
Canonical Form for Graphs
inQuasipolynomial Time∗

Preliminary Report

László Babai

laci@cs.uchicago.edu

University of Chicago

USA

ABSTRACT
We outline how to turn the author’s quasipolynomial-time graph

isomorphism test into a construction of a canonical form within the

same time bound. The proof involves a nontrivial modification of

the central symmetry-breaking tool, the construction of a canonical

relational structure of logarithmic arity on the ideal domain based

on local certificates.

CCS CONCEPTS
• Theory of computation→ Graph algorithms analysis.

KEYWORDS
algorithms, complexity, graphs, isomorphism, group theory, canon-

ical form

ACM Reference Format:
László Babai. 2019. Canonical Form for Graphs in Quasipolynomial Time:

Preliminary Report. In Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on the Theory of Computing (STOC ’19), June 23–26, 2019, Phoenix, AZ,
USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3313276.

3316356

1 INTRODUCTION
Let C be a class of finite graphs. A canonical form for the class C is

an assignment F : C → C such that

(i) (∀X ∈ C) (F (X) � X)
(ii) (∀X ,Y ∈ C) (X � Y ⇐⇒ F (X) = F (Y))

Given an efficiently computable canonical form, the isomorphism

problem for graphs in C can also be efficiently solved. The converse

is not known, but so far the discovery of graph isomorphism (GI)

testers has been followed by canonical forms for the same class of

graphs with the same efficiency. The first paper that used group

theory in the design of a GI test was [Ba79]; that paper gave a

polynomial-time Las Vegas algorithm (and, incidentally, introduced

∗
This researchwas partially supported by NSF Grant CCF 1718902. The views expressed

in the paper are those of the author and do not necessarily reflect the views of the NSF.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6705-9/19/06. . . $15.00

https://doi.org/10.1145/3313276.3316356

the term “Las Vegas algorithm”) for testing isomorphism of vertex-

colored graphs with bounded color multiplicity. This algorithm

was soon derandomized [FHL80] and was followed by a canonical

form for the same class of graphs [BaKL]. Following Luks’s semi-

nal paper [Lu82] that solved GI in polynomial time for graphs of

bounded valence, [BaL83] and [FSS83] constructed canonical forms

in polynomial time for graphs of bounded valence by adapting

Luks’s algorithm.

In this paper we construct a canonical form for all graphs in

quasipolynomial (exp(O ((logn)c))) time, by adapting the author’s

GI algorithm of the same complexity [Ba15+].

In the past, the bulk of the task in such adaptations consisted in

carefully laying the conceptual groundwork, and this paper retains

some of that aspect. What is different, however, is that now the

core part of the GI test in question, the construction of a canonical

t-ary relation on the “ideal domain” based on the “local certificates

algorithm,” is not directly adaptable, and requires the addition of

a new algorithm — the main technical contribution of this paper

(Theorem 12.1).

The problem with the original construction is that it is only

pairwise canonical, meaning that the structures constructed depend

on both inputs X and Y (of which we wish to decide isomorphism),

and satisfy the canonicity requirement only with respect to the 2-

element class C = {X ,Y }. This is sufficient for isomorphism testing

but not for the construction of a canonical form.

For a detailed understanding of our procedure, some familiar-

ity with [Ba15+] may be necessary. However, we tried to make

this writing self-contained by explaining, in some detail, all the

background needed. These explanations range from the informal to

the rigorous depending on their connection to our main technical

contribution.

2 STRING ISOMORPHISM
Let Σ be a finite alphabet and Ω a finite set. We refer to Ω as the

set of positions.
Strings are functions x : Ω → Σ (Σ-strings over the domain Ω).

They form the set ΣΩ .
Sym(Ω) denotes the symmetric group acting on Ω (all permu-

tations of Ω). Let G ≤ Sym(Ω) be a permutation group acting on

Ω. (The “≤” sign between groups indicates “subgroup.”) We shall

refer to G as the ambient group. G acts on the strings by the rule

xσ (u) = x(uσ
−1

) (u ∈ Ω,σ ∈ G). A permutation σ ∈ Sym(Ω)
is a G-isomorphism from the string x to the string y (x, y ∈ ΣΩ)
if σ ∈ G and xσ = y. We write IsoG (x, y) to denote the set of

1237

https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/3313276.3316356
https://doi.org/10.1145/3313276.3316356

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA László Babai

G-isomorphisms from x to y. The strings x, y are G-isomorphic,

denoted x �G y, if IsoG (x, y) is not empty.

The string isomorphism (SI) problem, introduced by Luks [Lu82],

asks, given as input the sets Ω, Σ, the groupG , and strings x, y ∈ ΣΩ ,
to decide whether x �G y. (Permutation groups are always given

by a list of generators.) The main result of [Ba15+] is the following.

Theorem 2.1 ([Ba15+]). SI can be solved in quasipolynomial time.

In this paper we consider the canonization version of the String

Isomorphism (SI) problem; we refer to this problem as “String Can-

onization” (SC).

AG-canonical form of Σ-strings over the domain Ω is a function

F : ΣΩ → ΣΩ that selects one member from eachG-orbit of strings.
In other words, a function F : ΣΩ → ΣΩ is a G-canonical form if

for all x, y ∈ ΣΩ

(i) F (x) �G x, and
(ii) if x �G y then F (x) = F (y).

A “canonical form of strings” is a function that takes as input the

sets Ω, Σ, (a set of generators of) the group G, and a string x ∈ ΣΩ ,
and returns a G-canonical form F (x). In this note we sketch the

proof of the following main result.

Theorem 2.2. There is a canonical form of strings that can be com-
puted in quasipolynomial time.

Theorem 2.1 is a corollary. Another corollary is the result stated

in the title of this paper.

Corollary 2.3. There is a canonical form of graphs that can be
computed in quasipolynomial time.

To infer Cor. 2.3 from Theorem 2.2, one uses the natural encoding

of v-vertex graphs by (0, 1)-strings of length
(v
2

)
under the action

S
(2)
v of the symmetric group Sv on pairs, as observed by Luks.

Our conceptual setup essentially follows [BaL83]. The proof

consists in a reinterpretation of the algorithm given in [Ba15+], with

one essential new element: a canonical construction of a relational

structure on the “ideal domain,” to replace the “pairwise canonical”

construction given in [Ba15+]. Both constructions are based on

the “local certificates algorithm,” the core algorithm of [Ba15+].

However, the construction in [Ba15+] is canonical only with respect

to the pair {x, y} whose isomorphism we wish to test, and not

canonical over the set of all strings. The reason is that the auxiliary

relational structures constructed in [Ba15+] depend both on x and

y. For canonical forms, the structures must depend on x alone. This

requirement introduced new technical problems and conceptual

issues; the latter may be obscured by the simplicity of the solution.

3 PERMUTATION GROUPS:
DEFINITIONS, NOTATION

Most of the definitions in this section are standard; we indicate

where this is not the case. Our standard reference on permutation

groups is [DiM96]. For algorithms in permutation groups we refer

to [Se03].

We use the notation [n] = {1, . . . ,n}. For groups G,H , the

relation H ≤ G means H is a subgroup ofG . The normalizer of H in

G is the largest subgroup of G in which H is a normal subgroup; it

can be defined as NG (H) = {σ ∈ G | σ−1Hσ = H }.

A permutation group acting on the set Ω is a subgroup G ≤
Sym(Ω). For σ ∈ G we write its action in the exponent: σ : x 7→ xσ .
For a set S ⊆ G we write xS = {xσ | σ ∈ S } and for a set A ⊆ Ω we

write Aσ = {xσ | x ∈ A}. We say that the set A ⊆ Ω is G-invariant
(or invariant under G) is Aσ = A for all σ ∈ G.

The degree of G is n = |Ω |. The order of G is |G |. We call Ω the

permutation domain. We use the generic notation Sn for Sym([n])
or for any symmetric group of degree n if we don’t want to specify

the permutation domain. The alternating group Alt(Ω) ≤ Sym(Ω)
consists of the even permutations; the generic notation is An . For
n ≥ 2 we have |Sn : An | = 2. For n ≥ 5, the group An is simple

(has no nontrivial normal subgroups). For convenience, this author

likes to call Sym(Ω) and Alt(Ω) collectively the giants on Ω.
An action of a group G on a set Γ is a homomorphism φ : G →

Sym(Γ). Given such an action, we call Γ a G-set. If G ≤ Sym(Ω)
then Ω is a G-set under the identity action.

We extend the notation xσ to actions: for x ∈ Γ we write xσ to

denote xφ (σ) if the action φ is understood from the context.

Definition 3.1. The stabilizer of x ∈ Γ in the subgroup Gx ≤ G
consisting of the elements that fix x :

Gx = {σ ∈ G | x
σ = x } . (1)

The orbit of x ∈ Γ under G is the set

xG = {xσ | σ ∈ G} . (2)

The length of the orbit is its size, |xG |.

The index of the stabilizer is the length of the orbit:

|G : Gx | = |x
G | . (3)

The G-action G → Sym(Γ) is transitive if xG = Γ for some (and

therefore every) x ∈ Γ. A partition Π = {B1, . . . ,Bk } of Γ into

blocks Bi , ∅ means Γ =
⊔k
i=1 Bi . We say that Π is a system of

imprimitivity for G if ΠG = Π, i. e., every σ ∈ G takes blocks to

blocks. The trivial systems of imprimitivity are the discrete partition

(each block has size 1) and the unit partition (there is just one block,

namely, Γ). The G-action is primitive if |Γ | ≥ 2, the G-action is

transitive, and has no nontrivial systems of imprimitivity.

We say that a permutation group G ≤ Sym(Ω) is transitive
(primitive) if its idenity action is transitive (primitive, resp.). The

orbits and blocks of imprimitivity of G are the orbits and blocks,

resp., of this action.

A special case of the stabilizer notation: the setwise stabilizer of
T ⊆ Γ in G is the subgroup

GT = {σ ∈ G | T σ = T } . (4)

By Eq. (3) we have |G : GT | ≤
(m
t

)
, wherem = |Γ | and t = |T |. We

note that T is G-invariant if and only if GT = G.
The pointwise stabilizer of T is the subgroup

G (T) = {σ ∈ G | (∀x ∈ T) (x
σ = x)} =

⋂
x ∈T

Gx . (5)

If σ ,τ ∈ G then the element τσ := σ−1τσ is called the conjugate of
τ by σ . Conjugation by a fixed element σ , i. e., the map τ 7→ τσ , is
an automorphism of G. For S ⊆ G we write Sσ := σ−1Sσ = {τσ |
τ ∈ S }. We shall need the following observation.

1238

Canonical Form for Graphs inQuasipolynomial Time STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

Fact 3.2. Let us consider a G-action G → Sym(Γ). If σ ∈ G and

T ⊆ Γ then

GT σ = (GT)
σ . (6)

Definition 3.3. If Γ is a G-set and T ⊆ Γ is a G-invariant subset
then we write GT

for the restriction of G to T , i. e., GT
is the image

of the restriction homomorphism G → Sym(T).

The notation GT
T makes sense regardless of whether T is G-

invariant: it means first we reduce G to GT , the setwise stabilizer
of T , and then restrict the GT -action to T .

We write

(
Ω
t

)
for the set of t-subsets of Ω. A groupG ≤ Sym(Ω)

induces aG-action on
(
Ω
t

)
.We denote this action byG (t) ≤ Sym

((
Ω
t

))
.

This author likes to refer to S
(t)
n and A

(t)
n as the Johnson groups be-

cause of their action on the Johnson graphs (a standard term). So

the Johnson groups have degree

(n
t

)
and order n! or n!/2.

Fact 3.4. For 1 ≤ t < n/2, the Johnson groups are primitive.

This author calls an action φ : G → Sym(Γ) a giant action if φ (G)
is a giant on Γ, i. e., φ (G) ≥ Alt(Γ).

We define the central new concept introduced in [Ba15+].

Definition 3.5 (Affected element). Let Ω, Γ be sets, G ≤ Sym(Ω)
and φ : G → Sym(Γ) a giant action. We say that x ∈ Ω is affected
by φ if φ (Gx) is not a giant on Γ.

4 SUBCOSETS
For a group G, subsets A,B ⊆ G, and д ∈ G we use the notation

A−1 = {a−1 | a ∈ A} and AB = {ab | a ∈ A,b ∈ B} and дA = {дa |
a ∈ A}.

A subcoset of a group G is a set of the form aH for some H ≤ G
and a ∈ G. We could call this a left subcoset, but right and left

subcosets are the same: aH = (aHa−1)a. In particular, if L is a

subcoset of G then for every a,b ∈ G the set aLb is also a subcoset

of G.
We shall say that H ≤ G is the right subgroup corresponding to

the subcoset L if L = aH for some a ∈ G . This subgroup is uniquely

determined by L, namely, H = L−1L.
A subcoset L will always be represented concisely by a set of

generators of its right subgroup H and a coset representative a ∈ L.
A subcoset K of a subcoset L of G is a subcoset of G contained

in L. With this definition, the subcoset relation is transitive.

We shall use the term “possibly empty subcoset” to describe a

set that is either a subcoset or empty. This relation is also transitive.

The family of possibly empty subcosets of a group is closed under

intersection. Therefore we can speak of the subcosetC generated by
a subset S ⊆ G ;C is the intersection of all subcosets containing S . If
S = ∅ then C = ∅; otherwise C = c · ⟨c−1S⟩ where c is any element

of C and ⟨S⟩ denotes the subgroup generated by S .
For subsets C1,C2 of a group G we write C1 ≤c C2 if C1 is a

possibly empty subcoset ofC2, i. e.,C1 is a possibly empty subcoset

of G and C1 ⊆ C2.

The significance of this concept to us is in the fact that the set

IsoG (x, y) = {σ ∈ G | xσ = y} , (7)

the set of G-isomorphisms of strings x and y, is a possibly empty

subcoset of G.

We shall also need to consider the set of isomorphisms within a

subcoset: for C ≤c G we set

IsoC (x, y) = {σ ∈ C | xσ = y} . (8)

While this extension of the IsoG operator will be very convenient, it

is not more general than isomorphisms with respect to subgroups.

Indeed, if C = σH where H = C−1C ≤ G is the right subgroup

corresponding to C then

IsoC (x, y) = σ IsoH (xσ , y) . (9)

5 CANONIZATION FROM LUKS’S
SI ALGORITHM

The canonization version of Luks’s SI algorithm [Lu82] is described

in [BaL83]. We retain that method as the basic framework of our

algorithm.

The algorithm starts with fixing an arbitrary ordering of Ω, so
we shall treat Ω as an ordered set. This also defines a lexicographic

ordering of the subsets of Ω by representing every subset as a string

of its elements listed in increasing order.

Following [BaL83], in this section we introduce canonical place-
ment cosets that give our basic conceptual setup. Then we extract

from [BaL83] the two basic routines used by the algorithm; we call

them the Chain Rule and Descent.

5.1 Canonical Placement Coset
For purposes of recursion, rather than just constructing the canoni-

cal form F , we construct the canonical placement coset

CPG (x) = IsoG (x, F (x)) . (10)

Also for the purposes of recursion, we need to extend the concept

of canonical placement cosets in two directions. First, we replace

the group G with a subcoset C = σH ≤c G.
Second, we look at our string through a window, i. e., an H -

invariant subsetW ⊆ Ω where H = C−1C is the right subgroup of

C . For x ∈ ΣΩ , let xW denote the string defined by

xW (x) =



x(x) for x ∈W and

β for x ∈ Ω \W

where β is a “dummy symbol,” not belonging to the alphabet Σ,
so xW ∈ (Σ ⊔ {β })Ω . Canonization of the strings xW over G is

equivalent to canonization of the strings in ΣW over the restriction

of G toW . For x, y ∈ ΣΩ we write Iso
W
C (x, y) := IsoC (xW , yW)

and CP
W
C (x) := CPC (xW).

Definition 5.1. A canonical placement function CP takes as input

a set Ω, an alphabet Σ, a group G ≤ Sym(Ω), a subcoset C ≤c G, a
windowW ⊆ Ω that is invariant under the right subgroup H :=

C−1C , and a string x ∈ ΣΩ . It outputs a subcoset CP
W
C (x) ≤c C .

The function CP obeys the following rules for all x ∈ ΣΩ .
(i) For all σ ∈ G we have CP

W
σC (x) = σ CP

W
C (xσ)

(ii) CP
W
C (x) = τ · AutH (xτ) for every τ ∈ CPWC (x) .

Fixing Ω and G, we say that CP is a canonical placement function

for (Ω,G).

Remark 5.2. Some comments are in order to indicate the self-

consistency of this definition. First, the right subgroup of C and

1239

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA László Babai

of σC is the same, so the left-hand side of item (i) satisfies the

invariance condition for the window.

Second, item (i) is consistent with multiplication in G. Indeed,
for σ ,τ ∈ G we have CP

W
στC (x) = στ CP

W
C (xστ) = σ CP

W
τC (x

σ).

Proposition 5.3. If CP is a canonical placement function for (Ω,G)

then for all strings x ∈ ΣΩ we have |xCP
Ω
G (x) | = 1 and setting

xCP
Ω
G (x) = {F (x)} we obtain aG-canonical form F . Moreover, CP and

F satisfy Eq. (10). Uniqueness also holds for windows: for a subcoset
C ≤c G with right subgroup H = C−1C and an H -invariant window
W we have |(xCP

W
C (x))W | = 1 .

Def. 5.1 focuses on left shiftsC 7→ σC . We state the consequences

of the definition regarding right shifts. We shall need these at the

end of Sec. 16.

Observation 5.4. LetG ≤ Sym(Ω) and let CP be a canonical place-
ment function for (Ω,G). Let C ≤c G be a subcoset of G. LetW ⊆ Ω
be a G-invariant window. Then for all σ ∈ G we have

CP
W
Cσ (x) = σ · CP

W
Cσ (xσ) . (11)

Proof. Combine item (i) of Def. 5.1 with the observation that

Cσ = σCσ . □

5.2 Chain Rule
Let G ≤ Sym(Ω) and C ≤c G a subcoset ofG with right subgroup

H = C−1C . LetW ⊆ Ω be a nonempty H -invariant subset.

If H is intransitive onW , we may apply the Chain Rule which

takes an ordered partition Π = (W1, . . . ,Wk) of the windowW into

H -invariant subwindowsWi , i. e.,W =W1⊔· · ·⊔Wk andW H
i =Wi .

The algorithm processes theWi in succession,

C0 := C, Ci = CP
Wi
Ci−1

(x) (i = 1, . . . ,k) (12)

and returns CP
W
C (x) := Ck .

Remark 5.5. We do not need that all windows be H -invariant; it

suffices thatWi is invariant under Hi = C
−1
i−1Ci−1. This follows by

repeatedly applying the case k = 2 to the partitions (Ui ,W \Ui),
where Ui =W1 ⊔ · · · ⊔Wi . Viewing the process this way will be

important for the CP version of the Local Certificates algorithm

(Sec. 16).

Next we justify this as a valid recursive step.

Proposition 5.6. If the function CP
Wi
D satisfies Def. 5.1 for each i

and all D ≤c C then the function CPWC constructed by the Chain Rule
also satisfies Def. 5.1.

5.3 Ordering the Windows
To apply the Chain Rule, we need an ordering of the subwindows

(blocks of the partition). If no such ordering is prescribed by the

algorithm, we use an ordering that does not depend on any of

the input parameters (G,C, x), except on the ordering of Ω. One
recipe, given in [BaL83], is to order the blocks according to the

lexicographic order inherited from the ordering of Ω. Another
recipe we apply in the algorithm is to order the sets by magnitude,

|W1 | ≥ |W2 | ≥ · · · ≥ |Wk |, breaking ties lexicographically.

5.4 Descent
Luks’s second main operation is breaking up a group into cosets

of a subgroup. More generally, let C be a subcoset of the group G
and C =

⊔
σ ∈R σD where D is a subcoset of C corresponding to a

subgroup K ≤ H , where H = C−1C and K = D−1D . R is a set of

coset representatives. In this case, evidently,

Iso
W
C (x, y) =

⊔
σ ∈R

Iso
W
σD (x, y) . (13)

Noting that, according to Eq. (9), computing the IsoC operator

requires computing IsoH and IsoD requires IsoK , this equation

reduces the calculation of an instance of IsoH to |H : K | instances
of IsoK . This means a multiplicative cost of |H : K | which must be

compensated for a significantly improved “quality” of the subgroup

K compared to H . For instance, if H is transitive onW and K is an

intransitive normal subgroup then we can descend fromH to K and

apply the Chain Rule to K with great efficiency—a key technique

used by Luks [Lu82].

Here is the canonization version of this routine.

Let C =
⊔
σ ∈R σD where D ≤c C ≤c G. Note that, by Prop. 5.3,

the set

(
xCP

W
σD (x)

)W
consists of a single element; call it y(σ). Let

ymin be the lexicographic leader among all the y(σ) and consider

the set

D =

{
σD

�����
σ ∈ R and

(
xCP

W
σD (x)

)W
= {ymin}

}
. (14)

Define CP
W
C (x) as the subcoset generated by the union of the sub-

cosets in D .

In analogywith Prop. 5.6, we state that descent is a valid recursive

step.

Proposition 5.7. Let C ≤c G and H = C−1C the right subgroup
of C . Let K < H . If the function CP

W
D satisfies Def. 5.1 for every left

coset D of the subgroup K then the function CP
W
C constructed by the

descent algorithm also satisfies Def. 5.1.

5.5 The CP Algorithm from [BaL83]
Initially letW := Ω.

If |W | = 1, we set CP
W
C (x) = C .

If G is intransitive onW , we apply the Chain Rule to reduce

to the transitive case. If G is transitive onW , we select the “first”

minimal system of imprimitivity (maximal blocks), {W1, . . . ,Wk },

soW =
⊔
Wi . This can be done in polynomial time (see [BaL83],

also for the definition of “first”). The G-action permutes theWi ;

this induces a G-action φ : G → Sk . Let K = ker(φ); so the image

φ (G) is a primitive group, isomorphic to G/K . Noting that theWi
are K-invariant, we descend to K and then apply the Chain Rule to

the partitionW =
⊔
Wi . For the Chain Rule to be applicable, we

order the subwindows lexicographically, following the first recipe

mentioned in Sec. 5.3.

5.6 Complexity
If we have a bound of the form |G∗ | ≤ kд (n) then we get the fol-

lowing recurrence. Let f (n,m) denote the maximum size of the

recursion tree corresponding to evaluating CP
W
G (x, y) over a hered-

itary class of groups G (closed under subgroups and quotients),

1240

Canonical Form for Graphs inQuasipolynomial Time STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

where n = |Ω | andm = |W |. Then

f (n,m) ≤ kд (n)+1 f (n,m/k) . (15)

This recurrence evaluates to f (n,n) ≤ nд (n)+1. The computational

cost associated with each link (edge) in the recursion tree is poly-

nomial, so the total cost is nд (n)+O (1)
.

For isomorphism of graphs of bounded valence, Luks [Lu82]

noted that the relevant groups have bounded composition factors.

Primitive groups with this property have polynomially bounded

order [BaCP82], i. e., д(n) = O (1); therefore CP for strings with re-

spect to such groups can be constructed in polynomial time. This in

turn results in polynomial-time CP for graphs of bounded valence.

We note that Luks’s original implementation [Lu82] employed

one more descent step which permitted an easier polynomial-time

analysis.

We also note that if we set д(n) = O (logn) then we obtain

f (n,n) = nO (logn)
, our target threshold for the naive application of

Luks’s method. If we encounter a primitive group of order greater

than k2 log2 n (where, as before, k is the number of blocks of imprim-

itivity) then we invoke the new group-theoretic and combinatorial

techniques from [Ba15+] to achieve a more favorable recurrence.

6 THE LUKS BOTTLENECK
Luks’s SI algorithm and along with it the CP algorithm of [BaL83]

described in Sec. 5.5 reaches a bottleneck when it encounters a large

primitive group. For our purposes, the primitive group G∗ ≤ Sk is

“large” if |G∗ | ≥ k2 log2 n . (Note that in our context, k ≤ n.)
Using Cameron’s classification of large primitive groups [Cam81],

one can show that these groups G∗ have a (normal) subgroup G∗∗

of index ≤ k such that G∗∗ has giant action on some set Γ to which

we refer as the ideal domain. This action lifts to an epimorphim

(surjective homomorphism) φ : G → H where H = Sym(Γ) or
Alt(Γ).

Given G∗, the group G∗∗, the set Γ, and the epimorphism φ can

be constructed from G∗ in polynomial time.

So by applying descent to G∗∗ we may assume we have a giant

action φ : G → Sym(Γ). We assume |Γ | > 2t where t = max{9, ⌊3+

log
2
n⌋} is an important threshold that derives from the “Unaffected

Stabilizers Lemma” [Ba15+]. The letter t will denote this quantity
throughout this note.

7 DIVIDE AND CONQUER STRATEGYWITH
QUASIPOLYNOMIAL TARGET

We shall work with the two parameters n = |Ω | andm = |Γ |. We

seek to reduce an instance of the problem to a moderate number

of significantly smaller instances. The “moderate number” is the

branching factor (number of children) in the recursion tree, to

which we also refer as themultiplicative cost (see Eq. (16) below).
We shall want to keep it quasipolynomially bounded. “Significantly

smaller” means we reduce the relevant parameter by at least 10%.

Most of the time, the relevant parameter will bem, so we get the

recursion

f (n,m) ≤ q(n) f (n, 0.9m) (16)

where f (n,m) is the worst cost under these parameters, and q(n) is
the multiplicative cost mentioned. This recursion bottoms out when

m gets to small (m < 10 log
2
n). At that point we individualize all

elements of Γ, resulting in a significant reduction of n. This gives us
two nested loops, each permitting O (logn) iterations, so the total

cost will be q(n)O ((logn)2)
. This is quasipolynomially bounded as

long as q(n) is.

8 STRONGLY CANONICAL ASSIGNMENTS
We often assign structures to structures in a way that preserves

isomorphisms. We call such assignments strongly canonical (called
“canonical” in [Ba15+]). An example is the classical isomorphism

rejection method called “naive vertex refinement.” Initially we

color each vertex of a graph by its degree, and then we refine

the coloring: each vertex learns the number of its neighbors in each

color and encodes this information in its own refined color. We

repeat this refinement step until the color partition stabilizes. If

X is the original graph and X(X) is the colored set obtained then

Iso(X ,Y) ⊆ Iso(X(X),X(Y)).

Definition 8.1 (groupoid). A small category is a category in which

the objects form a set (as opposed to a proper class). A groupoid
is a small category in which all morphisms are invertible, i. e.,

Hom(X ,Y) = Iso(X ,Y) for all pairs (X ,Y) of objects.

Definition 8.2 (Strongly canonical assignment). Let C and D be

groupoids. We say that an assignment X 7→ X(X) of X ∈ Ob(C)
to X(X) ∈ Ob(D) is strongly canonical if it comes from a functor

F : C → D , i. e., there is a functor F such that X(X) = F (X) for all
X ∈ Ob(C).

The structure added by a strongly canonical assignment (such

as a refined coloring) can help in computing canonical forms. The

following easy observation formalizes this.

Definition 8.3 (Diagonal groupoid). Let C and D be groupoids.

Let H : C → D be a functor. Define the category diagH (C ,D) by
having objects (X ,H (X)) (X ∈ Ob(C)) and morphisms (π ,H (π))
for morphisms π in C .

Observation 8.4. Assume F is a canonical form for the diagonal
groupoid diagH (C ,D). For X ∈ Ob(C) define F ∗ (X) as the first
component of F (X ,H (X)). Then F ∗ is a canonical form for C .

Proof. (i) The fact that (X ,H (X)) � F (X ,H (X)) in the diagonal
groupoid implies isomorphism of the first components, X � F ∗ (X)
in C .

(ii) Now suppose X � Y in C and let π ∈ IsoC (X ,Y). Apply-
ing H it follows that H (π) ∈ Iso(H (X),H (Y)) in D and therefore

(π ,H (π)) ∈ Iso((X ,H (X)), (Y ,H (Y)) in diagH (C ,D). So these

objects in diagH (C ,D) are isomorphic; therefore F (X ,H (X)) =
F (Y ,H (Y)). It follows that the first components of these objects are

equal: F ∗ (X) = F ∗ (Y). □

The groupoids we consider areG-sets. Strongly canonical assign-
ments among G-sets have a simple description.

Definition 8.5 (G-sets as groupoids). A G-set Ω can be viewed

as a groupoid C : Ob(C) = Ω and the morphisms are pairs (x ,σ)
where x ∈ Ω and σ ∈ G. The source of the morphism (x ,σ) is x
and the target is xσ . Composition is done in the natural way. Let

us denote this category C (Ω,G).

1241

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA László Babai

Definition 8.6. Let Ω and Γ be G-sets. A function f : Ω → Γ is

G-equivariant if

(∀x ∈ Ω)(∀σ ∈ G) (f (xσ) = f (x)σ). (17)

Observation 8.7 (Functor between G-sets). If Ω and Γ are G-sets
then there is a 1-1 correspondence between functors F : C (Ω,G) →
C (Γ,G) and G-equivariant maps f : Ω → Γ, given by the equations
F (x) = f (x) and F (x ,σ) = (f (x),σ) (x ∈ Ω,σ ∈ G).

9 BREAKING THE SYMMETRY
9.1 Canonical Structure on Ideal Domain
The ideal domain Γ is homogeneous with respect to G: the action
φ : G → Sym(Γ) is a giant action. If AutG (x) acts as a giant on at

least 90% of Γ, we can discover this fact (even though AutG (x) is
not known) and produce CP via efficient recurrence (Chain Rule

on ker(φ)).
Otherwise, the Local Certificates algorithm makes the absence of

such high symmetry explicit by finding a not too highly symmetrical

(see Def. 9.1) t-ary relational structure X on Γ, where t = O (logn),
such that X invariant under the action of AutG (x) on Γ (via φ). This
is the central algorithm of [Ba15+].

We review the parameters:

n = |Ω | – the size of the set of positions; G ≤ Sym(Ω)
m = |Γ | – the size of the ideal domain; we have 10 log

2
n ≤ m ≤ n

t = 3 + ⌊log
2
n⌋} —We refer to all t-subsets T ⊂ Γ as test sets.

To avoid trivialities, we may assume that n is greater than any

given constant. In particular, n ≥ 64 guarantees t ≥ 9, needed for

the application of the Unaffected Stabilizers Lemma.

The Local Certificates algorithm [Ba15+] produces, for each test

set T , either a fullness certificate or a non-fullness certificate. We

define these in Section 10; let us only state here that a fullness

certificate is a subgroup of AutG (x), and a non-fullness certificate

is a subgroup of Sym(T).
Let F ≤ Sym(Γ) denote the subgroup of Sym(Γ) generated by the

φ-images of the fullness certificates. If F fixes no more than 90% of

Γ, we find a rich set ofG-automorphisms of x that permits efficient

recursion for CP by applying the Chain Rule, following essentially

verbatim the description in the “Aggregation of certificates” section

in [Ba15+].

In case F fixes more than 90% of Γ, we may assume, as in [Ba15+],

that no t-tuple receives a fullness certificate. In [Ba15+], the non-

fullness certificates are used to construct pairwise canonical t-ary
relational structures X andY on Γ corresponding to the input strings
x and y ∈ ΣΩ of which we wish to decide G-isomorphism. Here

“pairwise canonical” means canonicity with respect to the category

having just two objects, x and y. The structures X,Y are required

to have not too much symmetry.

Definition 9.1 (Symmetricity). Let X = (Γ,R) be a relational

structure on the underlying set Γ. We say that a subset ∆ ⊆ Γ
is symmetrical if the setwise stabilizer of ∆ in Aut(X) acts as the
symmetric group on ∆. The symmetricity of X is the maximum size

of a symmetrical subset.

It would suffice for our algorithm for the structures X,Y to have

symmetricity ≤ 0.9|Γ |. In fact, the structures constructed in [Ba15+]
have tiny symmetricity (≤ t − 1), and this continues to hold for the
modified construction given in this note (see Claim 12.6).

This step (the construction of pairwise canonical t-ary relational
structures on Γ) is followed by combinatorial partition algorithms

(“Design Lemma” and “Split-or-Johnson”) to find a subgroupH ≤ G
that “encases” the unknown group AutG (x) (i. e., AutG (x) ≤ H)

such that, by certain measures, H is significantly smaller than G,
thus making the symmetry breaking explicit.

9.2 Combinatorial Partitioning:
Individualization, Refinement

The combinatorial partitioning algorithms employ two basic steps:

individualization and strongly canonical refinement. Both of these

are classical isomorphism–refutation tools.

Individualization means assigning a special color to an ele-

ment x of a G-space (colors are preserved by isomorphisms by

definition). This amounts to a descent from G to Gx and incurs a

multiplicative cost of |G : Gx | = |x
G |.

Canonical refinement refines the coloring in a manner that is

strongly canonical.
Both of these operations work for CP without change (individ-

ualization by the CP version of descent, Sec. 5.4, and canonical

refinement trivially).

So what we need to focus on is replacing the pairwise canoni-

cal construction (of the t-ary relational structure with small sym-

metricity) by a canonical construction. Our canonical construction

will yield a (2t)-ary relational structure, doubling the arity used

in [Ba15+].

10 FULLNESS AND NON-FULLNESS
CERTIFICATES

Let T ⊆ Γ be a test set (a subset of size t). While in general, com-

puting setwise stabilizers is Cook-equivalent to the SI problem,

the setwise stabilizer GT is easy to compute since it is the set-

wise stabilizer in a giant action: GT = φ−1 (Sym(Γ)T). Note that
Sym(Γ)T = Sym(T) × Sym(Γ \T).

Let ψT denote the epimorphism GT ↠ Sym(T) obtained by

restricting the domain of φ toGT and then restricting the codomain

to Sym(T). (This is a surjection because |Γ | ≥ t + 2.)
We say that the test setT is full (with respect to the input string x)

ifψT : AutGT (x) → Sym(T) is a giant action. A fullness certificate
is a subgroup K (T) ≤ AutG (x) such that ψT (K (T)) = Alt(T) or
Sym(T). As mentioned above, we may assume that none of the test
sets is full.

A non-fullness certificate is a subgroup M (T , x) ≤ Sym(T) that
is not a giant, i. e., M (T , x) ≱ Alt(T), such that ψT (AutGT (x)) ≤
M (T , x). Note that the group AutGT (x) is not known; the algo-

rithm nevertheless must guarantee the stated inclusion. In [Ba15+],

such a certificate is constructed for each T , along with a “window”

W (T , x) ⊆ Ω such that

(a) W (T , x) is invariant under AutGT (x) ,
(b) M (T , x) = ψT (AutGT (x

W (T ,x))) ,

where xW (T ,x)
is the restriction of x toW (T , x), all other positions

being filled with the dummy symbol β < Σ.

BothW (T , x) and AutGT (x
W (T ,x)) are computed via efficient

recursion, applying the Chain Rule to the window, thanks to the

Affected Orbit Lemma (part (b) of Theorem 13.1).

1242

Canonical Form for Graphs inQuasipolynomial Time STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

10.1 Strong Canonicity of Local Certificates
The next observation is the starting point of the proof of Theo-

rem 12.1.

Lemma 10.1. The assignment (T , x) 7→ (T ,W (T , x),M (T , x)) is
strongly canonical. Here we view each side naturally as elements in a
G-set.

Proof. First we note that the set

(
Γ
t

)
× ΣΩ is a G-set under the

actions natural in our context. Indeed, G acts on Γ via φ and this

defines an induced G-action on

(
Γ
t

)
. Moreover, the G-action on

Ω induces an action on ΣΩ . Let us now consider the set H =

P (Ω) × M where P (Ω) is the powerset of Ω andM is the set

of pairs (T ,M) where T ∈
(
Γ
t

)
and M ≤ Sym(T). So H is also a

G-set, whereG acts in the obvious way on P (Ω) and we define the

action of π ∈ G on M by (T ,M)π = (T π ,Mφ (π)) where Mσ =

σ−1Mσ . Now

{
(T ,W (T , x),M (T , x)) | x ∈ ΣΩ,T ∈

(
Γ
t

)}
is also a

G-set. Finally we need to observe that the assignment (T , x) 7→
(T ,W (T , x),M (T , x)) is G-equivariant and therefore comes from

a G-functor according to Obs. 8.7. So we need to show that if

σ ∈ G thenW (T , x)σ = W (T σ , xσ) and M (T , x)σ = M (T σ , xσ).
This follows by noting thatW and M are constructed iteratively

in the course of the Local Certificates algorithm (reproduced here

in Sec. 17), and it is clear that the objects constructed in each

iteration are strongly canonical (satisfy the same G-equivariance
condition). □

11 LARGEWINDOW
If there exists T such that |W (T , x) | ≥ n/10 then we individualize

such a T , i. e., we descend to GT (at a multiplicative cost of

(m
t

)
=

nO (logn)
) and proceed by Luks-recurrence: we use the Chain Rule

on the ordered partition (W (T , x),Ω \W (T , x)). OnW (T , x) we can
compute the automorphism group by efficient recursion via the

Chain Rule, thanks to the Affected Orbit Lemma; the rest is at most

90%, a significant reduction.

Wemay therefore assume that for all test setsT wehave |W (T , x) |
≤ n/10. Actually, all we shall use is thatW (T ,x) , Ω.

12 STRONGLY CANONICAL RELATION
Our main technical contribution is the following result.

Theorem 12.1. Assume none of the test sets is full. Then we can
construct a strongly canonical (2t)-ary relation on Γ with symmetric-
ity ≤ t − 1. The construction uses quasipolynomial time and makes a
quasipolynomial number of calls to significantly smaller instances of
the CP algorithm.

Proof. This proof will run through Sections 12–16.

Given the input string x, we define the (2t)-ary relation R (x) on
Γ as follows. We include the (2t)-tuple (x1, . . . ,x2t) ∈ Γ

2t
in R (x) if

x1, . . . ,xt are all distinct, and, settingT = {x1, . . . ,xt }, there exists
τ ∈ M (T , x) such that xi+t = xτi for i = 1, . . . , t . The assignment

x 7→ R (x) is strongly canonical; this follows from Lemma 10.1.

For an ℓ-ary relation P ⊆ Γℓ , let PT denote the restriction of P

to T , i. e., PT = P ∩T ℓ
.

Next we consider the structure (T ,R (x)T) – the substructure

of (Γ,R (x)) induced on T . The following key observation helps

identify our difficulty.

Proposition 12.2. Aut(T ,R (x)T) = N
Sym(T) (M (T , x)).

The right-hand side denotes the normalizer ofM (T , x) in Sym(T)
(see the second paragraph of Sec. 3).

Proof. Let ρ ∈ Sym(T). Let T = {u1, . . . ,ut }. Then
ρ ∈ Aut(T ,R (x)T) if and only if

(∀τ ∈ M (T , x)) (∃ ξ ∈ M (T , x)) (∀i) (uτ ρi = u
ρξ
i). But this is equiv-

alent to saying that ρ−1τ ρ ∈ M (T , x). This must hold for every

τ ∈ M (T , x), so ρ−1M (T , x)ρ ≤ M (T , x) which is equivalent to

ρ−1M (T , x)ρ = M (T , x), i. e., ρ ∈ N
Sym(T) (M (T , x)). □

We say that the relation P ⊆ Γℓ is trivial on T if Aut(T , PT) is a
giant on T .

Corollary 12.3. R (x) is trivial on T if and only if |M (T , x) | = 1.

Proof. By Prop. 12.2, R is trivial on T if and only if

N
Sym(T) (M (T , x)) is a giant onT , henceM (T , x) is normal in Sym(T)

or Alt(T). But t ≥ 5, so Alt(T) is simple, therefore the only options

forM (T , x) are the identity or a giant. The latter is impossible by

the definition of non-fullness certificates. □

We say that a test set T is asymmetric (with respect to x) if R (x)
is trivial on T , i. e., |M (T , x) | = 1.

Asymmetric test sets cause considerable headache.

Let F (x) denote the set of asymmetric test sets.

Claim 12.4. We can strongly canonically select an elementu (T) ∈ T
from eachT ∈ F (x), meaning that the assignmentT 7→ u (T) will be
strongly canonical: u (T σ) = u (T)σ for all σ ∈ G. The complexity of
the procedure is the same as the complexity statement in Theorem 12.1.

Remark 12.5. In fact, we could even define a strongly canonical

linear order on each T ∈ F (x), but selecting one element will

suffice.

The existence of a strongly canonical element (or linear order)

is obvious: we just pick an element (or a linear order) for one

representative of each G-isomorphism class in F (x) and use G
to translate it to all other members of the class. Because of the

asymmetry ofT , this will not lead to conflict. Making this selection

efficient is our problem.

Given an element u ∈ T , let Ru (T) ⊆ T 2t
be the set of those

(2t)-tuples that include u.
Once we have made a strongly canonical assignment of an el-

ement u (T) ∈ T to each T ∈ F (x), we modify R (x) by replacing

R (x)T (which is trivial) by Ru (T) (T) for all T ∈ F (x). Let us write
R̃ (x) for the updated relation R (x). So x 7→ R̃ (x) is a strongly canon-
ical assignment of a (2t)-ary relation on Γ.

Claim 12.6. The symmetricity of R̃ (x) is at most t − 1.

Proof. Let T be a test set. We need to show that Aut(R̃ (x))TT ,
Sym(T). To this end it suffices to show that Aut(R̃ (x)T) , Sym(T).

This is equivalent to saying that R̃ (x)T is nontrivial. If T is not

asymmetric, then, by definition, R (x)T is nontrivial and R̃ (x)T =

1243

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA László Babai

R (x)T . On the other hand, ifT is asymmetric then R̃ (x)T = Ru (T) (T)
and T has a special element with respect to this relation, namely,

u (T), which is fixed by all automorphisms of Ru (T) (T). So again

R̃ (x)T is nontrivial. □

This completes the proof of Theorem 12.1, modulo Claim 12.4.

We spend the rest of this note trying to select a strongly canonical

element from each asymmetric test set.

13 GROUP THEORY FROM [Ba15+]
Weneed the central group theoretic results from [Ba15+], appearing

in the section titled “Alternating quotients of a permutation group.”

13.1 Affected/Unaffected
For the definition of “affected,” see Def. 3.5.

Theorem 13.1. Let G ≤ Sym(Ω) be a permutation group of degree
n. Let φ : G → Sym(Γ) be a giant action ofG on a set Γ with |Γ | =m.
LetU ⊆ Ω denote the set of elements of Ω not affected by φ. Then the
following hold.

(a) (Unaffected Stabilizers Lemma) Assumem > max{8, 2 + log
2
n}.

Then φ maps G (U) , the pointwise stabilizer of U , onto a giant on
Γ (so φ : G (U) → Sym(Γ) is still a giant action). In particular,
U , Ω (at least one element is affected).

(b) (Affected Orbit Lemma) Assumem ≥ 5. If ∆ is an affected G-
orbit, i. e., ∆ ∩U = ∅, then ker(φ) is not transitive on ∆; in fact,
each orbit of ker(φ) in ∆ has length ≤ |∆|/m.

These results are central to the analysis of the Local Certificates
algorithm. Part (a) is the main group theoretic result in [Ba15+].

The companion result, Part (b), is a simple observation, but it plays

an important role by ensuring efficient recursion via the Chain Rule

applied to the kernel of the giant homomorphism on affected orbits.

We reference it multiple times; in particular, it is the basis of the

“Recompute H (W)” routine, see Sec. 17.

13.2 The Jordan–Liebeck Sandwich Theorem
As in [Ba15+], we need the following classical result about the

structure of subgroups of not too large index in the symmetric

group. We cite it from the version given in [DiM96, Thm. 5.2A,B].

Theorem 13.2 (Jordan–Liebeck). Let Alt(Ω) ≤ K ≤ Sym(Ω). Let
H ≤ K and 1 ≤ r < n/2 where n = |Ω | ≥ 9. Assume |K : H | <(n
r

)
. Then there exists a unique S ⊂ Ω with |S | < n/2 such that

Alt(Ω)(S) ≤ H ≤ Sym(Ω)S . This unique S satisfies |S | < r .

Let us denote this unique set S by JL(H).
We shall use the following corollary which appears as parts (a)

and (b) of the “Main Stucture Theorem” in [Ba15+].

Corollary 13.3. Let G ≤ Sym(Ω) be a permutation group and
φ : G → Sym(Γ) a giant action. Assume t = |Γ | ≥ max{9, 2 log

2
n} .

Then for every x ∈ Ω there exists a unique subset S (x) ⊂ Γ such
that |S (x) | < t/4 and

Alt(Γ)(S (x)) ≤ φ (Gx) ≤ Sym(Γ)S (x) . (18)

The element x ∈ Ω is affected by φ if and only if |S (x) | ≥ 1.

Proof. Observe that(
t

⌊t/4⌋

)
> 2

t/2 ≥ n ≥ |xG | = |G : Gx | ≥ |φ (G) : φ (Gx) |. (19)

Now the existence and uniqueness of the set S (x) follows from the

Jordan–Liebeck theorem, setting K = φ (G), H = φ (Gx), S (x) =
JL(φ (Gx)), n = t , and r = ⌊t/4⌋. The last sentence of Cor. 13.3 is
immediate from Eq. (18) and the definition of being “affected.” □

14 IDENTIFYING A TEST SET FROM THE
SET OF POSITIONS

14.1 Superposition of Strings
Let xi : Ω → Σi be strings for i = 1, 2. We define the superposition

of these strings as the string z = x1∗x2 where z(x) = (x1 (x), x2 (x)),
so z ∈ (Σ1 × Σ2)

Ω
. Clearly,

IsoG (x1 ∗ x2, y1 ∗ y2) = IsoG (x1, y1) ∩ IsoG (x2, y2) . (20)

14.2 Characteristic String
The characteristic string of a subset ∆ ⊆ Ω is the string χ∆ ∈ {0, 1}

Ω

defined by χ∆ (x) = 1 if x ∈ ∆ and χ∆ (x) = 0 otherwise.

14.3 Affected Elements Reveal Test Set
Notation 14.1 (Affected elements). Let G ≤ Sym(Ω) and let φ :

G → Sym(Γ) be a giant action on the ideal domain Γ. For T ⊆ Γ
of size |T | = t , let ∆(T) denote the set of elements of Ω affected by

the epimorphismψT : GT → Sym(T).

Proposition 14.2. Assume G ≤ Sym(Ω) is transitive and φ :

G → Sym(Γ) is a giant action on the ideal domain Γ. Let t ≥
max{9, 2 log

2
n} and assumem = |Γ | > 2t . Assume ∆(T) , Ω for

some test set T (see Notation 14.1). Then for any test sets T1,T2 we
have

IsoG (χ∆(T1) , χ∆(T2)) = {σ ∈ G | T
σ
1
= T2} . (21)

This statement seems surprisingly nontrivial; transitivity of G
should not be necessary and ∆(T) , Ω should be automatic.

Proof. Note that for σ ∈ G we have ∆(T σ) = (∆(T))σ . It fol-
lows by the transitivity of G that⋃

σ ∈G
∆(T σ) = Ω . (22)

We need to show that for test sets T1,T2 and σ ∈ G we have

∆(T σ
1
) = ∆(T2) if and only if T σ

1
= T2. The “if” part is clear.

To see the “only if” part, assume ∆(T1)
σ = ∆(T2). Let T

σ
1
= T3.

We need to show that T3 = T2. The equality T
σ
1
= T3 implies that

∆(T1)
σ = ∆(T3) and therefore ∆(T2) = ∆(T3). Now the relation

“∆(T2) = ∆(T3)” is aG-invariant equivalence relation on the set

(
Γ
t

)
.

But the G-action on Γ is a giant and therefore the G-action on

(
Γ
t

)
is primitive (it is a Johnson group, see Fact 3.4).

If the equivalence relation is discrete, the desired conclusion

T2 = T3 follows. The only other option is that the set ∆(T) = ∆
does not depend on T . But by Eq. (22), this means ∆ = Ω, contrary
to our assumption. □

1244

Canonical Form for Graphs inQuasipolynomial Time STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

15 STRONGLY CANONICAL SELECTION OF
A POINT FROM EACH ASYMMETRIC
TEST SET

Using the Chain Rule we may assumeG is transitive on the overall

window referenced in the algorithm (Sec. 5.5). Moreover, we may

ignore everything outside the window, so we may assume G is

transitive on Ω.
Furthermore, by Sec. 11, we may assume |W (T , x) | ≤ n/10 for

every test set T , where n = |Ω |. Note that the set ∆(T) of points
x ∈ Ω affected by GT is a subset ofW (T , x) for every x,

∆(T) ⊆W (T , x), (23)

since ∆(T) is the window of the first round of the Local Certificates

algorithm. In particular, we have ∆(T) , Ω.
LetW − =W − (T , x) denote the penultimate window associated

with the test setT (the window obtained in the next to last execution

of the while loop in the Local Certificates algorithm). Let A− =

A− (T , x) := AutGT (x
W −

). The homomorphism ψT maps A− onto

a giant on T . Applying Cor. 13.3 to this giant action, we associate

each x ∈W − with a unique subset S (x) ⊂ T such that |S (x) | < t/4
and

(Alt(T))(S (x)) ≤ ψT (A
−
x) ≤ (Sym(T))S (x) . (24)

The sets S (x) are not empty for x ∈W − because by construction,

x is affected by the restriction ofψT to A−. (The fact that affected
points exist follows by part (a) of Theorem 13.1.) Moreover, for each

A−-orbit Φ ⊆ W −, the sets S (x) (x ∈ Φ) uniformly cover T . Now
for u ∈ T let

Ω(T ,u) = {x ∈W − | u ∈ S (x)}. (25)

Lemma 15.1. Let Φ be an A−-orbit in W −. Let u,v ∈ T . If
(∀x ∈ Φ)(u ∈ S (x) ↔ v ∈ S (x)) then u = v .

Proof. Assume u , v . For t ≥ 4 the group Alt(T) is doubly
transivite. Therefore, if S ⊂ T is a nonempty proper subset of T
then there exist τ1,τ2 ∈ Alt(T) such that u ∈ Sτ1 and u < Sτ1 .
Noting that ψT (A

−) ≥ Alt(T) we can lift this statement to A− to

conclude that for any x ∈ Φ ⊆ W − there exist σ1,σ2 ∈ A− such

that u ∈ S (x)σ1 = S (xσ1) and v < S (x)σ2 = S (xσ2), a contradiction.
Here we relied on the fact that S (x) is not empty (see above) and

S (x) , T because |S (x) | < t/4). □

Continuing our proof toward the title of this section, for u ∈ T

let x(T ,u) denote the string superposition xW (T ,x) ∗ χ∆(T) ∗ χΩ(T ,u)
(see Def. 14.1). (We just quadrupled the size of the alphabet.) It is

important to note that both ∆(T) and Ω(T ,u) are subsets of the
windowW (T , x). Indeed, Ω(T ,u) ⊆W − by definition; for ∆(T), see
the explanation of Eq. (23). As a consequence, in x(T ,u) (just as
in xW (T ,x)

), all positions in Ω \W (T , x) are filled with the dummy

symbol β . This will be crucial for the proof of the next statement.

Claim 15.2. We can compute, by efficient recurrence via the Chain
Rule, a G-canonical form F ∗ of the strings x(T ,u) for all T ∈ F (x)
and u ∈ T .

Again, the efficiency of the application of the Chain Rule depends

on the Affected Orbit Lemma.

Before proving Claim 15.2, we show how it leads to the proof of

Claim 12.4 (strongly canonical selection of an element from each

asymmetric test set), completing the proof of Theorem 12.1.

Let z(T ,u) = F ∗ (x(T ,u)).

Proposition 15.3. Let u,v ∈ T . If z(T ,u) = z(T ,v) then u = v .

This statement is not trivial; it relies on Prop. 14.2. In particular,

this is where we use that G is transitive on Ω and that ∆(T) , Ω,
as declared at the beginning of this section.

Proof. If z(T ,u) = z(T ,v) then by definition x(T ,u) �G x(T ,v).
Let σ ∈ G be such a G-isomorphism, so x(T ,u)σ = x(T ,v). But
then σ ∈ AutG (χ∆(T)) and therefore, by Prop. 14.2, T σ = T (using

the assumptions stated before this proof), so σ ∈ GT . Since both

x(T ,u) and x(T ,v) are refinements of xW (T ,x)
, we have that σ ∈

AutGT (x
W (T ,x)). Since T is asymmetric, it follows thatψT (σ) = 1

(the identity permutation of T). In particular, uσ = u, so x(T ,u) =
x(T ,v), therefore Ω(T ,u) = Ω(T ,v) from which we conclude by

Lemma 15.1 that u = v . □

Let us now consider the set Z (T) := {z(T ,v) | v ∈ T } of canon-
ical forms. They are pairwise not equal by Prop. 15.3. So select

u = u (T) to correspond to the lexicographic leader in Z (T). The
strong canonicity of this choice is clear. This completes the proof

of the statement in the title of this section modulo Claim 15.2.

16 CANONICAL PLACEMENT OF THE
STRINGS x(T ,u)

Finally, we prove Claim 15.2.

To do so, we need to delve into the details of the Local Certificates

algorithm which we reproduce in the Appendix.

The procedure builds a strictly increasing chain of windows,

∅ = W0 ⊂ W1 ⊂ · · · ⊂ Wk ⊆ Ω whereWi = Wi (T , x) and k =
k (T , x). Simultaneously, we also build the sequence of groups Hi =

Hi (T , x) := Aut
Wi
GT

(x), starting with H0 = GT . EachWi is invariant

under Hi−1.

Let Ki be the kernel of the Hi → Sym(T) action (restriction of

ψT to Hi). This is a giant action on T for i = 0, . . . ,k − 1, andWi+1
is defined as the set of elements of Ω affected by this action. In

particular,W1 = ∆(T), Wk−1 =W
−
, andWk =W (T , x).

By the Affected Orbit Lemma (part (b) of Theorem 13.1), each

orbit of Hi in Wi+1 breaks into at least t orbits of equal length
under Ki , permitting an efficient combination of descent to Ki
(at a multiplicative cost ≤ t ! < nO (log logn)

) and the Chain Rule to

computeHi+1 (andKi+1). This is the RecomputeH (W) routine (see
Sec. 17). The iterative computation of theHi can be directly adapted

to iteratively computing CPGT (x
Wi (T ,x)) using the CP versions of

Descent and the Chain Rule, described in Sec. 5.

Next we wish to compute, for each u ∈ T , a canonical placement

for x(T ,u)W (T ,x)
with respect to GT . We do this by applying the

Chain Rule to the ordered partitionW (T , x) =
⊔k
i=1 (Wi \Wi−1).

Let Hi (u) = Aut
Wi
GT

(x(T ,u)) and Ki (u) = Ki ∩ Hi−1 (u). Note that

Hi (u) ≤ Hi (since x(T ,u) is a refinement of x). ThereforeWi+1 is

invariant under Hi (u), so the Chain Rule applies (cf. Rem. 5.5). We

note further thatKi (u) is the kernel of the restriction ofψT toHi (u)
and therefore can be computed in polynomial time given Hi−1 and

ψT .
Let Πi denote the partition ofWi+1 into Ki -orbits. To compute

the canonical placement of x(T ,u)Wi+1
during the i-th round, we

1245

STOC ’19, June 23–26, 2019, Phoenix, AZ, USA László Babai

descend toKi (u) and apply the Chain Rule to the partition Πi . Since

Ki (u) ≤ Ki , the orbit partition for Ki (u) is a refinement of the orbit

partition for Ki , so the blocks of Πi are Ki (u)-invariant.
At the end of this process we have found a canonical placement

with respect to GT for each x(T ,u)W (T ,x) (u ∈ T).
Now we need canonicity with respect to G rather than GT .

We achieve this by descending from G to GT (multiplicative cost(m
t

)
< nO (logn)

). We need to be careful, though: calling the descent

discussed in Sec. 5.4 left descent (decomposition into left shifts of a

subcoset), here we need right descent: G =
⊔
σ ∈R GT σ . We see the

difference by comparing item (i) of Def. 5.1 and Eq. (11) in Obs. 5.4.

Left shifts would require the recursive evaluation of expressions

of the form CPGT (x
σ), but AutGT (x

σ) may be very different from

AutGT (x) (it is even possible that T is not full with respect to x
but full with respect to xσ), whereas right shifts will require the
recursive evaluation of expressions of the form CP(GT)σ (x

σ). Now,
noting that (GT)

σ = GT σ (Fact 3.2), we see that Aut(GT)σ (x
σ) =

(AutGT (x))
σ
. In particular,T is asymmetric with respect to x if and

only if T σ is asymmetric with respect to xσ .
This step completes the proof of Claim 15.2 and with it, Theo-

rem 12.1. □

17 APPENDIX: THE LOCAL CERTIFICATES
ALGORITHM

This is the core algorithm of the SI test [Ba15+]; for easier reference,

we reproduce it here. For a detailed explanation we refer to the

“Local Certificates” section of [Ba15+].

Procedure LocalCertificates

Input: G ≤ Sym(Ω), epimorphism ψT : GT → Sym(Γ), test set

T ∈
(
Γ
t

)
Output: decision: “T full/not full,” group K (T) ≤ Sym(Ω) (if full) or
M (T) ≤ Sym(T) (if not full), setW (T) ⊆ Ω

Notation: H (W) := Aut
W
GT

(x) (to be updated asW is updated)

01 W := ∅ (: so H (W) = GT :)

02 while H (W)T ≥ Alt(T) and aff (H (W),ψT) ⊈W
03 W ← aff (H (W),ψT) (: enlarging the window :)

04 recompute H (W)
05 end(while)
06 W (T) ←W

07 if H (W)T ≥ Alt(T) (: so aff (H (W),ψT) ⊆W :)

08 then K (T) ← H (W)(W) whereW = Ω \W

09 returnW (T), K (T), “T full,” exit (: fullness certificate :)
10 elseM (T) ← H (W)T

11 returnW (T),M (T), “T not full,” exit
(: non-fullness certificate :)

Note that on line 08, we take the pointwise stabilizer of the com-

plement of the windowW (T) in theW -local automorphism group

H (W) (consisting of automorphisms of the partial string xW). This

is the key local-to-global step of the algorithm; the stabilizer K (T)
consists of global automorphisms (automorphisms of the full string

x), and the Unaffected Stabilizers Lemma (part (a) of Theorem 13.1)

guarantees that there are plenty of them.

We need to show how to recompute H (W) on line 04. We write

W
old

for the value ofW before the execution of line 03 andWnew

after. Recall Def. 3.3 for the restriction notation GT
.

Procedure Recompute H (W)

04a N ← H (W
old

)T
(T)

(: kernel of H (W
old

) → Sym(T) map :)

04b L ← ∅ (: L will collect elements of H (Wnew) :)

04c for σ ∈ H (W
old

)T (: H (W
old

)T = Alt(T) or Sym(T) :)

04d select σ ∈ H (W
old

) such that σT = σ (: lifting σ to Ω :)

04e L(σ) ← Aut
Wnew

Nσ (x) (: descent to N :)

04f L ← L ∪ L(σ)
04g end(for)
04h return H (Wnew) ← L

We note that the efficiency of the recursive call on line 04e is

based on the fact that the affected orbits of H (W) split into much

shorter orbits of N as a consequence of the “Affected Orbit Lemma”

(part (b) of Theorem 13.1.

ACKNOWLEDGMENTS
I’d like to express my gratitude to Gene Luks for decades of friend-

ship and collaboration, including recent discussions of the concept

of canonical forms. I wish to thank my former student JohnWilmes,

who, in his capacity of chair of a session at the “Symmetry vs. Reg-

ularity” conference (Plzeň, Czech Republic, July 2018), reminded

me to focus on the main issue addressed in this paper. Last but

not least, I’d like to commend the STOC PC for the impressive

feat of collecting as many as seven (!) substantial peer reviews for

this paper, and express my thanks to the anonymous reviewers

whose authoritative reviews and detailed comments greatly helped

improve the presentation.

REFERENCES
[Ba79] László Babai: Monte Carlo algorithms in graph isomorphism testing. Uni-

versité de Montréal Tech. Rep. DMS 79-10, 1979 (pp. 42). Accessible at

http://people.cs.uchicago.edu/∼laci/lasvegas79.pdf

[Ba15+] László Babai: Graph isomorphism in quasipolynomial time.

arXiv:1512.03547, 2015–2019.

[BaCP82] László Babai, Peter J. Cameron, Péter P. Pálfy: On the orders of prim-

itive groups with restricted nonabelian composition factors. J. Algebra 79
(1982), 161-168.

[BaKL] László Babai, Paul Klingsberg, Eugene M. Luks: Canonical labelling for

vertex coloured graphs. Unpublished, 1980.

[BaL83] László Babai and Eugene M. Luks: Canonical labeling of graphs. In: Proc.
15th STOC, ACM 1983, pp. 171–183.

[Cam81] Peter J. Cameron: Finite permutation groups and finite simple groups, Bull.
London Math Soc. 13 (1981) 1–22.

[DiM96] John D. Dixon, Brian Mortimer: Permutation Groups. Springer Grad. Texts
in Math. vol. 163, 1996

[FG11] Lance Fortnow and Joshua A. Grochow: Complexity classes of equiva-

lence problems revisited. Information and Computation 209 (2011) 748–763.

[FHL80] Merrick Furst, JohnHopcroft, Eugene Luks: Polynomial-time algorithms

for permutation groups. In: Proc. 21st IEEE FOCS, 1980, pp. 36–41.
[FSS83] Martin Fürer, Walter Schnyder, and Ernst Specker: Normal forms for

trivalent graphs and graphs of bounded valence. In: Proc. 15th STOC, ACM
1983, pp. 161-âĂŞ170.

[Lu82] Eugene M. Luks: Isomorphism of graphs of bounded valence can be tested

in polynomial time. J. Comput. Syst. Sci. 25(1) (1982) 42-âĂŞ65.
[Se03] Ákos Seress: Permutation Group Algorithms. Cambridge Univ. Press, 2003

1246

http://people.cs.uchicago.edu/~laci/lasvegas79.pdf
https://arxiv.org/abs/1512.03547

	Abstract
	1 Introduction
	2 String Isomorphism
	3 Permutation groups: definitions, notation
	4 Subcosets
	5 Canonization from Luks's SI algorithm
	5.1 Canonical Placement Coset
	5.2 Chain Rule
	5.3 Ordering the Windows
	5.4 Descent
	5.5 The CP Algorithm from canonical
	5.6 Complexity

	6 The Luks bottleneck
	7 Divide and Conquer strategy with quasipolynomial target
	8 Strongly canonical assignments
	9 Breaking the symmetry
	9.1 Canonical Structure on Ideal Domain
	9.2 Combinatorial Partitioning: Individualization, Refinement

	10 Fullness and non-fullness certificates
	10.1 Strong Canonicity of Local Certificates

	11 Large Window
	12 Strongly canonical relation
	13 Group theory from quasi
	13.1 Affected/Unaffected
	13.2 The Jordan–Liebeck Sandwich Theorem

	14 Identifying a test set from the set of positions
	14.1 Superposition of Strings
	14.2 Characteristic String
	14.3 Affected Elements Reveal Test Set

	15 Strongly canonical selection of a point from each asymmetric test set
	16 Canonical Placement of the Strings x(T,u)
	17 Appendix: The Local Certificates algorithm
	Acknowledgments
	References

