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ABSTRACT

We outline how to turn the author’s quasipolynomial-time graph
isomorphism test into a construction of a canonical form within the
same time bound. The proof involves a nontrivial modification of
the central symmetry-breaking tool, the construction of a canonical
relational structure of logarithmic arity on the ideal domain based
on local certificates.
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1 INTRODUCTION

Let C be a class of finite graphs. A canonical form for the class C is
an assignment F : C — C such that

() (VX e C)(F(X) = X)

(ii) (VX,YeC)(X =Y < F(X)=F(Y))
Given an efficiently computable canonical form, the isomorphism
problem for graphs in C can also be efficiently solved. The converse
is not known, but so far the discovery of graph isomorphism (GI)
testers has been followed by canonical forms for the same class of
graphs with the same efficiency. The first paper that used group
theory in the design of a GI test was [Ba79]; that paper gave a
polynomial-time Las Vegas algorithm (and, incidentally, introduced
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the term “Las Vegas algorithm”) for testing isomorphism of vertex-
colored graphs with bounded color multiplicity. This algorithm
was soon derandomized [FHL80] and was followed by a canonical
form for the same class of graphs [BaKL]. Following Luks’s semi-
nal paper [Lu82] that solved GI in polynomial time for graphs of
bounded valence, [BaL83] and [FSS83] constructed canonical forms
in polynomial time for graphs of bounded valence by adapting
Luks’s algorithm.

In this paper we construct a canonical form for all graphs in
quasipolynomial (exp(O((log n)¢))) time, by adapting the author’s
GI algorithm of the same complexity [Bal5+].

In the past, the bulk of the task in such adaptations consisted in
carefully laying the conceptual groundwork, and this paper retains
some of that aspect. What is different, however, is that now the
core part of the GI test in question, the construction of a canonical
t-ary relation on the “ideal domain” based on the “local certificates
algorithm,” is not directly adaptable, and requires the addition of
a new algorithm — the main technical contribution of this paper
(Theorem 12.1).

The problem with the original construction is that it is only
pairwise canonical, meaning that the structures constructed depend
on both inputs X and Y (of which we wish to decide isomorphism),
and satisfy the canonicity requirement only with respect to the 2-
element class C = {X, Y}. This is sufficient for isomorphism testing
but not for the construction of a canonical form.

For a detailed understanding of our procedure, some familiar-
ity with [Ba15+] may be necessary. However, we tried to make
this writing self-contained by explaining, in some detail, all the
background needed. These explanations range from the informal to
the rigorous depending on their connection to our main technical
contribution.

2 STRING ISOMORPHISM

Let X be a finite alphabet and Q a finite set. We refer to Q as the
set of positions.

Strings are functions x : Q — X (Z-strings over the domain Q).
They form the set %%

Sym(Q) denotes the symmetric group acting on Q (all permu-
tations of Q). Let G < Sym(Q) be a permutation group acting on
Q. (The “<” sign between groups indicates “subgroup.”) We shall
refer to G as the ambient group. G acts on the strings by the rule
x% (u) = X(u”_l) (u € Q,0 € G). A permutation o € Sym(Q)
is a G-isomorphism from the string x to the string y (x,y € =%)
if 0 € Gand x° = y. We write Isog(x,y) to denote the set of
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G-isomorphisms from x to y. The strings x, y are G-isomorphic,
denoted x =g vy, if Isog(x, y) is not empty.

The string isomorphism (SI) problem, introduced by Luks [Lu82],
asks, given as input the sets Q, 3, the group G, and strings x, y € 3%,
to decide whether x = y. (Permutation groups are always given
by a list of generators.) The main result of [Ba15+] is the following.

Theorem 2.1 ([Bal5+]). SI can be solved in quasipolynomial time.

In this paper we consider the canonization version of the String
Isomorphism (SI) problem; we refer to this problem as “String Can-
onization” (SC).

A G-canonical form of Z-strings over the domain Q is a function
F: 32 — 32 that selects one member from each G-orbit of strings.
In other words, a function F : £¢ — 3 is a G-canonical form if
for all x,y € 29

(i) F(x) =g x, and

(i) ifx =g y then F(x) = F(y).

A “canonical form of strings” is a function that takes as input the
sets Q, %, (a set of generators of) the group G, and a string x € 32,
and returns a G-canonical form F(x). In this note we sketch the
proof of the following main result.

Theorem 2.2. There is a canonical form of strings that can be com-
puted in quasipolynomial time.

Theorem 2.1 is a corollary. Another corollary is the result stated
in the title of this paper.

Corollary 2.3. There is a canonical form of graphs that can be
computed in quasipolynomial time.

To infer Cor. 2.3 from Theorem 2.2, one uses the natural encoding
of v-vertex graphs by (0, 1)-strings of length (22’) under the action

55,2) of the symmetric group S, on pairs, as observed by Luks.
Our conceptual setup essentially follows [BaL83]. The proof
consists in a reinterpretation of the algorithm given in [Ba15+], with
one essential new element: a canonical construction of a relational
structure on the “ideal domain,” to replace the “pairwise canonical”
construction given in [Bal5+]. Both constructions are based on
the “local certificates algorithm,” the core algorithm of [Ba15+].
However, the construction in [Ba15+] is canonical only with respect
to the pair {x,y} whose isomorphism we wish to test, and not
canonical over the set of all strings. The reason is that the auxiliary
relational structures constructed in [Ba15+] depend both on x and
y. For canonical forms, the structures must depend on x alone. This
requirement introduced new technical problems and conceptual
issues; the latter may be obscured by the simplicity of the solution.

3 PERMUTATION GROUPS:
DEFINITIONS, NOTATION

Most of the definitions in this section are standard; we indicate
where this is not the case. Our standard reference on permutation
groups is [DiM96]. For algorithms in permutation groups we refer
to [Se03].

We use the notation [n] = {1,...,n}. For groups G, H, the
relation H < G means H is a subgroup of G. The normalizer of H in
G is the largest subgroup of G in which H is a normal subgroup; it
can be defined as Ng(H) = {c € G | 6" 'Ho = H}.
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A permutation group acting on the set Q is a subgroup G <
Sym(Q). For o € G we write its action in the exponent: o : x > x°.
ForasetS C G we write x° = {x° | o € S} and fora set A C Q we
write A% = {x% | x € A}. We say that the set A C Q is G-invariant
(or invariant under G) is A° = Aforall o € G.

The degree of G is n = |Q|. The order of G is |G|. We call Q the
permutation domain. We use the generic notation S, for Sym([n])
or for any symmetric group of degree n if we don’t want to specify
the permutation domain. The alternating group Alt(Q) < Sym(Q)
consists of the even permutations; the generic notation is Aj,. For
n > 2 we have |S, : A,| = 2. For n > 5, the group A, is simple
(has no nontrivial normal subgroups). For convenience, this author
likes to call Sym(Q) and Alt(Q) collectively the giants on Q.

An action of a group G on a set I is a homomorphism ¢ : G —
Sym(T). Given such an action, we call T a G-set. If G < Sym(Q)
then Q is a G-set under the identity action.

We extend the notation x¢ to actions: for x € T we write x? to
denote x?(9) if the action ¢ is understood from the context.

Definition 3.1. The stabilizer of x € I' in the subgroup Gx < G
consisting of the elements that fix x:

Gy={c€eG|x° =x}. (1)
The orbit of x € T under G is the set
x%={x7 |oeG). )
The length of the orbit is its size, 1xC].
The index of the stabilizer is the length of the orbit:
G : Gxl = 1x9]. (3)

The G-action G — Sym(T) is transitive if xC = T for some (and
therefore every) x € I'. A partition IT = {By,...,B} of T into
blocks B; # 0 means I' = |_|{.<:1 B;. We say that IT is a system of
imprimitivity for G if IS = 11, i.e., every o € G takes blocks to
blocks. The trivial systems of imprimitivity are the discrete partition
(each block has size 1) and the unit partition (there is just one block,
namely, T). The G-action is primitive if |T| > 2, the G-action is
transitive, and has no nontrivial systems of imprimitivity.

We say that a permutation group G < Sym(Q) is transitive
(primitive) if its idenity action is transitive (primitive, resp.). The
orbits and blocks of imprimitivity of G are the orbits and blocks,
resp., of this action.

A special case of the stabilizer notation: the setwise stabilizer of
T C T in G is the subgroup

Gr={ce G|T° =T}. 4)

By Eq. (3) we have |G : Gr| < (T), where m = |I'| and t = |T|. We
note that T is G-invariant if and only if G = G.
The pointwise stabilizer of T is the subgroup

Gy =10 €G|(xeT)(x" =x)} = () Gx.

xeT

®)

If 5,7 € G then the element 7° := 070 is called the conjugate of

7 by 0. Conjugation by a fixed element o, i. e., the map 7 — 77, is
an automorphism of G. For S C G we write S := ¢~ S0 = {77 |
7 € S}. We shall need the following observation.
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Fact 3.2. Let us consider a G-action G — Sym(T). If ¢ € G and
T C T then

Gre = (G1)? . (6)

Definition 3.3. If I'is a G-set and T C T’ is a G-invariant subset
then we write GT for the restriction of G to T, i.e., GT is the image
of the restriction homomorphism G — Sym(T).

The notation G;: makes sense regardless of whether T is G-
invariant: it means first we reduce G to G, the setwise stabilizer
of T, and then restrict the Gp-action to T.

We write (?) for the set of t-subsets of Q. A group G < Sym(Q)

induces a G-action on (?) We denote this action by G < Sym ((?) )

This author likes to refer to Silt) and Ag) as the Johnson groups be-

cause of their action on the Johnson graphs (a standard term). So
n

the Johnson groups have degree ( f

) and order n! or n!/2.
Fact 3.4. For 1 <t < n/2, the Johnson groups are primitive.

This author calls an action ¢ : G — Sym(TI') a giant action if ¢(G)
isagiantonT,i.e., ¢(G) > Alt(T).
We define the central new concept introduced in [Ba15+].

Definition 3.5 (Affected element). Let Q,T be sets, G < Sym(Q)
and ¢ : G — Sym(I') a giant action. We say that x € Q is affected
by ¢ if ¢(Gx) is not a giant on T

4 SUBCOSETS

For a group G, subsets A, B C G, and g € G we use the notation
Al ={al|acAland AB={ab|a€ Ab e B}and gA = {ga |
ac A}

A subcoset of a group G is a set of the form aH for some H < G
and a € G. We could call this a left subcoset, but right and left
subcosets are the same: aH = (aHa !)a. In particular, if L is a
subcoset of G then for every a, b € G the set aLb is also a subcoset
of G.

We shall say that H < G is the right subgroup corresponding to
the subcoset L if L = aH for some a € G. This subgroup is uniquely
determined by L, namely, H = L7L.

A subcoset L will always be represented concisely by a set of
generators of its right subgroup H and a coset representative a € L.

A subcoset K of a subcoset L of G is a subcoset of G contained
in L. With this definition, the subcoset relation is transitive.

We shall use the term “possibly empty subcoset” to describe a
set that is either a subcoset or empty. This relation is also transitive.
The family of possibly empty subcosets of a group is closed under
intersection. Therefore we can speak of the subcoset C generated by
a subset S C G; C is the intersection of all subcosets containing S. If
S = 0 then C = 0; otherwise C = ¢ - (¢”1S) where c is any element
of C and (S) denotes the subgroup generated by S.

For subsets C1,Cy of a group G we write C; <, C2 if Cy is a
possibly empty subcoset of Cy, i.e., C; is a possibly empty subcoset
of Gand C; C C,.

The significance of this concept to us is in the fact that the set

™

the set of G-isomorphisms of strings x and y, is a possibly empty
subcoset of G.

Isog(x,y) ={c €G|x7 =y},
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We shall also need to consider the set of isomorphisms within a
subcoset: for C <. G we set

(®)

While this extension of the Isog operator will be very convenient, it
is not more general than isomorphisms with respect to subgroups.
Indeed, if C = oH where H = C™!C < G is the right subgroup
corresponding to C then

Isoc(x,y) ={oc € C|x° =y}.

©)

Isoc(x,y) = o Isog (x7,y).

5 CANONIZATION FROM LUKS’S
SI ALGORITHM

The canonization version of Luks’s ST algorithm [Lu82] is described
in [Bal83]. We retain that method as the basic framework of our
algorithm.

The algorithm starts with fixing an arbitrary ordering of Q, so
we shall treat Q as an ordered set. This also defines a lexicographic
ordering of the subsets of Q by representing every subset as a string
of its elements listed in increasing order.

Following [BaL83], in this section we introduce canonical place-
ment cosets that give our basic conceptual setup. Then we extract
from [BaL83] the two basic routines used by the algorithm; we call
them the Chain Rule and Descent.

5.1 Canonical Placement Coset

For purposes of recursion, rather than just constructing the canoni-
cal form F, we construct the canonical placement coset

CPs(x) = Isog(x, F(x)) . (10)

Also for the purposes of recursion, we need to extend the concept
of canonical placement cosets in two directions. First, we replace
the group G with a subcoset C = 0H <. G.

Second, we look at our string through a window, i.e., an H-
invariant subset W C Q where H = C~1C is the right subgroup of
C.For x € 2%, let x" denote the string defined by

x(x)

x"(x) =
(x) { 5

where f is a “dummy symbol,” not belonging to the alphabet 3,
sox" € (= u {B})?. Canonization of the strings x" over G is
equivalent to canonization of the strings in 2V over the restriction
of G to W. For x,y € % we write Isog/(x, y) = Isoc(xV,y")
and CPY (x) := CPc(x").

for x € W and
forx e Q\W

Definition 5.1. A canonical placement function CP takes as input
a set Q, an alphabet X, a group G < Sym(Q), a subcoset C <. G, a
window W C Q that is invariant under the right subgroup H :=
C71C, and a string x € 3. It outputs a subcoset CPZV (x) <¢ C.
The function CP obeys the following rules for all x € %%

(i) For all o € G we have CPZVC(X) =0 CPZ,V(XO-)

(i) CP‘C/,V(X) =7 Auty(x") forevery r € CPEV(X) .
Fixing Q and G, we say that CP is a canonical placement function
for (Q, G).

Remark 5.2. Some comments are in order to indicate the self-
consistency of this definition. First, the right subgroup of C and
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of oC is the same, so the left-hand side of item (i) satisfies the
invariance condition for the window.

Second, item (i) is consistent with multiplication in G. Indeed,
for 0,7 € G we have CPCVrVTC(X) =or CPZ,V(XUT) = JCP‘T/VC(XU).

Proposition 5.3. IfCP is a canonical placement function for (Q, G)
then for all strings x € 3 we have IXCP?J(X)I = 1 and setting

XCPg(x) = {F(x)} we obtain a G-canonical form F. Moreover, CP and
F satisfy Eq. (10). Uniqueness also holds for windows: for a subcoset
C <¢ G with right subgroup H = C"1C and an H-invariant window
W we have I(XCPXV(X))WI =1.

Def. 5.1 focuses on left shifts C — oC. We state the consequences
of the definition regarding right shifts. We shall need these at the
end of Sec. 16.

Observation 5.4. Let G < Sym(Q) and let CP be a canonical place-
ment function for (Q,G). Let C <. G be a subcoset of G. Let W C Q
be a G-invariant window. Then for all o € G we have

CPY_(x) = o - CPY, (x7).

(11)

Proor. Combine item (i) of Def. 5.1 with the observation that
Co =0C°. O

5.2 Chain Rule

Let G < Sym(Q) and C <, G a subcoset of G with right subgroup
H =C"!C. Let W C Q be a nonempty H-invariant subset.

If H is intransitive on W, we may apply the Chain Rule which
takes an ordered partition IT = (W1, .. ., Wy) of the window W into
H-invariant subwindows W;,i.e., W = Wi - - -LUW and Wl.H =W;.
The algorithm processes the W; in succession,

Co :=C, ci=cpgf_l<x> (i=1,...,k) (12)

and returns CPEV(X) = Cg.

Remark 5.5. We do not need that all windows be H-invariant; it
suffices that W; is invariant under H; = Cl.__ll Ci-1. This follows by
repeatedly applying the case k = 2 to the partitions (U;, W \ U;),
where U; = Wj U - - - U W;. Viewing the process this way will be
important for the CP version of the Local Certificates algorithm
(Sec. 16).

Next we justify this as a valid recursive step.

Proposition 5.6. If the function CP);V)" satisfies Def. 5.1 for each i
and all D <. C then the function CPEV constructed by the Chain Rule
also satisfies Def. 5.1.

5.3 Ordering the Windows

To apply the Chain Rule, we need an ordering of the subwindows
(blocks of the partition). If no such ordering is prescribed by the
algorithm, we use an ordering that does not depend on any of
the input parameters (G, C, x), except on the ordering of Q. One
recipe, given in [BaL83], is to order the blocks according to the
lexicographic order inherited from the ordering of Q. Another
recipe we apply in the algorithm is to order the sets by magnitude,
[Wi] > [Wa| > - -+ > |Wg|, breaking ties lexicographically.
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5.4 Descent

Luks’s second main operation is breaking up a group into cosets
of a subgroup. More generally, let C be a subcoset of the group G
and C = | |5eg 0D where D is a subcoset of C corresponding to a
subgroup K < H, where H = C"!Cand K = D7!D. R is a set of
coset representatives. In this case, evidently,

Isog/(x, y) = u ISOL/,VD(X, y).

o€R

(13)

Noting that, according to Eq. (9), computing the Isoc operator
requires computing Isoy and Isop requires Isog, this equation
reduces the calculation of an instance of Isog to |H : K| instances
of Isog. This means a multiplicative cost of |H : K| which must be
compensated for a significantly improved “quality” of the subgroup
K compared to H. For instance, if H is transitive on W and K is an
intransitive normal subgroup then we can descend from H to K and
apply the Chain Rule to K with great efficiency—a key technique
used by Luks [Lu82].
Here is the canonization version of this routine.

Let C = | |;eg 0D where D <. C <. G. Note that, by Prop. 5.3,
the set (xPop® )" consists of a single element; call it y(o). Let

Vmin be the lexicographic leader among all the y(o) and consider
the set

2= {UD (14)

w
o € Rand (xCPffVD(x)) = {Ymin}} .

Define CPZV (x) as the subcoset generated by the union of the sub-
cosets in Z.

In analogy with Prop. 5.6, we state that descent is a valid recursive
step.

Proposition 5.7. Let C <. G and H = C"!C the right subgroup
of C. Let K < H. If the function CP}’)V satisfies Def. 5.1 for every left
coset D of the subgroup K then the function CP‘éV constructed by the
descent algorithm also satisfies Def. 5.1.

5.5 The CP Algorithm from [BaL83]

Initially let W := Q.

If [W| = 1, we set CPE‘/(X) =C.

If G is intransitive on W, we apply the Chain Rule to reduce
to the transitive case. If G is transitive on W, we select the “first”
minimal system of imprimitivity (maximal blocks), {W, ..., Wi},
so W = || W;. This can be done in polynomial time (see [BaL83],
also for the definition of “first”). The G-action permutes the W; ;
this induces a G-action ¢ : G — Sj. Let K = ker(¢); so the image
¢(G) is a primitive group, isomorphic to G/K. Noting that the W;
are K-invariant, we descend to K and then apply the Chain Rule to
the partition W = | | W;. For the Chain Rule to be applicable, we
order the subwindows lexicographically, following the first recipe
mentioned in Sec. 5.3.

5.6 Complexity

If we have a bound of the form |G*| < k9(") then we get the fol-
lowing recurrence. Let f(n, m) denote the maximum size of the
recursion tree corresponding to evaluating CPg/ (x,y) over a hered-
itary class of groups G (closed under subgroups and quotients),
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where n = |Q| and m = [W|. Then

f(n,m) < k9™ £(n. myk) . (15)

This recurrence evaluates to f(n,n) < n9 (m)+1 The computational
cost associated with each link (edge) in the recursion tree is poly-
nomial, so the total cost is n9(M+0(1)

For isomorphism of graphs of bounded valence, Luks [Lu82]
noted that the relevant groups have bounded composition factors.
Primitive groups with this property have polynomially bounded
order [BaCP82], i.e., g(n) = O(1); therefore CP for strings with re-
spect to such groups can be constructed in polynomial time. This in
turn results in polynomial-time CP for graphs of bounded valence.

We note that Luks’s original implementation [Lu82] employed
one more descent step which permitted an easier polynomial-time
analysis.

We also note that if we set g(n) = O(logn) then we obtain
f(n,n) = n®08m our target threshold for the naive application of
Luks’s method. If we encounter a primitive group of order greater
than k2108 1 (where, as before, k is the number of blocks of imprim-
itivity) then we invoke the new group-theoretic and combinatorial
techniques from [Bal5+] to achieve a more favorable recurrence.

6 THE LUKS BOTTLENECK

Luks’s SI algorithm and along with it the CP algorithm of [BaL83]
described in Sec. 5.5 reaches a bottleneck when it encounters a large
primitive group. For our purposes, the primitive group G* < Si is
“large” if |G*| > k21°82"_(Note that in our context, k < n.)

Using Cameron’s classification of large primitive groups [Cam81],
one can show that these groups G* have a (normal) subgroup G**
of index < k such that G** has giant action on some set I to which
we refer as the ideal domain. This action lifts to an epimorphim
(surjective homomorphism) ¢ : G — H where H = Sym(T) or
Alt(T).

Given G*, the group G**, the set I', and the epimorphism ¢ can
be constructed from G* in polynomial time.

So by applying descent to G** we may assume we have a giant
action ¢ : G — Sym(T'). We assume |I'| > 2t where t = max{9, [3 +
log, n|} is an important threshold that derives from the “Unaffected
Stabilizers Lemma” [Ba15+]. The letter ¢ will denote this quantity
throughout this note.

7 DIVIDE AND CONQUER STRATEGY WITH
QUASIPOLYNOMIAL TARGET

We shall work with the two parameters n = [Q| and m = |TI'|. We
seek to reduce an instance of the problem to a moderate number
of significantly smaller instances. The “moderate number” is the
branching factor (number of children) in the recursion tree, to
which we also refer as the multiplicative cost (see Eq. (16) below).
We shall want to keep it quasipolynomially bounded. “Significantly
smaller” means we reduce the relevant parameter by at least 10%.

Most of the time, the relevant parameter will be m, so we get the
recursion

f(n,m) < q(n)f(n,0.9m) (16)
where f(n, m) is the worst cost under these parameters, and q(n) is

the multiplicative cost mentioned. This recursion bottoms out when
m gets to small (m < 10log, n). At that point we individualize all
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elements of T, resulting in a significant reduction of n. This gives us
two nested loops, each permitting O(log n) iterations, so the total
cost will be g(n)©(Uog m)°)_ This is quasipolynomially bounded as
long as q(n) is.

8 STRONGLY CANONICAL ASSIGNMENTS

We often assign structures to structures in a way that preserves
isomorphisms. We call such assignments strongly canonical (called
“canonical” in [Bal5+]). An example is the classical isomorphism
rejection method called “naive vertex refinement” Initially we
color each vertex of a graph by its degree, and then we refine
the coloring: each vertex learns the number of its neighbors in each
color and encodes this information in its own refined color. We
repeat this refinement step until the color partition stabilizes. If
X is the original graph and X(X) is the colored set obtained then
Iso(X,Y) C Iso(X(X), X(Y)).

Definition 8.1 (groupoid). A small category is a category in which
the objects form a set (as opposed to a proper class). A groupoid
is a small category in which all morphisms are invertible, i.e.,
Hom(X,Y) =Iso(X,Y) for all pairs (X,Y) of objects.

Definition 8.2 (Strongly canonical assignment). Let ¢ and & be
groupoids. We say that an assignment X +— X(X) of X € Ob(%)
to X(X) € Ob(2) is strongly canonical if it comes from a functor
F:% — 9,i.e., there is a functor F such that X(X) = F(X) for all
X € Ob(%).

The structure added by a strongly canonical assignment (such
as a refined coloring) can help in computing canonical forms. The
following easy observation formalizes this.

Definition 8.3 (Diagonal groupoid). Let € and & be groupoids.
Let H : € — 2 be a functor. Define the category diagy (¢, Z) by
having objects (X, H(X)) (X € Ob(%’)) and morphisms (7, H())
for morphisms 7 in €.

Observation 8.4. Assume F is a canonical form for the diagonal
groupoid diag (€, ). For X € Ob(%) define F*(X) as the first
component of F(X, H(X)). Then F* is a canonical form for €.

Proor. (i) The fact that (X, H(X)) = F(X, H(X)) in the diagonal
groupoid implies isomorphism of the first components, X = F*(X)
in?%.

(ii) Now suppose X = Y in € and let 7 € Isox(X,Y). Apply-
ing H it follows that H(r) € Iso(H(X),H(Y)) in & and therefore
(m,H(m)) € Iso((X,H(X)),(Y,H(Y)) in diagy (¢, Z). So these
objects in diagy (€, Z) are isomorphic; therefore F(X, H(X)) =
F(Y,H(Y)). It follows that the first components of these objects are
equal: F*(X) = F*(Y). O

The groupoids we consider are G-sets. Strongly canonical assign-
ments among G-sets have a simple description.

Definition 8.5 (G-sets as groupoids). A G-set Q can be viewed
as a groupoid €": Ob(%’) = Q and the morphisms are pairs (x, o)
where x € Q and o € G. The source of the morphism (x, o) is x
and the target is x°. Composition is done in the natural way. Let
us denote this category €' (Q, G).
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Definition 8.6. Let Q and I be G-sets. A function f : Q@ — T'is
G-equivariant if

(Vx € Q)(Yo € G)(f(x7) = f(x)?). (17)

Observation 8.7 (Functor between G-sets). IfQ andT are G-sets
then there is a 1-1 correspondence between functors F : € (Q,G) —
€ (T, G) and G-equivariant maps f : Q — T, given by the equations
F(x) = f(x) and F(x,0) = (f(x),0) (x € Q,0 € G).

9 BREAKING THE SYMMETRY

9.1 Canonical Structure on Ideal Domain

The ideal domain I is homogeneous with respect to G: the action
¢ : G — Sym(T) is a giant action. If Autg(x) acts as a giant on at
least 90% of T', we can discover this fact (even though Autg(x) is
not known) and produce CP via efficient recurrence (Chain Rule
on ker(¢p)).

Otherwise, the Local Certificates algorithm makes the absence of
such high symmetry explicit by finding a not too highly symmetrical
(see Def. 9.1) t-ary relational structure X on I, where t = O(logn),
such that X invariant under the action of Autg(x) onT (via ¢). This
is the central algorithm of [Bal5+].

We review the parameters:

n = |Q| - the size of the set of positions; G < Sym(Q)
m = |T'| - the size of the ideal domain; we have 10log,n < m < n
t =3+ |log, n]} — We refer to all t-subsets T C I as test sets.

To avoid trivialities, we may assume that n is greater than any
given constant. In particular, n > 64 guarantees t > 9, needed for
the application of the Unaffected Stabilizers Lemma.

The Local Certificates algorithm [Ba15+] produces, for each test
set T, either a fullness certificate or a non-fullness certificate. We
define these in Section 10; let us only state here that a fullness
certificate is a subgroup of Autg(x), and a non-fullness certificate
is a subgroup of Sym(T).

Let F < Sym(T') denote the subgroup of Sym(T') generated by the
p-images of the fullness certificates. If F fixes no more than 90% of
T', we find a rich set of G-automorphisms of x that permits efficient
recursion for CP by applying the Chain Rule, following essentially
verbatim the description in the “Aggregation of certificates” section
in [Bal5+].

In case F fixes more than 90% of T', we may assume, as in [Ba15+],
that no ¢-tuple receives a fullness certificate. In [Ba15+], the non-
fullness certificates are used to construct pairwise canonical t-ary
relational structures X and ) on T corresponding to the input strings
xand y € =% of which we wish to decide G-isomorphism. Here
“pairwise canonical” means canonicity with respect to the category
having just two objects, x and y. The structures X, ?) are required
to have not too much symmetry.

Definition 9.1 (Symmetricity). Let ¥ = (I',R) be a relational
structure on the underlying set I'. We say that a subset A C T
is symmetrical if the setwise stabilizer of A in Aut(X) acts as the
symmetric group on A. The symmetricity of X is the maximum size
of a symmetrical subset.

It would suffice for our algorithm for the structures X, %) to have
symmetricity < 0.9|T'|. In fact, the structures constructed in [Ba15+]
have tiny symmetricity (< ¢ — 1), and this continues to hold for the
modified construction given in this note (see Claim 12.6).
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This step (the construction of pairwise canonical ¢-ary relational
structures on T') is followed by combinatorial partition algorithms
(“Design Lemma” and “Split-or-Johnson”) to find a subgroup H < G
that “encases” the unknown group Autg(x) (i.e., Autg(x) < H)
such that, by certain measures, H is significantly smaller than G,
thus making the symmetry breaking explicit.

9.2 Combinatorial Partitioning:
Individualization, Refinement

The combinatorial partitioning algorithms employ two basic steps:
individualization and strongly canonical refinement. Both of these
are classical isomorphism-refutation tools.

Individualization means assigning a special color to an ele-
ment x of a G-space (colors are preserved by isomorphisms by
definition). This amounts to a descent from G to Gy and incurs a
multiplicative cost of |G : Gx| = 1xC].

Canonical refinement refines the coloring in a manner that is
strongly canonical.

Both of these operations work for CP without change (individ-
ualization by the CP version of descent, Sec. 5.4, and canonical
refinement trivially).

So what we need to focus on is replacing the pairwise canoni-
cal construction (of the t-ary relational structure with small sym-
metricity) by a canonical construction. Our canonical construction
will yield a (2t)-ary relational structure, doubling the arity used
in [Bal5+].

10 FULLNESS AND NON-FULLNESS
CERTIFICATES

Let T C T be a test set (a subset of size t). While in general, com-
puting setwise stabilizers is Cook-equivalent to the SI problem,
the setwise stabilizer Gt is easy to compute since it is the set-
wise stabilizer in a giant action: Gt = ¢~!(Sym(I')T). Note that
Sym(T)r = Sym(T) X Sym(T" \ T).

Let Y7 denote the epimorphism Gt — Sym(T) obtained by
restricting the domain of ¢ to Gt and then restricting the codomain
to Sym(T). (This is a surjection because || > ¢ + 2.)

We say that the test set T is full (with respect to the input string x)
if Y1 : Autg, (x) — Sym(T) is a giant action. A fullness certificate
is a subgroup K(T) < Autg(x) such that ¢7(K(T)) = Alt(T) or
Sym(T). As mentioned above, we may assume that none of the test
sets is full.

A non-fullness certificate is a subgroup M(T,x) < Sym(T) that
is not a giant, i.e., M(T,x) # Alt(T), such that Y7 (Autg,(x)) <
M(T,x). Note that the group Autg, (x) is not known; the algo-
rithm nevertheless must guarantee the stated inclusion. In [Ba15+],
such a certificate is constructed for each T, along with a “window”
W(T,x) C Q such that

(a) W(T,x) is invariant under Autg, (x),
(b) M(T.x) = yr(Autg, (xV(T:¥))),

where x" (T>%) is the restriction of x to W(T, x), all other positions
being filled with the dummy symbol ¢ X.

Both W(T,x) and Autg, (xW(T’X)) are computed via efficient
recursion, applying the Chain Rule to the window, thanks to the
Affected Orbit Lemma (part (b) of Theorem 13.1).
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10.1 Strong Canonicity of Local Certificates

The next observation is the starting point of the proof of Theo-
rem 12.1.

Lemma 10.1. The assignment (T,x) — (T,W(T,x), M(T,x)) is
strongly canonical. Here we view each side naturally as elements in a
G-set.

Proor. First we note that the set (E) x 22 is a G-set under the
actions natural in our context. Indeed, G acts on T via ¢ and this
defines an induced G-action on (l;) Moreover, the G-action on

Q induces an action on 2. Let us now consider the set H =
P(Q) x M where P(Q) is the powerset of Q and M is the set
of pairs (T, M) where T € (1;) and M < Sym(T). So H is also a
G-set, where G acts in the obvious way on P (Q) and we define the
action of 7 € Gon M by (T,M)" = (T™, M?™)) where M°
o 'Mo. Now {(T, W(T,x),M(T,x)) | x € Q2 Te (1;)} is also a
G-set. Finally we need to observe that the assignment (T,x)
(T,W(T,x), M(T,x)) is G-equivariant and therefore comes from
a G-functor according to Obs. 8.7. So we need to show that if
o € Gthen W(T,x)° = W(T?,x%) and M(T,x)° = M(T?,x°).
This follows by noting that W and M are constructed iteratively
in the course of the Local Certificates algorithm (reproduced here
in Sec. 17), and it is clear that the objects constructed in each
iteration are strongly canonical (satisfy the same G-equivariance
condition). O

11 LARGE WINDOW

If there exists T such that |[W (T, x)| > n/10 then we individualize
such a T, i.e., we descend to Gt (at a multiplicative cost of (T)

n©U0g )y and proceed by Luks-recurrence: we use the Chain Rule
on the ordered partition (W(T, x), Q \ W(T,x)). On W(T, x) we can
compute the automorphism group by efficient recursion via the
Chain Rule, thanks to the Affected Orbit Lemma; the rest is at most
90%, a significant reduction.

We may therefore assume that for all test sets T we have |[W (T, x)|
< n/10. Actually, all we shall use is that W(T, x) # Q.

12 STRONGLY CANONICAL RELATION

Our main technical contribution is the following result.

Theorem 12.1. Assume none of the test sets is full. Then we can
construct a strongly canonical (2t)-ary relation on T with symmetric-
ity < t — 1. The construction uses quasipolynomial time and makes a
quasipolynomial number of calls to significantly smaller instances of
the CP algorithm.

Proor. This proof will run through Sections 12-16.

Given the input string x, we define the (2t)-ary relation R(x) on
T as follows. We include the (2t)-tuple (x1, . ..,x2;) € % in R(x) if
X1, ...,x; are all distinct, and, setting T = {x1, ..., x;}, there exists
T € M(T, x) such that xj+; = xiT fori =1,...,t. The assignment
x — R(x) is strongly canonical; this follows from Lemma 10.1.

For an {-ary relation P C Ff, let Py denote the restriction of P
toT,i.e,Pr =PNTE.
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Next we consider the structure (T, R(x)1) — the substructure
of (I',R(x)) induced on T. The following key observation helps
identify our difficulty.

Proposition 12.2. Aut(T, R(xX)r) = Nsym(1) (M(T, x)).

The right-hand side denotes the normalizer of M(T, x) in Sym(T)
(see the second paragraph of Sec. 3).

Proor. Let p € Sym(T). Let T = {uy,...,us}. Then
p € Aut(T, R(x)r) if and only if
(V1 € M(T,x))(3& € M(T,x))(Vi)(u;” = uff ). But this is equiv-
alent to saying that p~'rp € M(T,x). This must hold for every
T € M(T,x), so p~!M(T,x)p < M(T,x) which is equivalent to
pIM(T,x)p = M(T,x),i.e,p € Nsym(r) (M(T,x)). o

We say that the relation P C T¢ is trivial on T if Aut(T, Pr) is a
giant on T.

Corollary 12.3. R(x) is trivial on T if and only if IM(T,x)| = 1.

ProoF. By Prop. 12.2, R is trivial on T if and only if
Nsym(r) (M(T, %)) is a giant on T, hence M(T, x) is normal in Sym(T)
or Alt(T). But ¢ > 5, so Alt(T) is simple, therefore the only options
for M(T, x) are the identity or a giant. The latter is impossible by
the definition of non-fullness certificates. O

We say that a test set T is asymmetric (with respect to x) if R(x)
is trivial on T, i.e., [M(T,x)| = 1.

Asymmetric test sets cause considerable headache.

Let # (x) denote the set of asymmetric test sets.

Claim 12.4. We can strongly canonically select an element u(T) € T
from each T € F (x), meaning that the assignment T +— u(T) will be
strongly canonical: u(T°) = u(T)° for all o € G. The complexity of
the procedure is the same as the complexity statement in Theorem 12.1.

Remark 12.5. In fact, we could even define a strongly canonical
linear order on each T € ¥ (x), but selecting one element will
suffice.

The existence of a strongly canonical element (or linear order)
is obvious: we just pick an element (or a linear order) for one
representative of each G-isomorphism class in F (x) and use G
to translate it to all other members of the class. Because of the
asymmetry of T, this will not lead to conflict. Making this selection
efficient is our problem.

Given an element u € T, let R, (T) C T?! be the set of those
(2t)-tuples that include u.

Once we have made a strongly canonical assignment of an el-
ement u(T) € T to each T € ¥ (x), we modify R(x) by replacing
R(x)r (which is trivial) by Ry, (1) (T) for all T € ¥ (x). Let us write
R(x) for the updated relation R(x). So x — R(x)isa strongly canon-
ical assignment of a (2t)-ary relation on I

Claim 12.6. The symmetricity ofﬁ(x) is at most t — 1.

ProOF. Let T be a test set. We need to show that Aut(ﬁ(x))% *
Sym(T). To this end it suffices to show that Aut(f?(x)r) # Sym(T).
This is equivalent to saying that R(x)7 is nontrivial. If T is not
asymmetric, then, by definition, R(x)T is nontrivial and ﬁ(x)r =
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R(x)7.On the other hand, if T is asymmetric then ﬁ(x)T = Ry()(T)
and T has a special element with respect to this relation, namely,
u(T), which is fixed by all automorphisms of Ry, (1) (T). So again

}~2(X)T is nontrivial.

This completes the proof of Theorem 12.1, modulo Claim 12.4.
We spend the rest of this note trying to select a strongly canonical
element from each asymmetric test set.

13 GROUP THEORY FROM [Ba15+]

We need the central group theoretic results from [Bal5+], appearing
in the section titled “Alternating quotients of a permutation group.”

13.1 Affected/Unaffected
For the definition of “affected,” see Def. 3.5.

Theorem 13.1. Let G < Sym(Q) be a permutation group of degree
n. Let ¢ : G — Sym(T') be a giant action of G on a setT" with |T'| = m.
Let U C Q denote the set of elements of Q not affected by ¢. Then the
following hold.

(a) (Unaffected Stabilizers Lemma) Assume m > max({8, 2 + log, n}.
Then ¢ maps G(y), the pointwise stabilizer of U, onto a giant on
T (so ¢ : Gy — Sym(T) is still a giant action). In particular,
U # Q (at least one element is affected).

(b) (Affected Orbit Lemma) Assume m > 5. If A is an affected G-
orbit, i.e., ANU = 0, then ker(¢p) is not transitive on A; in fact,
each orbit of ker(¢) in A has length < |A|/m.

These results are central to the analysis of the Local Certificates
algorithm. Part (a) is the main group theoretic result in [Ba15+].
The companion result, Part (b), is a simple observation, but it plays
an important role by ensuring efficient recursion via the Chain Rule
applied to the kernel of the giant homomorphism on affected orbits.
We reference it multiple times; in particular, it is the basis of the
“Recompute H(W)” routine, see Sec. 17.

13.2 The Jordan-Liebeck Sandwich Theorem

As in [Bal5+], we need the following classical result about the
structure of subgroups of not too large index in the symmetric
group. We cite it from the version given in [DiM96, Thm. 5.2A,B].

Theorem 13.2 (Jordan-Liebeck). Let Alt(Q) < K < Sym(Q). Let
H < Kandl <r < n/2 wheren = |Q| > 9. Assume |K : H| <
(:l) Then there exists a unique S C Q with |S| < n/2 such that
Alt(Q)(s) < H < Sym(Q)s. This unique S satisfies |S| < r.

Let us denote this unique set S by JL(H).
We shall use the following corollary which appears as parts (a)
and (b) of the “Main Stucture Theorem” in [Ba15+].

Corollary 13.3. Let G < Sym(Q) be a permutation group and
¢ : G — Sym(T') a giant action. Assume t = |I'| > max{9, 2log, n}.

Then for every x € Q there exists a unique subset S(x) C T such
that |S(x)| < t/4 and

Al(T)(s(x)) < ¢(Gx) < Sym(D)s(x)-
The element x € Q is affected by ¢ if and only if |S(x)| > 1.

(18)
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Proor. Observe that
t

(Lf/4J

Now the existence and uniqueness of the set S(x) follows from the
Jordan-Liebeck theorem, setting K = ¢(G), H = ¢(Gx), S(x)
JL(¢(Gx)),n = t,and r = |t/4]. The last sentence of Cor. 13.3 is
immediate from Eq. (18) and the definition of being “affected” O

) > 22> n> x%) = |G : Gyl = 0(G) : 9(Gx)|.  (19)

14 IDENTIFYING A TEST SET FROM THE
SET OF POSITIONS

14.1 Superposition of Strings

Let x; : Q — X; be strings for i = 1, 2. We define the superposition
of these strings as the string z = x1 *x2 where z(x) = (x1(x), x2(x)),
soze (21X Zz)Q. Clearly,

Isog(x1 * X2,y1 * y2) = Isog(x1,y1) NIsog(x2,y2) . (20)

14.2 Characteristic String

The characteristic string of a subset A C Q is the string ya € {0, 1}
defined by ya(x) = 1if x € A and ya(x) = 0 otherwise.

14.3 Affected Elements Reveal Test Set

Notation 14.1 (Affected elements). Let G < Sym(Q) and let ¢ :
G — Sym(I') be a giant action on the ideal domainT'. For T € T
of size |T| = t, let A(T) denote the set of elements of Q affected by
the epimorphism ¢ : G — Sym(T).

Proposition 14.2. Assume G < Sym(Q) is transitive and ¢ :
G — Sym(T) is a giant action on the ideal domain T. Let t >
max{9, 2log, n} and assume m = |T'| > 2t. Assume A(T) # Q for
some test set T (see Notation 14.1). Then for any test sets Ty, To we
have

(21)

This statement seems surprisingly nontrivial; transitivity of G
should not be necessary and A(T) # Q should be automatic.

ISOG(XA(TI)’XA(TZ)) ={oceG| T? = Tp}.

Proor. Note that for 0 € G we have A(T?) = (A(T))?. It fol-
lows by the transitivity of G that

U AT) = Q.

oeG

(22)

We need to show that for test sets Ty, T» and 0 € G we have
A(T7) = A(Tp) if and only if T7 = T. The “if” part is clear.

To see the “only if” part, assume A(T1)? = A(Tz). Let T = Ts.
We need to show that T3 = T,. The equality T = T3 implies that
A(T1)° = A(T3) and therefore A(T2) = A(T3). Now the relation
“A(T2) = A(T3)” is a G-invariant equivalence relation on the set (1;)

But the G-action on I is a giant and therefore the G-action on (5)
is primitive (it is a Johnson group, see Fact 3.4).

If the equivalence relation is discrete, the desired conclusion
T, = Ts follows. The only other option is that the set A(T) = A
does not depend on T. But by Eq. (22), this means A = Q, contrary
to our assumption. m]
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15 STRONGLY CANONICAL SELECTION OF
A POINT FROM EACH ASYMMETRIC
TEST SET

Using the Chain Rule we may assume G is transitive on the overall
window referenced in the algorithm (Sec. 5.5). Moreover, we may
ignore everything outside the window, so we may assume G is
transitive on Q.

Furthermore, by Sec. 11, we may assume |W (T, x)| < n/10 for
every test set T, where n = |Q|. Note that the set A(T) of points
x € Q affected by Gr is a subset of W(T, x) for every x,

A(T) € W(T,x), (23)

since A(T) is the window of the first round of the Local Certificates
algorithm. In particular, we have A(T) # Q.

Let W™ = W (T, x) denote the penultimate window associated
with the test set T (the window obtained in the next to last execution
of the while loop in the Local Certificates algorithm). Let A~ =
A™(T,x) := Autg, (x""). The homomorphism yr maps A~ onto
a giant on T. Applying Cor. 13.3 to this giant action, we associate
each x € W~ with a unique subset S(x) C T such that |S(x)| < t/4
and

(A5 < (A7) < SymTD)sry - (24)

The sets S(x) are not empty for x € W~ because by construction,

x is affected by the restriction of ¢ to A™. (The fact that affected

points exist follows by part (a) of Theorem 13.1.) Moreover, for each

A~ -orbit ® C W, the sets S(x) (x € @) uniformly cover T. Now
foru e T let

Q(T,u) ={x e W™ |ueS(x)}. (25)

Lemma 15.1. Let ® be an A™-orbit in W~. Let u,v € T. If
(Vx € ®)(u € S(x) & v € S(x)) thenu = v.

ProOF. Assume u # v. For t > 4 the group Alt(T) is doubly
transivite. Therefore, if S C T is a nonempty proper subset of T
then there exist 71,72 € Alt(T) such that u € S™ and u ¢ S™.
Noting that y7(A™) > Alt(T) we can lift this statement to A— to
conclude that for any x € ® € W~ there exist 01,02 € A” such
that u € S(x)° = S(x°1) and v ¢ S(x)%? = S(x2), a contradiction.
Here we relied on the fact that S(x) is not empty (see above) and
S(x) # T because |S(x)| < t/4). |

Continuing our proof toward the title of this section, foru € T
let x(T, u) denote the string superposition xW(T.%) * XA(T) * XQ(T, u)
(see Def. 14.1). (We just quadrupled the size of the alphabet.) It is
important to note that both A(T) and Q(T, u) are subsets of the
window W (T, x). Indeed, Q(T,u) C W~ by definition; for A(T), see
the explanation of Eq. (23). As a consequence, in x(T, u) (just as
in xW(T-%) a]] positions in Q \ W(T, x) are filled with the dummy
symbol f. This will be crucial for the proof of the next statement.

Claim 15.2. We can compute, by efficient recurrence via the Chain
Rule, a G-canonical form F* of the strings x(T,u) for all T € ¥ (x)
andu eT.

Again, the efficiency of the application of the Chain Rule depends
on the Affected Orbit Lemma.

Before proving Claim 15.2, we show how it leads to the proof of
Claim 12.4 (strongly canonical selection of an element from each
asymmetric test set), completing the proof of Theorem 12.1.
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Let z(T,u) = F*(x(T, u)).
Proposition 15.3. Letu,v € T. Ifz(T,u) = z(T,v) thenu = v.

This statement is not trivial; it relies on Prop. 14.2. In particular,
this is where we use that G is transitive on Q and that A(T) # Q,
as declared at the beginning of this section.

Proor. Ifz(T,u) = z(T, v) then by definition x(T, u) =g x(T,v).
Let 0 € G be such a G-isomorphism, so x(T,u)° = x(T,v). But
then o € Autg(ya(r)) and therefore, by Prop. 14.2, T9 =T (using
the assumptions stated before this proof), so o € Gr. Since both
x(T, u) and x(T, v) are refinements of x"(T-¥ we have that o €
Autg, (XW(T’ X)), Since T is asymmetric, it follows that Y7 (o) = 1
(the identity permutation of T). In particular, u® = u, so x(T,u) =
x(T,v), therefore Q(T,u) = Q(T,v) from which we conclude by
Lemma 15.1 that u = v. O

Let us now consider the set Z(T) := {z(T,v) | v € T} of canon-
ical forms. They are pairwise not equal by Prop. 15.3. So select
u = u(T) to correspond to the lexicographic leader in Z(T). The
strong canonicity of this choice is clear. This completes the proof
of the statement in the title of this section modulo Claim 15.2.

16 CANONICAL PLACEMENT OF THE
STRINGS x(T, u)

Finally, we prove Claim 15.2.

To do so, we need to delve into the details of the Local Certificates
algorithm which we reproduce in the Appendix.

The procedure builds a strictly increasing chain of windows,
0=WycW C---Cc W C Qwhere W; = W;(T,x) and k =
k(T,x). Simultaneously, we also build the sequence of groups H; =
H;(T,x) := Autg/; (x), starting with Hy = Gr. Each W; is invariant
under H;_1.

Let K; be the kernel of the H; — Sym(T) action (restriction of
Y to H;). This is a giant actionon T for i = 0,...,k — 1, and Wj4;
is defined as the set of elements of Q affected by this action. In
particular, Wi = A(T), Wi_; = W™, and Wy = W(T, x).

By the Affected Orbit Lemma (part (b) of Theorem 13.1), each
orbit of H; in Wj4q breaks into at least ¢ orbits of equal length
under K;, permitting an efficient combination of descent to K;
(at a multiplicative cost < t! < nOUoglogn)y and the Chain Rule to
compute H; 41 (and K;41). This is the Recompute H(W) routine (see
Sec. 17). The iterative computation of the H; can be directly adapted
to iteratively computing CPg;. (xWi(T-x)) using the CP versions of
Descent and the Chain Rule, described in Sec. 5.

Next we wish to compute, for each u € T, a canonical placement
for x(T,u) W (T¥ with respect to Gr. We do this by applying the
Chain Rule to the ordered partition W(T,x) = L];.Czl(Wi \ Wi—q).
Let Hij(u) = Autg/; (x(T,u)) and K;(u) = K; N Hj—1(u). Note that
H;j(u) < H; (since x(T, u) is a refinement of x). Therefore Wj, is
invariant under H; (u), so the Chain Rule applies (cf. Rem. 5.5). We
note further that K; (u) is the kernel of the restriction of ¢ to H; (u)
and therefore can be computed in polynomial time given H;_; and
yr.

Let IT; denote the partition of W;1 into K;-orbits. To compute
the canonical placement of x(T, u)Vi+! during the i-th round, we
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descend to K (#) and apply the Chain Rule to the partition IT;. Since
Ki(u) < Kj, the orbit partition for K;(u) is a refinement of the orbit
partition for Kj, so the blocks of II; are K;(u)-invariant.

At the end of this process we have found a canonical placement
with respect to Gt for each x(T, WX (y e 7).

Now we need canonicity with respect to G rather than Gr.
We achieve this by descending from G to Gt (multiplicative cost
(rf) < nOUogn)) We need to be careful, though: calling the descent
discussed in Sec. 5.4 left descent (decomposition into left shifts of a
subcoset), here we need right descent: G = | |;cr Gro. We see the
difference by comparing item (i) of Def. 5.1 and Eq. (11) in Obs. 5.4.
Left shifts would require the recursive evaluation of expressions
of the form CPg, (x7), but Autg,. (x?) may be very different from
Autg, (x) (it is even possible that T is not full with respect to x
but full with respect to x?), whereas right shifts will require the
recursive evaluation of expressions of the form CP g, )o (x?). Now,
noting that (G7)? = Gro (Fact 3.2), we see that Aut(g, ) (x7) =
(Autg, (x))?. In particular, T is asymmetric with respect to x if and
only if T9 is asymmetric with respect to x.

This step completes the proof of Claim 15.2 and with it, Theo-
rem 12.1. O

17 APPENDIX: THE LOCAL CERTIFICATES
ALGORITHM

This is the core algorithm of the SI test [Ba15+]; for easier reference,
we reproduce it here. For a detailed explanation we refer to the
“Local Certificates” section of [Bal5+].

Procedure LocalCertificates

Input: G < Sym(Q), epimorphism yr :

T
Te ( t)
Output: decision: “T full/not full,” group K(T) < Sym(Q) (if full) or
M(T) < Sym(T) (if not full), set W(T) € Q

Notation: H(W) := AU%VT (x) (to be updated as W is updated)

Gt — Sym(T), test set

01 W:=0 (:so HW) =Gt )
02 while HW)T > Alt(T) and aff(H(W), y7) € W

03 W «— aff(H(W), YT) (: enlarging the window :)
04 recompute H(W)

05 end(while)

06 W(T)<—W

07 if HW)T > Al(T) (: so aff (H(W), y1) € W?)
08 then K(T) « H(W)(W) where W = Q\ W

09 return W(T), K(T), “T full,” exit (: fullness certificate :)
10 else M(T) « H(W)T

11 return W(T), M(T), “T not full,” exit

(: non-fullness certificate :)

Note that on line 08, we take the pointwise stabilizer of the com-
plement of the window W(T) in the W-local automorphism group
H(W) (consisting of automorphisms of the partial string x"V). This
is the key local-to-global step of the algorithm; the stabilizer K(T')
consists of global automorphisms (automorphisms of the full string
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x), and the Unaffected Stabilizers Lemma (part (a) of Theorem 13.1)
guarantees that there are plenty of them.

We need to show how to recompute H(W) on line 04. We write
Wo14 for the value of W before the execution of line 03 and Whew
after. Recall Def. 3.3 for the restriction notation G .

Procedure Recompute H(W)

04a N « H(Wold)(TT) (: kernel of H(Wy)q) — Sym(T) map :)

04b L <0 (: L will collect elements of H(Whew) :)
04c fors e HWyq)T (: HWyiq)T = Alt(T) or Sym(T) :)
04d  select o € H(Wyq) such thato? =5 (: lifting & to Q :)
04e L(o) « Aut]‘c;‘;w (x) (: descent to N :)
04f L« LUL(0)

04g end(for)

04h return H(Wpew) < L

We note that the efficiency of the recursive call on line 04e is
based on the fact that the affected orbits of H(W) split into much
shorter orbits of N as a consequence of the “Affected Orbit Lemma”
(part (b) of Theorem 13.1.
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