
condition based on the integrated higher-order tensor without
imposing any additional constraints on parameterization. We
first introduce the concept of a k-rank of a matrix according
to Coppi and Bolasco (1988). Specifically, the k-rank of a
matrix A, denoted as K4 is defined as 4 = max{k
any k columns of A are linearly independent}. Let @y;.,;) denote
an integrated (D 4 1)-way tensor combining » individual
tensors. Without loss of generality, we assume @i =
[@; .-+ Oy]. There is a (R + n)-rank representation for the
integrated tensor

R n
O1:) = ZWP:"] oB_lro ~-oBB+Zﬁl[.1m] osl1 o--~osiD,
r=1 i=1
[1:n] _ /
where w, " = (Wi, ..., wy) and
~[1: ~d
" = 0,...,0, 1,0,...,0/. For1 <d < D,let B, =
e e S e e .
Lowi—1 i itl..n
B¢ ... bh s s?] denote the mode-d factor matrix

for integrated tensor @y;.,;. We have the following proposition
providing a sufficient condition for the identifiability of the
multilayer decomposition in (6).

Proposition 1. If there exist n individual tensors (2 < n < N) in
{®;,1 < i < N}, such that,

D
ZIC i >2R+n+D

By

holds for the integrated high-order tenor @y;.,, then the mul-
tilayer decomposition in (5) is unique given the unit-norm and
the ordering constraints on the factor vectors.

In the proof of Proposition 1, we show that any rank-1 CP
decomposition for a D-way (D > 2) tensor is unique up
to scaling indeterminacy, which implies the identifiability of
the individualized layer given the population bases. The above
condition is relatively weak compared to those in Coppi and
Bolasco (1988), Sidiropoulos and Bro (2000), and Kolda and
Bader (2009), and it is easy to satisfy as it applies for an arbitrary
n. For example, if n = 2 and the factor matrices are of full rank,
then the condition in Proposition 1 holds as long as D > 2.

Next we establish the theoretical properties for the recovered
tensor signal @ based on the observed sample tensor covariates

/
X ™5, We denote y = (Vec(W)’, {Vec(B(m)’d)};n,d, {sf};)d) as

1
the vector of all latent variable parameters. It is straightforward
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that dim(y) = MR(YCL_ pa) + NR+ Y5 pa). Let T =
(X gm) }i,m denote a collection of all observed D-way tensors and
|Z| be the cardinality measure of Z. That is, |Z| denotes the
number of all singlemodality images, which equals NM if there
is no missing.
Furthermore, let @™ = (91.(7",),, ) and we have 9-(7".)., =
sJ1+°JD L1 JD

R
1 ,D .
Z w,rb](:?) b](;”r) +s! AL ~sEjD according to the proposed
(m) _ plm)
mult11ayer model in (6). We assume that E[th ]D] = GiJl---jD’

where X( ™ . denotes an element of the sample image tensor

1D

x" (om) for example, a pixel in the image, and x( 1) -
an observed value. Then, the number of all sample elements’
observations is |Z| ngl Pd> which increases as the number of

images increases. In the following, for the (ji, . . ., jp)th element

denotes
D

of image X Em), we define the loss function

(m) (m) _ (o (m) (m) 2
(O1X;;". ]D—xl-jl...jD)—(x,-h.“]D Orir-wsin)

(M) (m),1 (m),D 1 D \2
Xiji--jp Zw”bjlr b Sy Si)

Consequently, we assume that the overall objective function is
an additive form of the loss function and the penalty function,
that is,

N M p
TEET0 35 59 DD SUCT MBI
i=1 m=1j=1 jp=1

where Xz is a penalization coeflicient. Suppose that S is the
parameter space of ©, and that

e = argglelgL((*D). (11)

In practice, each pixel of a tensor image can only range from
white to black and is usually normalized. Hence, it is sensible to
assume that [@lcc < Co, [[¥]lo = C1 and [X][loo < C; for
large constants Cy > 0, C; > 0 and C; > 0. Then we define the
vector parameter space Sg = {© : |O] < Cp} and S, =
¥ 7l = Ci).

For each Xl(;qf) o let lA(O|X,(]";) i) = U6, XI(;T) ) -

l(®0’Xi(,§T?-~jp) be the loss difference, where ®¢ corresponds to
the unique true parameter. We first define

K(0, B9)
N M p pD
Z SY S RO D),
NMpl i=1 m=1j=1 jp=1 7

which is the expected loss difference. Since ® is the unique
true parameter, we have K(®,®y) > 0 for all ® € Sg and
K = 0 ifand only if ® = ©y. Therefore, we define the distance
between ® and O as p(0, Og) = K/2(0, Oy), and also define
the variance of the loss difference as follows

V(O, B)
] N M p PD
- Z Z Z Z var{la (®IX[j i)}
NMp1 “Pp = o S bji
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Under the L,-loss, it is expected that

K(©,00) = 5,19 — ©ollf> and that V(©,00) =

2 .
do” 1@ — ®0||12:, where o2 is assumed to be the same

]\U\/[p1 PD
variance of each element of the tensor.

Theorem 1. Suppose © is the sample estimator satisfying (11),
then we have

1 ~
P <|I|_1/2”® — Ogllr = T|Z|> < 7exp(—c |I|T|21\)

1/2 .
fortiz) = max(8|I|,k|%‘),where c1 > Oisaconstantand gz| ~

|Z|~ /2. The best possible rate is achieved at 77 = |Z|~1/2
when A7) ~ 8|21‘.

Theorem 1 indicates that, with an appropriate rate of the
penalty term shrinking to zero, the recovered tensor signal in
(11) converges to the true one as the number of images goes to
infinity. In other words, assuming the identifiability conditions
are satisfied, Theorem 1 ensures that the extracted information
from the sample images captures the true underlying informa-
tion as the sample size increases. In addition, the convergence
rate is established under the L, distance, which is a special case
of the Kullback-Leibler divergence.

Remark 1. In practice, the estimator specified in (11) is a global
minimizer and may not be attainable due to the nonconvex
nature of the proposed optimization problem. One possible
solution is to follow (1.1) of Shen (1998) and relax (11) to
allow an approximate global minimizer, in the sense that the
IMTL estimator approaches the global minimizer asymptoti-
cally, which is less restrictive on the requirement of the global
optimum. Another solution is to develop theoretical properties
directly for the IMTL estimator, which is viable because of the
block-wise convexity of the proposed criterion function (Li and
Zhang 2017; Wang, Zhu, and ADNI 2017). However, this may
require good initial values to establish the consistency property.

Next, we investigate the theoretical property of the predictive
model with the extracted sample information. In the proposed
framework, we consider a generalized linear model (McCul-
lagh and Nelder 2018) assuming that the response variable Y;
is associated to the true image signal (®;) via E(Y;|®;) =
w(m) and n; = f(©;)TB, where f : RP1>*~xPxM _ REf jg
the feature-extraction mapping following (6), and p(-) is a link
function. Let F(® 7)) = (f(@l)T, ... ,f(@N)T)T denote the
extracted feature covariates based on the true imaging signals,
and let £ (yi,f(®i), ;3) = L ni{f(©;), B}) denote a general
loss function analogues to that in (2). Consequently, a general
criterion function for supervised learning with true imaging
information can be presented as

N
1
GN,F(O7),B) = N E Ly f(©:),B) + rg - p*(B),
i=1

(12)
where p*(f) is a penalty term imposed on feature covariates
effect B, Ag is the associated tuning parameter, and y =
(1> - .., yN)’ is the sample response.

Note that the model in (12) essentially refers to a “true”
model with the underlying true imaging information. Since

only sample images with noises are observed, we actually use
the recovered information (:)|I| and the corresponding sample
features F(Xz) = F ((:)|I|) in the supervised learning model
(12), leading to a sample objective function. Define 25 and 2,
as the parameter spaces for § and n; (1 < i < N), respectively.
In the following, we introduce a regularity condition on the loss
function L£(-):

(C1): For n;,n; € 25 and all y;’s, there exists a function K;(-)
such that

LG i) — Linnd)] < Kl —0il, 1 <i<N,

and % ZII\] E[K,-(y,-)z] < K holds for a positive constant Kj.

Lemma 2. Suppose condition (C1) holds. Under regularity con-
dition (R1) provided in supplementary materials (A.5), and if
#HF(X‘ZQ — F(©z)llF — 0, then, for any given 8 € Qg,
we have

GN(, F(X 7)), B) — GN(y, F(© 1)), B)| = 0.

Lemma 2 indicates that the sample prediction model
approaches the true model asymptotically as long as the
recovered imaging signal converges to the true one. Next, we
investigate the asymptotic property of the sample model esti-
mation. Let B, be the true value of 8 denoting the effect of the
true imaging signal, let [}(Xm) = arg mﬂin GN(Bly, F(X 1))

be the sample estimator with observed image covariates,
and let [3(®|I‘)=argmﬂinGN(ﬂ|y,F(®|I‘)) be the oracle

estimator with true imaging signals. Furthermore, we denote
R(LN) = %Zfil Ly f(X), B(X 1)) as the empirical
risk for the sample loss function, and denote R(Ly) =
%Zfilﬁ(yi,f((f:)i),ﬂ(@gp) as the empirical risk for the
oracle loss function with true imaging information. The next
results provide the estimation consistency of the imaging
covariates’ effect as well as the empirical error.

Theorem 2. Suppose the conditions in Theorem 1 and the
identifiability conditions in Proposition 1 hold. Under regularity
conditions (R1)-(R4) (supplementary materials A.5) and condi-
tion (C1),if Ag — 0, as |Z| — oo, we have

IB(X|z) — B©O17)| =50 and B(X 7)) — Bo,
and also,
IR(Ln) = R(LN)| = 0.

In addition to model estimation consistency, Theorem 2
indicates that the empirical error of the sample predictive model
approaches the oracle one, where the true imaging signals are
known. With an appropriately selected predictive model in (2),
the proposed approach is able to achieve a consistent and effi-
cient prediction result.

Remark 2. The exact generalization error bound of the proposed
model actually depends on a particular predictive model speci-
fied in (12) as well as the response types. Consider a new obser-
vation with true signal (Yj*, @;‘), in a generalized linear model,



Theorem 2 indicates that we would have a consistent mean
response prediction ,&]* = M(f(Q;‘)Tﬂ(Xgp) —5 E[Y]?"|®]>»"],
where () is a link function. Furthermore, for a continuous
and bounded response, the L,-prediction-risk E(IA/JTk - Yj"‘)2 con-

verges to the theoretical lower bound varg: (Yj*) with f’]* = ,&;‘;
while for a binary response Y]?k, let 7 (G);‘) =1 [ﬁ(@}k) > 1/2]be
the trained classification rule, where ﬁ(@)}“) = logit(f (G);‘)Tﬁ ),
then we have 7 (@;‘) —p 7Tj0, the optimal Bayes’ rule.

5. Simulation Studies

In this section, we investigate the performance of the proposed
approach comparing with other competing methods through a
simulation study of heterogeneous weak signals, which mim-
ics the real data structure and also frequently arise in clinical
diagnosis and cancer imaging analysis. Specifically, we simulate
four-modality imaging data, where multiple modalities imaged
from the same individual share random-location heterogeneous
signals, while each modality contains its unique background
bases. Additional simulations regarding various heterogeneous
signal patterns with the singlemodality data and the impact
of the contrast between population-shared components and
individualized components are provided in the supplementary
materials Section B.

In this study, we simulate the mth-modal image for the ith
subject as Xgm) = .Agm) +Bi+ N, m=1,...,4, consisting
of the true signal feature image B;, the modality-specific back-
ground image .Agm) and the noise background image A/;. For
each subject, we randomly select s; pixels of B; to be valued
of 2 (signal pixels) with the other pixels of 0. We generate the
response label y; from a Bernoulli distribution with a probability
0f0.4tobe 1. The number of the signal pixels s; is generated from
a Poisson distribution with means pu¢c = 25 and uy = 5 for the
cancer subject’s image (given y; = 1) and the normal subject’s
image (given y; = 0), respectively. The noise elements of A/; are
generated from N (0, 0.2%).

Moreover, the first modality background .Al(.l) is a random
noise matrix with elements generated from N(O, 0.1%); the
second modality has a uniform background with Al(.z) =
wfz) 1p1}, where 1p isa D x 1 vector of 1’s and wl@ is generated
from N(0, 0.12); and both the third and fourth modality imaging
have low-rank structures with Agm) == wl(m)a(m)’1 oal™?

r Gr
(m = 3,4), where wlgf) gf) are generated from N(0, 0.1%),
as_m)J) (m),2>

sanda, ~’sare generated from N(0,Ip) and N(0, 0.5Ip),
respectively, and Ip is the D-dimensional identity matrix. We
set the sample size as 60 and 100, equally for the training set,
the validation set, and the testing set, and the marginal imaging
dimension as D = 64. Figure 5 illustrates sample normal and
cancerous images.

To evaluate the prediction performance, we calculate the
prediction accuracy rate (P[y = y]), the sensitivity (P[y = 1|y =
1]) and the specificity (P[y = 0|y = 0]) on the testing test. We
compare the proposed IMTL model with the higher-order CP
decomposition method (HOCPD) in (4), the marginal principal
component analysis (MPCA) method by mimicking Caffo et al.
(2010), the vectorizing L;-penalized logistic regression model

and w
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(VPL), the tensor regression model (TR, Zhou, Li, and Zhu
2013), and the CNN.

The VPL is applied on a 16,384-dimensional vector pre-
dictor by vectorizing all four modalities and then fits an L;-
penalized logistic regression model for the binary response,
which is implemented by the R package “glmnet” (Friedman,
Hastie, and Tibshirani 2010). The MPCA first extracts feature
from each individual modality separately and then fits a logistic
model with all modal features. The TR and the HOCPD are
applied on the integrated multimodality image (third-order ten-
sor predictor). The TR method is implemented by Zhou (2013)’s
Matlab toolbox “TensorReg”. In the following numerical stud-
ies and real data analysis, we employ an L;-penalized logistic
regression model for the IMTL, the HOCPD and the MPCA
methods at the predictive stage using the extracted features.
The relevant tuning parameters associated with each model are
selected through minimizing the prediction error rates (P[y #
y1) on the validation set, respectively.

In particular, the CNN method is implemented by Matlab
toolbox “matcovnet” (Vedaldi and Lenc 2015), which inputs
four modalities as four channels. Since the tuning of the CNN
is crucial, we tune the CNN to minimize the classification error
rates on the validation set over the number of layers, the number
of filters on each convolution layer, the filter size, depth and
the stride size, the pooling window size, the pooling stride size,
the pooling method, the activation function, the number of
epochs and the learning rates. The detailed CNN architectures
and the tuning process in our numerical studies are provided
in the supplementary materials Section C. In addition, we also
implement the TensorFlow for the CNN and the results are
consistent with the Matlab’s results.

Table 1 provides the prediction results based on 100 replica-
tions. The proposed method (IMTL) outperforms other meth-
ods with the highest prediction accuracy (0.86 and 0.94) and
sensitivity (0.69 and 0.88) for both sample sizes (60 and 100),
respectively. Moreover, the IMTL, the HOPCD methods, and
the CNN, have significant advantages over the VPL and the
MPCA methods which assume the independence between the
four modalities. This indicates that integrating different modal-
ities’ information at feature extraction enhances the predic-
tion power. Furthermore, the proposed IMTL method achieves
more than 16% improvement in prediction accuracy than the
HOCPD, indicating that the proposed method is more effective
in utilizing correlation information among different modalities
with additional individualized layers. An increased training data
size improves the CNN’s prediction power, however, the IMTL
still outperforms the CNN with a 10% higher overall accuracy
and a 13.4% higher sensitivity at a sample size of 100.

Although the CNN is a powerful tool for image classification,
it requires a large number of training samples to entails mul-
tiple hidden layers and involves a large number of parameters
(Keshari et al. 2018; Wagner et al. 2013; Abbasi-Asl and Yu
2017a, 2017b). In practice, the sufficient sample size is not
always attained, especially for cancer imaging data. In addition,
the heterogeneity is another great challenge occurred in cancer
imaging, while the CNN is less capable of capturing heteroge-
neous signals with relatively weak strength.

We conduct additional simulations to investigate the per-
formance of the CNN compared with the proposed IMTL in
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Table 1. Prediction results (SEs in subscripts) of the proposed method (IMTL) compared with five other competing methods for simulation study, based on 100 replications.

Nir VPL TR MPCA HOCPD CNN IMTL
Pred accuracy 0.5930.051 0.5730,054 0.5980 078 0.7310.175 0.7140.083 0.8580.069

60 Sensitivity 0.0009.000 0.41 50_103 0.4430‘143 0.526¢ 229 0.3790.209 0.6870.119
Specificity 1.0000.000 0.674¢ 097 0.6910.080 0.9150.094 0.9550,023 0.9850 064
Pred accuracy 0.6080_043 0.6030_045 0.6340‘057 0~80804168 0.8840_069 0.9410.041

100 Sensitivity 0.0019.005 0.4530.090 0.4900.113 0.6820.226 0.7749.160 0.8780.064
Specificity 0.9980 008 0.6970091 0.728¢.070 0.9319.064 0.9850 010 0.9930.030

NOTE: Equal sample size for training set (Nyr), validation set (Ny;), and testing set (Nts).

various situations. First, we compare the performance of the
CNN and the IMTL, with different training sample sizes. Fig-
ure 3 shows that the IMTL consistently outperforms the CNN,
especially when the training sample size is limited, while the
CNN gradually “catches up” as the sample size increases. This
confirms that the CNN requires a large size of training samples
to perform well. The image size in this simulation is only 64 x 64.
According to the trend in Figure 3, for real data with an image
size of hundreds to thousands, the CNN could require quite
a substantial number of training samples to guarantee a good
performance.

Second, we investigate the performance of the CNN and the
proposed IMTL with varying heterogeneous-signal strengths.
To mimic real data, we utilize the concentration intensity of
the TMVs to measure the strength and the heterogeneity of
signals, which is controlled by the mean value of the number
of the TMVs (uc) in cancer images, while fixing the normal
images’ mean (uy = 5). Therefore, the larger the uc is,
the stronger the signal contrast between the cancerous images
and the normal images is. On the other hand, if uc is larger,
then the heterogeneity is less since the TMVs tend to fill the
entire cancer image, and thus the heterogeneity of the randomly
located signals is reduced. We set the training sample size as
60. Figure 4 shows the prediction power of the CNN and the
IMTL with a varying pc. It is clear that the IMTL outperforms
the CNN consistently, while the CNN improves as the signal
strength becomes stronger and the heterogeneity reduces. This
simulation confirms that the proposed IMTL is more powerful

than the CNN in situations where the heterogeneity is high and
the signal strength is weak.

6. Real Data: Multiphoton Imaging Data for Breast
Cancer

We apply the proposed method to the multimodality optical
imaging data for breast cancer produced by Boppart Lab (Tu
et al. 2016) at University of Illinois Urbana-Champaign. To
better visualize the tissue’s biological structure at cellular and
molecular levels, Tu et al. (2016)’s multiphoton microscope
generates multimodal images through emission of different
numbers of photons. Specifically, there are two-photon auto-
fluorescence (2PAF), three-photon auto-fluorescence (3PAF),
second-harmonic generation (SHG), and third-harmonic
generation (THG). Two-photon-fluorescence microscopy is
commonly used to visualize tissue morphology and physiology
at a cellular level, and three-photon-fluorescence with longer
wavelength can reach deeper levels of the tissue and thus provide
higher imaging resolution (Chu et al. 2005; Horton et al. 2013).
This new technique is able to capture the important TMVs
which are not easily identified by conventional imaging tools
such as histology imaging.

Figure 6 illustrates the four modalities for a human subject’s
normal breast tissue and a human subject’s cancerous breast
tissue. In contrast to the normal tissue, multiple modalities
clearly indicate a large number of TMVs which spread out in
the microenvironment on the cancerous imaging, particularly
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Figure 3. Prediction performance of the CNN and the IMTL under the settings of simulation study (Section 5) with different sample sizes. The results are based on 50

replications.
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as 5. The training sample size is set as 60 and the results are based on 50 replications.
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Figure 5. The representative four-modality images for a normal subject and a cancerous subject in simulation study, with each modal image size of 64 x 64.

in the 2PAF image and the 3PAF image. The normal imaging
also presents microvesicles in the 3PAF image, but they are more
sporadic with much less intensity.

Prior knowledge in cancer detection shows that informa-
tive TMVs are frequently observed in the microenvironment
between certain biological organizations such as at the lipid
boundary area and around the stroma (Tu et al. 2016). There-
fore, we study segmented imaging from three normal human
individuals and two cancerous individuals. Specifically, we gen-
erate sample images through segmentation, which leads to 107
normal subjects and 53 cancerous subjects, each subject having
four modalities of images, with each modality of 100 x 100
pixels. To fit the predictive models and evaluate the diagnosis
performance, we randomly split the total sample into a training
set, a validation set, and a testing set with 60, 40, and 60 subjects,

respectively. The prediction results are evaluated by prediction
accuracy, sensitivity, and specificity on the testing set based on
30 replications.

We compare the proposed IMTL method to the five methods
described in Section 5. Table 2 provides the averaged predic-
tion results on the testing set, which indicates that the pro-
posed IMTL method outperforms the other methods signif-
icantly in terms of achieving the highest overall prediction
accuracy and sensitivity. Specifically, the prediction accuracy
of the proposed method improves by 34%, 39%, 19%, 13%,
and 7% compared to the VPL, TR, MPCA, HOCPD, and CNN
approaches, respectively. The boxplot in Figure 7 suggests that
the proposed method also has the smallest SE in overall pre-
diction accuracy. Note that the outstanding predictive power
of the proposed method is mainly due to its highest sensitivity
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3PAF

Figure 6. The four-modality microscope images for a normal human subject (2382 x 2401) and a cancerous human subject (2191 x 2193). See circles of TMVs.

Table 2. Prediction results of the proposed method (IMTL) compared with five other competing methods for human breast cancer imaging data, based on 30 random

replications.

Model VPL TR MPCA HOCPD CNN IMTL
Pred accuracy 0.681 0.656 0.766 0.803 0.871 0.921
Sensitivity 0.086 0.628 0.535 0.656 0.729 0.903
Specificity 0.962 0.671 0.875 0.878 0.928 0.925

NOTE: Sample size for the training set, the validation set, and the testing set are 60, 40, and 60, respectively.

score, which is also of primary interest for cancer diagnosis. In
practice, the proportion of the potential cancer patients is rather
small compared to the general population, and correctly detect-
ing cancer at earlier stages of cancer development is crucial and
critical.

For this data, the VPL method and the tensor regression
model perform inadequately compared to other methods due to
the random location and the weak signal strength of the TMVs.
Moreover, without incorporating individual-wise heterogeneity,
the MPCA and the HOCPD are inefficient with low sensitivity.
In general, the CNN provides an acceptable prediction result,
however, due to limited sample size and heterogeneous imaging
features, the CNN is not as effective in identifying cancerous
subjects with only a 73% sensitivity rate compared to the IMTLs
90% sensitivity rate. In addition, Figure 8 provides an illustra-
tion of the prediction performance using a single modality only
compared to utilizing all modalities. Figure 8 clearly shows that
integrating multiple modalities improves the predictive power,
especially in detecting cancerous subjects.

7. Discussion

In this article, we propose an IMTL model incorporating
multimodality imaging tensor covariates to predict targeted
responses. In the proposed model, we extract both individual-
specific and population-wise important features simultaneously
from higher-order tensor covariates through different layers,
and then fit a prediction model with the extracted features. We
illustrate the proposed method through numerical studies and

human breast cancer imaging application on both singlemodal-
ity and multimodality data.

A major contribution of the proposed method is that we
achieve heterogeneous tensor decomposition through utilizing
an individualized layer in addition to population-shared
modality-specific structure. Our method is motivated by a
multimodality imaging study for breast cancer diagnosis, where
the biomarker TMVs’ are distributed with great heterogeneity
and each modality has its unique background features. Most
existing methods assuming homogeneous structure on signals’
features are either infeasible or inefficient in our situation. In
contrast, the proposed different layers are capable of capturing
individual-specific spatial features through integrating different
modalities’ imaging information for the same individual.
Both numerical studies and theoretical results demonstrate
that the proposed method can achieve higher diagnostic
accuracy.

In the proposed method, multilayer tensor decomposition in
the first stage is not connected to the response variable directly,
which may not guarantee an optimal feature extraction for
supervised learning in the second stage. For future research,
it is worth developing a supervised feature extraction scheme
which can be more powerful in predicting outcomes. We point
out three potential directions. The first one is to optimize both
the classification loss and the image tensor reconstruction loss,
where the latter can be treated as a part of regularization. The
second possible direction is to incorporate sufficient dimension
reduction techniques to search the “best” bases layers condi-
tional on the response variable. The third direction is to link the
feature extraction stage and the prediction stage in a hierarchical
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