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Abstract
The classical Saint–Venant shallow water equations on complex geometries have wide appli-
cations in many areas including coastal engineering and atmospheric modeling. The main
numerical challenge in simulating Saint–Venant equations is to maintain the high order of
accuracy and well-balanced property simultaneously. In this paper, we propose a high-order
accurate and well-balanced discontinuous Galerkin (DG) method on two dimensional (2D)
unstructured meshes for the Saint–Venant shallow water equations. The technique used to
maintain well-balanced property is called constant subtraction and proposed in Yang et al.
(J Sci Comput 63:678–698, 2015). Hierarchical reconstruction limiter with a remainder cor-
rection technique is introduced to control numerical oscillations. Numerical examples with
smooth and discontinuous solutions are provided to demonstrate the performance of our
proposed DG methods.

Keywords Hyperbolic balance laws · Saint–Venant equations · Shallow water equations ·
Discontinuous Galerkin methods · Constant subtraction · Unstructured meshes ·
Hierarchical reconstruction · Remainder correction

1 Introduction

In this paper, we are interested in developing a high-order accurate and well-balanced discon-
tinuous Galerkin (DG) method for solving the Saint–Venant shallow water equations on two
dimensional (2D) unstructured meshes. The Saint–Venant shallow water equations consist
of hyperbolic balance laws and take the following form [2]
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+ ∇ ·

[
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hu ⊗ u + 1
2 gh2

I

]
=

[
0

−gh∇b

]
, (1.1)

where h denotes the depth of water, u = (u, v)T is the depth-averaged velocity, b describes
the bottom topography, g is the gravitational constant, and ⊗ represents the tensor product
of two vectors and I is the identity matrix.

While the shallow water equations with a non-flat bottom topography play a critical role
in modeling flows in rivers, lakes and coastal areas [3,18,23,29], numerically solving this
system of equations is challenging. One major numerical difficulty to simulate the shallow
water Eq. (1.1) is due to the well-balanced property of (1.1), namely, system (1.1) admits all
nontrivial equilibrium solutions given by

h + b ≡ Constant, u ≡ 0. (1.2)

The numerical methods, which preserve those steady states of ‘a lake at rest’ (1.2) at discrete
level, are called well-balanced methods.

Many well-balanced numerical methods have been developed for solving shallow water
equations. Our interests lie in high-order accurate numerical methods because they can
achieve the desired resolutionwith less computational cost. Popular high-orderwell-balanced
methods for shallow water equations include finite difference methods [20,30,32,33], finite
volume methods [7–10,16,17,21,34] and finite element discontinuous Galerkin (DG) meth-
ods [34]. For a detailed overview of high-order well-balanced numerical methods, we refer
readers to the review papers [22,31,36] and the references therein. Among various methods,
DG methods are shown to have lots of advantages including high order of accuracy, flexibil-
ity for hp-adaptivity, parallel efficiency, and complex geometries. In the existing literature,
several techniques have been developed within the DG framework in order to retain the well-
balanced property. In [34], a special decomposition of the source term is used so that the
resulted DG schemes are capable of maintaining the ‘a lake at rest’ steady state. Another
popular approach is hydrostatic reconstruction [35,37]. With a modification of numerical
flux, the DG schemes can maintain the well-balanced property and high order of accuracy
simultaneously. The main advantage of this approach is its simple implementation and the
additional computational cost is negligible compared with traditional DG. Path-conservative
[25] is a third approach to construct well-balanced DG schemes. More recently, a constant
subtraction technique was proposed in [40] to construct well-balanced finite volume schemes
for shallowwater system on structuredmeshes. By reformulating the system in terms of equi-
libriumvariables, thewell-balanced property is automatically achieved for general high-order
finite volume schemes. Because of this attractive feature, in this paper, we further explore
the potential of the constant subtraction technique [40] to construct a class of high-order
well-balanced DG schemes on 2D unstructured meshes.

Besides the aforementioned numerical challenge caused by the well-balanced property,
another standard difficulty of numerically solving nonlinear hyperbolic equations is to control
oscillations in their numerical solutions. In particular, when the solutions contain strong
discontinuities, limiting techniques are needed to ensure stability of the numerical simulation.
Many limiting techniques have been developed over the past few decades including the total
variation bounded (TVB) limiters [11–15,27], themoment limiters [4,6], weighted essentially
non-oscillatory (WENO) methodology based limiters [24,41–45] and many others. Here,
we will continue the research line on the development of hierarchical reconstruction (HR)
limiting technique which are originally designed for hyperbolic conservation laws [38,39].
The main advantages of this limiting technique are that no local characteristic decomposition
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is needed on structured or unstructured meshes and that significant spurious oscillations can
be removed. In order to further control spurious oscillations in the numerical solutions while
maintaining its high resolution near discontinuities, we generalize the remainder correction
technique [40] and apply it to our DG solution in this paper.

The rest of this paper is organized as follows. In Sect. 2, we describe our proposed high-
order accurate well-balanced DG scheme for the shallow water Eq. (1.1) on 2D unstructured
meshes. In Sect. 3, we present the point-wiseHR limiter with remainder correction technique.
In Sect. 4, numerical simulations with smooth and discontinuous solutions are provided to
demonstrate the effectiveness of our proposed DG method and limiting technique. Finally,
concluding remarks are given in Sect. 5.

2 DG Framework on Triangular Meshes

In this section, we describe our proposed high-order well-balanced DG framework. The
system (1.1) consists of the following component equations⎧⎪⎪⎨

⎪⎪⎩

ht + (hu)x + (hv)y = 0,

(hu)t + (hu2 + 1
2 gh2)x + (huv)y = −ghbx ,

(hv)t + (huv)x + (hv2 + 1
2 gh2)y = −ghby .

(2.1)

In order to achieve the well-balanced property, we firstly use the constant subtraction tech-
nique introduced in [40] to reformulate the shallow water equations.

We introduce some notations used throughout the paper. We denote the water surface as
w = h + b, the equilibrium variables as U = (w, hu, hv)T and the global spatial average of
w(x, y, t) on the entire computational domain � as

w̄(t) = 1

|�|
∫

�

w(x, y, t)d�. (2.2)

Using w̄, the right hand side terms in (2.1) can be decomposed as

− ghbx =
(
1

2
gb2

)
x

+ (−gw̄b)x + g(w̄ − w)bx , (2.3)

− ghby =
(
1

2
gb2

)
y
+ (−gw̄b)y + g(w̄ − w)by . (2.4)

Then, the shallow water Eq. (2.1) can be reformulated in terms of the equilibrium variables,

Ut + ∇ · F(U) = S(U, b, t), (2.5)

where

U =
⎡
⎣ w

hu
hv

⎤
⎦ ,F(U) = [F1(U), F2(U)], S(U, b, t) =

⎡
⎣ 0

g(w̄ − w)bx

g(w̄ − w)by

⎤
⎦ , (2.6)

and

F1(U) =
⎡
⎢⎣

hu
(hu)2

w−b + g(w̄ − w)b + g
2w2

(hu)(hv)
w−b

⎤
⎥⎦ , F2(U) =

⎡
⎢⎣

hv
(hu)(hv)

w−b
(hv)2

w−b + g(w̄ − w)b + g
2w2

⎤
⎥⎦ .

(2.7)
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It can be verified that the system (2.5)–(2.7) is equivalent to (2.1) for both smooth and
nonsmooth solutions, and the terms g(w̄ − w)bx , g(w̄ − w)by will automatically vanish at
‘a lake at rest’ steady states.

We propose to solve the system (2.5)–(2.7) by a Runge–Kutta discontinuous Galerkin
(RKDG) method. Let � = ∪N

i=1�i be a shape-regular triangular partition of the 2D com-
putational domain, and denote the numerical approximation of U as Uh . The DG method to
solve (2.5) -(2.7) is defined by: find the numerical approximation Uh in the finite element
space V k

�

V k
� = {vh ∈ [L2(�)]3 : vh |�i ∈ [Pk(�i )]3, i = 1, 2, . . . N }, (2.8)

where Pk(�i ) denotes the space of polynomials on �i of degree at most k, such that

d

dt

∫
�i

Uh · vhdx +
∫

∂�i

F̂ · ni · vhds −
∫

�i

(
F1 · ∂vh

∂x
+ F2 · ∂vh

∂ y

)
dx =

∫
�i

S · vhdx.

(2.9)

Here, vh(x) is any test function from the space V k
� and ni is the unit outward-pointing normal

vector on the boundary of cell �i . F̂ is the so called numerical flux which is defined as

F̂ · ni = F(Uin
h ,Uout

h ,ni ) (2.10)

where Uin
h and Uout

h are traces of the numerical solutions Uh on the boundary ∂�i obtained
from the interior and exterior of �i . In this paper, we choose to employ the local Lax–
Friedrichs flux in the numerical implementation, i.e. F is given as

F(a,b,ni ) = 1

2
(F(a) · ni + F(b) · ni − α(b − a)), (2.11)

α = max((|u| + √
gh, |v| + √

gh) · ni ), (2.12)

where the maximum is taken over the neighborhood of the control volume.
The semi-discrete ODE systems (2.9) can then be evolved by a s-stage TVDRunge–Kutta

method. In our numerical simulation, we employ the second-order and third-order TVD
Runge–Kutta methods [28] which take the following forms:

U (1) = U n + �tL (U n),

U n+1 = 1

2
U n + 1

2
U (1) + 1

2
�tL (U (1));

(2.13)

and

U (1) = U n + �tL (U n),

U (2) = 3

4
U n + 1

4
U (1) + 1

4
�tL (U (1)),

U n+1 = 1

3
U n + 2

3
U (2) + 2

3
�tL (U (2)).

(2.14)

Here L is the spatial operator when representing (2.9) as dU
dt = L (U ).

Theorem 1 The semi-discrete DG scheme (2.9) with TVD Runge–Kutta methods for system
(2.5)–(2.7) preserves the well-balanced property.
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Proof Assume that the numerical solutions of system (2.5)–(2.7) at t = tn are at ‘a lake at
rest’ steady state, i.e.,

wn = const (hu)n = (hv)n = 0. (2.15)

It indicates that the DG approximations at t = tn are all constant polynomials. Therefore,
the high-order DG reconstruction process for the equilibrium variables (w, hu, hv)T are also
the same constants. When uin

h = uout
h , the numerical flux F̂ is consistent with the physical

flux F at the cell interfaces, i.e., F̂|∂�i = F|∂�i . Furthermore, by the divergence theorem, we
have ∫

∂�i

F̂ · ni · vhds =
∫

∂�i

F · ni · vhds (2.16)

=
∫

�i

F · ∇vhdx

=
∫

�i

(
F1 · ∂vh

∂x
+ F2 · ∂vh

∂ y

)
dx

On the other hand, the reconstructed DG polynomial forw is the same as w̄ and the source
terms in (2.9) vanish. We then have

d

dt

∫
�i

Uh · vhdx = 0. (2.17)

We then conclude that the DG approximation at t = tn+1 also satisfies wn+1 = const
and (hu)n+1 = (hv)n+1 = 0 with any TVD Runge–Kutta methods, i.e. the well-balanced
property is preserved. ��

3 Point-Wise Hierarchical Reconstruction (HR)

In this section, we present our HR techniques employed in limiting the DG solution on 2D
unstructured meshes. We first give a synopsis of the main idea of HR limiting. Let �I be the
control volume and the set {� j } j∈J be the collection of cells adjacent to �I . We denote x j ,
j ∈ {I , J } as the cell centroids of cells �I and {� j } j∈J respectively. For a DG scheme at
each time step, we will have the polynomial approximations, which can be reformulated as
the following form of Taylor series expansion

u j (x − x j ) =
d∑

m=0

∑
|m|

1

m!um
j (x j )(x − x j )

m, j ∈ {I , J }, (3.1)

where d is the degree of the polynomials of numerical approximations.
The general procedure of point-wise HR is to modify the numerical solution polynomials

u j (x−x j ) to non-oscillatory polynomials ũ j (x−x j )with the same order of accuracy. To this
end, we need to reconstruct coefficients um

j (x j ) to obtain a new set of coefficients ũm
j (x j ).

The detailed implementation procedure is summarized in the following:

Point-Wise HR Algorithm

Step 1. Suppose d ≥ 2. For m = d, d − 1, . . . , 1, do the following:
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(a) Take the (m − 1)th order partial derivative of {u j (x− x j )} j=I ,J and write ∂(m−1)uI (x−
xI ) = Lm,I (x−xI )+Rm,I (x−xI ), where Lm,I (x−xI ) is the linear part and Rm,I (x−xI )

is the remainder.
(b) Compute the cell average of ∂(m−1)uI (x−xI ) over cell�I to obtain ∂(m−1)uI . Calculate

the point-average of ∂(m−1)u j (x − x j ) over cell � j to obtain ∂(m−1)u j , j ∈ J . (Here,
the point-average is defined in Remark 1.)

(c) Let R̃m,I (x−xI ) denote Rm,I (x−xI )with its coefficients replaced by the corresponding
modified values. The remainder Rm,I (x − xI ) of this step consists the 2nd or higher-
order terms of the polynomial ∂(m−1)uI (x − xI ), and the coefficients of the remainder
are already reconstructed in the previous HR iterative steps. Here after the coefficients
of Rm,I (x − xI ) are replaced by their reconstructed new values, Rm,I (x − xi ) becomes

R̃m,I (x − xI ).) Compute the cell average of R̃m,I (x − xI ) on cell �I to obtain R̃m,I .

Compute the point-average of R̃m, j (x − x j ) on cell � j to obtain R̃m, j , j ∈ J .

(d) Let Lm, j = ∂(m−1)u j − R̃m, j for cell � j , j ∈ {I , J }.
(e) Using {Lm, j } j∈{I ,J } to reconstruct Lm,I on �I by a weighted combination such that

Lm,I is non-oscillatory.
(f) Repeat from (a) to (e) until all possible combinations of the (m − 1)th order partial

derivatives are taken.

Step 2. The new 0th order coefficient of uI (x − xI ) is chosen such that the cell average of
ũ I (x − xI ) is equal to the cell average of uI (x − xI ) on cell �I .

Remark 1 We define the average of a set of point-wise values of a polynomial vh over a cell

� j to be the point-average, which is computed by
(∑N

k=1 vh(xk, j )
)

/N , where {xk, j : k =
1, . . . , N } is a set of points in cell� j , where the points are chosen in the same way as in [38].

It is proved in [38] that, under certain requirements of the distribution of the stencil cen-
troids, the point-wise HR limiting technique retains the approximation order of accuracy of
the original polynomials. However, as any of the existing high-order limiting techniques, the
HR is capable of limiting the spurious oscillations, which unfortunately cannot be completely
eliminated, especially in the most demanding shallow water equations containing noncon-
servative source terms appearing on the right hand side of (1.1) in the case of discontinuous
bottom topography function b. In this sense, we follow the work [40] and introduce the
remainder correction technique to further regulate the remainder term R̃m,I (x − xI ) in Step
1(c) of Point-wise HR Algorithm. This technique does not affect its approximation order
of accuracy and further reduces possible overshoots/undershoots near discontinuities.

Here, we present the remainder correction technique used for the third-order HR limiting,
i.e. in the case of d = 2. Let

R̃m,I (x − xI ) = a1(x − xI )
2 + a2(x − xI )(y − yI ) + a3(y − yI )

2. (3.2)

Obviously, R̃m,I (x−xI ) = O (
(�h)2

)
in�I , where�h is the spatial mesh size. We propose

to modify the remainder polynomial as

˜̃Rm,I = R̃m,I

1 + |a1|(x − xI )2 + |a2||(x − xI )(y − yI )| + |a3|(y − yI )2
. (3.3)
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In the following theorem, we show that the corrected remainder ˜̃Rm,I satisfies the following
two conditions:⎧⎨

⎩
˜̃Rm,I (x − xI ) = R̃m,I (x − xI ) + O (

(�h)3
)
, ∀x ∈ �I ,

|˜̃Rm,I | < M, ∀x ∈ R
2, for some constant M .

(3.4)

Theorem 2 The corrected remainder ˜̃Rm,I given by (3.3) satisfies the two conditions in (3.4).

Proof The definition of ˜̃Rm,I in (3.3) and the fact that R̃m,I (x − xI ) = O (
(�h)2

)
in �I

imply that the first condition in (3.4) holds, namely:

˜̃Rm,I = R̃m,I
[
1 + O (|a1|(x − xI )

2 + |a2||(x − xI )(y − yI )| + |a3|(y − yI )
2)]

= R̃m,I
[
1 + O (

(�h)2
)]

= R̃m,I + O (
(�h)4

)
,∀x ∈ �I .

The second condition in (3.4) holds because ˜̃Rm,I is continuous and

lim|x|→∞

∣∣∣˜̃Rm,I

∣∣∣ = lim|x|→∞

∣∣∣∣ a1(x − xI )
2 + a2(x − xI )(y − yI ) + a3(y − yI )

2

1 + |a1|(x − xI )2 + |a2||(x − xI )(y − yI )| + |a3|(y − yI )2

∣∣∣∣ ≤ 1

��
Remark 2 The remainder polynomial ˜̃Rm,I in (3.3) can also be taken as

˜̃Rm,I = R̃m,I

1 + γ l(x, y) + q(x, y)
(3.5)

with l(x, y) = |c1(x − xI )| + |c2(y − yI )| and q(x, y) = |a1|(x − xI )
2 + |a2||(x − xI )(y −

yI )| + |a3|(y − yI )
2. Here, c1(x − xI ) + c2(y − yI ) is the corresponding first order terms

in Lm,I (x − xI ) after the DG approximation, and γ ≥ 0. Similar as in Theorem 2, it can be
proved that (3.5) holds for the two conditions in (3.4).

Because of the first condition in (3.4), our proposed remainder correction technique will
maintain the original high order of accuracy. The second condition in (3.4) is introduced to
control the spurious oscillations, because R̃m,I (x−xI ) grows quite fast away from xI and the
values R̃m, j (x−x j ) used in Step 1(d) of Point-wise HRAlgorithmmay lead to oscillations.
Therefore, we conclude that our proposed remainder correction technique can further reduce
the oscillation while maintaining the original order of accuracy at the same time.

4 Numerical Examples

In this section, we present numerical results of our proposed well-balanced DG methods
when applied to solve shallow water equations with various initial and boundary conditions
on 2D unstructured meshes. Second order TVD Runge–Kutta time integrator is used when
P1 polynomial space is used for DG discretization, while third order TVD Runge–Kutta
time integrator is used for P2 case. Local Lax–Friedrichs numerical flux is used in all the
examples and the gravitation acceleration constant g is fixed as 9.812 m/s2. The CFL number
is taken as 0.1 unless otherwise specified.

123



2122 Journal of Scientific Computing (2019) 81:2115–2131

Fig. 1 The computational domain and sample triangular meshes of the numerical examples in Sect. 4. Left:
with mesh size �h = 0.1 for Examples 1 and 2; Right: with mesh size �h = 0.1 for Example 3

Example 1 (Verification of well-balanced property) We verify the well-balanced property of
our proposed method towards the steady-state solution in this example. This test problem is
taken from [37]. On the rectangular computational domain [0, 1]×[0, 1], the bottom function
is taken as

b(x, y) = max(0, 1 − (10x − 5)2 − (10y − 5)2),

and the initial data is the “lake at rest” stationary solution:

w(x, y, 0) = 2,

(hu)(x, y, 0) = (hv)(x, y, 0) = 0.

Periodic boundary conditions are used here. With this setup, it is desired that the steady
state solutions are exactly preserved and the surface remains flat. We solve the shallow water
system with our proposed DG schemes on the triangular meshes shown in the left panel of
Fig. 1. Numerical solutions with different mesh sizes �h are computed at time T = 0.5 with
double-precision. In Table 1, we present the L1 and L∞-errors of the surface level w and
discharges hu and hv computed by P1 and P2 DGschemes.We can clearly observe that all the
numerical quantities are machine zeros, which numerically confirms that our proposed DG
schemes preserve well-balanced property. We then test the effect of HR limiting techniques
and the numerical errors are given in Table 2. All the numerical errors remain at the level of
round-off errors which indicates that the DG schemes with HR limiting technique still hold
well-balanced property.

Example 2 (Accuracy test) In this example, we will perform the accuracy test of our proposed
method. Consider the shallow water equations on two dimensional computational domain
[0, 1] × [0, 1]. The bottom topography is

b(x, y) = sin(2πx) + cos(2π y),
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Table 1 Example 1: L1 and L∞-errors for the stationary solution computed by well-balanced DG schemes
only. Final time T = 0.5

�h L1-error L∞-error
w hu hv w hu hv

P1 case

1/10 4.07E−15 1.44E−14 1.31E−14 8.44E−15 4.77E−14 4.60E−14

1/20 9.04E−15 3.64E−14 3.82E−14 1.58E−14 1.27E−13 1.39E−13

1/40 2.10E−14 9.25E−14 9.31E−14 3.84E−14 3.70E−13 3.78E−13

1/80 3.92E−14 2.63E−13 2.62E−13 7.97E−14 1.54E−12 1.41E−12

1/160 7.45E−14 6.94E−13 6.92E−13 1.82E−13 4.02E−12 4.38E−12

P2 case

1/10 4.25E−14 7.06E−14 7.21E−14 5.28E−14 2.34E−13 2.09E−13

1/20 8.89E−14 1.36E−13 1.37E−13 1.12E−13 6.66E−13 5.48E−13

1/40 1.81E−13 2.68E−13 2.66E−13 2.17E−13 1.29E−12 1.30E−12

1/80 3.67E−13 5.33E−13 5.35E−13 4.58E−13 2.97E−12 3.51E−12

1/160 7.44E−13 1.05E−12 1.05E−12 9.38E−13 6.74E−12 8.82E−12

Table 2 Example 1: L1 and L∞-errors for the stationary solution computed by well-balanced DG schemes
with HR limiting techniques. Final time T = 0.5

�h L1-error L∞-error
w hu hv w hu hv

P1 case

1/10 6.07E−17 8.14E−16 1.88E−15 1.11E−15 4.56E−15 7.26E−15

1/20 6.06E−17 9.73E−16 1.61E−15 1.11E−15 9.92E−15 6.95E−15

1/40 6.92E−17 1.08E−15 2.74E−15 1.11E−15 9.78E−15 1.81E−14

1/80 6.43E−17 9.52E−16 2.74E−15 1.11E−15 1.14E−14 3.76E−14

1/160 6.54E−17 9.45E−16 3.17E−15 1.11E−15 1.52E−14 3.70E−14

P2 case

1/10 1.88E−14 1.22E−14 9.69E−15 2.33E−14 5.37E−14 3.52E−14

1/20 5.47E−14 1.65E−14 1.72E−14 6.31E−14 1.14E−13 1.00E−13

1/40 1.31E−13 3.50E−14 3.81E−14 1.49E−13 2.05E−13 2.19E−13

1/80 2.98E−13 7.95E−14 8.06E−14 3.20E−13 6.32E−13 1.04E−12

1/160 6.58E−13 1.81E−13 1.80E−13 7.10E−13 2.32E−12 1.95E−12

and the initial data are given by

h(x, y, 0) = 10 + esin(2πx) cos(2π y),

(hu)(x, y, 0) = sin(cos(2πx)) sin(2π y),

(hv)(x, y, 0) = cos(2πx) cos(sin(2π y)).

The periodic boundary conditions are applied. The final time is taken as T = 0.05 to avoid
the appearance of shocks in the solution. Since the exact solution is not available explicitly,
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Table 3 Example 2: L1 and L∞
numerical orders computed by
DG schemes at time T = 0.05

�h L1 error order L∞ error order
w hu hv w hu hv

P1 case

1/40 1.83 2.08 1.85 1.34 1.78 1.55

1/80 2.16 1.94 2.14 1.53 1.73 0.97

1/160 2.05 1.80 1.88 2.31 1.45 2.71

1/320 1.64 1.89 1.77 1.87 2.15 1.40

P2 case

1/40 2.01 2.38 2.07 1.06 1.71 1.10

1/80 2.82 2.36 2.70 1.50 1.34 1.68

1/160 3.53 2.69 3.52 4.75 3.86 4.64

1/320 3.39 2.42 3.06 2.43 2.38 3.59

Table 4 Example 2: L1 and L∞
numerical orders computed by
DG schemes with HR limiting
techniques at time T = 0.05

�h L1 error order L∞ error order
w hu hv w hu hv

P1 case

1/40 1.64 1.47 1.71 1.33 1.07 1.10

1/80 2.12 2.23 2.16 1.13 2.10 0.61

1/160 2.37 2.49 2.30 2.44 2.14 2.84

1/320 2.24 2.46 2.33 2.16 2.28 2.29

P2 case

1/40 2.12 2.93 2.14 1.35 2.45 1.36

1/80 2.41 2.93 2.47 2.01 2.34 2.15

1/160 2.87 2.99 2.91 2.50 2.89 2.74

1/320 3.01 2.94 2.96 2.60 2.80 2.62

we calculate the experimental order r by Aitken’s formula [1], i.e.,

r = log2

( ||u �h
2

− u�h ||
||u �h

4
− u �h

2
||

)
,

where u�h denotes the numerical solution computed using the triangular meshes of size �h.
The computational domain, and a sample triangular mesh with �h = 0.1 are shown in the
left panel of Fig. 1.

Table 3 contains the experimental orders of accuracy in the L1 and L∞-errors. As one
can clearly see, the expected second and third order of accuracy are attained for both surface
level w and discharges hu and hv. Furthermore, we perform the numerical simulation with
DG schemes with HR limiting techniques. The numerical results are present in Table 4, in
which we can still observe second and third order of accuracy. This results verifies that our
HR limiting techniques do not affect the original high order of accuracy.

Example 3 (Water drop problem) Next, our methods are applied to a numerical test case
which simulates the water drop problem. Following the setup in [26,37], we consider the 2D
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Fig. 2 Example 3: the water surface level with the flat bottom topography at different times

Gaussian shaped peak initial condition given by:

h(x, y, 0) = 1 + 0.1 exp
(−100

(
(x − 0.5)2 + (y − 0.5)2

))
,

(hu)(x, y, 0) = (hv)(x, y, 0) = 0,

in the computational domain [0, 1] × [0, 1] with zero bottom topography. The reflective
boundary conditions are employed. The initial Gaussian shaped water drop generates a wave
that reflects off the boundary. The triangular mesh with �h = 1/80 is generated as in the
right panel of Fig. 1. We have provided the evolution of water surface at various times in
Fig. 2, which shows that the wave is well simulated by our methods.

As a comparison, we also repeat the test with a non-zero bottom topography:

b(x, y) = 0.5 exp
(−10

(
(x − 0.75)2 + (y − 0.75)2

))
. (4.1)

The results are shown in Fig. 3.

Example 4 (Small perturbation problem) This is a classical example to show the capability
of the proposed scheme for the perturbation of the stationary state. This test was given by
LeVeque [19], and has also been used in [5,32,35,37].
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Fig. 3 Example 3: the water surface level with the bottom topography (4.1) at different times

The computational domain is [0, 2] × [0, 1]. The bottom topography is an isolated
elliptical-shaped hump:

b(x, y) = 0.8 exp
(−5 (x − 0.9)2 − 50 (y − 0.5)2

)
.

The initial condition is given by

w(x, y, 0) =
{
1 + 0.0001, if 0.05 ≤ x ≤ 0.15,

1, otherwise,

(hu)(x, y, 0) = (hv)(x, y, 0) = 0.

The outlet boundary conditions are imposed on the left and right sides, and the reflective
boundary conditions on the top and bottom sides.

Initially, the surface level is almost flat except for 0.05 ≤ x ≤ 0.15, where w is perturbed
upward by a small magnitude of 0.0001, which will split into two waves, propagating left
and right at the characteristic speeds ±√

g(w − b). The left-going disturbance wave leaves
the domain and does not affect the solution after this. We compute the solution and monitor
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Fig. 4 Example 4: contour plot of water surface level w on 80 × 40 (left) and 320 × 160 (right) triangular
meshes. The solution is shown at times t = 0.12, 0.24, 0.36, 0.48, 0.6 (from top to bottom)

how the right-going disturbance wave propagates past the hump. We perform the numerical
investigation with our proposed method with triangular partition, as shown in the right panel
of Fig. 1. Two distinct mesh sizes �h = 1/40 and �h = 1/160 are tested. The snapshots of
the computed solution at times t = 0.12, 0.24, 0.36, 0.48 and 0.6 are shown in Fig. 4. The
obtained results clearly show that our method can capture the small perturbation and resolve
the complicated features of the studied flow very well.
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Fig. 5 Example 5: 3Dviewand contour plot ofwater surface levelw of the circular dambreak at output time t =
0.69. Top: the results computed by well-balanced DG schemes with HR limiting techniques without remainder
correction. Middle: The results computed by well-balanced DG schemes with HR limiting techniques and
remainder correction (3.3). Bottom: The results computed by well-balanced DG schemes with HR limiting
techniques and remainder correction (3.5), γ = 2

Example 5 (Circular dam break problem) This test case consists of the instantaneous breaking
of a cylindrical tank of radius 11 meter centered on a square computational domain [0, 50]×
[0, 50] with a flat bottom topography, initially filled with 10 meter of water at rest. The wave
generated by the breaking of the tank propagates into still water with an initial depth of 1
meter. We discretize the domain with the triangular meshes as in the right panel of Fig. 1 and
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�h is taken as 0.5. This classic problem is widely used to test the shock capture capability
of numerical schemes [37].

A 3D view and contour lines of the water surface level w at time t = 0.69 using different
numerical methods are shown in Fig. 5. We can observe that our proposed methods further
remove the oscillations in the numerical results, compared with HR limiting techniques only.

5 Conclusion

In this paper, we have developed a high-order accurate and well-balanced DG scheme for
solving the Saint–Venant system of shallow water equations on 2D unstructured meshes.
Constant subtraction is employed in order to achieve the well-balanced property; while
HR limiting with the remainder correction technique is used to further control the possi-
ble numerical oscillations. We theoretically show that our proposed DG scheme can retain
the well-balanced property while preserving the high order of accuracy. Numerical examples
with smooth and discontinuous solutions are provided to demonstrate the effectiveness of
our proposed scheme.
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