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ABSTRACT
We propose a longitudinal principal component analysis method for multivariate longitudinal data using
a random-effects eigen-decomposition, where the eigen-decomposition uses longitudinal information
through nonparametric splines and the multivariate random effects incorporate significant store-wise
heterogeneity. Our method can effectively analyze large marketing data containing sales information for
products from hundreds of stores over an 11-year time period. The proposed method leads to more
accurate estimation and interpretation compared to existing approaches. We illustrate our method through
simulation studies and an application to marketing data from IRI. Supplementary materials for this article
are available online.
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1. Introduction

Technological innovation or stagnation can determine the fates
of companies and their employees. In the first quarter of 2012,
Kodak, a leading technological company well-known for pro-
ducing photography supplies such as cameras and film, filed
for bankruptcy and ceased production of digital cameras and
photography accessories. Clearly, it is necessary and important
to study consumer shopping behavior and marketing trends
over time, to help companies avoid manufacturing products
which are no longer attractive to consumers.

This article is motivated by the IRI marketing dataset, an
immense collection of consumer panel data of grocery and drug
store sales, pricing, and promotion strategies (Bronnenberg,
Kruger, and Mela 2008; Kruger and Pagni 2008), which was
created for marketing researchers to explore marketing trends
and their impact on economics. The collected sales data contain
weekly sales information on a variety of product categories in
over 40 regional markets in the United States. In this article,
we focus on grocery store sales for 20 representative products
in 552 stores spanning the 11-year time period from 2001 to
2011, where the product categories include mostly consumer
packaged goods, such as beer, cigarettes, household cleaners,
soup, etc.

The presented multivariate longitudinal sales data contain
a wide range of products with rich information regarding
consumers’ general shopping behavior over time. A marginal
model separately applied on each individual product is
obviously inadequate as it has to adjust for many other factors.
Therefore, we are especially motivated to explore consumption
behavior changes through investigating time-varying patterns
of correlations between different products, so we can better
understand marketing trends. One critical issue in analyzing
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multivariate longitudinal data is to account for significant store-
wise heterogeneity, which can be due to many factors such as
geographic location and store size. For example, smaller stores
tend to have a decreasing trend in sales of beer and peanut
butter, while larger stores have an overall increase for these
two product categories (see Figure 1). Store-wise variation can
bring additional difficulty in modeling underlying correlations
among products, as different sources of variation could be active
in different stores.

In business and marketing, principal component analysis
(PCA) is often employed to investigate the covariance struc-
ture of large-dimensional multivariate data and to reduce data
dimensionality (e.g., Jain, Bass, and Chen 1990; Fader and Lattin
1993; Rossi and Allenby 1993; Bradlow 2002). However, PCA for
multivariate longitudinal data is much less-studied. Performing
PCA separately at each time-point is clearly inadequate, as it
does not use any longitudinal information. In addition, it is
crucial to incorporate within-subject correlation across different
time-points, as well as among different variables from the same
subject.

For time-dependent data, PCA models have been developed
in the time series setting (e.g., Kim and Wu 1999; Jolliffe 2002).
However, these approaches mainly target identification of sim-
ilar time-points or extraction of common trends over time,
which are not applicable for our problem. Moreover, the popula-
tion covariance regression approaches (Hoff and Niu 2012; Fox
and Dunson 2017) model the covariance for a scalar outcome
observed at multiple time points, while the proposed model
considers the covariance structure of multivariate outcomes
changing over time.

In addition, the functional PCA (FPCA) has been proposed
for univariate longitudinal data (Ramsay and Silverman 2005;
Yao, Müller, and Wang 2005; Hall, Müller, and Wang 2006) and
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Figure 1. Average product sales for three store sizes for beer and peanut butter products.

further extended to multivariate data (MFPCA, Di et al. 2009;
Jiang and Wang 2010; Berrendero, Justel, and Svarc 2011; Chiou,
Chen, and Yang 2014; Happ and Greven 2018). The MFPCA
models treat the whole multivariate longitudinal trajectory as
one observation from each subject, where eigenfunctions of
multivariate trajectories would have the same structure. Simi-
larly, the longitudinal functional principal component analysis
(LFPCA, Greven et al. 2010; Zipunnikov et al. 2014; Islam,
Staicu, and Heugten 2018) investigates functional data which are
observed repeatedly over time, where the functional eigenbases
are assumed to be time-invariant. In contrast, the proposed
approach models the time-varying covariance structure assum-
ing that both the eigenvectors and eigenvalues change smoothly
over time.

Recently, Miller and Bowman (2012) and Prvan and Bow-
man (2003) proposed a two-step smooth principal component
analysis (SPCA) method to model changes in covariance over
time. They first estimate the smooth mean function of each
response variable, and then estimate the local covariance matrix
of multivariate response variables with residuals from the first
step at each time point. However, their approach does not
account for any important longitudinal correlation among
observations from the same subject. In addition, the smoothness
of the pairwise covariance may not guarantee the smoothness
of the principle components over time.

In this article, we propose a longitudinal PCA which
decomposes correlation information arising from multivariate

observations over time while incorporating heterogeneity
among stores. Specifically, store-specific multivariate random
effects are implemented to capture heterogeneous variation
among stores, while correlations among product sales are mod-
eled through time-varying eigen-decomposition. In modeling
the eigen-decomposition, we assume that both eigenvalues and
eigenvectors are time-varying functions, which are estimated
based on nonparametric splines.

The proposed method has three advantages over existing
approaches. First, incorporating random effects accounts for the
variation among different stores, thus improving the estimation
of correlation structures of products. Second, modeling a small
number of dominant eigen-components, rather than the entire
covariance matrix over time, significantly reduces the dimen-
sionality of unknown parameters. Third, time-varying eigen-
vectors are modeled and estimated via nonparametric splines,
which are able to recover information from missing time-points
by utilizing neighboring data-points. To implement the pro-
posed method, we develop an iterative algorithm which updates
time-varying eigenvalues and time-varying eigenvectors alter-
nately. In addition, we adapt the Expectation-Substitution algo-
rithm (Elashoff and Ryan 2004) to the proposed model to esti-
mate the multivariate random-effects.

The article is outlined as follows. Section 2 presents the
proposed model. Section 3 develops the algorithm and imple-
mentation. Section 4 illustrates the performance of the proposed
method based on simulation studies. Section 5 demonstrates an
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application to the IRI marketing dataset. The article concludes
with a discussion in Section 6.

2. Methodology

2.1. Notation and Framework

We start with introducing some notation regarding multivariate
longitudinal data. Let yijt be a response measured at a time point
t for the jth variable from the ith subject, where i = 1, 2, . . . , N,
j = 1, 2, . . . , J, and t = 1, 2, . . . , T. In our application, t
represents the number of years, i represents the ith store, and
j represents the jth product. Hence, yit = (yi1t,...,iJt)T denotes
the J × 1 random vector for the multivariate sales outcome at
time t.

In general, for an unknown population quantity θ (e.g., a
population covariance matrix V), we use θ̃ to denote the anal-
ogous empirical statistic (e.g., a sample covariance matrix Ṽ),
and use θ̂ to denote an estimate of θ based on a parametric
model. Moreover, we use the superscript “bar” to denote a low-
rank structure (e.g., a low-rank approximated covariance matrix
V). In addition, we write a quantity θ that is assumed to change
smoothly over time t as θ(t), but denote the discretized values at
each time point with a subscript (e.g., an empirical statistic θ̃t).

For the longitudinal outcome yit , we consider the eigen-
decomposition for the population covariance matrix V t at each
time point,

V t =
J∑

k=1
αktwktwT

kt , 1 ≤ t ≤ T, (1)

where αkt is the eigenvalue corresponding to the kth eigenvector
wkt = (wk1t , . . . , wkJt)

T at time t.
Without using any neighboring time point information, a

naive approach is to perform PCA on the sample covariance
matrix at each time point separately, which is referred to as
discretized principal component analysis (DPCA). Although
the DPCA is easy to implement, it is not capable of incorporating
changes in eigenvalues and eigenvectors gradually, as it does
not utilize any neighboring time point information from the
longitudinal measurements.

2.2. Time-Varying Eigen-Decomposition

To utilize longitudinal information, we assume that the time-
varying eigenvalues and eigenvectors are continuous functions
of t, which can be approximated by polynomial splines. Non-
parametric splines have been extensively studied for longitudi-
nal data by Anderson and Jones (1995), Huang, Wu, and Zhou
(2004), Durbán et al. (2005), Liang and Xiao (2006), and Xue
and Liang (2009). Additionally, semiparametric and nonpara-
metric approaches have been proposed for covariance and cor-
relation matrix estimation for longitudinal data (e.g., Diggle and
Verbyla 1998; Wu and Pourahmadi 2003; Fan, Huang, and Li
2007; Sun, Zhang, and Tong 2007; Fan and Wu 2008; Maadooliat
et al. 2013). In this article, we incorporate the splines to model
the time-varying eigenvalues and eigenvectors simultaneously.

Let αk(t) denote the time-varying eigenvalue function, and
wk(t) = (wk1(t), . . . , wkJ(t))T denote the multivariate time-

varying eigenvector function, for 1 ≤ k ≤ J. Hence, we
represent the time-varying population covariance as

V(t) =
J∑

k=1
αk(t)wk(t)wT

k (t),

and assume that the kth eigenvalue and the corresponding
eigenvector can be modeled as

αk(t, β ′
k) =

CN∑
l=1

β ′
klbkl(t),

wkj(t, νkj) =
DN∑

m=1
νkjmgkjm(t), j = 1, . . . , J,

(2)

where {bkl(t)}CN
l=1 and {gkjm(t)}DN

m=1 are sets of spline bases, and
β ′

k = (β ′
k1, . . . , β ′

kCN
)T and νkj = (νkj1, . . . , νkjDN )T are cor-

responding spline coefficients, respectively. Consequently, we
denote wk(t, νk) as the multivariate time-varying eigenvector
function, where νk = (νT

k1, . . . , νT
kJ)

T .
In our model, we rescale time t to be in the interval [0, 1].

Therefore, the spline bases are constructed based on a partition
ξ of the interval [0, 1] with PN interior knots

ξ = {0 = ξ0 < ξ1 < · · · < ξPN < ξPN+1 = 1}.

Consequently, we have CN = PN + M1 and DN = PN + M2,
where M1 and M2 are the orders of the polynomial splines
for the eigenvalues and eigenvectors, respectively. Specifically,
the employed spline bases are polynomial functions of degrees
M1 − 1 and M2 − 1 on intervals [ξi, ξi+1), for i = 0, . . . , PN − 1,
and [ξPN , ξPN+1]; and they are M1 − 2 and M2 − 2 continuously
differentiable. Note that different sets of knots are allowed for
eigenvalues and eigenvectors; however, for simplicity, we choose
the same set of knots here. More details regarding the selection
of knots and spline bases are discussed in Section 3.2.

One attractive feature of polynomial splines is that they
approximate a smooth function sufficiently well without requir-
ing a large number of knots. In general, the B-spline can be an
alternative choice; however, in our setting, the truncated poly-
nomial spline provides more straightforward interpretation on
the time-varying eigen-functions. Indeed, the polynomial spline
approach is equivalent to the B-spline approach for prediction,
while the latter imposes constraints on construction.

2.3. Estimation of Eigenvalues and Eigenvectors

In this subsection, we provide time-varying eigenvalue and
eigenvector estimations under the framework of generalized
estimating equations (GEE, Liang and Zeger 1986). Consider
the quasi-likelihood estimating function for clustered data yit ,

g it = μ̇T
it V−1

t (yit − μit),

where μit = E[yit] and μ̇it is the derivative of μit . In this study,
without additional covariates, we have μit = μt and μ̇it is an
identity matrix. For the estimation of the correlation structure
in the GEE model, Qu, Lindsay, and Li (2000) proposed the
quadratic inference function (QIF) assuming that the inverse of
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the correlation matrix can be approximated by a linear combi-
nation of matrix bases; Zheng, Xue, and Qu (2018) extend the
idea of the QIF to estimate a dynamic correlation structure by
incorporating a time-varying coefficient model on coefficients
of bases matrices. However, in their approaches, the basis matri-
ces are prespecified, usually generated by eigenvectors, but they
do not change over time. To investigate the dynamic correlation
pattern of the multivariate longitudinal outcome, we assume
a spline-based low-rank approximation V(t) to the covariance
matrix with time-varying eigenvalues and eigenvectors as speci-
fied in (2). Following the spirit of the QIF, we estimate the model
based on the generalized inverse of this approximation, which
is also a linear combination of the first K (1 ≤ K ≤ J) time-
varying eigen-components:

V(−)
(t|β , ν) =

K∑
k=1

α−1
k (t, βk)wk(t, νk)wk(t, νk)

T , (3)

where α−1
k (t, βk) denotes a spline-based function for the inverse

of time-varying eigenvalue, αk(t, β ′
k), which share the same

spline bases but with a different set of coefficients as modeled
in (2), and β = (βT

1 , . . . , βT
K)T and ν = (νT

1 , . . . , νT
K)T .

To estimate the time-varying covariance structure, we take
the difference between the assumed low-rank model, ḡ it =
V(−)

(t|β , ν)(yit −μt), and the sample version, g̃ it = Ṽ−1
t (yit −

μt),

hit(β , ν; μt) = ḡ it−g̃ it =
(

V(−)
(t|β , ν)−Ṽ−1

t

)
(yit−μt), (4)

where Ṽ t is the sample covariance matrix. Consequently, analo-
gous to the QIF approach, we estimate the model by minimizing
the following loss function:

T∑
t=1

N∑
i=1

hT
it (β , ν; μt)hit(β , ν; μt)

=
T∑

t=1

N∑
i=1

(yit − μt)
T
(

V(−)
(t|β , ν) − Ṽ−1

t

)2
(yit − μt).

(5)

In addition, to ensure the identifiability and interpretability of
the decomposed bases, the estimated eigen-vectors are required
to be orthonormal. Therefore, we impose an L2-penalty on the
inner-product between the bases vectors, and thus yield the
following objective function:

Lφ(β , ν; μ) =
T∑

t=1

( N∑
i=1

hT
it (β , ν; μt)hit(β , ν; μt)

N

+ φ
∑
k�=k′

‖wk(t, νk′)Twk′(t, νk′)‖2
2

)
, (6)

where φ is a tuning parameter. It is worth noting that the L2-
penalty cannot guarantee the exact orthogonality of the esti-
mated bases vectors and thus the Gram–Schmidt process is
further employed in the implementation procedure. Indeed, the
L2-penalty can improve computational stability in practice. We
provide more discussion about the L2-penalty in Section 3.2.

In our approach, the GEE-type objective function is adopted
as it improves the estimation of the mean μt ’s and thus further
improves the estimation of the covariance structure. To illustrate
an intuition of the proposed GEE-type loss function in (5), we
provide an approximation of this loss function with respect to
eigenvalue estimation. Given the mean value μt , the objective
function in (5) can be rewritten as follows

T∑
t=1

N∑
i=1

hT
it (β , ν; μt)hit(β , ν; μt)

N

= 1
N

T∑
t=1

N∑
i=1

Tr

{
(yit − μt)

T
(

V(−)
(t|β , ν) − Ṽ−1

t

)2
(yit − μt)

}

= 1
N

T∑
t=1

N∑
i=1

Tr

{
(yit − μt)(yit − μt)

T
(

V(−)
(t|β , ν) − Ṽ−1

t

)2
}

=
T∑

t=1
Tr

{
1
N

N∑
i=1

(yit − μt)(yit − μt)
T
(

V(−)
(t|β , ν) − Ṽ−1

t

)2
}

=
T∑

t=1
Tr

{
Ṽ t

(
V(−)

(t|β , ν) − Ṽ−1
t

)2
}

,

where Tr{·} indicates the trace, Ṽ−1
t = ∑J

k=1 α̃−1
kt w̃ktw̃T

kt , where
α̃kt is the sample eigenvalue and w̃kt is the sample eigenvector.
Without loss of generality, we show the case when K = J in
the modeled V(−) here. Focusing on eigenvalue estimation, by
substituting sample eigenvectors w̃kt into V(−)

t , the objective
function in (5) can be approximated as

T∑
t=1

Tr

⎧⎨⎩
( J∑

k′=1
α̃ktw̃k′tw̃T

k′t

) ( J∑
k=1

(α−1
k (t, βk) − α̃−1

kt )w̃ktw̃T
kt

)2⎫⎬⎭
T∑

t=1
Tr

{( J∑
k′=1

α̃ktw̃k′tw̃T
k′t

) ( J∑
k=1

(α−1
k (t, βk) − α̃−1

kt )2w̃ktw̃T
kt

)}

=
T∑

t=1
Tr

{ J∑
k=1

J∑
k′=1

α̃k′t

(
α−1

k (t, βk) − α̃−1
kt

)2
w̃k′tw̃T

k′tw̃ktw̃T
kt

}

=
T∑

t=1
Tr

{ J∑
k=1

α̃kt

(
α−1

k (t, βk) − α̃−1
kt

)2
w̃ktw̃T

kt

}

=
T∑

t=1

J∑
k=1

α̃kt

(
α−1

k (t, βk) − α̃−1
kt

)2
, (7)

by noting that w̃kt ’s are orthonormal bases. We can interpret (7)
as a weighted square difference, which assigns more weights to
the larger eigenvalues in estimation.

Furthermore, we compare the objective function in (5) to
those based on the likelihood and the Frobenius norm in a
similar fashion. The likelihood-based objective function is

T∑
t=1

(
log det(V(t)) + Tr

{
V(−)

(t)Ṽ t
} )

,

where log det(·) indicates the logarithm of the determinant of
a matrix. Similarly, the objective function based on the Frobe-
nius norm of the difference between the true covariance and
estimated covariance matrix is

T∑
t=1

(
Tr

{
(V(t) − Ṽ t)(V(t) − Ṽ t)

T} )
.
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Following a similar technique in obtaining (7) with respect to
the eigenvalue estimation, we can simplify the likelihood-based
objective function to be

T∑
t=1

K∑
k=1

(
α̃kt

αk(t, β ′
k)

+ log(αk(t, β ′
k))

)
,

and the objective function corresponding to the Frobenius norm
turns to be

T∑
t=1

K∑
k=1

(
αk(t, β ′

k) − α̃kt

)2
.

By comparing these simplified forms of the objective
functions with respect to eigenvalues, it is straightforward that
the proposed GEE-type objective function is able to improve
the estimation of the more important eigen-components as it
assigns more weights to the larger eigenvalues. The merit of the
proposed GEE-type objective function is demonstrated via the
eigenvalue estimation above, as there is no explicit “simple” for-
mulation when eigenvalue functions and eigenvector functions
are simultaneously estimated. In addition, we conduct a simple
simulation study in the supplementary materials (Section 1.3) to
show the estimation performance of all three different objective
functions. The proposed norm in (5) produces smaller mean
square errors of the estimations of the time-varying eigenvalue
functions and the bases coefficients compared to the ones
produced by the likelihood or Frobenius norm approaches.

2.4. Incorporation of Random Effects

Random-effects modeling (Laird and Ware 1982; Gardiner, Luo,
and Roman 2009) is quite useful to accommodate store-specific
effects. For the IRI marketing data application, the volumes of
store sales show strong variations among different types of stores
and products, as mentioned in Section 1. Therefore, we propose
an eigen-decomposition equation with random effects (EERE)
model to incorporate the store-wise heterogeneity into the time-
varying PCA framework.

With store-specific random effects incorporated, the multi-
variate outcome yit modeled in Section 2.2 cannot be observed
directly. We assume that the observed multivariate response
yobs

it from the ith store at time t consists of two parts, that is,
yobs

it = yit + γ i, where γ i represents a J-dimensional store-
specific random effect following a multivariate normal distri-
bution N(0, D), and it is independent of the true variable of
interest yit . Therefore, the corresponding variance of yobs

it can
be decomposed as

var(Vobs
t ) = var(yit) + var(γ i), (8)

and the targeted underlying time-varying covariance structure
of yit can be modeled by (2) and further estimated via (6).

It is clear that the store-wise heterogeneity induced by
γ i brings additional variation to the covariance structure of
interest. Incorporating random effects in the proposed model
provides more accurate estimation for underlying associations
among products. In contrast, modeling directly on the observed
response yobs

it is not able to differentiate different sources of
correlations among products, and thus could lead to a biased

estimator of the covariance matrix var(yit) as it ignores the
variation of the random effects γ i.

Next, we introduce the estimation of multivariate random
effects. Elashoff and Ryan (2004) developed an ES algorithm for
the missing data in the GEE model which focuses on univariate
longitudinal data; and Proudfoot et al. (2018) employ the ES
algorithm to estimate a multivariate longitudinal data model
with a mean regression form. In this article, we adapt the ES
approach to the proposed objective functions to estimate the
multivariate random effects, in a similar fashion as in Proudfoot
et al. (2018).

Specifically, we estimate the random effects γ i’s, the covari-
ance matrix D = cov(γ i), and the mean μt of the interested
underlying variable yit iteratively. At the lth iteration, we update
the random effects by

γ̂
(l) = Ẑ(l−1)(

(1T1T
T)⊗D̂(l−1)+V̂(l−1))−1(1T

T ⊗D̂(l−1))T , (9)

where Ẑ(l−1) =
(

Yobs
1 − (1N ⊗ μ̂

(l−1)T
1 ), Yobs

2 − (1N ⊗

μ̂
(l−1)T
2 ), . . . , Yobs

T −(1N⊗μ̂
(l−1)T
T )

)
is an N×JT matrix, Yobs

t =
(yobs

1t , yobs
2t , . . . , yobs

Nt )T , V̂(l−1) = diag(V̂(l−1)

1 , V̂(l−1)

2 , . . . , V̂(l−1)

T )

is a JT × JT block diagonal matrix and V̂(l−1)

t denotes the
estimated sample covariance matrix of underlying variable yt
at (l − 1)th iteration by

V̂(l−1)

t = 1
N

N∑
i=1

(yobs
it −γ̂

(l−1)
i −μ̂

(l−1)
t )(yobs

it −γ̂
(l−1)
i −μ̂

(l−1)
t )T ,

where μ̂
(l−1)
t = 1

N
∑N

i=1(yobs
it − γ̂

(l−1)
i ). Moreover, the random

effects’ covariance matrix D is updated via

D̂(l) =D̂(l−1) − (
1T

T ⊗ D̂(l−1))(
(1T1T

T) ⊗ D̂(l−1) + V̂(l−1))−1(
1T

T ⊗ D̂(l−1))T .

The updates to the random effects γ̂
(l) in Equation (9) and the

random effects’ covariance matrix D̂(l) are calculated as condi-
tional moments under the multivariate normal distribution. See
Equation (6) in Proudfoot et al. (2018) for more details.

Once the random effects are estimated through the iterative
steps above until convergence at the Lth iteration, we redefine
the objective function in (6) by replacing hit with h∗

it as

h∗
it(β , ν; μt) =

(
V(−)

(t|β , ν) − V̂(L)

t
−1)

(yobs
it − μt − γ̂

(L)
i ).

Then we minimize the following objective function

L∗
φ(β , ν; μ) =

T∑
t=1

( N∑
i=1

h∗T
it (β , ν; μt)h∗

it(β , ν; μt)

N

+ φ
∑
k�=k′

‖wk(t, βk)
Twk′(t, βk′)‖2

2

)
, (10)

via an iterative algorithm as discussed in Section 3.
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3. Algorithm and Implementation

In this section, we propose an efficient algorithm to solve the
optimization problem for the proposed EERE model, that is,
estimating the multivariate random effects via the ES algorithm,
and updating the eigenvalues and eigenvectors iteratively. In
addition, we provide detailed discussion about selecting impor-
tant tuning parameters.

3.1. Algorithm for EERE

In this section, we provide the algorithm of estimating the EERE
model which iterates through the Newton–Raphson and the
Expectation-Substitution algorithms. To simplify the notation,
we use αk(t)(m) and wk(t)(m) as shorthand for αk(t, β̂

(m)

k ) and
wk(t, ν̂(m)

k ), respectively.

Algorithm: Estimated eigenanalysis with random effects
(EERE)

Step 1: Initialize γ
(0)
i , D(0), μ(0)

t , and V(0) ;
Step 2: Update the random effects γ

(l)
i using the ES algorithm

in (9) ;
Step 3: Update the parameters D(l), μ(l), and V(l) at the lth

step;
Step 4: Repeat Steps 2 and 3 until ‖γi(l) − γi(l−1)‖ < εγ ,

where εγ is a tolerance level.
Step 5: After removing the estimated random effects from the

response,
initialize the eigenvectors as the sample eigenvectors:

wk(t)(0) = w̃kt ;
Step 6: Given wk(t)(m−1)’s , update the eigenvalues αk(t)(m)’s

by minimizing (10),
and update the spline coefficients β̂

(m)
;

Step 7: Given αk(t)(m)’s, update wk(t)(m)’s using the
Newton–Raphson algorithm,

and update the spline coefficients ν̂
(m);

Step 8: Repeat Steps 6 and 7, stop if d−1
β ‖β̂(m) − β̂

(m−1)‖ +
d−1

ν ‖ν̂(m) − ν̂
(m−1)‖ < εe,

where dβ and dν are the dimensions of β and ν, respectively,
and εe is a chosen tolerance level.

The Newton–Raphson algorithm for the eigenvectors estima-
tion in Step 6 is multivariate. Specifically, at the (m)th iteration,
we update

w(t)(m) = w(t)(m−1) − J−1
f

(
w(t)(m−1)

)
f
(

w(t)(m−1)

)
,

where w(t)(m−1) = (w1(t, ν1)
(m−1)T , . . . , wK(t, νK)(m−1)T

)T , K
is the number of principal components, f (·) is a vector of the
first derivatives of the objective function in (10), and Jf (·) is the
Jacobian matrix of the second derivatives of (10). In detail, f and
Jf have the following forms:

f
(

w(t)
)

= 2
N

N∑
i=1

ḣT
it hit

+ 2φ

( ∑
l �=1

(w1(t)Twl(t))wl(t), . . . ,
∑
l �=K

(wk(t)Twl(t))wl(t)
)T

and

Jf

(
w(t)

)
≈ 2

N

N∑
i=1

ḣT
it ḣit + 2φ

⎛⎜⎜⎜⎜⎝
∑
l �=1

wl(t)wl(t)T . . . w1(t)Twk(t)I + w1(t)wk(t)T

...
. . .

...
. . .

∑
l �=K

wl(t)wl(t)T

⎞⎟⎟⎟⎟⎠ ,

where ḣit = ∂hit
∂w(t) , and I is a J × J identity matrix. Note that

1
N

N∑
i=1

ḧT
it hit → 0 as N → ∞,

since E[hit] = 0 and ḧit = ∂ḣit
∂w(t) .

Although the regularization is employed in the objective
function, the estimated eigenvectors are still not guaranteed
to be exactly orthogonal due to the property of L2 penalty.
Hence, in Step 6, the Gram–Schmidt process is further applied
on eigenvectors to ensure their pairwise orthonormality.
Namely, the Gram–Schmidt process converts the estimated
eigenvectors wk(t)(m)’s into orthonormal vectors at each time
point.

In conclusion, the proposed algorithm updates the eigen-
values and the eigenvectors iteratively, leading to a non-
increasing sequence of the objective function, where the
objective function at each iteration is differentiable and can
be solved by the Newton–Raphson algorithm. Although the
proposed algorithm cannot guarantee the global optimum,
we implement multiple initial values to achieve an ideal
solution.

3.2. Tuning Parameters Selection

In this subsection, we provide implementation strategies for
selecting tuning parameters; for example, the number of
components in PCA, the knots in nonparametric estimation
for the eigenvalues and the eigenvectors, the order of the
polynomial splines, and the tuning parameter φ for the L2
penalty.

Choosing the number of components remains an open prob-
lem in PCA. One popular approach is to create a scree plot of the
eigenvalues, in which the number of components is chosen at
the elbow or the scree of the line drawn. This strategy is appeal-
ing since it provides a visual representation of the majority of
variation to be retained from the data. For the IRI marketing
data, which is collected longitudinally, analyzing the scree plots
for each time point is inefficient, because different time points
may result in different numbers of chosen components. Instead,
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we propose calculating an overall variation by averaging over the
T time points.

One such numeric criterion is to choose the percentage of
overall variation of the data which determines the number of
components to retain; that is, to increase the number of com-
ponents until the desired cumulative percentage of variation
from the data is attained. The cumulative percentage of variance
contributed from the first K components is∑K

k=1
∑T

t=1 α̂kt∑J
j=1

∑T
t=1 α̂jt

, (11)

where α̂jt is the discretized sample eigenvalues (nonsmoothed)
adjusted by the random effects.

Next, we illustrate how to choose the order of the poly-
nomial splines and the knots. Although we can employ an
additional smoothing penalty to select the number of bases
(Ruppert 2002), it requires the selection of additional tuning
parameters which can significantly increase the computation
cost. In this article, we use the cubic spline for our numeri-
cal studies, which is widely adopted in many applications to
achieve the desired smoothness (Hastie, Tibshirani, and Frei-
dman 2009).

As suggested by Likhachev (2017), the AIC or BIC could be
applied for the knots selection. In our framework, the infor-
mation criterion is constructed based on the quasi-likelihood
(Wedderburn 1974) analogous to the GEE model. For com-
putational convenience, we recommend adopting the strategy
suggested by Xue and Qu (2012), that is, using equally spaced
knots with the number of interior knots [N1/(2M+3)], where [·]
denotes the ceiling function, N is the sample size and M +
1 is the degree of the polynomial spline function. A similar
knots selection strategy was also applied in Huang, Wu, and
Zhou (2004) and Xue, Qu, and Zhou (2010). The proposed
method allows the eigenvalues and eigenvectors to have dif-
ferent sets of knots. However, the need for using different sets
of knots highly depends on the observed data. For example,
it is useful to use different sets of knots if the eigenvalues
change slightly, while the eigenvectors change more dramati-
cally over the same time range. Since this type of pattern is
not present in our numerical studies, we choose the same num-
ber of knots in estimating eigenvalues and eigenvectors in this
article.

Another critical issue is to choose the tuning parameter φ

associated with the orthogonality penalty. We choose φ based
on a grid search for a given range of positive values to minimize
the unpenalized loss function:

1
N

T∑
t=1

N∑
i=1

ĥ
∗T
it

(
β̂(φ), ν̂(φ); μ̂(φ)

)
ĥ

∗
it

(
β̂(φ), ν̂(φ); μ̂(φ)

)
,

where

ĥ
∗
it

(
β̂(φ), ν̂(φ); μ̂(φ)

)
=

(
V̂

(−)
(t|β̂(φ), ν̂(φ)) − V̂(L)

t
−1)

(yobs
it − μ̂t(φ) − γ̂

(L)
i ),

and β̂(φ), ν̂(φ), and μ̂(φ) are the estimations from the proposed
objective function (10) given tuning parameter φ.

In fact, the L2-penalty is imposed to improve computational
stability in practice, but does not influence the model estima-
tion very much. In the supplementary materials, we provide
additional simulation results to illustrate the estimation effects
of the L2-penalty with different shrinkage levels as well as the
estimation results without the L2-penalty. The simulation study
indicates that the proposed method is robust against the shrink-
age magnitudes of the L2-penalty within a reasonable range. In
addition, with an appropriately selected φ for the L2-penalty, the
average computation time for the proposed model is 19 min,
while the model without the L2-penalty (φ = 0) requires 23
min, which also shows that the L2-penalty can help to speed up
computation.

In our implementation, the number of eigen-components,
the smoothing parameters (the order of splines and the number
of knots) and the L2-penalty coefficient are tuned sequentially,
as the selection of each set of those parameters does not depend
upon the selection of the others.

4. Simulation

In this section, we evaluate the proposed methodology with
simulation studies, and compare it with other competitive meth-
ods. Specifically, we compare the proposed EERE method with
the DPCA method, the DPCA incorporating marginal random
effects (DPCARE), the smooth PCA (SPCA) method (Miller
and Bowman 2012), and the SPCA incorporating marginal ran-
dom effects (SPCARE).

For the EERE model, the tuning parameters are selected
as described in Section 3.2 and the cubic splines are used for
modeling both the eigenvalues and the eigenvectors. The DPCA
performs the standard PCA on the sample covariance matrix
at each time point separately and extracts the corresponding
eigen-components. The DPCARE allows the random effects
embedded into the DPCA method, for which we first esti-
mate the marginal random effects with respect to each product
through the statistical computing platform R (R Core Team
2019) and the R package “lme4” (Bates et al. 2015), and then
perform DPCA after removing the estimated random effects.
The SPCA is implemented by the R package “sm” (Bowman and
Azzalini 2018), and the SPCARE adopts a similar strategy as the
DPCARE, which applies the SPCA after removing the marginal
random effects.

The simulation setting is designed to mimic the real data
application of IRI products’ sales. We set the number of products
as J = 20, the number of stores as N = 200 and the number of
time points as T = 11. The eigenvectors, w0

kt ’s (k = 1, . . . , J),
are obtained from the real data. In particular, on real data, after
removing the random effects estimated from the EERE model,
we extract the eigenvector w0

kt ’s (k = 1, . . . , J) from the sample
covariance matrix at each time point.

Furthermore, we generate the first two eigenvalues as follows:

α0
1t =

(
a10 + a11

t
T

+ a12(
t
T

)2
)−1

and

α0
2t =

(
a20 + a21

t
T

+ a22(
t
T

)2
)−1

,

where (a10, a11, a12)
T = (0.19, 0.20, 0.20)T , (a20, a21, a22)

T =
(0.30, 0.50, −0.50)T . The remaining J − 2 eigenvalues are gen-
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erated from N(1, 0.22) at each time point. Consequently, we
generate response vector y∗

it (i = 1, . . . , N) from a multivari-
ate normal distribution with mean zero and covariance matrix
V0

t = ∑J
k=1 α0

ktw
0
kt(w0

kt)
T .

Table 1. The mean absolute deviation of error (MADE) for eigenvalue estimation
and the mean cosine deviation error (MCDE) for eigenvector estimation, comparing
the DPCA, the DPCARE, the SPCA, the SPCARE and the proposed EERE, based on 100
replications.

Trule Comp DPCA DPCARE SPCA SPCARE EERE

Eigenvalue First 5.36 1.94 5.22 1.96 0.37
(MADE) Second 3.97 2.71 3.76 2.31 0.34

Eigenvector First 0.6165 0.3468 0.6191 0.4058 0.0318
(MCDE) Second 0.6697 0.4316 0.35700 0.2647 0.0110

NOTE: The bold values emphasize our methodology’s performance.

In addition, we generate the multivariate random effect γ i
from a multivariate normal distribution with mean 0 and an
exchangeable covariance matrix V2(ρ1T

10110 + (1 − ρ)I10),
where V2 = 3 and ρ = 0.25. Consequently, the J-dimensional
response variable is generated as yit = y∗

it + γ i, for i = 1, . . . , N
and t = 1, . . . , T.

To evaluate the estimation of the time-varying eigenvalues,
we examine the plots of the average estimated eigenvalues versus
time. Also, we calculate the mean absolute deviation of error
(MADE) for the eigenvalues:

MADEk = 1
T

T∑
t=1

∣∣α̂kt − α0
kt

∣∣ /range(α0
k),
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Figure 2. Correlations for eight selected products in the IRI dataset at the years 2001, 2006, 2009, and 2011.
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where α0
kt is the kth true eigenvalue at time t and k = 1, 2.

The range(α0
k) = max(α0

kt) − min(α0
kt), which covers the

minimum and maximum among all time points. In general, it is
not trivial to quantify the estimation errors of the time-varying
eigenvectors. We adopt the mean cosine distance error (MCDE)
of the estimated time-varying eigenvectors based on their angles
with the true eigenvectors. In particular, the MCDE value is
calculated as

MCDEk = 1
T

T∑
t

(
1−cos

(
ŵkt , w0

kt
)) = 1

T

T∑
t

(
1− ŵT

ktw0
kt

)
,

for k = 1, 2, where ŵkt is the estimated kth eigenvector at time
point t and w0

kt is the corresponding true value. It is clear that the
MCDE value is in a range of [0, 2], and a smaller MCDE value
suggests a more accurate eigenvector estimation. In addition, we
evaluate time-varying eigenvector estimations through creating
heatmaps corresponding to the average estimators of eigenvec-
tor loading over time. The heatmaps allow us to visualize group
changes over time among different variables via color contrasts.
Moreover, we also plot the time-varying curve of each loading
of the estimated eigenvectors in the supplementary materials.

Table 1 summarizes the average MADE values and MCDE
values for the estimations from the different models based on
100 replications. The results show that the EERE method yields
the smallest MADE values and MCDE values compared to
other competing methods. Figure 3 displays the estimated first
and second time-varying eigenvalues obtained from various
methods. In addition, it is evident that the smooth eigenvalue
estimators from the EERE method are closest to the true eigen-
value curves. The DPCA and DPCARE methods produce non-
smooth estimators as expected. Moreover, the SPCARE and
DPCARE methods have better estimation results compared to
the SPCA and the DPCA methods indicating the importance
of incorporating the random effects associated with different
stores. However, the proposed method still outperforms the

DPCA and the DPCARE significantly, suggesting that the pro-
posed EERE has advantages from accounting for heterogeneity
and neighboring information simultaneously.

The heatmaps in Figures 4 and 5 illustrate the estimated
time-varying eigenvector estimators, where the EERE estima-
tors are closest to the true eigenvectors compared to the other
five methods. For the first eigenvector, Figure 4 shows that
the estimators of the DPCA and SPCA have strong negative
loadings for most of the products over all time points, implying
that they are not able to capture the group changes over time
for Products 1–3 and 12 at later time points. Furthermore, the
DPCARE and SPCARE tend to group the first product with the
last three products, which is very different far from the truth.
For the second eigenvector, Figure 5 indicates that the estimator
from the EERE method has the best approximation of the truth,
while the SPCA and SPCARE methods lack power in capturing
the grouping patterns at later time points, and the DPCA and
DPCARE methods are not able to capture the smooth changes
of the loading coefficients over time.

5. Analysis of IRI Marketing Data

In this article, we focus on grocery store sales spanning an 11-
year time period, and apply the proposed method to the IRI
marketing dataset, which consists of sales units of 552 grocery
stores and 20 products collected over the years 2001–2011.
Among the stores, 30% are located in the South, 28% in the
West, 24% the Northeast, and 18% in the Midwest, and fewer
than 1% of the stores do not belong to any chain. The prod-
uct categories include beer, razor blades, carbonated beverages,
cigarettes, cold cereals, deodorants, diapers, frozen dinners,
frozen pizzas, hot dogs, household cleaners, laundry detergent,
milk, mustards and ketchups, peanut butters, photography sup-
plies, salty snacks, shampoos, soup, and toothbrushes. The 20
products represent a broad spectrum of consumer packaged
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Figure 3. The estimated eigenvalue curves of the DPCA, the DPCARE, the SPCA, the SPCARE, and the EERE in the simulation study, based on 100 replications.
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Figure 4. The heatmaps for the estimated first eigenvector for different models in the simulation study, based on 100 replications.
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Figure 5. The heatmaps for the estimated second eigenvector for different models in the simulation study, based on 100 replications.
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goods with varying amounts of sales over time. Among the
products, milk has the largest volume of sales across time, and
photography supplies have the smallest volume of sales over
time. To overcome difficulties in different scales of sales volume,
we rescale the data to achieve unit variance for the products over
the 11 years.

This multivariate longitudinal sales data presents some inter-
esting features, but is also challenging to analyze due to the sheer
size, variability, and time-varying nature of the dataset. The
variation among stores can be due to several extrinsic factors,
such as geographic location and store size, or due to intrinsic
factors, such as popularity and reputation of the stores. Figure 1
illustrates the average number of units sold at large, medium,
and small stores for two products, beer and peanut butter. We
notice that smaller stores tend to have a decreasing trend in sales
of beer and peanut butter, while larger stores have an overall
increase.

Since the number of products is large, it is essential to inves-
tigate correlations among product sales and capture the asso-
ciations among them over time, and to reduce dimensionality.
This enhances marketing researchers’ ability to better under-
stand consumer shopping behavior and marketing trends while
considering a portion of the data that captures a reasonable
amount of variation. Figure 2 illustrates the heatmaps for the
correlation matrices among several selected products. We note
that the magnitude among the pairwise correlations for photog-
raphy supplies and other products changes over time, and the
change is more obvious in later years. This phenomenon reflects
the idea that consumers are likely to change their purchasing
habits as technology progresses over time. We select the first two
principal components, as they contribute about 80% of the total
variation over the 11 years following the calculation in (11).

We implement the proposed EERE method and compare it
to the DPCA, DPCARE, SPCA, SPCARE approaches. Figure 6
plots the estimated eigenvalues for different methods. Figures 7
and 8 show the first and second time-varying eigenvector

heatmaps, respectively. The heatmaps of DPCA, DPCARE,
SPCA, and SPCARE have an overall averaging behavior for
the first eigenvector and a grouping behavior for the second
eigenvector. The first eigenvector describes an average sales
volume among the products. The second eigenvector describes
ingestible products versus noningestible products. The negative
loadings with blue-purple hues of the second eigenvector
for most years correspond to the following products: beer,
carbonated beverages, cigarettes, cold cereal, frozen dinners,
frozen pizzas, hot dogs, milk, mustards and ketchups, peanut
butter, salty snacks, and soup. These products are those
which consumers take into their bodies via swallowing or
inhaling, hence “ingestible.” The remaining noningestible
products include razor blades, deodorants, diapers, household
cleaners, laundry detergent, photography supplies, shampoo,
and toothbrushes. The noningestible products are represented
by positive loadings with yellow-orange hues.

Interestingly, the EERE heatmap in Figure 7 indicates that the
beer and cigarette products, which are in yellow-orange hues,
should be grouped together in contrast to the remaining prod-
ucts. The first eigenvector can be interpreted as the distinction
between products for general consumers versus products for
age-restricted consumers. Cigarettes and beer are age-restricted
products for which consumers must be at least ages 18 and 21
years old, respectively, to consume and purchase in most regions
and markets in the United States.

Figure 8 reveals that the heatmap of the proposed EERE
method tends to group products differently from the other
methods. In particular, the EERE makes a distinction between
food and nonalcoholic beverages versus the remaining products.
The foods and nonalcoholic beverages group includes carbon-
ated beverages, cold cereal, frozen dinners, frozen pizzas, hot
dogs, milk, peanut butter, salty snacks, and soup. The remaining
product group includes beer, cigarettes, razor blades, deodor-
ants, diapers, household cleaners, laundry detergent, photog-
raphy supplies, shampoo, and toothbrushes. In this sense, the
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Figure 7. The heatmaps for the estimated first eigenvector for different models in IRI marketing data analysis containing 20 products.
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Figure 8. The heatmaps for the estimated second eigenvector for different models in IRI marketing data analysis containing 20 products.
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proposed model allows for an alternative interpretation of the
eigenvectors, which is more specific than the “ingestibles” defi-
nition of the DPCA, DPCARE, SPCA, and SPCARE methods.

In the heatmaps of Figure 7, the EERE displays photography
supplies shifting from a moderately negative value to a positive
value as the years progress from 2001 to 2011. This strong
time-changing behavior is almost unnoticeable for the DPCA
heatmap in Figure 7. Notice that the sale of photography sup-
plies in grocery stores experienced a major decline nationwide
after 2005, which is when camera phones and digital cameras
gained popularity.

In summary, the EERE method, incorporating multivariate
random effects from the stores, provides a more informative
grouping strategy for products compared to existing methods.
The analysis of the IRI data shows that the beer and the cigarettes
can be grouped together, as both of them have a rather dif-
ferent pattern of sales from other consumer packaged goods.
Therefore, the grocery stores might consider advertising beer
and cigarettes in a similar fashion or arrange them in the same
section of the store. In addition, it is recommended for grocery
stores to cut down on photography supplies based on the above
analysis.

6. Discussion

In this article, we propose an EERE model to incorporate ran-
dom effects in modeling time-varying eigenvalues and eigenvec-
tors under a longitudinal PCA framework. The proposed longi-
tudinal PCA models time-varying eigen-components through
nonparametric splines, and takes store variability into account
via multivariate random effects. This leads to improved inter-
pretation of the eigenvectors, which could be extremely useful
in clustering grocery products that consumers purchase.

Our simulation studies indicate that the proposed method
has a lower mean absolute deviation of errors for the time-
varying eigenvalue estimation averaged over the simulations,
and that the proposed time-varying eigenvector estimators
match the true eigenvectors more closely compared to the other
existing methods. In addition, the analysis of the IRI marketing
data provides an illustration of how statistics and data analytics
can play a role in business decision-making. We effectively
utilize large marketing data over time to capture changes in
consumer shopping behavior and extract intrinsic information
about the associations among products.

Although this article does not focus on developing asymp-
totic theories, we make the following heuristic statements about
the proposed methodology in general. Asymptotically, if the
number of time points goes to infinity, we are able to obtain con-
sistent estimators for both random effects and the parameters
associated with the spline functions (Zhu and Qu 2018), while
increasing time points will not benefit the DPCA model since
it does not utilize any neighboring longitudinal information. In
addition, the within-store correlation beyond the random effects
is also allowed, which can be incorporated simultaneously with
the random effects by adopting the method proposed by Wang,
Tsai, and Qu (2012). However, the computation would be much
more complicated.

This article tackles a real data problem involving the com-
plex correlated nature of observations over time. We acknowl-
edge that the proposed method is mostly suitable when the
covariance structure and corresponding eigen-components are
smooth functions of time, although it is worth exploring to
incorporate abrupt jumps or changes for further extension. In
addition, further research might be needed in incorporating an
additional penalty term to allow the model to select the number
of bases functions based on the data.

Supplementary Materials

The supplementary materials include two files: (1) “SUPPLEMENTARY
MATERIAL.pdf,” is the appendix of the paper “Longitudinal Principal
Component Analysis with an Application to Marketing Data” by Kinson,
Tang, Zhuo and Qu, which includes additional simulation studies and
some computational details; and (2) “EERE_rmarkdown_doc.html,” which
includes the R codes for the LPCA model in the simulations.
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