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Abstract

Natural convection in porous media is a fundamental process for the long-term storage of CO2
in deep saline aquifers. Typically, details of mass transfer in porous media are inferred from the
numerical solution of the volume-averaged Darcy-Oberbeck-Boussinesq (DOB) equations,
although these equations do not account for the microscopic properties of a porous medium.
According to the DOB equations, natural convection in a porous medium is uniquely
determined by the Rayleigh number. However, in contrast with experiments, DOB simulations
yield a linear scaling of the Sherwood number with the Rayleigh number (Ra) when Ra has a
high value (Ra>>1,300). Here, we perform Direct Numerical Simulations (DNS), fully
resolving the flow field within the pores. We show that the boundary layer thickness is
determined by the pore size instead of the Rayleigh number, as previously assumed. The mega-
and proto- plume size increase with pore size. Our DNS exhibit a nonlinear scaling of the
Sherwood number at high porosity, and for the same Rayleigh number, higher Sherwood
numbers are predicted by DNS at lower porosities. It can be concluded that the scaling of the
Sherwood number depends on the porosity and the pore-scale parameters, which is consistent

with experimental studies.

I. Introduction



Since the seminal work of Horton & Rogers (1945) and Lapwood (1948), buoyancy-driven
convection in a cell occupied by a porous medium has been adopted as a model for many
applications. Some examples of these applications include oil recovery, ground water flow, and
geothermal energy extraction. Convection in porous media may be caused by heat or mass
transfer. The key governing parameter is the Rayleigh-Darcy number (Ra-Da), which is more
often referred to as the Rayleigh number (Ra). It is a combination of a traditional Rayleigh
number Ray and a Darcy number Da. A traditional Rayleigh number describes the ratio of
buoyancy and viscosity within a fluid, multiplied by the Prandtl number (for heat transfer) or
Schmidt number (for mass transfer). A Darcy number describes the ratio between the
permeability and the characteristic area. A porous medium produces two effects on convection.
First, the largest length scale of fluid motions becomes limited by pore size, and thus heat/mass
transfer is reduced (Jin et al. 2015, 2017; Uth et al. 2016). Second, the interaction between flow
and porous elements may lead to dispersion processes within the pores, which can enhance
heat/mass transfer (Nield & Bejan 2017).

In recent years, natural convection in porous media has received increasing attention due to
the interest in the long-term storage of CO2 in deep saline aquifers (Huppert & Neufeld 2014),
where COz sequestration is driven by gradients of CO2 concentration. The efficiency of CO2
sequestration is determined by the Sherwood number (Sh), which is the ratio of the total mass
transfer rate (by convection and mass diffusion) to the diffusive mass transfer rate across a wall
surface. Most reservoirs have small Rayleigh numbers (Ra < 1,500) (Hassanzadeh 2007), but
some COz reservoirs have a thickness of several hundred meters, and are thus characterized by
very high Rayleigh numbers (Ra = 12,000) (Neufeld et al., 2010).

Many experimental, theoretical, and numerical studies have been performed to determine the
scaling Sh = f(Ra) . Theoretical and numerical studies rely on the Darcy-Oberbeck-
Boussinesq (DOB) equations (Nield & Bejan, 2017), where the microscopic details of the
porous media are solely accounted for by the permeability and effective diffusivity through Ra.
This is explained by the loss of information during volume averaging.

Convection in porous media can be classified into five regimes based on the Rayleigh
number (Nield & Bejan, 2017):

I.  the conducting regime (0 < Ra < 4m?);
II. the steady state regime (472 < Ra < 350);
III.  the quasi-periodic regime, which is dominated by two coherent convecting cells

(350 < Ra < 1,300);



IV.  the high Rayleigh regime (1,300 < Ra < 10,000), which is considered chaotic and
"turbulent" without large coherent structures;
V.  the ultimate Rayleigh regime (Ra = 10,000), which differs from the high Rayleigh
regime only by the increasing self-organization of the inner flow field.

Howard (1964) suggested a linear scaling of Sh versus Ra at asymptotically large Rayleigh
numbers. This was later proven in the analytical study of Doering & Constantin (1998). With
the advent of high-performance computing, several numerical studies of the DOB equations
(herein DOB simulations) for large Rayleigh numbers have been performed. The maximum
Rayleigh numbers in these studies reach up to Ra = 0(10*). For example, the DOB
simulations of Otero et al. (2004) suggest scaling of the form Sh~Ra* with a = 0.9 for Ra <
10,000, which is slightly different from the theoretical linear scaling. However, subsequent
DOB simulations, with Ra up to 40,000, confirmed the linear scaling of Sh with Ra for both
isotropic (Hewitt et al. 2012, 2013, 2014; Wen et al. 2015) and anisotropic porous media (Paoli
etal.2016).

Despite this encouraging agreement between theory and numerical simulations,
experimental measurements of mass transfer yielded lower exponents. Backhaus et al. (2011)
and Neufeld et al. (2018) reported Sh~Ra%8. The experiments were also performed at very
large Rayleigh numbers (Ra > 1,300). Hence, discrepancies occur between the theoretical
value of the exponent (a = 1) and the values of the exponent obtained from laboratory
experiments.

It should be noted that many early numerical studies demonstrated nonlinear scaling of the
Sherwood number, see Trevisan & Bejan (1987), Robinson & O’Sullivan (1976), and
Caltagirone (1975). However, the maximum Rayleigh number simulated by Trevisan & Bejan
(1987) and Caltagirone (1975) was around 2,000, which is only marginally larger than the
transition Rayleigh number between regimes III and IV. Robinson & O’Sullivan (1976)
assumed that the flow is steady. Therefore, the nonlinear relationship between Sh and Ra found
in the earlier numerical studies cannot explain the discrepancies between numerical and
experimental results observed at very large Rayleigh numbers.

These discrepancies cast doubt on the key hypothesis underlying the DOB equations, namely
that the sole control parameter of convection in porous media is the Rayleigh number. This may
result in serious model errors because of the many physical simplifications it carries. For
example, Mijic et al. (2014) argued that the Forchheimer term (accounting for the quadratic
drag typical of turbulence flows) may have an important effect on convection, whereas Wen et
al. (2018) argued that convection in a porous medium is also influenced by the dispersion term.
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Thus, the fundamental question arises as to whether natural convection in porous media is
governed by parameters other than Ra through additional physical mechanisms.

In this paper, we probe this question by performing pore-resolved Direct Numerical
Simulations (DNS) of convection in porous media, thereby accounting for all scales of motion.
We compare our DNS to traditional DOB simulations to determine whether parameters other

than Ra influence convection in porous media.

2. Governing equations and numerical methods

We considered natural convection in a chamber filled with porous elements, see figure 1(a).
The upper and lower walls were kept at species concentrations ¢; and ¢, respectively. The
density difference caused by the different species concentrations at the lower and upper walls
leads to natural convection in the chamber.
2.1 Governing equations for DNS

The governing equations for the DNS are the Navier-Stokes equations, with the buoyancy
force accounted for by the Boussinesq approximation, and the species concentration equation.

Using the Einstein’s summation convention, these equations are:
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the ith component of the gravitational vector, v is the kinematic viscosity, and Dy is the mass
diffusivity of the species. The no-slip boundary condition is used at all solid surfaces, whereas
the mass transfer rates at the surfaces of the solid obstacles are set to zero because they cannot
be penetrated by COa.

Using the characteristic concentration difference Ac = ¢; — ¢,, velocity u,,, = BAcgK /v,

length H, and time t,, = H/u,,, we obtained the following dimensionless governing equations:
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where ¢ = is the non-dimensional species concentration, Ray = Blcg

C1—Co VDf

is the Rayleigh

number for the free fluid flow between the bounded walls, Sc = le 1s the Schmidt number,

Da = Hi is the Darcy number, H is the height of the chamber, g is gravity, z; is the ith

2
component of the unit vector pointing in the direction of gravity, and K is the permeability.
We calculated the Sherwood number from our DNS as the ratio of the total mass transfer

rate m (by convection and diffusion) to diffusive mass transfer rate rg;¢ across the wall:

[

. . wox

Sh = m/mgi = ﬁ- (7)
W% Ra=0

The subscript w denotes either the lower or upper wall surface, and the overbar ~denotes the

time average.

2.2 Governing equations for macroscopic simulations

We derived the governing equations for the macroscopic simulations using the approach
similar to that used in de Lemos (2012), who averaged the governing equations (4)-(6) over
volume and time. By contrast, only volume averaging was used in our derivation. By averaging
Egs. (4)-(6) in each REV and accounting for the zero mass flux at solid surfaces, we obtained

the following macroscopic equations:
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where * denotes a volume averaged dimensionless quantity, ¢ is the porosity, and @i; = ¢(ii; )’

(c)i=c . . . . .
C—CO are the volume averaged dimensionless velocity and species concentration,
1—¢o

and ¢ =

respectively. Here, the Rayleigh number for convection in porous media is defined as:

Ra = L2 = 250K, (1)

Ym Dmv

where y,,, = Z—m is the ratio of the effective mass diffusivity, D,,, and the fluid mass diffusivity,
f

Dy. The effective mass diffusivity, D,,, is a macroscopic parameter which describes the mass

diffusion through the porous medium. Further, note that the parameter Dy, is different from D

due to the effect of the porous matrix. Quantities (;l)(iﬁiiﬁj)i and ¢(1i;'¢)! represent the

momentum dispersion and species concentration dispersion, respectively.
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The dimensionless total drag, R;, is usually modelled by the sum of the Darcy term and the

Forchheimer term, i.e.,

5 _ Sc PN CF PPN
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where Cr is the (empirical) Forchheimer coefficient. Neglecting the higher order terms with

a(p(tu;t;)t) and a(p(u;te))

K . . .
respect to Da = ) and the dispersion terms , one obtains the
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where p = s 1S the normalized pressure. The dimensionless time is modified to be t* =
m

t/¢. The Sherwood number for DOB studies is calculated as:
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Sh = fw‘;;;, (16)
where A4,, is the wall surface area. Note that the definitions given by Egs. (7) and (16) are
equivalent and are in accordance with the definitions in previous DOB studies (Hewitt et al.
2012, 2013, 2014).

In the framework of the DOB equations (1)-(3), convection in porous media is uniquely
determined by Ra, as defined in Eq. (11). Obviously, a prerequisite for the validity of the DOB
equations is that the Darcy number is small in order for the terms of O(1/Da) to dominate in Eq.
(9). However, the Darcy number may affect the governing equations if Da is not small enough.
In addition, convection in porous media may also be affected by the Schmidt number Sc, the
porosity ¢, or pore-scale factors such as the pore scale s. The momentum and species dispersion

terms may also influence the convection in porous media. Understanding whether these factors

should be accounted for in the macroscopic equations requires further analysis.

2.3 Numerical method

A finite-volume method (FVM) was employed in the DNS. The solver was developed based
on the open source code package OpenFoam 2.4. The solutions were advanced in time with the
second-order implicit backward method. A second-order central-difference scheme was used
for the spatial discretization. The pressure and velocity fields were corrected by the Pressure-

Implicit scheme with Splitting of Operators (PISO) pressure-velocity coupling (Versteeg &
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Malalasekera 2007). A stabilized preconditioned (bi-)conjugate gradient solver was utilized to
solve the pressure field and the momentum and species concentration equations.
A stream function method was used to solve the DOB equations (13)-(15). A stream function,

1, was introduced for the velocity field, i.e.,

(@, 8) = (52, —2%). (17)
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The curl of the momentum equation, Eq. (14), gives:
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In the stream function method, Eq. (15), is advanced in time to update the mass concentration
field. Then, the Poisson equation, Eq. (18), is solved to calculate the stream function, 1. Finally,
the velocity is updated with Eq. (17). The second order implicit backward method was used for
the time discretization. For the convection terms, we used linear interpolation to determine the
variables at the cell interfaces. A second order central difference scheme was used for spatial
discretization. A stabilized preconditioned (bi-)conjugate gradient solver was used to solve the
Poisson equation (18). A preconditioned (bi-)conjugate gradient solver was used to solve the
species concentration equations.

The code validation for our DNS solver was performed in our previous studies (Jin et al.
2015, 2017; Uth, et al. 2016). In these studies, as well as the present study, the finite volume
method (FVM) was employed to simulate turbulent flows in channels with smooth and rough
walls, and in porous media. The DNS results were compared with the DNS and experimental
results reported in other references, as well as our DNS results obtained with the Lattice
Boltzmann Method (LBM). The code validation for our DOB solver was performed in Krénzien

& Jin (2019), where results were compared with Hewitt ez al. (2012).

3. Studied test cases

The chosen two-dimensional porous matrix was composed of periodically arranged square
obstacles of size d, which are a distance s apart in the lateral and vertical directions. The solid
matrix was assumed to be adiabatic, i.e. the flux of species through the obstacles is zero. The
porous matrix and the representative elementary volume (REV) are shown in figure 1(a). The

porosity for the current porous matrix can be directly calculated from figure 1(a) as
=1-—. (19)

The porous matrix was composed of 800-20,000 REVs, and each REV was resolved by 1,600

to 6,400 mesh cells, yielding up to 72 million cells in the simulations. The same initial fields
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(u;=0andc = ) were used in both DOB and DNS solutions. The largest DNS case was

calculated using 384 processors in parallel for 960 hours.

The temporal evolution of the instantaneous Sherwood number Sh for a typical DNS is
shown in figure 2. Time averaging was performed after Sh reached a statistically steady state,
as indicated by the vertical dashed line. The computational time needed for this process

depended on the flow parameters, such as Ra, H/s, and Sc.
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FIGURE 1. Porous matrices used in our DNS. In all cases, periodic boundary conditions are
used in the horizontal direction. (a) Porous matrix for simulating convection in a porous
medium. (b) Porous matrix for calculating the permeability K. (c¢) Porous matrix for
calculating the effective mass diffusivity D,,. In (c), the mean velocity of the fluid is zero,

thus mass transfer is via diffusion only.
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FIGURE 2. Sherwood number (Sh) versus dimensionless time . Ra = 20,000, Sc = 250, and

CotCy

H/s = 100. The initial fields have u; = 0 and ¢ = -

To compare the DNS results with the DOB results, the permeability, K, was estimated by
simulating forced convection in the porous matrix shown in figure 1(b). Using this method, K
was calculated as the ratio of the applied pressure gradient to the mean velocity u,,. To
determine the effective mass diffusivity, D,,, due to tortuosity, we simulated mass transfer in
the same porous matrix, but bounded between two impermeable walls with u,,, = 0 (see figure

Df  ac

1(c)). D, was calculated as AH? fwﬁ dA, where A,, is the area of the upper (or lower) wall.
w 2

Therefore, the Rayleigh number in our pore-resolved DNS study is the same as the one for the
macroscopic (continuum scale) simulation. The values of the parameters used in our
simulations are given in table 1.

We investigated cases characterized by Ra < 20,000, scale ratios H /s between 20 and 100,
Schmidt numbers Sc = 1 and Sc = 250, and Darcy numbers between 2.8 X 1077 and 8.7 X
107°. According to the Kozeny’s equation (Nield and Bejan 2017), the permeability K can be

approximated as K*:

s _ _d’¢®
K* = R (20)
The pore size can be approximated from the permeability K* and the porosity ¢ as:
. _ [Ba-9)K|H?
st =[P @n

where the empirical model coefficient § = 126 was used in this study. This value was obtained
by fitting the values of s* to the real pore size s. The maximum difference between s* and s

was 4.8%, which we deemed an acceptable approximation.

Table 1. Main parameters for DNS and DOB cases.



REV ID b s/d s*/d  K/d? v, Sc

0.56 1.5 1.5 0.0079 0.38 1,250
b 0.49 1.4 1.43  0.0042 0.32 1
c 0.36 1.25 1.31  0.0011 0.22 1,250

We studied the sensitivity of the numerical results to the mesh resolution and time step for a
test case with H/s =20, ¢ =0.56 (s/d =1.5), and Ra = 20,000 (see table 2). The
numerical results showed that the Sherwood number is over-predicted when the mesh resolution
is insufficient (case “f”), while it is under-predicted when the time step, indicated by the
maximum Courant number (Cop, %), is too large (case “b”). The Sherwood numbers calculated
for cases “a” and “c” through “e” vary by a maximum of 2.5%. We adopted this range of mesh
resolutions and Coy,,x for all other test cases, including the cases with small Ra numbers. Thus,

we estimate numerical errors in our DNS studies to be below 2.5%.

Table 2. Effects of the mesh resolution and maximum Courant number on the Sherwood number.
The test case has the parameters H/s = 20, ¢ = 0.56 (s/d = 1.5), and Ra = 20,000. The
cases shaded grey were considered as converged (mesh and time step independent). N, and N,,
are the REV numbers in horizontal and vertical directions, while Nggy is the number of mesh

cells in each REV.

Case ID Mesh resolution Copmax Sh
(Nx X Ny X Nrgy)

a 40 x 20 x 3600 0.9 97.3
b 40 x 20 x 6400 4.1 85.6
c 40 x 20 x 6400 0.9 94.9
d 40 x 20 x 6400 22 95.5
e 40 x 20 x 6400 1.5 97

f 40 x 20 x 1600 0.9 101.6

4. Results and discussion

4.1 Mega- and proto-plumes
A local Reynolds number Rey may be defined based on the permeability K and the local
velocity magnitude |ul, i.e.,

_ |u|K1/2

Reye = K7 @2)
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Nield & Bejan (2017) indicated that the Darcy’s term dominates the drag when Rey <« 1, while
the Forchheimer’s term has a greater effect on the flow for Reg > 1. It should be noted that |u]
in Eq. (22) cannot be approximated by the characteristic (macroscopic) velocity of the flow u,,,
which is much larger than |u].

Figure 3 shows typical instantaneous fields of Reg for Ra = 20,000. The Rey values of all
the cases for Sc = 250 are much smaller than unity and thus the flow is in the Darcy’s regime.
According to our DNS, the flow in the pores is laminar, despite the large Rayleigh number,
because of the very small local Reynolds numbers (Reg). The macroscopic flows at large
Rayleigh numbers are nevertheless strongly nonlinear and chaotic, exhibiting “macroscopic
turbulence”. The convection for Sc = 1 is also generally in the Darcy’s regime. The largest
value of Reg for Sc = 1 is about 2.8, which occurs for the case of Ra = 20,000, H/s = 20,
and ¢ = 0.56. These results suggest that the Forchheimer’s term may have more effect in heat
transfer problems than in mass transfer problems because the Prandtl number of one is common
in heat transfer, whereas typical Schmidt number values are larger than unity.

The instantaneous species concentration fields obtained from our DNS and DOB simulations
at Ra = 20,000 are shown in figure 4. The macroscopic species concentration field (c) was
either obtained from the DNS results by volume averaging over each REV (figure 4(a), (b)), or
calculated directly in DOB simulations (figure 4(c)). Both DNS and DOB mass concentration
fields exhibit two boundary layer regions and an interior region. The interior region is
dominated by transient mega-plumes, whereas the boundary layers are filled with small proto-
plumes. These small proto-plumes are products of the growing instabilities in the boundary

layers that cause low concentration fluid to rise and high concentration fluid to sink.
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FIGURE 3. Snapshots of the instantaneous Reynolds number Re, based on the permeability
at Ra = 20,000 from DNS results with ¢=0.56 (s/d = 1.5). (a) Sc = 250, H/s = 20; (b)
Sc=250,H/s =50;(c)Sc=1,H/s = 20.

Interestingly, the instantaneous species concentration fields obtained by DNS and displayed
in figure 4(a) and 4(b) suggest that the size of mega- and proto-plumes increases with the pore
size. This phenomenon is absent in classical Rayleigh-Bénard convection (without a porous
medium) and cannot be captured by the DOB equations where pore effects enter the equations

only via Ra.
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FIGURE 4. Snapshots of instantaneous mass concentration fields at Ra = 20,000 and Sc =
1. (a) DNS with H/s=50 and ¢ = 0.56 (s/d=1.5). Here, the macroscopic mass concentration
was obtained by volume averaging the microscopic mass concentration over each REV; (b)
DNS with H/s=20 and ¢p = 0.56 (s/d=1.5); (c) DOB simulation.

Figure 5 shows several instantaneous profiles of ¢ along with their corresponding time-

averaged discrete Fourier transforms at mid-height for Ra = 20,000 and Sc = 1. The mean
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concentration (€)*!, where the operator (-)*! denotes horizontal averaging, was extracted from
¢. The number of ¢ maxima, which corresponds to the number of mega-plumes, decreases with
increases in pore size s (see figure 5(a)). In the DOB simulations, the peak amplitude occurs
when the wavenumber k equals 9. Wen et al. (2015) indicted that the wavenumber is not
unique for Ra > 39,716. However, the wavenumber is well approximated by k = 0.48Ra%*
when Ra is smaller than this critical value. Figure 6 shows that our DOB results are close to
this correlation, as well as to the DOB results of Hewitt et al. (2012) and Wen et al. (2015). A
variability of the peak wavenumber due to long-time-scale fluctuations was observed in Hewitt
et al. (2012) when different initial field or aspect ratio (L/H) were used, see hollow circles in
figure 6. This variability was not found in our study since the same initial field and aspect ratio
were used in both our DNS and DOB solutions.

In the DNS, the peaks are broader and the dominant wavenumber increases from 4 to 7m
as H/s increases from 20 to 50. This emphasizes the importance of the pore scale s in shaping
the mega-plumes. Motions at even larger length scales (k =~ 1), which corresponds to the length

of the box (2H), were observed in the DNS.
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FIGURE 5. Instantaneous profiles (a) and average spectra (b) of the dimensionless mass
concentration, ¢, at mid-height x,/H = 0.5. Ra = 20,000, ¢ = 0.56 (s/d=1.5), and Sc =

1.
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FIGURE 6. Peak wavenumber & for the mega-plumes of the DOB results for different Rayleigh

numbers. The maximum error bar for the peak wavenumber is estimated according to the

wave number step size Ak = m in our discrete Fast Fourier Transform (FFT).

Figure 7 shows several instantaneous profiles of ¢ and their corresponding time-averaged

Fourier transforms for Ra = 20,000 and Sc = 250. Similar to the results for Sc = 1, the

dominant wavenumber increases from 4 to 7m as H/s increases from 20 to 100. Here, the

smallest Darcy number Da is 3.5 X 1077, which corresponds to H/s = 100. Large length scale

(k = m) motions were also found in this test case, which makes the DNS results distinctly

different from the DOB results. However, more detailed investigations are required to clarify

the origin of these motions. We expect that the plumes will keep getting smaller as H/s — oo

and may even eventually converge toward the DOB results, see figure 8. However, although
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Rey, for the DNS case is much smaller than 1 (see figure 3b for H/s = 50) and the pore size s

(0.01H for H/s = 100) is much smaller than the plume size (about 0.23H for Ra = 20,000,

the DOB results), the peak wavenumbers from the DNS results are still clearly different from

the DOB results. A possible reason is that no matter how small the pore size, the pore scale

structure may always affect part of the boundary layer in the vicinity of the wall.
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FIGURE 7. Instantaneous profiles (a) and average spectra (b) of the dimensionless mass

concentration, ¢, at mid-height x,/H = 0.5, Ra = 20,000, ¢ = 0.56 (s/d=1.5), and Sc =

250.

16



w
o

peak k value
= N N
[6)] o [6)]
T T T
1

-
o
T

107

FIGURE 8. Peak wavenumber k for the mega-plumes of the DNS results for different Darcy
numbers, Ra = 20,000 . The maximum error bar for the peak wavenumber is estimated

according to the wave number step size Ak = 7 in our discrete FFT.

4.2 Sherwood number

The scaling of the Sherwood number for Sc = 1 obtained from our DNS results, with various
H /s and porosity values, is shown in figure 9. The DOB simulations of Hewitt et al. (2012)
and our own DOB results are compared with our DNS results (shown by solid and dashed lines
in figure 8(a)). It appears that the DOB simulations overestimate the mass transfer rate for Ra
in the range between 600 and 4,000, whereas at large Ra, they fall amidst the values obtained
by DNS for the porosities studied here. Although the scale ratio H /s appears to determine the
scale of mega-plumes, it only mildly influences Sh and without a clear trend.

The DNS results show that the porosity has a significant effect on Sh in the high Rayleigh
number regime (Ra > 10,000). For example, at Ra = 20,000, Sc =1 and H/s = 20, Sh
decreases from 158 to 96 while the porosity increases from ¢ = 0.36 (s/d = 1.25) to 0.56
(s/d = 1.5). At large Rayleigh numbers (Ra > 5,000), the relationship between Sh and Ra can
be well approximated by Sh = 8 4+ 0.0076Ra for ¢p=0.36. This linear relationship is in
accordance with our own DOB results (Krénzien & Jin 2019), as well as the DOB results by
Hewitt et al. (2012). However, for ¢ = 0.56, the correlation Sh = 0.033Ra®?8 better fits the
data.
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FIGURE 9. Time and surface averaged Sherwood number. Lines: DOB results; Symbols:
DNS results. The porosity ¢ and scale ratio H/s are varied. The results for Sc = 1 are
shown in a loglog-scale (a), and a linear-scale for Ra > 5,000 (b).

The Sherwood number slightly increases as the Schmidt number is increased from 1 to 250.
However, the relationship between Sh and Ra does not change qualitatively (see Fig .10). At
large Rayleigh numbers (Ra > 5,000), the Sherwood number is still higher for a lower porosity.
The Sh = f(Ra) scaling changes from a linear scaling (Sh = 16 + 0.0076Ra) for ¢ = 0.36 to
a nonlinear one (Sh = 0.045Ra%®) for ¢ = 0.56. The exponential coefficients for Sc = 250
are the same as those for Sc=1 (a =1 for ¢ = 0.36 and @ = 0.8 for ¢ = 0.56), which
indicates that the relationship between Sh and Ra does not change qualitatively if Sc is varied.
Our DNS results suggest that the non-linear scaling laws found in the experiments by Backhaus
et al. (2011) and Neufeld et al. (2010) may be related to the porosity or pore-scale factors, such

as the pore size s.
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250. Lines: DOB results; Symbols: DNS results. The porosity ¢ and scale ratio H/s are
varied. The results are shown in the log-scale (a) and linear-scale for Ra > 5,000 (b).

It is worth noting that the small Schmidt number (Sc = 1) cases could also be representative
of convective heat transfer in a porous medium where Pr = 1 is common. However, in an
experiment for heat transfer, Keene & Goldstein (2015) found a significantly smaller scaling
exponent for the Nusselt number, Nu~Ra%3%. The possible cause of this discrepancy is that
conjugate heat transfer may play a key important role, as we here assumed that the wall surfaces
of the porous elements are adiabatic because we considered mass transfer. Clearly, the effect of

conjugate heat transfer on convection in porous media deserves further investigation.

4.3 Mass concentration and velocity statistics
Figure 11 shows the vertical profiles of the temporally and horizontally averaged

macroscopic mass concentration (¢)*! obtained from DOB simulations. Here, the species
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concentration profiles at different Ra numbers become almost identical when the distance from
the lower wall X, is normalized by 1/Ra. This is in accordance with the statement by Huppert
& Neufeld (2014) that the boundary layer thickness is determined by 1/Ra. More details of our
DOB results can be found in Kridnzien & Jin (2019).
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FIGURE 11. DOB results. (a) vertical profiles of time- and line-averaged species concentration; (b)

r.m.s of species concentration fluctuation ("™5)*1; (¢) u, fluctuation; (d) u, fluctuation (d).

By contrast, the profiles computed by resolving the flow at the pore scale with DNS exhibit
a distinct length scale. Figure 12 shows strong deviations from the DNS results if X, is scaled
with 1/Ra. However, similar trends are observed if X, is scaled with the pore scale § = s/H
(figure 13). Recall that the pore size s can be approximated by using s*, defined in Eq. (21) for
a general two-dimensional porous matrix. The influence of the bounding walls is generally
limited to within the first three REVs next to the walls, which leads to a steep gradient of (¢)*!
therein. When the distance from the lower wall is normalized by the pore size s, the {(¢)*!

obtained at different Rayleigh numbers collapse together. Hence, the boundary layer thickness

for convection in porous media is not determined by Ra, but by the pore size s.
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FIGURE 13. DNS results for Sc = 1. (a) Vertical profiles of time- and line-averaged mass
concentration; (b) r.m.s of mass concentration fluctuation; (c) u; fluctuation; (d) u,
fluctuation. o: H/s = 20, ¢ = 0.36,Ra = 5,000; o: H/s = 20, ¢ = 0.56, Ra = 5,000; +:
H/s =20, ¢ = 0.56, Ra = 20,000; x: H/s = 50, ¢ = 0.56, Ra = 5,000.
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Figure 13 also shows the root-mean-square (r.m.s.) macroscopic mass concentration and
velocity fluctuations, (¢"™S)*¥1 (@]™$)*1 and (@5™)*1, respectively, for Sc = 1. The velocity
fluctuations were normalized with the characteristic velocity, u,, = fAcgK/v. The DNS
results show that, besides Ra, the scale ratios H/s and porosity ¢ also have significant effects
on r.m.s. quantities. These effects are absent in DOB simulations. In addition, (@;™)*! in
figure 13(b) is distinctly different from the DOB results, which have unphysical (non-zero)
velocity fluctuations at the wall surface (Hewitt, et al. 2012; Krénzien & Jin 2019). A possible
reason for these discrepancies is that momentum dispersion is not accounted for in the DOB
equations.

Figure 14 shows the temporally and horizontally averaged macroscopic results for Sc = 250.
Similar to the results for Sc = 1 (see Fig. 13), the influence of the bounding walls is still limited
to within the first three REVs next to the walls. Again, our DNS results confirm that the
boundary layer thickness for convection in porous media is determined by the pore size s (or

s* for a porous matrix with permeability K and porosity ¢).
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FIGURE 14. DNS results for Sc = 250. (a) Vertical profiles of time- and line-averaged mass
concentration; (b) r.m.s of mass concentration fluctuation; (c) u; fluctuation; (d) u,
fluctuation. o: H/s = 20, ¢ = 0.36, Ra = 5,000; o: H/s = 20, ¢ = 0.56, Ra = 5,000; +:
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H/s = 20, ¢ = 0.56, Ra = 20,000; x: H/s=50, ¢ = 0.56, Ra = 20,000.

As the boundary layer thickness is determined by the pore size (which can be characterized

o)) an

by the square root of the permeability VK), the momentum dispersion term 5% d
J
. . . Sc 9%q; . . .
viscous diffusion term y—;a a;l in the macroscopic equation (Eq. 9) are expected to scale as
m J
2
1/K. Thus, the momentum dispersion and viscous diffusion terms should be of order i = H?,

exactly as the Darcy term itself. Thus, our DNS results suggest that the pore scale significantly
influences convection in porous media through the momentum dispersion and viscous diffusion
terms, which are neglected in the DOB equations. We conclude that these terms cannot be
neglected in the macroscopic equations even if the pore size is small. In addition, the pore size

should be used as the characteristic length when the dispersion term is modeled.

5. Conclusions

Natural convection in a porous medium, made of two-dimensional square obstacles, was
studied with DNS by fully resolving the flow field within the pores. Upon comparing our DNS
and DOB results, we found significant effects of the pore-scale on the macroscopic flow and
mass concentration fields. These effects are summarized in what follows.

The boundary layer thickness is not determined by 1/Ra, as DOB simulations suggest
(Huppert & Neufeld 2014), but by the pore size. In addition, the sizes of the mega-plumes in
the interior region increase with increasing pore size. The DNS exhibit motions with even larger
length scales, reaching up to the domain size. This is different from the DOB simulations, where
the sizes of mega-plumes in the interior region depend only on the Rayleigh number.
Furthermore, note that the spectra of the DNS exhibit much broader peaks and also many
secondary peaks at larger and smaller wavenumbers, which are entirely missing in the DOB
case. Hence, even if the dominant wavenumber appears to converge to the DOB case, it is
unclear whether the entire spectrum will converge to it. Overall, pore-scale effects at a low
Schmidt number (Sc=1) are qualitatively similar to those at a high Schmidt number (Sc=250).

The porosity was found to have a strong impact on the mass transfer. At high Rayleigh
numbers, increasing the porosity resulted in a lower Sherwood number. More importantly, the
Sh = f(Ra) relationship changed from a linear scaling law (Sh~Ra) for ¢ = 0.36 to a
nonlinear scaling law (Sh~Ra%®) for ¢ = 0.56. This is in accordance with the study of

Bernard-Rayleigh flows without a porous medium. For example, Shishkina & Sebastian (2016)
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suggested the scaling Nu ~ Ral/4

for large Pr and Ra numbers. This is also observed in the
experiments of Backhaus et al. (2011) and Neufeld et al. (2010). However, this comparison
must be taken with caution because the geometrical details of porous matrices used in the
experiments are not specified in their studies.

One limitation of our results is the relatively small H/s < 100 values in the DNS (to keep
computational costs manageable), whereas problems such as CO: sequestration are
characterized by very large H /s ratios. However, the H /s values in our study ensured that most
cases (all cases for Sc=250) were within the Darcy’s regime. Therefore, H/s only has a mild
influence on Sh without a clear trend within the range of our computational parameters. This
suggests that DNS with reduced H/s values may be used for tackling practical problems such
as COz sequestration despite a much larger H/s ratio in that situation.

We stress that none of the effects revealed here can be captured by state-of-the-art DOB
simulations, where all the microscopic details of the porous media are lumped into the Rayleigh
number. Our simulations open avenues for the extension and parametrization of improved DOB
equations including non-Darcy terms, accounting for the effect of porosity and the pore scale.
More specifically, the momentum dispersion and viscous diffusion terms should be accounted
for in the macroscopic equations, even when the pore size is much smaller than the plume size
and Re, « 1. The pore size should be used as the characteristic length when the dispersion
term is modeled. To achieve this goal, more extensive numerical and experimental studies

involving more realistic porous matrices to predict CO2 sequestration are needed.
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