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Abstract 

Natural convection in porous media is a fundamental process for the long-term storage of CO2 

in deep saline aquifers. Typically, details of mass transfer in porous media are inferred from the 

numerical solution of the volume-averaged Darcy-Oberbeck-Boussinesq (DOB) equations, 

although these equations do not account for the microscopic properties of a porous medium. 

According to the DOB equations, natural convection in a porous medium is uniquely 

determined by the Rayleigh number. However, in contrast with experiments, DOB simulations 

yield a linear scaling of the Sherwood number with the Rayleigh number (Ra) when Ra has a 

high value (Ra>>1,300). Here, we perform Direct Numerical Simulations (DNS), fully 

resolving the flow field within the pores. We show that the boundary layer thickness is 

determined by the pore size instead of the Rayleigh number, as previously assumed. The mega- 

and proto- plume size increase with pore size. Our DNS exhibit a nonlinear scaling of the 

Sherwood number at high porosity, and for the same Rayleigh number, higher Sherwood 

numbers are predicted by DNS at lower porosities. It can be concluded that the scaling of the 

Sherwood number depends on the porosity and the pore-scale parameters, which is consistent 

with experimental studies.  

 

I. Introduction 
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Since the seminal work of Horton & Rogers (1945) and Lapwood (1948), buoyancy-driven 

convection in a cell occupied by a porous medium has been adopted as a model for many 

applications. Some examples of these applications include oil recovery, ground water flow, and 

geothermal energy extraction. Convection in porous media may be caused by heat or mass 

transfer. The key governing parameter is the Rayleigh-Darcy number (Ra-Da), which is more 

often referred to as the Rayleigh number (Ra). It is a combination of a traditional Rayleigh 

number Ra௙  and a Darcy number Da. A traditional Rayleigh number describes the ratio of 

buoyancy and viscosity within a fluid, multiplied by the Prandtl number (for heat transfer) or 

Schmidt number (for mass transfer). A Darcy number describes the ratio between the 

permeability and the characteristic area. A porous medium produces two effects on convection. 

First, the largest length scale of fluid motions becomes limited by pore size, and thus heat/mass 

transfer is reduced (Jin et al. 2015, 2017; Uth et al. 2016). Second, the interaction between flow 

and porous elements may lead to dispersion processes within the pores, which can enhance 

heat/mass transfer (Nield & Bejan 2017).   

In recent years, natural convection in porous media has received increasing attention due to 

the interest in the long-term storage of CO2 in deep saline aquifers (Huppert & Neufeld 2014), 

where CO2 sequestration is driven by gradients of CO2 concentration. The efficiency of CO2 

sequestration is determined by the Sherwood number (Sh), which is the ratio of the total mass 

transfer rate (by convection and mass diffusion) to the diffusive mass transfer rate across a wall 

surface. Most reservoirs have small Rayleigh numbers (Ra ൏ 1,500) (Hassanzadeh 2007), but 

some CO2 reservoirs have a thickness of several hundred meters, and are thus characterized by 

very high Rayleigh numbers (Ra ൎ 12,000) (Neufeld et al., 2010).  

Many experimental, theoretical, and numerical studies have been performed to determine the 

scaling Sh ൌ 𝑓ሺRaሻ . Theoretical and numerical studies rely on the Darcy-Oberbeck-

Boussinesq (DOB) equations (Nield & Bejan, 2017), where the microscopic details of the 

porous media are solely accounted for by the permeability and effective diffusivity through Ra. 

This is explained by the loss of information during volume averaging.  

Convection in porous media can be classified into five regimes based on the Rayleigh 

number (Nield & Bejan, 2017): 

I. the conducting regime (0 ൑ Ra ൑ 4𝜋ଶ); 

II. the steady state regime (4𝜋ଶ ൑ Ra ൑ 350); 

III. the quasi-periodic regime, which is dominated by two coherent convecting cells 

(350 ൑  Ra ൑  1,300); 
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IV. the high Rayleigh regime (1,300 ൑ Ra ൑ 10,000), which is considered chaotic and 

"turbulent" without large coherent structures; 

V. the ultimate Rayleigh regime (Ra ൒ 10,000), which differs from the high Rayleigh 

regime only by the increasing self-organization of the inner flow field. 

Howard (1964) suggested a linear scaling of Sh versus Ra at asymptotically large Rayleigh 

numbers. This was later proven in the analytical study of Doering & Constantin (1998). With 

the advent of high-performance computing, several numerical studies of the DOB equations 

(herein DOB simulations) for large Rayleigh numbers have been performed. The maximum 

Rayleigh numbers in these studies reach up to Ra ൌ 𝑂ሺ10ସሻ . For example, the DOB 

simulations of Otero et al. (2004) suggest scaling of the form Sh~Ra஑ with α ൎ 0.9 for Ra ൑

10,000, which is slightly different from the theoretical linear scaling. However, subsequent 

DOB simulations, with Ra up to 40,000, confirmed the linear scaling of Sh with Ra for both 

isotropic (Hewitt et al. 2012, 2013, 2014; Wen et al. 2015) and anisotropic porous media (Paoli 

et al. 2016).  

Despite this encouraging agreement between theory and numerical simulations, 

experimental measurements of mass transfer yielded lower exponents. Backhaus et al. (2011) 

and Neufeld et al. (2018) reported Sh~Ra଴.଼. The experiments were also performed at very 

large Rayleigh numbers (Ra ≫ 1,300). Hence, discrepancies occur between the theoretical 

value of the exponent (α ൌ 1 ) and the values of the exponent obtained from laboratory 

experiments.  

It should be noted that many early numerical studies demonstrated nonlinear scaling of the 

Sherwood number, see Trevisan & Bejan (1987), Robinson & O’Sullivan (1976), and 

Caltagirone (1975). However, the maximum Rayleigh number simulated by Trevisan & Bejan 

(1987) and Caltagirone (1975) was around 2,000, which is only marginally larger than the 

transition Rayleigh number between regimes III and IV. Robinson & O’Sullivan (1976) 

assumed that the flow is steady. Therefore, the nonlinear relationship between Sh and Ra found 

in the earlier numerical studies cannot explain the discrepancies between numerical and 

experimental results observed at very large Rayleigh numbers.  

These discrepancies cast doubt on the key hypothesis underlying the DOB equations, namely 

that the sole control parameter of convection in porous media is the Rayleigh number. This may 

result in serious model errors because of the many physical simplifications it carries. For 

example, Mijic et al. (2014) argued that the Forchheimer term (accounting for the quadratic 

drag typical of turbulence flows) may have an important effect on convection, whereas Wen et 

al. (2018) argued that convection in a porous medium is also influenced by the dispersion term. 
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Thus, the fundamental question arises as to whether natural convection in porous media is 

governed by parameters other than Ra through additional physical mechanisms. 

In this paper, we probe this question by performing pore-resolved Direct Numerical 

Simulations (DNS) of convection in porous media, thereby accounting for all scales of motion. 

We compare our DNS to traditional DOB simulations to determine whether parameters other 

than Ra influence convection in porous media.  

 

2. Governing equations and numerical methods 

We considered natural convection in a chamber filled with porous elements, see figure 1(a). 

The upper and lower walls were kept at species concentrations 𝑐ଵ and 𝑐଴, respectively. The 

density difference caused by the different species concentrations at the lower and upper walls 

leads to natural convection in the chamber.  

2.1 Governing equations for DNS 

The governing equations for the DNS are the Navier-Stokes equations, with the buoyancy 

force accounted for by the Boussinesq approximation, and the species concentration equation. 

Using the Einstein’s summation convention, these equations are: 

డ௨೔

డ௫೔
ൌ 0,                                                      (1) 

డ௨೔

డ௧
൅

డ൫௨೔௨ೕ൯

డ௫ೕ
ൌ െ డ௣

డ௫೔
൅ 𝜈 డమ௨೔

డ௫ೕ
మ ൅ 𝛽𝑔௜ሺ𝑐 െ 𝑐଴ሻ,                                   (2) 
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డ௫ೕ
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where 𝛽 is the concentration expansion coefficient defined as 𝛽 ൌ 𝛽ሺ𝑐଴ሻ ൌ  െ ଵ

ఘబ
ቀ

డఘ

డ௖
ቁ

௖బ
, 𝑔௜ is 

the ith component of the gravitational vector, 𝜈 is the kinematic viscosity, and 𝐷௙ is the mass 

diffusivity of the species. The no-slip boundary condition is used at all solid surfaces, whereas 

the mass transfer rates at the surfaces of the solid obstacles are set to zero because they cannot 

be penetrated by CO2. 

Using the characteristic concentration difference Δ𝑐 ൌ 𝑐ଵ െ 𝑐଴, velocity 𝑢௠ ൌ 𝛽∆𝑐𝑔𝐾 𝜈⁄ , 

length 𝐻, and time 𝑡௠ ൌ 𝐻 𝑢௠⁄ , we obtained the following dimensionless governing equations: 

డ௨෥೔

డ௫෤೔
ൌ 0,                                                      (4) 

డ௨෥೔

డ௧ሚ
൅

డ൫௨෥೔௨෥ೕ൯

డ௫෤ೕ
ൌ െ

డ௣෤

డ௫෤೔
൅

ୗୡ

ୖୟ೑ୈୟ

డమ௨෥೔

డ௫෤ೕ
మ െ

ୗୡ

ୖୟ೑ୈୟమ 𝑧௜𝑐̃,                                   (5) 

డ௖̃

డ௧ሚ
൅

డሺ௨෥೔௖̃ሻ

డ௫෤೔
ൌ

ଵ

ୖୟ೑ୈୟ

డమ௖̃

డ௫෤ೕ
మ,                                                     (6) 



5 
 

where 𝑐̃ ൌ ௖ି௖బ

௖భି௖బ
 is the non-dimensional species concentration, Ra௙ ൌ ுయఉ∆௖௚

ఔ஽೑
 is the Rayleigh 

number for the free fluid flow between the bounded walls, Sc ൌ ఔ

஽೑
 is the Schmidt number, 

Da ൌ ௄

ுమ  is the Darcy number, 𝐻  is the height of the chamber, 𝑔  is gravity, 𝑧௜  is the ith 

component of the unit vector pointing in the direction of gravity, and 𝐾 is the permeability.  

We calculated the Sherwood number from our DNS as the ratio of the total mass transfer 

rate 𝑚ሶ  (by convection and diffusion) to diffusive mass transfer rate 𝑚ሶ ୢ୧୤୤ across the wall: 

Sh ൌ 𝑚ሶ /𝑚ሶ ୢ୧୤୤ ൌ
׬

ങ೎෤
ങ෥ೣమ

തതതതത
ௗ஺

 
ೢ

׬
ങ೎෤

ങ෥ೣమ

തതതതത
ฬ
౎౗సబ

ௗ஺
 

ೢ

.                                             (7) 

The subscript 𝑤 denotes either the lower or upper wall surface, and the overbar   ̅denotes the 

time average.  

 

2.2 Governing equations for macroscopic simulations 

We derived the governing equations for the macroscopic simulations using the approach 

similar to that used in de Lemos (2012), who averaged the governing equations (4)-(6) over 

volume and time. By contrast, only volume averaging was used in our derivation. By averaging 

Eqs. (4)-(6) in each REV and accounting for the zero mass flux at solid surfaces, we obtained 

the following macroscopic equations: 
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ൌ 0,                                                     (8) 
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where   ̂denotes a volume averaged dimensionless quantity, 𝜙 is the porosity, and 𝑢ො௜ ൌ 𝜙〈𝑢෤௜〉௜ 

and 𝑐̂ ൌ
〈௖〉೔ି௖బ

௖భି௖బ
 are the volume averaged dimensionless velocity and species concentration, 

respectively. Here, the Rayleigh number for convection in porous media is defined as:  

Ra ≡
ୖୟ೑ୈୟ

ఊ೘
ൌ ுఉ∆௖௚௄

஽೘ఔ
,                                                (11) 

where 𝛾௠ ൌ
஽೘

஽೑
 is the ratio of the effective mass diffusivity, 𝐷௠, and the fluid mass diffusivity, 

𝐷௙. The effective mass diffusivity, 𝐷௠, is a macroscopic parameter which describes the mass 

diffusion through the porous medium. Further, note that the parameter 𝐷௠ is different from 𝐷௙ 

due to the effect of the porous matrix. Quantities 𝜙〈 𝑢෤௜ 
௜ 𝑢෤௝ 

௜ 〉௜  and 𝜙〈 𝑢෤௜ 
௜ 𝑐̃ ௜ 〉௜  represent the 

momentum dispersion and species concentration dispersion, respectively. 
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The dimensionless total drag, 𝑅෠௜, is usually modelled by the sum of the Darcy term and the 

Forchheimer term, i.e., 

𝑅෠௜ ൌ ୗୡ

ఊ೘ୖୟୈୟ
𝑢ො௜ ൅ ஼ಷ

ୈୟభ/మ |𝐮ෝ|𝑢ො௜,                                             (12) 

where 𝐶ி is the (empirical) Forchheimer coefficient. Neglecting the higher order terms with 

respect to 𝐷𝑎 ൌ ௄

ுమ  and the dispersion terms 
డ൫థ〈 ௨෥೔ 

೔ ௨෥ೕ 
೔ 〉೔൯

డ௫ොೕ
 and 

డ൫థ〈 ௨෥೔ 
೔ ௖̃ 

೔ 〉೔൯

డ௫ොೕ
, one obtains the 

traditional DOB equations: 

డ௨ෝ೔
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ൌ 0,                                                       (13) 
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൅ 𝑐̂𝑧௜ ൅ 𝑢ො௜ ൌ 0,                                                      (14) 
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 where 𝑝̂ ൌ ୖୟୈୟ〈௣෤〉೔

ఊ೘ୗୡ
 is the normalized pressure. The dimensionless time is modified to be 𝑡̂∗ ൌ

𝑡̂ 𝜙⁄ . The Sherwood number for DOB studies is calculated as: 

Sh ൌ
׬
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ೢ

஺ೢ
,                                                         (16) 

where 𝐴௪  is the wall surface area. Note that the definitions given by Eqs. (7) and (16) are 

equivalent and are in accordance with the definitions in previous DOB studies (Hewitt et al. 

2012, 2013, 2014).  

In the framework of the DOB equations (1)-(3), convection in porous media is uniquely 

determined by Ra, as defined in Eq. (11). Obviously, a prerequisite for the validity of the DOB 

equations is that the Darcy number is small in order for the terms of O(1/Da) to dominate in Eq. 

(9). However, the Darcy number may affect the governing equations if Da is not small enough. 

In addition, convection in porous media may also be affected by the Schmidt number Sc, the 

porosity 𝜙, or pore-scale factors such as the pore scale 𝑠. The momentum and species dispersion 

terms may also influence the convection in porous media. Understanding whether these factors 

should be accounted for in the macroscopic equations requires further analysis.  

 

2.3 Numerical method 

A finite-volume method (FVM) was employed in the DNS. The solver was developed based 

on the open source code package OpenFoam 2.4. The solutions were advanced in time with the 

second-order implicit backward method. A second-order central-difference scheme was used 

for the spatial discretization. The pressure and velocity fields were corrected by the Pressure-

Implicit scheme with Splitting of Operators (PISO) pressure-velocity coupling (Versteeg & 
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Malalasekera 2007). A stabilized preconditioned (bi-)conjugate gradient solver was utilized to 

solve the pressure field and the momentum and species concentration equations. 

A stream function method was used to solve the DOB equations (13)-(15). A stream function, 

𝜓, was introduced for the velocity field, i.e., 

ሺ𝑢ොଵ, 𝑢ොଶሻ ൌ ቀ
డట

డ௫మ
, െ డట

డ௫భ
ቁ.                                                      (17) 

The curl of the momentum equation, Eq. (14), gives: 

డమట

డ௫೔
మ ൌ െ డ௖̂

డ௫భ
.                                                               (18) 

In the stream function method, Eq. (15), is advanced in time to update the mass concentration 

field. Then, the Poisson equation, Eq. (18), is solved to calculate the stream function, 𝜓. Finally, 

the velocity is updated with Eq. (17). The second order implicit backward method was used for 

the time discretization. For the convection terms, we used linear interpolation to determine the 

variables at the cell interfaces. A second order central difference scheme was used for spatial 

discretization. A stabilized preconditioned (bi-)conjugate gradient solver was used to solve the 

Poisson equation (18). A preconditioned (bi-)conjugate gradient solver was used to solve the 

species concentration equations. 

The code validation for our DNS solver was performed in our previous studies (Jin et al. 

2015, 2017; Uth, et al. 2016). In these studies, as well as the present study, the finite volume 

method (FVM) was employed to simulate turbulent flows in channels with smooth and rough 

walls, and in porous media. The DNS results were compared with the DNS and experimental 

results reported in other references, as well as our DNS results obtained with the Lattice 

Boltzmann Method (LBM). The code validation for our DOB solver was performed in Kränzien 

& Jin (2019), where results were compared with Hewitt et al. (2012).  

 

3. Studied test cases 

The chosen two-dimensional porous matrix was composed of periodically arranged square 

obstacles of size d, which are a distance s apart in the lateral and vertical directions. The solid 

matrix was assumed to be adiabatic, i.e. the flux of species through the obstacles is zero. The 

porous matrix and the representative elementary volume (REV) are shown in figure 1(a). The 

porosity for the current porous matrix can be directly calculated from figure 1(a) as 

𝜙 ൌ 1 െ ௗమ

௦మ .                                                             (19) 

The porous matrix was composed of 800-20,000 REVs, and each REV was resolved by 1,600 

to 6,400 mesh cells, yielding up to 72 million cells in the simulations. The same initial fields 
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(𝑢௜ ൌ 0 and 𝑐 ൌ ௖బା௖భ

ଶ
) were used in both DOB and DNS solutions. The largest DNS case was 

calculated using 384 processors in parallel for 960 hours.  

The temporal evolution of the instantaneous Sherwood number Sh for a typical DNS is 

shown in figure 2. Time averaging was performed after Sh reached a statistically steady state, 

as indicated by the vertical dashed line. The computational time needed for this process 

depended on the flow parameters, such as Ra, H/s, and Sc.  

 

 

FIGURE 1. Porous matrices used in our DNS. In all cases, periodic boundary conditions are 

used in the horizontal direction. (a) Porous matrix for simulating convection in a porous 

medium. (b) Porous matrix for calculating the permeability 𝐾 . (c) Porous matrix for 

calculating the effective mass diffusivity 𝐷௠. In (c), the mean velocity of the fluid is zero, 

thus mass transfer is via diffusion only. 
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𝑐ଵ 
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FIGURE 2. Sherwood number (Sh) versus dimensionless time 𝑡̃. Ra ൌ 20,000, Sc ൌ 250, and 

𝐻/𝑠 ൌ 100. The initial fields have 𝑢௜ ൌ 0 and 𝑐 ൌ ௖బା௖భ

ଶ
. 

 

To compare the DNS results with the DOB results, the permeability, K, was estimated by 

simulating forced convection in the porous matrix shown in figure 1(b). Using this method, K 

was calculated as the ratio of the applied pressure gradient to the mean velocity 𝑢௠ . To 

determine the effective mass diffusivity, 𝐷௠, due to tortuosity, we simulated mass transfer in 

the same porous matrix, but bounded between two impermeable walls with 𝑢௠ ൌ 0 (see figure 

1(c)). 𝐷௠ was calculated as 
ு஽೑

∆௖஺ೢ
׬

డ௖

డ௫మ

തതതത
𝑑𝐴

 
௪ , where 𝐴௪ is the area of the upper (or lower) wall. 

Therefore, the Rayleigh number in our pore-resolved DNS study is the same as the one for the 

macroscopic (continuum scale) simulation. The values of the parameters used in our 

simulations are given in table 1. 

We investigated cases characterized by Ra ൑ 20,000, scale ratios 𝐻/𝑠 between 20 and 100, 

Schmidt numbers Sc ൌ 1 and Sc ൌ 250, and Darcy numbers between 2.8 ൈ 10ି଻ and 8.7 ൈ

10ି଺. According to the Kozeny’s equation (Nield and Bejan 2017), the permeability 𝐾 can be 

approximated as 𝐾∗: 

𝐾∗ ൌ ௗమథయ

ఉሺଵିథሻమ.                                                             (20) 

The pore size can be approximated from the permeability 𝐾∗ and the porosity 𝜙 as: 

𝑠∗ ൌ ቂ
ఉሺଵିథሻ௄∗

థయ ቃ
ଵ/ଶ

,                                                    (21) 

where the empirical model coefficient 𝛽 ൌ 126 was used in this study. This value was obtained 

by fitting the values of 𝑠∗ to the real pore size 𝑠. The maximum difference between 𝑠∗ and 𝑠 

was 4.8%, which we deemed an acceptable approximation.  

Table 1. Main parameters for DNS and DOB cases.  
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REV ID 𝜙 𝑠/𝑑 𝑠∗/𝑑 𝐾 𝑑ଶ⁄  𝛾𝑚 Sc 

a 0.56 1.5 1.5 0.0079 0.38 1, 250 

b 0.49 1.4 1.43 0.0042 0.32 1 

c 0.36 1.25 1.31 0.0011 0.22 1, 250 

 
We studied the sensitivity of the numerical results to the mesh resolution and time step for a 

test case with 𝐻/𝑠 ൌ 20 , 𝜙 ൌ 0.56  ሺ𝑠/𝑑 ൌ 1.5 ), and Ra ൌ 20,000  (see table 2). The 

numerical results showed that the Sherwood number is over-predicted when the mesh resolution 

is insufficient (case “f”), while it is under-predicted when the time step, indicated by the 

maximum Courant number (Co୫ୟ୶), is too large (case “b”). The Sherwood numbers calculated 

for cases “a” and “c” through “e” vary by a maximum of 2.5%. We adopted this range of mesh 

resolutions and Co୫ୟ୶ for all other test cases, including the cases with small Ra numbers. Thus, 

we estimate numerical errors in our DNS studies to be below 2.5%.  

Table 2. Effects of the mesh resolution and maximum Courant number on the Sherwood number. 

The test case has the parameters 𝐻/𝑠 ൌ 20, 𝜙 ൌ 0.56  (𝑠/𝑑 ൌ 1.5), and Ra ൌ 20,000. The 

cases shaded grey were considered as converged (mesh and time step independent). 𝑁௫ and 𝑁௬ 

are the REV numbers in horizontal and vertical directions, while 𝑁ୖ୉୚ is the number of mesh 

cells in each REV.  

Case ID Mesh resolution 

(𝑁௫ ൈ 𝑁௬ ൈ 𝑁ୖ୉୚) 

Co୫ୟ୶  Sh  

a 40 ൈ 20 ൈ 3600  0.9 97.3 

b 40 ൈ 20 ൈ 6400  4.1 85.6 

c 40 ൈ 20 ൈ 6400  0.9 94.9 

d 40 ൈ 20 ൈ 6400  2.2 95.5 

e 40 ൈ 20 ൈ 6400  1.5 97 

f 40 ൈ 20 ൈ 1600  0.9 101.6 

 
4. Results and discussion 

 

4.1 Mega- and proto-plumes 

A local Reynolds number Re௄ may be defined based on the permeability 𝐾 and the local 

velocity magnitude |𝐮|, i.e., 

Re௄ ൌ
|𝐮|௄భ/మ

ఔ
.                                                           (22) 
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Nield & Bejan (2017) indicated that the Darcy’s term dominates the drag when Re௄ ≪ 1, while 

the Forchheimer’s term has a greater effect on the flow for Re௄ ൐ 1. It should be noted that |𝐮| 

in Eq. (22) cannot be approximated by the characteristic (macroscopic) velocity of the flow 𝑢௠, 

which is much larger than |𝐮|.  

Figure 3 shows typical instantaneous fields of Re௄ for Ra ൌ 20,000. The Re௄ values of all 

the cases for Sc ൌ 250 are much smaller than unity and thus the flow is in the Darcy’s regime. 

According to our DNS, the flow in the pores is laminar, despite the large Rayleigh number, 

because of the very small local Reynolds numbers (Re௄ ). The macroscopic flows at large 

Rayleigh numbers are nevertheless strongly nonlinear and chaotic, exhibiting “macroscopic 

turbulence”. The convection for Sc ൌ 1 is also generally in the Darcy’s regime. The largest 

value of Re௄ for Sc ൌ 1 is about 2.8, which occurs for the case of Ra ൌ 20,000, 𝐻 𝑠 ൌ 20⁄ , 

and 𝜙 ൌ 0.56. These results suggest that the Forchheimer’s term may have more effect in heat 

transfer problems than in mass transfer problems because the Prandtl number of one is common 

in heat transfer, whereas typical Schmidt number values are larger than unity.  

The instantaneous species concentration fields obtained from our DNS and DOB simulations 

at Ra ൌ 20,000 are shown in figure 4. The macroscopic species concentration field 〈𝑐〉 was 

either obtained from the DNS results by volume averaging over each REV (figure 4(a), (b)), or 

calculated directly in DOB simulations (figure 4(c)). Both DNS and DOB mass concentration 

fields exhibit two boundary layer regions and an interior region. The interior region is 

dominated by transient mega-plumes, whereas the boundary layers are filled with small proto-

plumes. These small proto-plumes are products of the growing instabilities in the boundary 

layers that cause low concentration fluid to rise and high concentration fluid to sink. 

 
 

 

 
 
 

(a) Re௄ 
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FIGURE 3. Snapshots of the instantaneous Reynolds number Re𝐾 based on the permeability 
at Ra ൌ 20,000 from DNS results with 𝜙=0.56 (𝑠/𝑑 ൌ 1.5). (a) Sc ൌ 250, 𝐻/𝑠 ൌ 20; (b) 
Sc ൌ 250, 𝐻/𝑠 ൌ 50; (c) Sc ൌ 1, 𝐻/𝑠 ൌ 20. 
 

 

Interestingly, the instantaneous species concentration fields obtained by DNS and displayed 

in figure 4(a) and 4(b) suggest that the size of mega- and proto-plumes increases with the pore 

size. This phenomenon is absent in classical Rayleigh-Bénard convection (without a porous 

medium) and cannot be captured by the DOB equations where pore effects enter the equations 

only via Ra. 

 

 

 

 

 

 

 

Re௄ (b) 

(c) Re௄ 
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FIGURE 4. Snapshots of instantaneous mass concentration fields at Ra ൌ 20,000 and Sc ൌ

1. (a) DNS with H/s=50 and 𝜙 ൌ 0.56  (s/d=1.5). Here, the macroscopic mass concentration 
was obtained by volume averaging the microscopic mass concentration over each REV; (b) 
DNS with H/s=20 and 𝜙 ൌ 0.56  (s/d=1.5); (c) DOB simulation.  

 

Figure 5 shows several instantaneous profiles of 𝑐̂  along with their corresponding time-

averaged discrete Fourier transforms at mid-height for Ra ൌ 20,000 and  Sc ൌ 1. The mean 

Microscopic results 

Macroscopic results Mega-plumes 

Proto-plumes 

(a) 

(c) 

Mega-plumes 

Proto-plumes 

(b) 

𝑐̂ 

Macroscopic results 
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concentration 〈cො〉௫ଵ, where the operator 〈∙〉௫ଵ denotes horizontal averaging, was extracted from 

𝑐̂. The number of 𝑐̂ maxima, which corresponds to the number of mega-plumes, decreases with 

increases in pore size 𝑠 (see figure 5(a)). In the DOB simulations, the peak amplitude occurs 

when the wavenumber 𝑘 equals 9π. Wen et al. (2015) indicted that the wavenumber is not 

unique for Ra ൐ 39,716. However, the wavenumber is well approximated by 𝑘 ൌ 0.48Ra଴.ସ 

when Ra is smaller than this critical value. Figure 6 shows that our DOB results are close to 

this correlation, as well as to the DOB results of Hewitt et al. (2012) and Wen et al. (2015). A 

variability of the peak wavenumber due to long-time-scale fluctuations was observed in Hewitt 

et al. (2012) when different initial field or aspect ratio (𝐿/𝐻) were used, see hollow circles in 

figure 6. This variability was not found in our study since the same initial field and aspect ratio 

were used in both our DNS and DOB solutions.   

In the DNS, the peaks are broader and the dominant wavenumber increases from 4π to 7π 

as 𝐻/𝑠 increases from 20 to 50. This emphasizes the importance of the pore scale 𝑠 in shaping 

the mega-plumes. Motions at even larger length scales (𝑘 ൎ π), which corresponds to the length 

of the box (2H), were observed in the DNS. 
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FIGURE 5. Instantaneous profiles (a) and average spectra (b) of the dimensionless mass 
concentration, 𝑐̂, at mid-height 𝑥ଶ 𝐻⁄ ൌ 0.5. Ra ൌ 20,000 , 𝜙 ൌ 0.56 (s/d=1.5), and Sc ൌ
1.  
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FIGURE 6. Peak wavenumber k for the mega-plumes of the DOB results for different Rayleigh 

numbers. The maximum error bar for the peak wavenumber is estimated according to the 

wave number step size ∆𝑘 ൌ 𝜋 in our discrete Fast Fourier Transform (FFT). 

 

Figure 7 shows several instantaneous profiles of 𝑐̂ and their corresponding time-averaged 

Fourier transforms for Ra ൌ 20,000 and Sc ൌ 250 . Similar to the results for Sc ൌ 1 , the 

dominant wavenumber increases from 4π to 7π as 𝐻/𝑠 increases from 20 to 100. Here, the 

smallest Darcy number Da is 3.5 ൈ 10ି଻, which corresponds to 𝐻/𝑠 ൌ 100. Large length scale 

(𝑘 ൌ 𝜋) motions were also found in this test case, which makes the DNS results distinctly 

different from the DOB results. However, more detailed investigations are required to clarify 

the origin of these motions. We expect that the plumes will keep getting smaller as 𝐻/𝑠 → ∞ 

and may even eventually converge toward the DOB results, see figure 8. However, although 

(b) 
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Re௞ for the DNS case is much smaller than 1 (see figure 3b for 𝐻/𝑠 ൌ 50) and the pore size 𝑠 

(0.01𝐻 for 𝐻/𝑠 ൌ 100) is much smaller than the plume size (about 0.23𝐻 for Ra ൌ 20,000, 

the DOB results), the peak wavenumbers from the DNS results are still clearly different from 

the DOB results. A possible reason is that no matter how small the pore size, the pore scale 

structure may always affect part of the boundary layer in the vicinity of the wall.  
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FIGURE 7. Instantaneous profiles (a) and average spectra (b) of the dimensionless mass 

concentration, 𝑐̂ , at mid-height 𝑥ଶ 𝐻⁄ ൌ 0.5, Ra ൌ 20,000 , 𝜙 ൌ 0.56 (s/d=1.5), and Sc ൌ

250.  
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FIGURE 8. Peak wavenumber k for the mega-plumes of the DNS results for different Darcy 

numbers, Ra ൌ 20,000 . The maximum error bar for the peak wavenumber is estimated 

according to the wave number step size ∆𝑘 ൌ 𝜋 in our discrete FFT. 

 

4.2 Sherwood number 

The scaling of the Sherwood number for Sc ൌ 1 obtained from our DNS results, with various 

𝐻 𝑠⁄  and porosity values, is shown in figure 9. The DOB simulations of Hewitt et al. (2012) 

and our own DOB results are compared with our DNS results (shown by solid and dashed lines 

in figure 8(a)). It appears that the DOB simulations overestimate the mass transfer rate for Ra 

in the range between 600 and 4,000, whereas at large Ra, they fall amidst the values obtained 

by DNS for the porosities studied here. Although the scale ratio 𝐻/𝑠 appears to determine the 

scale of mega-plumes, it only mildly influences Sh and without a clear trend. 

The DNS results show that the porosity has a significant effect on Sh in the high Rayleigh 

number regime (Ra ൐ 10,000 ). For example, at Ra ൌ 20,000 , Sc ൌ 1  and 𝐻/𝑠 ൌ 20 , Sh 

decreases from 158 to 96 while the porosity increases from 𝜙 ൌ 0.36 (𝑠/𝑑 ൌ 1.25) to 0.56 

(𝑠/𝑑 ൌ 1.5). At large Rayleigh numbers (Ra ൐ 5,000), the relationship between Sh and Ra can 

be well approximated by Sh ൌ 8 ൅ 0.0076Ra  for 𝜙 =0.36. This linear relationship is in 

accordance with our own DOB results (Kränzien & Jin 2019), as well as the DOB results by 

Hewitt et al. (2012). However, for 𝜙 ൌ 0.56, the correlation Sh ൌ 0.033Ra଴.଼ better fits the 

data.  
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FIGURE 9. Time and surface averaged Sherwood number. Lines: DOB results; Symbols: 
DNS results. The porosity 𝜙  and scale ratio 𝐻 𝑠⁄  are varied. The results for Sc ൌ 1 are 
shown in a loglog-scale (a), and a linear-scale for Ra ൐ 5,000 (b).  

 

The Sherwood number slightly increases as the Schmidt number is increased from 1 to 250. 

However, the relationship between Sh and Ra does not change qualitatively (see Fig .10). At 

large Rayleigh numbers (Ra ൐ 5,000), the Sherwood number is still higher for a lower porosity. 

The Sh ൌ 𝑓ሺRaሻ scaling changes from a linear scaling (Sh ൌ 16 ൅ 0.0076Ra) for 𝜙 ൌ 0.36 to 

a nonlinear one (Sh ൌ 0.045Ra଴.଼) for 𝜙 ൌ 0.56. The exponential coefficients for Sc ൌ 250 

are the same as those for Sc ൌ 1  (𝛼 ൌ 1  for 𝜙 ൌ 0.36  and 𝛼 ൌ 0.8  for  𝜙 ൌ 0.56 ), which 

indicates that the relationship between Sh and Ra does not change qualitatively if Sc is varied. 

Our DNS results suggest that the non-linear scaling laws found in the experiments by Backhaus 

et al. (2011) and Neufeld et al. (2010) may be related to the porosity or pore-scale factors, such 

as the pore size 𝑠.  

(a) 
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FIGURE 10. The time and surface (over the wall surface) averaged Sherwood number, Sc ൌ
250. Lines: DOB results; Symbols: DNS results. The porosity 𝜙 and scale ratio 𝐻 𝑠⁄  are 
varied. The results are shown in the log-scale (a) and linear-scale for Ra ൐ 5,000 (b).  

 

It is worth noting that the small Schmidt number (Sc ൌ 1) cases could also be representative 

of convective heat transfer in a porous medium where Pr ൌ 1 is common. However, in an 

experiment for heat transfer, Keene & Goldstein (2015) found a significantly smaller scaling 

exponent for the Nusselt number, Nu~Ra଴.ଷଵଽ. The possible cause of this discrepancy is that 

conjugate heat transfer may play a key important role, as we here assumed that the wall surfaces 

of the porous elements are adiabatic because we considered mass transfer. Clearly, the effect of 

conjugate heat transfer on convection in porous media deserves further investigation.  

 

4.3 Mass concentration and velocity statistics 

Figure 11 shows the vertical profiles of the temporally and horizontally averaged 

macroscopic mass concentration 〈𝑐̂̅〉௫ଵ  obtained from DOB simulations. Here, the species 

(a) 
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concentration profiles at different Ra numbers become almost identical when the distance from 

the lower wall 𝑥ොଶ is normalized by 1/Ra. This is in accordance with the statement by Huppert 

& Neufeld (2014) that the boundary layer thickness is determined by 1/Ra. More details of our 

DOB results can be found in Kränzien & Jin (2019).  
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FIGURE 11. DOB results. (a) vertical profiles of time- and line-averaged species concentration; (b) 

r.m.s of species concentration fluctuation 〈𝑐̂௥௠௦〉௫ଵ; (c) 𝑢ଵ fluctuation; (d) 𝑢ଶ fluctuation (d). 

 
By contrast, the profiles computed by resolving the flow at the pore scale with DNS exhibit 

a distinct length scale. Figure 12 shows strong deviations from the DNS results if 𝑥ොଶ is scaled 

with 1/Ra. However, similar trends are observed if 𝑥ොଶ is scaled with the pore scale 𝑠̂ ൌ 𝑠 𝐻⁄  

(figure 13). Recall that the pore size 𝑠 can be approximated by using 𝑠∗, defined in Eq. (21) for 

a general two-dimensional porous matrix. The influence of the bounding walls is generally 

limited to within the first three REVs next to the walls, which leads to a steep gradient of 〈𝑐̂̅〉௫ଵ 

therein. When the distance from the lower wall is normalized by the pore size 𝑠, the 〈𝑐̂̅〉௫ଵ 

obtained at different Rayleigh numbers collapse together. Hence, the boundary layer thickness 

for convection in porous media is not determined by Ra, but by the pore size 𝑠.  
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FIGURE 12 Vertical profiles of time- and line-averaged mass concentration for Sc ൌ 1, DNS 

results. □: 𝐻/𝑠 ൌ 20 , 𝜙 ൌ 0.36 , Ra ൌ 5,000 ; ○: 𝐻/𝑠 ൌ 20 , 𝜙 ൌ 0.56 , Ra ൌ 5,000 ; +: 

𝐻/𝑠 ൌ 20, 𝜙 ൌ 0.56, Ra ൌ 20,000; ×: 𝐻/𝑠 ൌ 50, 𝜙 ൌ 0.56, Ra ൌ 5,000. 
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FIGURE 13. DNS results for Sc ൌ 1. (a) Vertical profiles of time- and line-averaged mass 
concentration; (b) r.m.s of mass concentration fluctuation; (c) 𝑢ଵ  fluctuation; (d) 𝑢ଶ 
fluctuation. □: 𝐻/𝑠 ൌ 20, 𝜙 ൌ 0.36, Ra ൌ 5,000; ○: 𝐻/𝑠 ൌ 20, 𝜙 ൌ 0.56, Ra ൌ 5,000; +: 
𝐻/𝑠 ൌ 20, 𝜙 ൌ 0.56, Ra ൌ 20,000; ×: 𝐻/𝑠 ൌ 50, 𝜙 ൌ 0.56, Ra ൌ 5,000.  
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Figure 13 also shows the root-mean-square (r.m.s.) macroscopic mass concentration and 

velocity fluctuations, 〈𝑐̂ 
௥௠௦〉௫ଵ, 〈𝑢ොଵ

௥௠௦〉௫ଵ, and 〈𝑢ොଶ
௥௠௦〉௫ଵ, respectively, for Sc ൌ 1. The velocity 

fluctuations were normalized with the characteristic velocity, 𝑢௠ ൌ 𝛽∆𝑐𝑔𝐾 𝜈⁄ . The DNS 

results show that, besides Ra, the scale ratios 𝐻 𝑠⁄  and porosity 𝜙 also have significant effects 

on r.m.s. quantities. These effects are absent in DOB simulations. In addition, 〈𝑢ොଵ
௥௠௦〉௫ଵ  in 

figure 13(b) is distinctly different from the DOB results, which have unphysical (non-zero) 

velocity fluctuations at the wall surface (Hewitt, et al. 2012; Kränzien & Jin 2019). A possible 

reason for these discrepancies is that momentum dispersion is not accounted for in the DOB 

equations.  

Figure 14 shows the temporally and horizontally averaged macroscopic results for Sc ൌ 250. 

Similar to the results for Sc ൌ 1 (see Fig. 13), the influence of the bounding walls is still limited 

to within the first three REVs next to the walls. Again, our DNS results confirm that the 

boundary layer thickness for convection in porous media is determined by the pore size 𝑠 (or 

𝑠∗ for a porous matrix with permeability K and porosity 𝜙).  
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FIGURE 14. DNS results for Sc ൌ 250. (a) Vertical profiles of time- and line-averaged mass 
concentration; (b) r.m.s of mass concentration fluctuation; (c) 𝑢ଵ  fluctuation; (d) 𝑢ଶ 
fluctuation. □: 𝐻/𝑠 ൌ 20, 𝜙 ൌ 0.36, Ra ൌ 5,000; ○: 𝐻/𝑠 ൌ 20, 𝜙 ൌ 0.56, Ra ൌ 5,000; +: 
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𝐻/𝑠 ൌ 20, 𝜙 ൌ 0.56, Ra ൌ 20,000; ×: 𝐻/𝑠=50, 𝜙 ൌ 0.56, Ra ൌ 20,000.  

 

As the boundary layer thickness is determined by the pore size (which can be characterized 

by the square root of the permeability √𝐾), the momentum dispersion term 
డ൫థ〈 ௨෥೔ 

೔ ௨෥ೕ 
೔ 〉೔൯

డ௫ොೕ
 and 

viscous diffusion term 
ୗୡ

ఊ೘ୖୟ

డమ௨ෝ೔

డ௫ොೕ
మ  in the macroscopic equation (Eq. 9) are expected to scale as 

1 𝐾⁄ . Thus, the momentum dispersion and viscous diffusion terms should be of order 
ଵ

஽௔
ൌ

ுమ

௄
, 

exactly as the Darcy term itself. Thus, our DNS results suggest that the pore scale significantly 

influences convection in porous media through the momentum dispersion and viscous diffusion 

terms, which are neglected in the DOB equations. We conclude that these terms cannot be 

neglected in the macroscopic equations even if the pore size is small. In addition, the pore size 

should be used as the characteristic length when the dispersion term is modeled. 

 

5. Conclusions 

Natural convection in a porous medium, made of two-dimensional square obstacles, was 

studied with DNS by fully resolving the flow field within the pores. Upon comparing our DNS 

and DOB results, we found significant effects of the pore-scale on the macroscopic flow and 

mass concentration fields. These effects are summarized in what follows. 

The boundary layer thickness is not determined by 1/Ra, as DOB simulations suggest 

(Huppert & Neufeld 2014), but by the pore size. In addition, the sizes of the mega-plumes in 

the interior region increase with increasing pore size. The DNS exhibit motions with even larger 

length scales, reaching up to the domain size. This is different from the DOB simulations, where 

the sizes of mega-plumes in the interior region depend only on the Rayleigh number. 

Furthermore, note that the spectra of the DNS exhibit much broader peaks and also many 

secondary peaks at larger and smaller wavenumbers, which are entirely missing in the DOB 

case. Hence, even if the dominant wavenumber appears to converge to the DOB case, it is 

unclear whether the entire spectrum will converge to it. Overall, pore-scale effects at a low 

Schmidt number (Sc=1) are qualitatively similar to those at a high Schmidt number (Sc=250).  

The porosity was found to have a strong impact on the mass transfer. At high Rayleigh 

numbers, increasing the porosity resulted in a lower Sherwood number. More importantly, the 

Sh ൌ 𝑓ሺRaሻ  relationship changed from a linear scaling law ( Sh~Ra ) for 𝜙 ൌ 0.36  to a 

nonlinear scaling law (Sh~Ra଴.଼ ) for 𝜙 ൌ 0.56 . This is in accordance with the study of 

Bernard-Rayleigh flows without a porous medium. For example, Shishkina & Sebastian (2016) 
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suggested the scaling Nu ∼ Raଵ/ସ for large Pr and Ra numbers. This is also observed in the 

experiments of Backhaus et al. (2011) and Neufeld et al. (2010). However, this comparison 

must be taken with caution because the geometrical details of porous matrices used in the 

experiments are not specified in their studies. 

One limitation of our results is the relatively small 𝐻/𝑠 ൑ 100 values in the DNS (to keep 

computational costs manageable), whereas problems such as CO2 sequestration are 

characterized by very large 𝐻/𝑠 ratios. However, the 𝐻/𝑠 values in our study ensured that most 

cases (all cases for Sc=250) were within the Darcy’s regime. Therefore, 𝐻/𝑠 only has a mild 

influence on Sh without a clear trend within the range of our computational parameters. This 

suggests that DNS with reduced H/s values may be used for tackling practical problems such 

as CO2 sequestration despite a much larger H/s ratio in that situation. 

We stress that none of the effects revealed here can be captured by state-of-the-art DOB 

simulations, where all the microscopic details of the porous media are lumped into the Rayleigh 

number. Our simulations open avenues for the extension and parametrization of improved DOB 

equations including non-Darcy terms, accounting for the effect of porosity and the pore scale. 

More specifically, the momentum dispersion and viscous diffusion terms should be accounted 

for in the macroscopic equations, even when the pore size is much smaller than the plume size 

and Re௞ ≪ 1. The pore size should be used as the characteristic length when the dispersion 

term is modeled. To achieve this goal, more extensive numerical and experimental studies 

involving more realistic porous matrices to predict CO2 sequestration are needed. 
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